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ABSTRACT
Large highly distributed data sets are poorly supported by
current query technologies. Applications such as endsystem-
based network management are characterized by data stored
on large numbers of endsystems, with frequent local updates
and relatively infrequent global one-shot queries. The chal-
lenges are scale (103 to 109 endsystems) and endsystem un-
availability. In such large systems, a significant fraction of
endsystems, and their data, will be unavailable at any given
time. Existing methods to provide high data availability
despite endsystem unavailability involve centralizing, redis-
tributing or replicating the data. At large scale these meth-
ods are not scalable.

We advocate a design that trades query delay for com-
pleteness, incrementally returning results as endsystems be-
come available. We also introduce the idea of completeness
prediction, which provides the user with explicit feedback
about this delay/completeness trade-off. Completeness pre-
diction is based on replication of compact data summaries
and availability models. This metadata is orders of magni-
tude smaller than the data.

Seaweed is a scalable query infrastructure supporting on-
line aggregation and completeness prediction. Seaweed is
built on a distributed hash table (DHT) but unlike previous
DHT based approaches it does not redistribute data across
the network. It exploits the DHT infrastructure for fail-
ure resilient metadata replication, query dissemination, and
result aggregation. We analytically compare Seaweed’s scal-
ability against other approaches and present an evaluation
of the Seaweed prototype running on a large-scale network
simulator driven by real-world traces.

1. INTRODUCTION
Querying endsystem data on large networks such as data

centers, enterprise networks, or the Internet requires a scal-
able distributed query infrastructure. Recent research has
looked at building such infrastructures [1, 16, 22, 31, 32].
The challenges for these infrastructures are availability and
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scalability. A significant fraction of endsystems will be un-
available at any given time due to network outages, endsys-
tem failures, and scheduled downtimes, which means the
infrastructure must cope with the unavailability of some
fraction of the data. Additionally, any query infrastructure
must scale, i.e. the bandwidth overheads of query execution
and background maintenance must not become prohibitive
at large scale.

Currently proposed solutions to the problem of data un-
availability involve centralization, redistribution, or replica-
tion of the data. These techniques do not scale well with
data size per endsystem or data update rate per endsys-
tem. An example of such a system is PIER [16], where
every endsystem periodically reinjects all its tuples into the
network, requiring network bandwidth linear in the product
of network size, per-endsystem data size, and reinjection
rate. We believe storing data anywhere but on the endsys-
tem where it is produced fundamentally limits scalability.

In this paper we present Seaweed, a scalable querying in-
frastructure which solves the problem of data unavailability
by allowing one-shot queries to persist until unavailable data
becomes available. By querying data entirely in-situ, Sea-
weed scales with network size, data size, and data update
rate. Results are produced incrementally with completeness
improving over time. Completeness is defined as the per-
centage of rows in the system pertinent to the query that
have been processed. Seaweed solves the problem of data un-
availability by providing users an explicit trade-off between
completeness and delay. It does so by providing estimates
of current and predictions of future completeness.

1.1 Our Contributions
Previous approaches have addressed the problem of data

unavailability using data replication which fundamentally
limits scalability. We introduce the novel concept of delay
aware querying with completeness prediction. Delay aware
querying is scalable and solves the problem of data unavail-
ability by explicitly trading query delay for completeness.
Delay awareness is achieved by exposing to the user a pre-
diction of the expected delay to reach any given level of com-
pleteness. We do this by predicting when currently unavail-
able endsystems will next become available and estimating
the amount of relevant data that each endsystem has for a
query. This is achieved by replicating a small amount of
per-endsystem metadata consisting of an availability model
and a compact data summary.

We describe the Seaweed architecture which uses an ap-
plication level overlay or distributed hash table (DHT). Un-
like other DHT-based approaches, Seaweed does not use the



DHT to replicate or redistribute the dataset but to repli-
cate the metadata. Data is queried in-situ and Seaweed
leverages the DHT’s underlying overlay structure to build
efficient, failure-resilient protocols for query dissemination
and online result aggregation.

We show through analytic models that Seaweed scales bet-
ter with network size, data size, and data update rate than
approaches based on centralization, redistribution, or repli-
cation of data. We also present simulation results showing
that Seaweed can efficiently disseminate queries, generate
accurate completeness predictors, and aggregate query re-
sults.

1.2 Applications
There are many applications that are enabled by scalable

querying infrastructures. We are particularly interested in
endsystem and network management at different scales. At
the small scale many Internet services, such as Google, Ama-
zon and MSN, run multiple data centers at geographically
distributed locations, each containing thousands of endsys-
tems. Each endsystem can generate large amounts of fine-
grained performance data of interest to human operators
and automated support system. Effective analysis and di-
agnosis based on this data requires support for distributed
querying.

At the next order of magnitude, we have large enterprise
networks with hundreds of thousands of endsystems. The
original motivation for Seaweed was to support Anemone,
an endsystem based network measurement and monitoring
system [26] for such enterprise networks. Endsystems in
enterprise networks can capture and store data about local
resource usage, network activity, running applications, etc.
For example, Anemone can store network information at the
per-flow and per-packet level. This data can then be queried
by the network operator for aggregate statistics, diagnostics,
or historical exploration.

Finally, at Internet scale, applications such as Dr. Wat-
son [25] report crash dump data from millions of Windows
machines worldwide to a single centralized site for subse-
quent analysis. The amount of data uploaded is limited
by available bandwidth: an in-situ approach would allow
queries over a richer dataset while limiting network over-
heads.

These applications are characterized not only by their
scale, but also the need to support one-shot queries rather
than just streaming queries. Simple streaming queries might
be used to monitor aggregate statistics over time. However,
when an operator observes an unexpected reading they need
to perform one or more retrospective one-shot queries over
the stored data to diagnose the issue. If the issue being di-
agnosed relates to availability (e.g. “why did I get no results
from rack 10 between 08:30 and 09:00?”), then the streaming
results will provide little helpful information. Hence there
is a need for a scalable, efficient infrastructure supporting
one-shot queries on distributed stored data.

1.3 Limitations
We restrict Seaweed queries to be either local or read-

only: Seaweed does not support distributed updates. Stan-
dard techniques for distributed updates such as distributed
locks and 2-phase commit do not scale well, and our de-
sign philosophy was to eschew any functionality that would
limit scalability. Our current prototype also does not sup-

port distributed joins as they are difficult to make scalable.
For example, joins in PIER [16] can require cross-network
bandwidth linear in the size of the joined data tables. By
restricting read-only queries to be single-table and updates
to be single-endsystem, we gain scalability at the cost of
query functionality. This seems an acceptable trade-off for
the management applications we have examined. Function-
ality such as distributed updates or joins over small numbers
of endsystems could be provided in a layer above Seaweed
for applications that require it.

Seaweed’s query dissemination is scalable with respect to
network size, and resilient to faults in the network. How-
ever, it disseminates queries to all endsystems, which must
perform at least the minimal processing to determine if they
have data matching the query. This could cause significant
overheads at high query rates, where approaches such as dis-
tributed indexes [22, 27] might prove useful. Currently, our
target scenarios contain a small number of human users such
as network administrators who issue one-shot queries. We
evaluated the benefit of distributed indexes and concluded
that the query rates in our target applications did not justify
the overheads and complexity of maintaining a distributed
index.

1.4 Map
The remainder of the paper is organized as follows. Sec-

tion 2 describes the design philosophy, high level design de-
cisions, and novel features of Seaweed. Section 3 describes
the detailed design of our prototype, including the proto-
cols used for query dissemination and result aggregation.
Section 4 compares analytic models of Seaweed with three
alternative architectures, demonstrating the superior scala-
bility of Seaweed. It also provides simulation results quanti-
fying the network overheads of various components of Sea-
weed and the accuracy of completeness prediction. Section 5
briefly summarizes related work, and Section 6 concludes the
paper.

2. DESIGN PRINCIPLES AND INSIGHTS
For simplicity, we use standard data models and querying

languages for our implementation. We assume that data is
relational and that for any given application there is a stan-
dard schema across endsystems. The data thus consists of a
set of tables, each of which is horizontally partitioned across
a large number of endsystems. Each endsystem is capable
of executing relational queries and updates on its local data.
For many applications, there may be data integration issues
which render such a model over-simplistic [14]; these are
outside the scope of this paper.

Our query language is a subset of SQL. Read-only queries
may be distributed across endsystems but must not per-
form distributed joins. Updates are constrained to a single
endsystem at a time.

A Seaweed query is inserted into the system by the appli-
cation layer on any endsystem. Seaweed dynamically builds
an application-level tree that disseminates the query to all
available endsystems. The endsystems return completeness
predictors that are aggregated up the tree. The predictor at
the root allows the user to estimate the completeness of the
incremental result at any time and also its expected future
progress.

Meanwhile, endsystems also execute the query locally and
generate results. These results are propagated to the root



Figure 1: Availability of 51,663 endsystems on the
Microsoft corporate network in July/August 1999.

using another tree which is built dynamically from the leaf
level upward. If the query uses standard aggregation opera-
tors, results are aggregated in the tree to reduce bandwidth
usage. Any new or previously unavailable endsystem that
joins Seaweed receives a list of currently active queries for
which it generates results and returns them to the root. In-
cremental results will thus continue to arrive for any query
until it times out or is explicitly cancelled.

2.1 Availability
Endsystem availability is a major challenge for any dis-

tributed querying infrastructure. Studies of endsystem avail-
ability in widely deployed peer-to-peer applications such as
Gnutella [29] and Overnet [5] show that there is signifi-
cant churn in the set of available endsystems. Even studies
of more benign enterprise network environments show that
a significant fraction of endsystems are unavailable at any
time. Figure 1, reproduced from one such study [8], shows
the availability of 51,663 endsystems on the Microsoft Cor-
porate network in July–August 1999. Each endsystem was
probed once per hour to test its availability. On average,
81% of the endsystems were available at any time. Further,
there is a clear periodic pattern, suggesting that endsystem
availability is predictable.

Therefore a guiding principle for all distributed scalable
querying systems is to design for unavailability. Solutions
involving replication of all data in a large system place a
prohibitive load on the network, even if the amount of data
per endsystem is relatively small. This observation is vali-
dated by our analysis in Section 4 as well as other studies on
wide-area distributed applications [7]. This motivated our
design decision not to replicate the raw data but to address
the availability problem through delay aware querying.

A key component of delay aware querying is complete-
ness prediction. Completeness predictors are computed at
endsystems from the replicated metadata and aggregated
up the query distribution tree. A completeness predictor
is a cumulative histogram of expected row count over time.
For example, a user could use it to estimate that 80% of
the rows are immediately available, 99% within 1 hour, but
100% only after several days. The user might then decide
to accept the results after 1 hour and then cancel the query
rather than waiting for perfect completeness.

Seaweed provides metadata replication as an application-
independent service, where the metadata consists of his-

tograms on indexed attributes and availability models. The
replication frequency and the set of indexed attributes are
application-specific parameters.

Replication of indexed attribute histograms can be viewed
as a special case of selective replication. In general, one could
imagine the application designer specifying any subset of the
data (e.g. projection) or derived values (e.g. materialized
views) for replication. Queries on the replicated portion
alone would be answered with comparatively low latency,
albeit with some staleness dependent on the replication fre-
quency. Obviously careless selection of data for replication
could result in an unscalable application.

2.2 Scalability
Seaweed’s design achieves scalability through a combina-

tion of two factors. First, by not replicating the data the
network overheads of dealing with unavailability are vastly
reduced: the combined size of the availability models and
histogram metadata is several orders of magnitude smaller
than the raw data. Second, Seaweed’s multicast tree proto-
cols are designed to be both scalable and fault-tolerant, with
each endsystem only sending or receiving a small number of
messages per query.

2.3 Consistency
A highly distributed system precludes certain kinds of

consistency such as ACID. Even snapshot validity, which
guarantees that a read-only query sees a snapshot at a sin-
gle time across the entire system, cannot be guaranteed un-
der a relaxed asynchronous model of distributed systems [4].
Systems such as PIER [16] provide relaxed consistency in
the form of a ‘dilated reachable snapshot’ where only avail-
able endsystems will respond to a query, and the ‘snapshot’
across these endsystems will be dilated by clock skew.

Seaweed provides more precise guarantees than ‘dilated
reachable snapshot’ on the set of endsystems that will re-
spond to a query. We define our consistency in terms of
single-site validity [4]. We define the set HC(t1, t2) as the
set of hosts that were available at all instants in [t1, t2]. Note
that Seaweed does not distinguish between unreachable and
unavailable endsystems: an available endsystem is reachable
within Seaweed by definition. We define HU (t1, t2) as the
set of hosts that were available at some instant in [t1, t2] for
sufficient time to execute the query. Consider a user who in-
jects a query into Seaweed at time 0 and observes the partial
result at time T . We guarantee that the set of endsystems H
contributing to the result equals HU (0, T ). This is a more
precise form of single-site validity, which guarantees only
that HC(0, T ) ⊆ H ⊆ HU (0, T ).

For completeness prediction we can offer a stronger guar-
antee yet. The metadata replicas for any endsystem that was
ever available in the past remain available with high prob-
ability. Thus, if Seaweed provides the aggregated predictor
for the query at time Te ≤ T , then the set of endsystems H
contributing to this predictor will with high probability sat-
isfy HU (−∞, 0) ⊆ H ⊆ HU (−∞, Te). In practice, Te is on
the order of seconds, and the difference between the upper
and lower bounds is small.

The key feature of Seaweed allowing us to provide stronger
single-site validity is that we guarantee to count each endsys-
tem’s contribution to the result exactly-once provided it
becomes available during the lifetime of the query, [0, T ].
Guaranteed counting is provided since the underlying Pas-



try overlay automatically keeps track of the membership of
Seaweed, and guarantees that any node in Seaweed that is
available will have a path to the query’s root node. Exactly-
once counting is ensured by the way that Seaweed constructs
its broadcast and convergecast trees as described in the fol-
lowing section.

3. SEAWEED DESIGN
Seaweed is implemented on top of Pastry [28], a scalable,

self-organizing, structured overlay network. We provide a
brief overview of Pastry before describing the three main
components of Seaweed: replication of availability models
and data summaries; query dissemination and completeness
prediction; and result aggregation.

3.1 Background: Pastry
Endsystems and objects in Pastry are assigned random

identifiers, known as endsystemIds or object keys respec-
tively, from a large sparse wrapped namespace. Keys and
endsystemIds are 128 bits in length and can be thought of
as a sequence of digits in base 2b, where b is a configura-
tion parameter with a typical value of 4. Given a message
and a key, Pastry routes the message to the key’s root: the
endsystem with the endsystemId numerically closest to the
key. When a message is delivered successfully it is then
passed to the application running on that endsystem.

Messages can be routed from any endsystem to any other.
Each endsystem maintains a routing table of size O(log2b N),
where N is the total number of endsystems in the system,
and a leafset of the l/2 neighboring endsystems clockwise
and counter-clockwise in the namespace. The leafset size
l is a configuration parameter typically set to 8. Using
these data structures, Pastry can deliver any message in
O(log2b N) hops.

Our Seaweed implementation is built on the MSPastry [9]
implementation of Pastry. MSPastry provides a distributed
hash table (DHT) API [12], which is used by Seaweed for
metadata replication. MSPastry also provides a lower-level
key-based routing (KBR) API which is used by Seaweed
to build and maintain trees. MSPastry has low overhead
and provides reliable message delivery under adverse net-
work conditions: even with network message loss rates as
high as 5% together with high overlay membership churn,
the incorrect delivery rate is only 1.6× 10−5 [9].

3.2 Metadata replication
In order to be able to generate completeness predictors,

metadata consisting of the data summaries and availability
model of each endsystem is actively replicated. Pastry’s
DHT API allows insertion and lookup of key/value pairs as
in a traditional hash table. At insertion a replication factor
r is specified. Pastry will replicate the inserted value on the
r numerically closest endsystems to the key.

In Seaweed, each endystem inserts into the DHT its meta-
data using its own endsystemId as the key, and a replication
factor of k + 1 where k is the desired number of additional
replicas. The effect of this is that this metadata is replicated
on k members of the endsystem’s leafset: we refer to these
members as the replica set. The replica messages are routed
in a single hop, and thus both the network latency and the
bandwidth usage are small. Any member of an endsystem
x’s replica set can thus generate a completeness predictor
for any query on behalf of x when x is unavailable.

We now describe the two components of the metadata:
the availability model and the data summaries.

3.2.1 Availability model
For each unavailable endsystem the availability model is

used to determine when it is likely to become available again.
In particular, if an endsystem has currently been unavailable
for time t, what is the likely duration before it becomes
available once more?

Two distributions are maintained per-endsystem: down
duration and up-event by hour of day. The down duration
captures the length of time for which an endsystem stays
unavailable, and the up-event distribution captures the hour
of day (0–23) at which it comes back up.

Many endsystems follow a periodic cycle, e.g. people turn-
ing their desktop machine on when they arrive at work. If
the up event distribution for an endsystem is heavily concen-
trated in a certain hour (if the peak-to-mean ratio exceeds
2), we classify it as periodic and use the up event distri-
bution for availability prediction. Otherwise, we use the
down duration distribution for prediction: in this case, the
prediction also takes into account t, the time for which the
endsystem has currently been unavailable.

The two distributions are persisted at each endsystem and
dynamically updated over time. Whenever an endsystem
becomes available, it updates the distributions and locally
classifies itself as periodic or non-periodic. It then pushes
out the relevant distribution to its replica set.

When a member y of the replica set notices that an endsys-
tem x is unavailable, it remembers the time at which this
occurred. At any subsequent point, it can predict when x
will next become available based on its copy of x’s availabil-
ity model.

3.2.2 Data summaries
Each endsystem x pushes its data summary to its replica

set when it (re)joins the network; the summary is also pushed
to new replica set members when the replica set changes due
to failure. Additionally, endsystems periodically push their
summary to the replica set if the data has changed.

In Seaweed the summary currently consists of all key value
distribution histograms on indexed attributes of the local
database. When an available endsystem generates a row
count estimate for a query on its own behalf, it generates
the estimate directly from the local DBMS. When row count
estimation is done on behalf of an unavailable endsystem,
we use standard row count estimation techniques on the
replicated histogram information.

Currently we take the conservative approach of pushing
the histogram periodically if there is any change at all in the
data. We are looking at methods to dynamically vary the
push rate based on the data change rate, as well as send-
ing delta-encoded histograms which could reduce network
overhead compared to pushing the entire histogram.

3.3 Query dissemination and completeness pre-
diction

When a query is submitted to Seaweed the first stage is to
generate the completeness predictor. The query is assigned
a key, its SHA-1 hash, referred to as the queryId. The query
must be reliably disseminated to the available endsystems
and estimates must be generated on behalf of the unavailable
endsystems. The dissemination algorithm must ensure that



the exactly-once semantics are maintained, even as endsys-
tems concurrently join and fail during the process.

To provide robust query dissemination and to generate
the completeness predictor Seaweed dynamically builds a
distribution tree. For ease of explanation we describe the
tree here as a binary tree; our implementation uses a 2b-ary
tree.

The root of the tree is the endsystem with the endsys-
temId numerically closest to the queryId. The root initiates
an efficient broadcast using a divide-and-conquer approach.
Each broadcast message contains an explicit namespace range
for which predictions are required; at the root level, this cor-
responds to the entire namespace range of Pastry. When an
endsystem receives a broadcast, it subdivides the range into
two equal ranges, and sends one message for each of the
subranges. One of the messages will be sent to itself, and
the other will be routed towards the midpoint of the other
subrange. This will eventually reach an endsystem within
that subrange, typically within one hop.

When an endsystem detects that it is the only live endsys-
tem in a range or that it is the numerically closest live
endsystem to a range containing no live endsystems, it takes
responsibility for all unavailable endsystems in that range,
and generates completeness predictors for them from the
replicated metadata. If it lies within the range it also gen-
erates its own completeness predictor based on row count
estimates from its local DBMS. This recursive process cre-
ates a tree with depth O(log2b N), which determines the
latency of query dissemination.

The endsystem row count estimates are aggregated to a
cumulative histogram of row counts against predicted time
of availability, where time is on a log scale to accommodate
wide variations in availability ranging from seconds to days.
These histograms are the per-endsystem completeness pre-
dictors. They are propagated and aggregated up the tree,
with each endsystem transmitting the predictor to its par-
ent: the endsystem that originally sent the query to it. The
predictors are aggregated at each step and are thus main-
tained at constant size.

In order to make this process robust endsystems send
heartbeats to their parents. If an endsystem does not re-
ceive a heartbeat or predictor within a specified period then
it reissues the request for that sub-range. Since predictor
generation takes place on the order of seconds, there will
typically be very little churn during this window, and thus
the retransmission costs will be low.

The protocol also exploits the format of Pastry routing
tables to achieve a message overhead of O(N). It relies on
the property that when a broadcast is forwarded by node x
to a subrange, with high probability there is a live endsystem
y in that subrange, in x’s routing table. Thus each step of
the divide-and-conquer dissemination is O(1).

3.4 Result aggregation
Once the completeness predictor is generated, each avail-

able endsystem generates the result for the query. While
predictor generation takes place in seconds, incremental re-
sult generation can span hours as more endsystems become
available. This means that a different tree must be built
from the leaves up for result aggregation: since churn now
becomes a significant factor, this tree cannot rely on aggres-
sive retransmission for failure-resilience.

The result aggregation tree must also ensure that once an

endsystem becomes available and submits its result, it must
be counted exactly once in the result at the root. Maintain-
ing a list of all endsystems that have contributed results is
not feasible, as this will result in messages of size O(N). In-
stead, we maintain O(1) information in each node of the ag-
gregation tree: the current results received from each child.
When new results are received from any child (due to an
endsystem in that subtree becoming available), this list of
child results is updated, and a new aggregate is computed
and forwarded up the tree.

This protocol requires that each vertex in the tree deter-
ministically computes the vertexId of its parent: a vertexId
is a key in the DHT namespace. We accomplish this through
a deterministic function v(queryId, vertexId) 7→ vertexId.
This function defines a tree of depth O(log N) rooted at the
query originator.

The aggregation protocol guarantees that results are gen-
erated exactly once for each endsystem when it becomes
available, assuming that there are no failures in the interior
nodes of the tree. To provide this property, we implement
each interior vertex as a failure-resilient replica group.

Each group is represented by a primary with k backups.
The primary is always the endsystem whose endsystemId is
numerically closest to the vertexId, thus guaranteeing that
messages sent to the vertexId are always routed to the pri-
mary. The primary replicates its state to the backups before
acknowledging any message or transmitting any message to
its parents. If any member of the group fails, then a new
endsystem joins the group, and a new primary is selected
automatically if necessary , always maintaining the prop-
erty that the primary has the endsystemId closest to the
vertexId.

This protocol provides exactly-once semantics with very
high probability: for an entire vertex to fail, the primary
and all backups would have to fail within a short period
of time determined by the Pastry leafset heartbeat interval,
currently 30 s.

This protocol also makes it possible to support continuous
queries in a failure-resilient manner; however this is outside
the scope of this paper.

4. EVALUATING SEAWEED
In this section we present simplified analytical models of

Seaweed’s scalability, and evaluate them against three alter-
native architectures. Our aim is to understand the inherent
trade-offs and limitations in the models with respect to net-
work overheads, network size, data size, and data update
rate.

These analytical models simplify many of the engineer-
ing issues involved in building real distributed systems. To
better understand the performance of Seaweed in a real ap-
plication scenario, we also present an evaluation of Seaweed
running in a network simulator driven by real-world traces.

Seaweed can be compiled to run in the simulator or stand-
alone. We do not present results from the stand-alone ver-
sion, as our focus is in this paper is scalability, and we do
not have a large-scale deployment.

Before describing the analytical models we briefly describe
the application we use to drive this evaluation.

4.1 Application
In this paper, we use Anemone [26], an endsystem-based

network management application, as our driving application



for Seaweed. In Anemone, each local machine has two ta-
bles, Packet and Flow, which capture the network activity
of that machine. Each record in the packet table contains
a timestamp, the source and destination IP addresses and
ports, the protocol, the direction of the packet (Rx or Tx),
and the size in bytes. The flow table is a per-flow summary
of the packet data, which periodically records for each active
flow the timestamp, the interval of measurement, the IP ad-
dresses and ports, and the number of bytes and packets sent
and received. The flow measurement interval is currently
set to 5min.

A typical query by a network operator on this data might
be:
SELECT SUM(Bytes) FROM Flow WHERE SrcPort=80 WHERE ts

<= NOW() AND ts >= NOW() - 86400

which gives an idea of the total amount of web activity in
the network in the last 24 hrs. Note that NOW() will be gen-
erated using the querying machine’s timestamp, assuming
the loose clock synchronization described in Section 2.3.

Seaweed will disseminate the query to all nodes; gener-
ate an estimate of recall over time; and propagate incre-
mental results as they become available. In this case, since
the query uses a standard aggregation operator, these in-
cremental results will be aggregated in-network to minimize
network overheads.

4.2 Modeling
In this section we present an analytical model of Sea-

weed, and of three alternative designs: centralized, DHT-
replicated, and PIER. For each design we derive formulas for
the background maintenance overhead in terms of network
bandwidth, measured as bytes/second transferred system-
wide.

All the models are driven by system parameters that char-
acterize the network size, availability characteristics, data
size, and data update rate. We denote the network size —
the total number of endsystems — by N . Of these, we expect
some fraction fon to be available on average at any given
time. The churn rate c is the average rate at which any sin-
gle endsystem switches between available and unavailable. It
measures the dynamics of availability, i.e. the rate at which
endsystems change between available/unavailable. Since we
assume fon remains stable, we assume that the system-wide
rates of joining and leaving are equal, and we add them to
get the total churn Nc. The data update rate u measures
the average amount of new data generated by each endsys-
tem per second; for simplicity we assume that only available
systems generate data. The database size d measures the
average amount of data stored by each endsystem.

For each of these parameters, we choose values from real-
world scenarios. The availability parameters are derived
from the Farsite availability traces [8], a 4-week long mea-
surement of availability characteristics across an enterprise
network. The data update rate and data size are based
on our measurements of Anemone packet data, with each
endsystem storing its local packet data for 1month. Table 1
summarizes these parameters as well as additional model-
specific parameters used in some of the models.

4.2.1 Centralized
This is the simple “data warehousing” model where all

available endsystem data is backhauled onto a single central
repository before being queried. The maintenance costs thus

lie in backhauling all the generated data, and are given by:

fonNb (1)

4.2.2 Seaweed
The maintenance costs of Seaweed are driven by the repli-

cation of metadata. They also depend on the replication
factor k. When an endsystem fails, the metadata stored by
it must be replicated on some other endsystem to maintain
k replicas. If all k replicas fail during the window of vulner-
ability between failure detection and replication, the data
will become available. Thus the choice of k is a trade-off
between overhead and availability, and depends on the en-
vironment. Typical values of k are between 3 and 8; here
we choose a value of 4.

Seaweed replicates both the availability models and the
data summaries, which have average sizes a and h respec-
tively. Here h is the total compressed size per endsystem of
all metadata, i.e. the histograms on all indexed attributes;
in the Anemone case there are 5 such histograms per endsys-
tem. Each available endsystem proactively pushes its meta-
data to its replicas, p times per second, at a bandwidth cost
of fonNkph. Additionally, Seaweed incurs the cost of repli-
cating both availability models and metadata whenever an
endsystem joins or leaves the system. In the first case, the
joiner must acquire the metadata that it will be responsible
for. In the second case, the metadata held by the leaving
endsystem must be re-replicated on some other endsystem.
Since each endsystem has h + a bytes of metadata on av-
erage which must be replicated k times, the total amount
of replicated data is Nk(h + a). This metadata must be
replicated on the available nodes, thus each available node
will store on average 1

fon
k(h + a) bytes. These bytes must

be transferred on each churn event, consuming a bandwidth
of 1

fon
Nck(h+ a). Thus the total maintenance overhead for

Seaweed is

fonNkph +
1

fon
Nck(h + a) (2)

4.2.3 DHT-replicated
Here we consider using a typical DHT approach to store

the data: each tuple is mapped onto a key in the DHT based
on its primary key, regardless of where it was generated.
The tuple is k-way replicated on a replica set determined
by the DHT key. This incurs the cost of transferring each
new tuple from the generating endsystem to the k replicas,
which is fonNkb.

Additionally, the DHT must pay the cost of re-replicating
data when endsystems join or leave. The average amount
of replicated data stored per endsystem is 1

fon
kd, thus the

bandwidth consumption of re-replication is 1
fon

Nckd.
Thus the total maintenance bandwidth for this architec-

ture is

fonNkb +
1

fon
Nckd (3)

This ignores the overhead of discovering the root of each
tuple, each of which would typically require an O(log N)
lookup over the network. The actual costs of this would
depend on the distribution of primary keys, and we simplify
the model by assuming the cost to be negligible.

4.2.4 PIER



Variable Description Value Source

N Number of endsystems 300,000 CorpNet
fon Fraction of available endsystems 0.81 Farsite
c Churn rate 5.5 x 10−6 /s Farsite
u Data update rate per endsystem 970 bytes/s Anemone
d Database size per endsystem 2.6 GB Anemone
k Number of replicas stored 4 Farsite
h Size of data summary 6,473 bytes Seaweed/Anemone
a Size of availability model 48 bytes Seaweed
p Summary push rate 0.033 /s Seaweed (30 s period)
r PIER data renewal rate 0.0033 PIER (300 s period)

Table 1: Model parameters

Figure 2: Overhead versus N .

PIER [16] uses a DHT but does not replicate data as de-
scribed above. Instead, each available endsystem periodi-
cally re-inserts its data into the DHT, with tuples mapped
to DHT keys according to their primary keys. However, the
renewal process serves to maintain the freshness of the data
as well as to provide additional availability when endsystems
fail. Thus the maintenance overheads in PIER are indepen-
dent of endsystem churn, and only depend on the data size
d and the renewal rate r. The overhead is

fonNdr (4)

Note that avoiding churn-related overheads comes at a price:
PIER cannot provide the same availability as k-way repli-
cation. Specifically, if both the source and the root of some
tuple fail, then the tuple will become unavailable.

4.2.5 Comparison
We use the four models to compare the scalability of the

different solutions. Specifically, we compare the scalability
of maintenance overheads with increasing network size (N),
database size per endsystem (d), and data update rate per
endsystem (u), in each case keeping all the other parameters
constant with the values in Table 1.

Figure 2 shows how these different systems scale with net-
work size N . Note that both axes are on a log scale, to
illustrate the order-of-magnitude effects involved. The to-
tal system bandwidth for all the designs increases linearly
with N , however there are order-of-magnitude differences in
the constant factors involved. Essentially, all PIER endsys-
tems must periodically refresh all their data at a rate r,
causing a very high overhead. The DHT-replication scheme
must replicate each endsystem’s data at a rate proportional

Figure 3: Overhead versus u.

to the churn rate c. The factor for the centralized system
is the data update rate u. Finally, Seaweed’s overhead de-
pends on the churn rate c as well as the metadata size. Since
the metadata is orders of magnitude smaller than the data,
Seaweed has correspondingly lower overhead: 10 times lower
than the centralized solution, and 1000 or more times lower
than the other distributed solutions.

Figure 3 shows the system-wide bandwidth in bytes per
second for each of the models as the number of bytes gen-
erated per second per online endsystem u is varied. u is
shown on a linear scale, but bandwidth is on a log-scale,
since the different systems have order-of-magnitude differ-
ences in their overheads.

We see that PIER’s overhead is independent of u but ex-
tremely large, due to the periodic reinsertion of the entire
database into the network. DHT-replication incurs both the
overhead of replicating fresh data, which depends on u, and
of replicating on endsystem churn, which is independent of
u. The latter dominates and thus DHT-replication also has
a near-constant and high overhead, though two orders of
magnitude less than that of PIER. The centralized system
has no churn-related overheads, and its overhead scales lin-
early with the data update rate. Finally, Seaweed overheads
are independent of data update rate, and also several orders
of magnitude lower than either DHT-replicated or PIER.

When the update rate u is low, the centralized approach
will require lower overhead than Seaweed. As the data
rate increases, the overhead of metadata replication becomes
small compared to that of sending the data to the centralized
database. At the Anemone update rate of 970 bytes/s per
endsystem, a relatively modest rate for today’s endsystems,
Seaweed already outperforms the centralized solution by a
factor of 10. Thus Seaweed demonstrates better scalability



Figure 4: Overhead versus d.

than the centralized approach, as well as orders of magni-
tude lower overhead than the other distributed approaches.

Figure 4 compares the scalability of the four designs with
increasing database size per endsystem d. PIER’s overhead
is dominated by the cost of periodic reinsertion, which is
linear in d. The cost of DHT-replication is dominated by the
need to replicate some of the data on each churn event, also
linear in d but with a much smaller factor than PIER. The
cost of the centralized solution is independent of database
size, depending only on the rate u at which new data is
generate. Finally, Seaweed is also independent of d, and
has orders of magnitude lower overhead than all the other
designs.

The other component of the network overhead of distrib-
uted querying is that of performing a query. The centralized
solution does not incur any networking costs for querying,
whereas all three decentralized architectures have a cost that
is linear in the network size. In practice, the query cost is
dominated by the size of the result; for aggregation queries
with in-network aggregation, it is negligible compared to
the maintenance overheads, as we show in our simulation
results.

4.2.6 Summary
Our simplified analytic models do not capture many real-

world engineering optimizations that each implementation
could employ. However, we believe that they capture the
general scalability issues of each approach. Our analysis
demonstrates that Seaweed’s design is much more scalable in
terms of maintenance overhead than the other approaches.
Although this comes at the cost of increased query latency
when compared to the centralized and DHT-replicated so-
lutions, we believe that for truly scalable, highly distributed
querying, this price must be paid to avoid prohibitive net-
work costs.

4.3 Simulation
Here we present results from a discrete event simulator

that allows us to evaluate the scaling properties of Seaweed.
The simulations are driven by real-world application data,
traces of endsystem availability, and network topologies.

The difficulties of running a discrete event simulator at
this scale should not be underestimated: we have thousands
of endsystems, the events to be simulated occur at the gran-
ularity of milliseconds and we simulate them over a period of
4 weeks. We made some optimizations that would not affect
our evaluation metrics. We pre-computed the results of each
query as well as the histograms on all endsystem data, by

loading each endsystem’s data into SQL Server 2005, run-
ning the queries on them and also extracting all histograms
on indexed attributes. This enabled the simulation to run
much faster by not executing a large number of database
queries during the simulation.

These optimizations did prevent us from supporting dataset
update during simulation. In our experiments we pessimisti-
cally assume the total data size as of the end of the trace,
i.e. containing all the packet and flow data irrespective of
the query time. Further, since we could no longer tell if the
histogram data would change in any given push interval,
we push the histograms with an average period of 17.5min,
with each endsystem choosing its push time randomly to
avoid spikes in network bandwidth.

Unfortunately, these optimizations still did not allow sim-
ulation of more than 6,000 endsystems in a reasonable amount
of time. Thus our overhead results are based on simula-
tions of up to 6000 endsystems. Our evaluation of the com-
pleteness prediction uses a simplified simulator that avoids
packet-level network simulation, and thus runs at the full
scale of 51,663 endsystems, which is the size of our avail-
ability data set.

4.3.1 Experimental setup
We generated an Anemone application data set for the

endsystems by instrumenting the network routers in our
building. This enabled us to capture a complete packet trace
of all inter-LAN traffic from the 30th August 2005 to the
20th September 2005 for 456 workstations and servers. This
is representative of though not identical with the data from
a full endsystem-based deployment of Anemone. The raw
packet data was processed to generate per-endsystem Flow

and Packet tables.
Simulated endsystem availability is based on the Farsite

trace of endsystem availability gathered over approximately
4 weeks in July/August 1999 in the Microsoft Corporate
network [8]. The trace was generated using hourly pings to
detect whether each of 51,663 endsystems was connected to
the corporate network.

The network simulation results presented here use the
Corpnet topology, which has 298 routers generated from mea-
surements of the world-wide Microsoft corporate network.
The topology includes the minimum round trip time (RTT)
per-link and this in used as the proximity metric in the sim-
ulations. Each endsystem was directly attached by a LAN
link with delay of 1ms to a randomly chosen router.

Our simulations were run at a number of different network
sizes. In each case, each simulated endsystem was given an
availability profile randomly selected from the availability
trace and an endsystem data set randomly selected from
the Anemone data.

MSPastry was configured to use b = 4 and a leafset size
of l = 8, with the leafset heartbeat rate set to 30 seconds.
Seaweed was configured with a replication factor of k = 3
for the result tree vertexes and k = 8 for the metadata.

4.3.2 Completeness prediction
The first set of experiments evaluates the ability of Sea-

weed to generate accurate completeness predictions. The
experiments were run using the full Farsite set of 51,633
endsystems. We simulated from the 6th July 1999 onward
and injected queries into the system at various points dur-
ing the work week starting Monday 19th July 1999. The



Figure 5: Predicted completeness versus ac-
tual completeness overtime for the query
SELECT SUM(CAST(Bytes As Float)) FROM Flow WHERE

SrcPort=80 injected on Tuesday 20th July 1999 at
00:00.

Figure 6: Predicted completeness versus actual com-
pleteness overtime for the query SELECT COUNT(*)

FROM Flow WHERE Bytes > 20000 injected on Thursday
22th July 1999 at 00:00.

warmup period allowed each endsystem to learn an avail-
ability model. For each injected query we generated the
completeness predictor and then monitored the actual re-
sults returned over the 48 hours after injection, after which
the query was terminated.

Figure 5 compares the completeness predictions generated
when the query is injected with the actual completeness ob-
served over time. The query was injected on Tuesday 20th
July 1999 at 00:00, and actual query was:
SELECT SUM(CAST(Bytes As Float)) FROM Flow

WHERE SrcPort=80

which captures the amount of http traffic in the network.
The completeness prediction is shown as a cumulative func-
tion of rows queried against time: Figure 5 shows that it
matches the observed result well. Note that when the query
is first injected only 85% of the matching rows are available.
After approximately 8 hours, when the employees arrive at
work there is a significant increase in the number of rows
queried, which is accurately predicted.

Figure 6 shows the same results for a second query:
SELECT COUNT(*) FROM Flow WHERE Bytes > 20000,
which is injected on Thursday 22th July 1999 at 00:00. The

Figure 7: Relative error SELECT SUM(CAST(Bytes As

Float)) FROM Flow WHERE SrcPort=80.

Figure 8: Relative error SELECT COUNT(*) FROM Flow

WHERE Bytes > 20000.

query examines the number of flows with significant num-
ber of bytes. As with the previous results the completeness
prediction closely matches the observed completeness over
time. When the query is first injected only 87% of the rows
expected to be queried are available.

Figures 7 and 8 show the relative error for the previous two
queries injected every 6 hours during the selected day (00:00,
06:00, 12:00 and 18:00). The completeness predictions gen-
erated at query time provide the predicted completeness af-
ter 1, 2, 4, 8, 16, and 32 hours. We show the relative error
of predicted completeness compared to the observed result
for all these time periods. Prediction error is low, less than
5% in all cases.

We have determined that the primary source of error for
these queries is in the availability prediction. Row count es-
timation is extremely accurate for queries such as these with
range predicates involving a single, indexed attribute. We
are currently exploring summarization techniques that will
enable accurate estimation for more sophisticated queries.

4.3.3 Overhead performance
The second set of experiments measures the overheads

of running Seaweed using the packet-level simulator. We
ran experiments to measure the bandwidth overhead with
different network sizes. For each run we simulated from the
6th July 1999 to the 9th August 1999. We injected the query
SELECT SUM(CAST(Bytes As Float)) FROM Flow

WHERE SrcPort=80

on Tuesday 20th July 1999 at 00:00. In this case we allowed



Figure 9: Overhead over time for a query injected
on 07/20 at 00:00

Figure 10: CDF of endsystem versus number of
bytes transmitted.

the query to run until the end of the simulation to test the
long-term performance and stability of the prototype.

Figure 9 shows the overhead in bytes per second per endsys-
tem when running with 12,000 endsystems. On average
there are 9662 endsystems online and the graph shows the
bytes per second per online endsystem. The overhead is
sub-divided into the MSPastry overhead, the Seaweed main-
tenance overhead and the query overhead. In general this
shows that the overhead is low, in total less than 100 bytes
per second per endsystem. The Seaweed maintenance traffic
is the highest overhead and is dominated by the cost of pe-
riodically replicating the indexed attribute histograms, and
could be substantially reduced by using some form of delta
encoding between successive histogram versions. However,
even without this optimization the overhead is so low as to
be insignificant.

Figure 10 shows the distribution of network load from
each endsystem over time, as a cumulative distribution of
the average bytes transmitted per second. The maximum
is 3540 bytes per second, while the 99th percentile is only
175 bytes per second. The distribution of bytes received
per second is similar. This shows that the overhead is not
only low overall but also evenly distributed across all the
endsystems and across time.

The next results examine the overhead as the number of
endsystems in the network (N) is varied between 2,000 and
12,000. Figure 11 shows the overhead in bytes per second per

Figure 11: Overhead versus number of endsystems.

endsystem versus total number of endsystems. The Seaweed
maintenance overhead per endsystem, which dominates, is
O(1). Both the Seaweed query overhead and MSPastry over-
head grow with O(log N). However, the MSPastry overhead
is an order of magnitude less than the Seaweed maintenance
overhead, and the query overhead is three orders of magni-
tude less. This leads us to believe that the design will scale
to 1,000,000 endsystems or more.

Finally, we evaluated the latency between query injection
and returning the completeness predictions to the user. In
the worst case (with 12,000 endsystems) this latency was
10.1 s. We feel that this is an acceptable latency for queries
whose actual execution could take minutes or hours due to
endsystem unavailability.

5. RELATED WORK
We have already discussed PIER [16]; here we mention a

selection of other related work.
Distributed information management. Systems that sup-

port distributed information management such as Astro-
labe [31] and SDIMS [32] build aggregation trees supporting
continuous queries using user-defined aggregation functions.
Queries are injected into the system and continuously com-
pute summaries of data. In contrast, Seaweed aims to sup-
port one-shot queries across stored data and so is principally
concerned with problems due to data unavailability.

Distributed indexes. Earlier work in the field of distributed
databases provided index structures [19, 20, 21] to enable ef-
ficient search for distributed data and distributed updates
with strong consistency semantics. More recently, distrib-
uted indexes using various peer-to-peer structures have been
designed [1, 6, 18, 27]. These provide efficient access to and
range queries over data distributed over many endsystems.

In contrast, Seaweed replicates neither indexes nor data,
aiming for far greater scalability by only replicating compact
data summaries. This permits queries to be failure-tolerant,
remaining in the system to access data on currently un-
available endsystems. For applications with sufficiently high
query rates, distributed index structures may prove useful
but the requirement that data not be moved away from the
producing endsystem still holds.

Data stream management. Due partly to the recent pop-
ularity of sensor networks, executing long-running queries
over multiple data streams is an extremely active research
area. A wide range of large-scale systems have been built
which route tuples through long-standing pre-installed queries [2,



3, 10, 13, 23, 30]. Borealis [3] deals with data unavailability
on much smaller time scale than Seaweed, buffering stream
data to tolerate transient network failures on the order of a
minute.

In contrast, Seaweed leaves data where it is generated and
supports efficient one-shot select-project-aggregate queries
on stored data, which is sufficient for a wide variety of useful
and interesting applications. This requires that we deal with
endsystem unavailability on the scale of hours to days.

Availability models and data summarization. A key fea-
ture of Seaweed is the prediction of endsystem availabil-
ity and the ability to estimate row count from data sum-
maries. Seaweed uses a very simple availability predictor.
Concurrently with this work, others have developed alter-
native predictors [24], which could potentially improve Sea-
weed’s performance. Similarly, the data summaries cur-
rently distributed in Seaweed are relatively simple: just the
histograms computed by the local DBMS across manually
selected attributes. PTQs [11], or histogram-based approx-
imation approaches [17] could both be promising ways to
provide data summaries that permit accurate estimation of
the data stored on an unavailable endsystem.

Online aggregation. Online aggregation was first proposed
by Hellerstein et al. [15] in the context of single-site data-
bases, along with statistical estimators of result accuracy.
Seaweed uses row-count based estimates of completeness
rather than estimators of result accuracy as there is no guar-
antee that incrementally processed tuples will be in random
order: the data being queried may well be correlated with
endsystem availability.

6. CONCLUSION
In this paper we describe Seaweed a query infrastructure

for highly distributed data sets. The major challenge for
such systems is managing the unavailability of endsystems
in a scalable manner. Prior systems use replication, which
fundamentally limits their scalability.

Seaweed adopts a different approach, delay aware query-
ing. Rather than replicating the data, Seaweed replicates
only metadata and uses this to provide the user with a com-
pleteness predictor. The predictor allows the user to es-
timate the completeness of the result so far and also the
expected future progress. The Seaweed approach is scalable
but trades off query latency for scalability.

The analysis and simulation results show that Seaweed
scales well. The simulation results show that replicating
the metadata allows the generation of accurate completeness
predictors. To conclude, it seems that Seaweed represents
a novel and interesting point in the design space for query
infrastructures for highly distributed data sets.
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