Runtime Monitoring of Object Invariants with
Guarantee

Madhu Gopinathan! and Sriram K. Rajamani?

! Indian Institute of Science,

gmadhu@csa.iisc.ernet.in,

2 Microsoft Research India,
sriram@microsoft.com

Abstract. High level design decisions are never captured formally in
programs and are often violated as programs evolve. In this paper, we
focus on design decisions in which an object o works correctly only if
another object p is in some specific states. Such decisions can be specified
as the object invariant of o.

The invariant of o must hold when control is not inside any of 0’s methods
(i.e. when o is in a steady state). From discussion forums on widely used
APIs, it is clear that there are many instances where o’s invariant is
violated by the programmer inadvertently changing the state of p when
o is in a steady state. Typically, o and p are objects exposed by the
API, and the programmer (who is the user of the API), unaware of the
dependency between o and p, calls a method of p in such a way that
o’s invariant is violated. The fact that the violation occurred is detected
much later, when a method of o is called again, and it is difficult to
determine exactly where such violations occur.

We propose a runtime verification scheme which guarantees that when
0 is in a steady state, any violation of o’s invariant is detected exactly
where it occurs. This is done by tracking dependencies automatically
and validating whether a state change of an object p breaks the in-
variant of any object o that depends on p. We demonstrate that our
tool INVCOP, which implements this scheme, can accurately pinpoint
violations of invariants involving multiple objects that were reported in
discussion forums on widely used APIs.

1 Introduction

Design decisions impose constraints on both the structure and behavior of the
software. Typically, these decisions are described informally in comments em-
bedded within code, or in documents. These documents are seldom updated as
the software evolves. As a result, valuable design information is missing in most
complex software. A promising approach to solve this problem is to capture de-
sign decisions formally as rules, and build tools that automatically enforce that
programs obey these rules.

Data types are the only rules that are formally captured in programs, and
enforced by programming languages. Over the past decade, we have witnessed

© W N O ;A W N =

practical tools and type systems that extend this type of checking to allow state-
ful protocols on objects [1-3]. All these systems treat the state associated with
each object independently. For example, they can check if every lock in the pro-
gram is acquired and released in strict alternation, or if every file is opened before
read, and then closed before the program exits. However, they are not capable of
expressing rules that involve multiple inter-related objects. Since objects usually
depend on other objects, such rules are common:

”»

. no object is an island. All objects stand in relationship to others,
on whom they rely for services and control” [4]

In this paper, we present a runtime verification approach for enforcing the
following inv-rule: The invariant of object o (which can refer to the state of
other objects p) must hold when control is not inside any of o’s methods. The
unique feature of our approach is that we track dependencies between objects
automatically, and guarantee that violations of the inv-rule are detected exactly
when they occur.

Example 1: Iterators for collection classes. Consider the Java code frag-
ment below that uses an iterator to access the integers in a list sequentially.

//list is of type ArrayList<Integer>

//with integers 1,2,3 added

for(Iterator<Integer> i = list.iterator(); i.hasNext();) {
int v = i.next();

if(v == 1)
list.remove(v);
else

System.out.println(v);
}

On execution, a ConcurrentModificationException (CME) (the name is mis-
leading as it occurs in single threaded programs also) is thrown at line 4. The
API documentation for ArrayList [5] states the following:

If list is structurally modified at any time after the iterator is created, in
any way except through the iterator’s own remove or add methods, the
iterator will throw a ConcurrentModificationException.

The Iterator i depends on the 1ist to not change during iteration. This can
be specified as the invariant of Iterator:

List myList = ..;
int expectedVersion = ..;

//object invariant of Iterator
public boolean Inv() {
return myList != null &&
expectedVersion == myList.version;

© L N c oA W N =

Since list.remove (line 6) removes an element from the list and changes
list.version as a side-effect, the invariant of the iterator is violated at this
point. However, this violation is detected only when the next () method is called
at line 4. Hence CME is thrown at line 4.

Example 2: Statement and Connection. Consider the code below that uses
JDBC(Java Database Connectivity) API to access a database.

Connection con = DriverManager.getConnection(..);

Statement stmt = con.createStatement();

ResultSet 1rsi stmt . executeQuery ("SELECT EMPNO
FROM EMPLOYEE");

con.close();

ResultSet rs2 = stmt.executeQuery("SELECT EMPNAME
FROM EMPLOYEE") ;

A statement depends on the connection used to create it for executing SQL
statements. Closing a connection will invalidate any statement created by that
connection. Calling any method of an invalid statement other than isClosed or
close results in a SQLException. To avoid such errors, a connection must not
be closed before closing any statement created by that connection. This can be
specified as the invariant of Statement.

Connection connection = ..;
boolean isClosed = ..;

//object invariant of Statement
public boolean Inv() {
return isClosed ||
(connection != null && !connection.isClosed());

The invariant of stmt is violated at line 6 as con is closed before closing
stmt. When the executeQuery method is called later, this is detected. Hence
SQLException is thrown at line 8.

The inv-rule is difficult to enforce, since it requires keeping track of the
state of related objects. In Example 1, a programmer may not be aware that
iterator i depends on the list, and that changing the list will break the iterator’s
invariant. Similarly, in Example 2, a programmer may not be aware that closing
the connection will break a statement’s invariant. Such violations routinely occur
in large programs [6-8]. Debugging such violations is hard. In Example 1, an
exception is thrown at line 4, and the stack trace of the exception does not refer
to line 6, which violated the rule. In Example 2, an exception is thrown at line
8, and the stack trace does not refer to line 6, which violated the rule.

Our goal is to enable providers of APIs to document the inv-rule precisely
and provide a tool to help users of the API to detect exactly where violations
occur in the user code. Thus, we can rely on the inv-rule being enforced in any
program using the APIL

We are not the first to consider rules involving multiple objects. Several
“ownership” type systems have been invented to enable objects to own other
objects they depend on [9,10]. However, these require making changes to the
programming language, and there is still a lot of debate on the pros and cons
of various ownership type systems [11]. Also, program verification tools to check
such invariants have been proposed, which force programmers to follow a par-
ticular methodology [12]. While this methodology works naturally for certain
ownership structures, they need to be extended to handle cases where multi-
ple objects depend on the same object [13] (as in Example 2 where multiple
statements depend on the connection used to create them).

In this paper, we show how to enforce the inv-rule. The paper has two main
contributions:

— We guarantee that in every run of a program, either a violation of the inv-
rule is reported exactly where it occurs, or the run indeed satisfies the
inv-rule (see Theorem 1 in Section 2.3 for a precise statement). This dis-
tinguishes our work from other runtime monitoring approaches to rule en-
forcement such as MOP [14], Tracematches [15] and JLo [16], where no such
guarantees can be given if critical events from the program are missed by
the monitor (see Section 4 for an example).

— Our approach is implemented in a tool called INVCOP. We demonstrate
that rules involving objects exposed by the API are not violated by detecting
usage errors previously reported in discussion forums on two commonly used
APIs.

2 Approach

In this section, we explain the key features of our approach in stages, motivating
the need for each feature. Consider Example 2 in Section 1. Our goal is to
enforce the rule that in any program, a connection cannot be closed unless all
the statements created using that connection are closed. We have seen that this
can be specified as the object invariant of Statement.

public boolean Inv() {
return isClosed ||
(connection !'= null && !'connection.isClosed());

Similarly, we can capture the dependency of iterator on list using the ob-
ject invariant of iterator. Consider designing a reusable monitor object which
reports an assertion violation if the inv-rule is violated. For every object that
registers with the monitor, we require a side-effect free public method boolean
Inv() returning a boolean, that checks the actual invariant (depending on the
implementation of the object). To capture this requirement, we introduce the
role ObjWInv (object with invariant).

role ObjWInv {
boolean Inv();

}

For every object o of role ObjWinv (i.e. a subtype of ObjWInv), we add
a boolean auxiliary field inv. Our goal is to ensure that for every object o of
role ObjWlinv in the program, whenever o.inv is true, o.Inv() returns true. In
the monitor, o.inv is set to true only by using CheckAndSetInv(o) that asserts
o.Inv() before setting o.inv to true:

CheckAndSetInv(0bjWInv o) {
assert o.Inv();
o.inv = true;

}

The goal of the monitor is to report an assertion violation whenever a state
change of p breaks the invariant of any o that depends on p. For this, the monitor
must know the dependents of p. Therefore, we introduce another auxiliary field
ObjWinwv.dependents of type Set of ObjWlinv. To register an object o, the moni-
tor’s Init method must be called which initializes o.inv to false and o.dependents
to empty set.

Init(0bjWInv o) {
o.inv := false;
o.dependents := nullset;

}

The monitor must be informed of dependencies (e.g. when a statement is
created using a connection) by calling its Add method.

Add(0bjWInv o, 0bjWInv p) {
assert(o.inv = false);
p.dependents.Add (o) ;

}

The monitor must be informed that o is in a steady state and o.inv
must be monitored by calling its Start method. Before executing a method
of o, Stop must be called to indicate that o.inv need not be monitored.

Start (ObjWInv o) { Stop(0bjWInv o) {
assert(o.inv = false); assert(o.inv = true);
CheckAndSetInv (o) ; o.inv := false;

} }

Whenever the state of an object p changes, we should check with the monitor
by calling its Validate method. This method checks whether the state change of
p breaks the invariant of any o that depends on p.

Validate(ObjWInv p) {
for(o in p.dependents) {
if(o.inv = true)
CheckAndSetInv (o) ;

AW N e

© ®w N o w

10

12

13

14

15

16

Next, we need to instrument the program with appropriate calls to the mon-
itor. Consider again, the JDBC user code given below. The calls to the monitor
methods are shown in italics.

Connection con = DriverManager.getConnection(..);
Init(con); // register con

Statement stmt = con.createStatement();

Init(stmt); // register stmt

Add(con, stmt); // inform monitor that stmt depends on con
Start(stmt); //start monitoring stmt.inv

Stop(stmt); //stop monitoring stmt.inv
ResultSet rsl = stmt.executeQuery("SELECT EMPNO FROM EMPLOYEE");
Start(stmt); //start monitoring again

con.close();
Validate(con); // inform monitor that con’s state changed

ResultSet rs2 = stmt.executeQuery("SELECT NAME FROM EMPLOYEE");

With this added instrumentation, the call to Validate (line 14) reports an
assertion violation as closing con breaks the invariant of stmt which is still
open. Without the monitor, the error manifests subsequently, on line 16, when
stmt is used. In this example, this is close to line 13, but in large programs the
manifestation could be arbitrarily far away from the cause, resulting usually in
long hours of debugging. With the monitor, we can detect the error at the point
where inv-rule is violated (line 13).

However, there are two problems with the approach above:

1. Adding calls to monitor methods in the program creates a tight coupling
between the monitor and the program bound to the rule. It is not easy to
disable the monitor during deployment.

2. Errors can be missed if a call to an appropriate monitor method is omitted.
For example, if the call to Validate(con) is omitted on line 13 above, then the
error in the program is not detected by the monitor. The API programmer
must ensure that the monitor knows about dependencies (by calling Add)
and state changes of p are validated (by calling Validate). As new methods
are added to p’s class, the API programmer must ensure that appropriate
calls to Validate are made. This process is error prone.

Sections 2.1 and 2.2 give solutions to problems 1 and 2.

2.1 Specifying bindings using AOP

Aspect oriented programming (AOP) [17] enables the various concerns (in this
case, the JDBC specific code and the monitor specific code) to be specified
separately. A description of the relationships of the two separate concerns enables

an AOP implementation such as AspectJ [18] to compose them together. Thus,
if the relationship is correctly specified, then the appropriate monitor methods
are implicitly invoked.

Any class in the program with a public method boolean Inv() can be bound
to the role ObjWinv (i.e. it becomes a subtype of ObjWInv). The API pro-
grammer can bind the classes Statement and Connection as shown below (the
binding below uses AspectJ syntax).

declare parents: Statement implements ObjWInv;
declare parents: Connection implements ObjWInv;

In AspectJ, a join point is an identifiable point, such as a call to a method
or an assignment of a field, in the execution of a program. All join points have
an associated context. For e.g., a method call has the context caller, target
and arguments. These are the points at which the monitor specific code can be
composed with the JDBC code. A pointcut is a set of join points. Advice is the
code to be executed at the join points in a particular pointcut. At runtime, a
before advice is triggered before the join point and an after advice after the join
point.

The initialization of ObjWInv occurs before the constructor body of a class
implementing ObjWlinv executes. After this point, the auxiliary state of o is
initialized by calling the monitor method Init(o).

pointcut init(ObjWInv o) : initialization(ObjWInv.new(..))
&& this(o);
after(ObjWInv o) : init(o) {
Init(o);
}

After the field Statement.connection is set (during the construction of
Statement), the target Statement o and the argument Connection p are col-
lected and o is added as a dependent of p.

pointcut setConnection(0bjWInv o, 0bjWInv p)
set(Connection Statement.connection)
&& target (o)
&& args(p);
after (ObjWInv o, ObjWInv p) : setConnection(o,p) {
Add(o,p);
}

After statement is created, the monitor is asked to start monitoring its in-
variant.

pointcut create() : call(Statement.new(..));

after() returning(ObjWInv o) : create() {
Start (o) ;

}

Before closing the statement, the monitor is asked to stop monitoring its
invariant.

pointcut stmtClose(ObjWInv o) : call(public void Statement.close())
&& target(o);
before(ObjWInv o) : stmtClose(o) {
Stop(o);
}

After closing the connection p, we must validate whether this change breaks
the invariant of any statement o that depends on the connection p.

pointcut conClose(ObjWInv p) : call(public void Connection.close())
&& target(p);
after(ObjWInv p) : conClose(p) {
Validate(p);
}

It is easy to see that the Iterator/List code can be composed with the same
monitor in a similar fashion. Mistakes can be made in the binding: suppose
the pointcut conClose does not list the call to Connection.close. Then the
monitor misses the critical event that a connection with an associated open
statement is closed in the program. Other runtime monitoring approaches using
AOP [14,16] rely on the programmer to correctly specify all the events that
create dependencies and change relevant state in the program. In section 2.2,
we show how to improve upon this by automatically tracking dependencies (as
o.Inv() executes) and calling Validate whenever a relevant state change occurs.

Note that in many cases, a default binding such that Stop(o) is called before
and Start(o) is called after every public method execution on o suffices. Then
with automatic dependency tracking and validation, the API programmer need
not write a binding description at all. However, in some cases, a custom binding
is needed (see section 3).

2.2 Automatic dependency tracking with validation

The key insight we have is that for any object o, the objects p on which o’s in-
variant depends can be computed when o.Inv() executes using AOP techniques.
Thus, if we compute these dependencies, we can check whether o.Inv() holds
every time an object p that o depends on changes, and flag a violation of the
inv-rule exactly where it occurs. In this section, we show how to track depen-
dencies and validate relevant state changes automatically.

Definition 1. (o,p, f) € D iff the object invariant of o depends on the value of
the field p.f.

We must have (o, p, f) € D iff the field p.f is read during the last execution
of 0.Inv() (i.e. 0 is a dependent of p). Suppose the value of p.f changes. It can
potentially break the invariant of some o iff (o,p, f) € D and o.inv is true.
Validate is invoked to check whether the change in value of p.f breaks any such
o’s invariant.

The fields read during the execution of 0.Inv() can be captured using AOP.
We require that all such fields f must be either of a built-in type or of a subtype

of ObjWinv. This restriction is imposed so that we can register with the AOP
execution environment for changes to these fields. We rely on the AOP execution
environment to get a notification when the value of such a field f changes. More
details on the implementation are given in section 3.

Consider Figure 1. In scenario 1, after the statement o is constructed,
Start(o) is invoked. Since Start calls CheckAndSetInv(o), o.Inv() is called, and
we compute all the fields p.f that o depends upon. Therefore, (o, p, isClosed) €
D. In scenario 2, after the field Connection.isClosed is set to false in
Connection.close, Validate(p) is called. As o.inv is true and o.Inv() returns
false, an assertion violation occurs. We now show that our approach always
catches such errors subject to certain restrictions and assumptions.

monitor

+ binding
user o : Statement p : Connection (Statement +
code Connection)

new Statement(p) . 3
o senengp o

@ { connection=p)

return
al Start(o)
- 0.Inv() o
p.isClosed(& 1
L L return
~— p.close() : I

isClosed = true
@ : Validate(p) .|
A 4

|: 0.Inv()
<
return return 4

Fig. 1. Automatic dependency tracking with validation

2.3 Correctness

We consider sequential programs only. To summarize, the following restrictions
on the program enable us to automatically track dependencies and validate state
changes that may violate object invariants.

R1 Every field f read during the execution of 0.Inv() must be either of a built-in
type or of a subtype of ObjWlinv.
R2 The execution of 0.Inv() cannot modify any state.

These restrictions are checked by INVCOP using AOP, and if they are violated,
an assertion violation is thrown.
The assumptions made on the AOP environment are:

A1 Every read access of a field p.f, where p is an object of type ObjWlinwv, can
be detected.

A2 Every change of a field p.f, where p is an object of type ObjWlInv, can be
detected.

A3 The initialization of an object of type ObjWInv can be detected.

Assuming A3, we can ensure that every object o of type ObjWinv is regis-
tered with the monitor by calling Init(o). Note that Init(o) sets o.inv to false.
The following theorem relates the auxiliary field o.inv to the actual invariant of
the object 0.Inv().

Theorem 1. Let r be any run of program P composed with the monitor using
binding B. Suppose r does not have any assertion violations. Then, the following
holds in all states of r:

Yo € ObjWinv.(o.inv = true) = (o0.Inv() = true)

Proof. The auxiliary field o.inv is set to true only using CheckAndSetInv(o).
Therefore, 0.Inv() must have returned true. Let f be a field declared in a class
P. Consider the assignment of a new value to p.f, where p is an instance of
P. If this assignment violates the object invariant of o (i.e. 0.Inv() now returns
false and its previous execution returned true), then, the previous execution of
0.Inv() must have accessed p.f. By assumption Al, we have (o,p, f) € D. By
assumption A2, the assignment of p. f is detected and Validate(p) is called. Since
0.inv is true and (o,p, f) € D, CheckAndSetInv(o) is called. Since we assume
that r does not have assertion violations, and CheckAndSetInv(o) calls assert
0.Inv(), we have that o.Inv() = true.

3 Implementation

We have implemented the above approach in a tool called INVCOP. We first
present the tool description followed by experimental results. The components
of INVCOP are:

Monitor As we have discussed in section 2.

Depend Compute D during the execution of o.Inv(). Invoke the monitor
method Validate when a state change is detected.

Aspect Generator Generate an aspect combining the above two components
and a binding. In most cases, a default binding suffices. However, in certain
cases (given below), the API programmer may need to provide a custom
binding.

The Depend component uses AOP to to compute the dependency relation
D. The execution of o.Inv() is captured using a pointcut. Then using a control
flow pointcut (cflow), any read operation of a field p.f during the execution of
0.Inv() can be captured. If a joinpoint specified by such a pointcut is reached,
then (o,p, f) is added to D. A call to p.Inv() during the execution of o.Inv()
can be captured similarly to add (o, p,inv) to D, i.e. o depends on p.inv.

The Aspect Generator generates an aspect A by combining the Monitor,
Depend and binding. The binding is attached verbatim. For binding a class C
to the role A.ObjWinv, AspectJ compiler modifies the inheritance hierarchy of
C to introduce A.ObjWliInv as a parent. Currently, this is possible only if the
byte code of C is under its control. Therefore, we cannot bind the collection
classes in java.util to ObjWInv. Our prototype implementation uses proxy
objects to keep track of the relationship between iterators and collection classes.
At runtime, a singleton instance of the generated aspect is created in the virtual
machine. This instance enforces the inv-rule by validating state changes of
objects of type A.ObjWinwv.

Custom Binding In the default binding, Start(o) is invoked after the object
o is constructed. Before the execution of every public method on o, Stop(o) is
invoked and after such an execution, Start(o) is invoked again. However, in some
cases, the API programmer may need to specify explicitly when Start and Stop
are to be invoked. Consider the following example [12].

class T { public float method2() {

public boolean Inv() { return 1/(y-x);
return 0 <= x && x < y; }

} }

public void method1() { class User {
X+ public void m(T t,..) {
y++; //callback

//invoke method m on user object t.method2();
user.m(this,..); ..
.. }

} }

If the API programmer allows the user to call back the method T.method?2
during the execution of m, then Start(t) must be invoked before the call
user.m(this,..). Otherwise, Stop(t) (called before executing method2) will
report an assertion violation as t.inv is false.

Experimental Results We first illustrate the difficulty faced by an API user
using a real world scenario [7]. Figure 2 shows the usage of class Document in
JDOM, a library for in-memory representation of XML documents.

A document iterator for navigating an XML document (in the form of a
tree) uses a stack of list iterators where each list iterator is used for iterating
over nodes at each level in the tree. An element in the tree is returned by the list
iterator on top of the stack. If the user code calls detach on an element, then
it is removed from the list of nodes at that level. An exception is thrown if user
code invokes detach during iteration followed subsequently by next as shown in
the stack trace below. The user code in the stack trace is shown in italics.

java.util.ConcurrentModificationException
at java.util.AbstractList$Itr.checkForComodification(Unknown Source)
at java.util.AbstractList$Itr.next(Unknown Source)
at org.jdom.DescendantIterator.next(DescendantIterator. java:134)

Document .
‘ User Document| lterator ‘Content ‘ Iterator ‘ List ‘
qﬂ)escendants@_] T T
hasNext()]
next() |
o next()_ —
rl et|
detach()
> remove(thi
nextf
0= next()
>
| CME
o — — — |

Fig. 2. Navigating a XML tree

at org.jdom.FilterIterator.hasNext(FilterIterator.java:91)
at OrderHandler.processOrder(OrderHandler. java:26)

From the above trace, it is not clear to the API user where exactly the
invariant of iterator has been violated. After compiling with the aspect generated
by INVCOP, the stack trace is as shown below.

java.lang.AssertionError: Invariant does not hold
at rules.Inv_jdom.CheckAndSetInv(Inv_jdom.aj:122)

at org.jdom.Element.removeContent (Element.java:885)
at org.jdom.Content.detach(Content. java:91)

at ItemHandler.processItem(OrderHandler. java:12)

at OrderHandler.processOrder (OrderHandler. java:29)

This clearly points out that the user code processItem violated the iterator’s
invariant by calling Content.detach.

Table 1 shows some libraries for which we used INVCOP to detect inv-rule
violations. Each scenario was modeled after usage violations reported in discus-
sion forums. For each scenario, the columns show the total number of classes in
the library and the number of classes bound to ObjWInv. We have already dis-
cussed the first scenario. Scenario 2 is based on an error report filed for MySQL
JDBC library [8]. In scenario 3, user code first associates an implementation of
Key with some value using a dictionary (implemented as a binary search tree).
Then the key is modified violating the tree invariant.

With our prototype implementation, the time for each run with the gener-
ated aspect was 2-3 times that of the run without the aspect. However, this is
insignificant compared to the amount of human effort spent in debugging these
problems without a tool like INVCOP. Instead of documenting the reason for
an exception in a FAQ (as in [6]), API users can be asked to use a tool such

2

Table 1. Detected inv-rule violations

API Scenario Total Classes
of classes|bound to ObjWinv
JDOM Figure 2 [7] 69 IteratorProxy
ListProxy
MySQL 8] 95 Statement
Connection
Binary Search Tree|([19] 5 BinarySearchTree
Node
Key

as INVCOP so that the violations of API rules can be detected quickly. Even if
the API programmer has not formally captured all the API rules, as problems
are reported, API rules can be captured incrementally. Once the violations have
been found and fixed, the generated aspect can be removed during deployment.

4 Related Work

The SLAM toolkit [1] checks if C programs obey interface rules specified as state
machines in the SLIC rule language. Powerful type systems have been designed
to track a state machine as part of an object’s type [2, 20, 3]. However, all these
systems treat the state associated with each object independently. In this work,
we focus on rules involving the states of multiple objects.

Contracts [21] identified behavioral compositions and obligations on partici-
pants as key to object oriented design. Recently, [22] has pointed out the need
to enforce framework constraints (which typically involve multiple objects) so
that plugin writers cannot violate them. These papers point to the need to au-
tomatically enforce constraints involving multiple objects in large programs.

Several “ownership” type systems have been invented to track dependen-
cies between objects [9,10]. The proposals in the literature differ in how they
constrain programs: for example, some allow ownership transfer whereas some
others do not. Program verification tools have been built to check if program-
mers follow particular programming methodologies [12]. When multiple objects
depend on a shared object (many Statements may depend on the same Connec-
tion), the methodology needs to be extended [13]. Also, these systems do not
work with existing programming languages.

JML [23] requires that an invariant must hold at the end of each constructor’s
execution, and at the beginning and end of all public methods. Our approach
ensures that this is indeed the case during runtime.

MOP [14], Tracematches [15] and JLo [16] also use aspects for runtime veri-
fication. Consider the MOP specification (from [14]) for ensuring that a vector v
is not modified when enumeration e is being used for enumerating the elements
of the vector:

SafeEnum (Vector v, Enumeration+ e) {
[String location = "";]

© o N o w s W

10

event create<v,e>: end(call(Enumeration+.new(v,..))) with (e);
event updatesource<v>: end(call(* v.add*(..))) \/
end(call(* v.removex(..))) \/ ...
{location = @LOC;}
event next<e>: begin(call(* e.nextElement()));
formula : create next* updatesource+ next

}
validation handler { System.out.println("Vector updated at "
+ Q@MONITOR.location); }

In this MOP specification, a faulty pattern is specified using a formula which
encodes incorrect sequences of events. After the event create<v,e> occurs, e
depends on v to not change. The event updatesource<v> signals that the vec-
tor is modified. The formula create next* updatesource+ next specifies the
faulty pattern: the enumeration is created, then vector is modified, followed by
a next method call on the enumeration.

Suppose the specification of the event updatesource<v> inadvertently omits
the method v.remove() (line 5 above). Then, an error similar to the one in
Example 1 cannot be detected by MOP. In contrast, INVCOP does not require
explicit specification of events that signal dependencies or state changes. With
INvCOP, the programmer merely specifies that the enumerator depends on the
vector’s state. Whenever the state of the vector changes, automatic dependency
tracking helps to check whether the invariant of the enumerator is violated.
Thus, we believe that automatic dependency tracking is a useful feature that
can be added to tools such as MOP to give guarantees such as the one offered
by Theorem 1.

For us to track state changes of an object p that may affect the invariant of
another object o, o must refer to p directly or indirectly. The AOP based moni-
toring approaches mentioned above do not place any such restrictions. However,
the advantage of our approach is that we can enforce the inv-rule without the
programmer having to list all methods that change object state and potentially
break some other object’s invariant.

5 Conclusion

We have presented an approach to formally capture design decisions which re-
quire an object o to constrain the state changes of another object p. We have
also shown that our tool INVCOP guarantees to enforce such design decisions.
Compared to other runtime verification approaches based on AOP, our approach
reduces the specification burden on API programmers for the kind of design de-
cisions we focus on in this paper. This is due to our novel dependency tracking
and validation mechanism.

We have used our tool INVCOP to accurately pinpoint several usage viola-
tions that involved inter-related objects, reported in discussion forums on widely
used APIs. Extending our work to concurrent programs, handling subclasses, and
building a modular and scalable static analysis scheme for enforcing such design
decisions require further research, and are beyond the scope of this paper.

References

-~

© XN

10.

11.
12.

13.

14.

15.

16.
17.
18.
19.
20.
21.
22.

23.

. Ball, T., Rajamani, S.K.: The SLAM project: Debugging system software via static

analysis. In: POPL, ACM (January 2002) 1-3

DeLine, R., Fahndrich, M.: Enforcing high-level protocols in low-level software.
In: PLDI, ACM (2001)

Chin, B., Markstrum, S., Millstein, T.: Semantic type qualifiers. In: PLDI, ACM
(2005) 85-95

Beck, K., Cunningham, W.: A laboratory for teaching object-oriented thinking.
In: OOPSLA. (1989) 1-6

http://java.sun.com/j2se/1.5.0/docs/api/

JDOM FAQ — http://www. jdom.org/docs/faq.html#a0390
http://wuw.jdom.org/pipermail/jdom-interest/2005-March/014694 .html
http://bugs.mysql.com/bug.php?id=2054

Clarke, D.G., Potter, J., Noble, J.: Ownership types for flexible alias protection.
In: OOPSLA. (1998) 48-64

Boyapati, C., Liskov, B., Shrira, L.: Ownership types for object encapsulation. In:
POPL, ACM (2003) 213-223

Boyland, J.: Why we should not add readonly to java (yet). JOT 5(5) (2006) 5-29
Barnett, M., DeLine, R., Fahndrich, M., Leino, K.R.M., Schulte, W.: Verification
of object-oriented programs with invariants. JOT 3(6) (2004) 27-56

Barnett, M., Naumann, D.A.: Friends need a bit more: Maintaining invariants over
shared state. In: MPC. Springer-Verlag (2004) 54-84

Chen, F., Rosu, G.: Mop: an efficient and generic runtime verification framework.
In: OOPSLA. (2007) 569-588

Avgustinov, P., Bodden, E., Hajiyev, E., Hendren, L.J., Lhoték, O., de Moor, O.,
Ongkingco, N., Sereni, D., Sittampalam, G., Tibble, J., Verbaere, M.: Aspects for
trace monitoring. In: FATES/RV. (2006) 20-39

Stolz, V., Bodden, E.: Temporal assertions using aspectj. Electr. Notes Theor.
Comput. Sci. 144(4) (2006) 109-124

Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C.V., Loingtier, J.M.,
Irwin, J.: Aspect-oriented programming. In: ECOOP. (1997) 220-242

AspectJ — http://wuw.eclipse.org/aspectj/
http://wuw.ibm.com/developerworks/java/library/j-jtp02183.html

Foster, J.S., Terauchi, T., Aiken, A.: Flow-sensitive type qualifiers. In: PLDI,
ACM (2002) 1-12

Helm, R., Holland, .M., Gangopadhyay, D.: Contracts: Specifying behavioural
compositions in object-oriented systems. In: OOPSLA/ECOOP. (1990) 169-180
Jaspan, C., Aldrich, J.: Checking framework plugins. In: OOPSLA Companion.
(2007) 795-796

Leavens, G., Cheon, Y.: Design by contract with jml (2003)

