
Microsoft Research Ltd. Technical Report MSR-TR-2009-153, November 2009

Sierra: a power-proportional, distributed storage system

Eno Thereska, Austin Donnelly, Dushyanth Narayanan
Microsoft Research, Cambridge UK

Abstract

We present the design, implementation, and evaluation of
Sierra: a power-proportional, distributed storage system.
I/O workloads in data centers show significant diurnal
variation, with peak and trough periods. Sierra powers
down storage servers during the troughs. The challenge
is to ensure that data is available for reads and writes at
all times, including power-down periods. Consistency
and fault-tolerance of the data, as well as good perfor-
mance, must also be maintained. Sierra achieves all these
through a set of techniques including power-aware lay-
out, predictive gear scheduling, and a replicated short-
term versioned store. Replaying live server traces from
a large e-mail service (Hotmail) shows power savings of
at least 23%, and analysis of load from a small enterprise
shows that power savings of up to 60% are possible.

1 Introduction

Server power consumption is a major problem for both
small and large data centers, since it contributes sub-
stantially to an organization’s carbon footprint and power
bills. Barroso and Ḧolzle have argued forpower propor-
tionality [3]: the power used should be proportional to
the system load at any time, rather than to the peak load
that the system is provisioned for. A power-proportional
system could exploit temporal variations in load, such as
the diurnal peaks and troughs (e.g., the “Pacific Ocean
trough” [6]) seen in many user-facing services.

Storage is a key component for many large, scalable
and highly available services such as web email (Hot-
mail or Google Mail), Amazon’s EC2, and Windows
Azure [1]. Because storage is not power proportional, it
limits the power proportionality of the whole data center.

Some power-proportionality is achievable at the hard-
ware level, e.g., using dynamic voltage scaling (DVS) for
CPUs. However non-CPU components, especially disks,
are not power-proportional.

We believe that at data center scale, the most promis-
ing approach is to power down entire servers rather save
power in individual components. This is the position we
take in this paper. It is challenging to power servers down
and yet maintain high service availability. Although most
services have clear troughs, the troughs do not go to zero.
Furthermore, the system must still provide good avail-
ability and performance for users during troughs. To
maintain service availability, all the load must first be mi-
grated from the servers to be powered down, and consol-
idated on the active servers. Storage presents a challenge
here again. While computational state can be migrated
and consolidated, e.g., using virtualization techniques,it
is not possible to migrate terabytes of on-disk state per
server daily.

In this paper we present Sierra, a power-proportional
distributed storage system. Sierra is a replicated object
store that allows storage servers to be put into low power
states (standby or powered down) when I/O load is low.
It does this without making the storage unavailable or
sacrificing consistency, performance, and fault tolerance.
This paper addresses these challenges entirely from the
point of view of distributed storage. Megascale data cen-
ters often co-locate computation and storage on the same
servers; thus a complete solution would integrate Sierra
with existing techniques for CPU consolidation.

Sierra exploits the redundancy that is already present
in large-scale distributed storage, typically in the form
of three-way replication across servers. The design of
Sierra is based on the idea of running the system in a
lower “gear” — a smaller number of active replicas per
object — when load is low. This allows servers host-
ing inactive replicas to be powered down. In a three-way
replicated system Sierra allows up to2

3
of the storage

servers to be in standby. Sierra avoids sending client
requests to the powered-down servers, and ensures that
there are always active servers that can serve accesses to
every object. This ensures that all objects are available
even when a majority of the servers are powered down.

1

Microsoft Research Ltd. Technical Report MSR-TR-2009-153, November 2009

30%

40%

50%

60%

70%

80%

90%

100%

N
o
rm

a
li
z
e
d
 d

is
k
 I
/O

 r
a
te

0%

10%

20%

30%

09/07 09/08 09/09 09/10 09/11 09/12 09/13

N
o
rm

a
li
z
e
d
 d

is
k
 I
/O

 r
a
te

Date (in 2009)

(a) Hotmail

30%

40%

50%

60%

70%

80%

90%

100%

N
o
rm

a
li
z
e
d
 d

is
k
 I
/O

 r
a
te

0%

10%

20%

30%

09/07 09/08 09/09 09/10 09/11 09/12 09/13

N
o
rm

a
li
z
e
d
 d

is
k
 I
/O

 r
a
te

Date (in 2009)

(b) Messenger

����������������������	
��
�� ����� ����� �
� � �����������
2/23 2/24 2/25 2/26 2/27 2/28 3/1 3/2

Date (in 2007)

(c) Cambridge file servers

Figure 1: One week of I/O load for two large and one small service

There are several challenges in ensuring that gear-
ing down does not compromise the availability, fault-
tolerance, or performance of the storage system. First,
at least one replica of each object must be on an active
server even in the lowest gear. Second, the system must
allow updates when in low gear, and these updates must
be kept persistent, consistent, and have the same repli-
cation for fault tolerance as data written in high gear.
Third, there should be enough active servers to handle
the load at any given time, and the load should be bal-
anced across the active servers. Finally, gearing down
should not impede recovery actions taken when a server
fails either transiently or permanently.

Sierra achieves these goals through a combination of
techniques. A power-aware layout scheme ensures that
all objects are kept available even when a significant
fraction of servers is powered down. A predictive gear
scheduler exploits observed diurnal patterns to sched-
ule servers for power-up and power-down. Read avail-
ability is provided through a pro-active primary migra-
tion protocol. Write availability is provided by using a
short-term versioned store. These techniques also ensure
that the system maintains read/write consistency, toler-
ates any two transient or permanent server failures, and
can efficiently re-replicate the contents of a failed server.

This paper makes three contributions. First, using real
load traces from both large and small services as evi-
dence, we show that there are significant diurnal troughs
in I/O load, which can be exploited for power savings.
Second, we describe the design of a power-proportional
distributed storage system that exploits these troughs
without compromising consistency, availability, load bal-
ancing, or fault tolerance. Third, we present an evalua-
tion of a prototype system running on a hardware testbed,
using I/O traces from production servers of the Hotmail
service, and achieving power savings of 23%.

2 Evidence and motivation

The design of Sierra is motivated by the observation that
many workloads in both small and large data centers have

30%

40%

50%

60%

70%

80%

90%

100%

F
ra
c
ti
o
n
 o
f
h
o
u
rs
 i
n
 w
e
e
k

Hotmail

Messenger

Cambridge

0%

10%

20%

30%

0% 20% 40% 60% 80% 100%

F
ra
c
ti
o
n
 o
f
h
o
u
rs
 i
n
 w
e
e
k

Utilization relative to peak hour

Cambridge

Figure 2: CDF of utilization for all three services

periodic I/O load patterns with large peak-to-trough ra-
tios. CPU load also shows these characteristics, and vir-
tual machine migration and voltage scaling can be used
to save CPU power during the troughs. There are no
analogous solutions for disk, and hence we need a new
approach to storage power proportionality.

Figure 1(a) and 1(b) show the aggregated I/O load for
two large online services, for 1 week. The load is ag-
gregated over tens of thousands of servers for Hotmail
(Windows Live Mail), and thousands of servers for Win-
dows Live Messenger. The graphs show the total num-
ber of disk bytes transferred, aggregated across all the
back-end storage in the service at one-hour intervals. The
load is normalized to the peak value for each service. We
observe clear periodic patterns with significant peak-to-
trough ratios. In general, this load correlates with the ex-
pected diurnal variation for user-facing services. Thus,
there seems to be substantial scope for operating with
fewer resources during the troughs without significantly
impacting request latency. We observed that an alterna-
tive, consolidation of resources across services, did not
eliminate the troughs. Much of the load is correlated in
time and furthermore, Hotmail needs an order of magni-
tude more servers than the other services.

Figure 1(c) shows the variation in I/O traffic for a dif-
ferent environment: a small/medium enterprise with a

2

Microsoft Research Ltd. Technical Report MSR-TR-2009-153, November 2009

small number of on-site servers. Specifically we show
the I/O aggregated across 6 RAID volumes on two file
servers at MSR Cambridge; the graph is derived from
the publicly available MSR Cambridge I/O traces [12, 7].
Here, the periodicity is less obvious; however there are
clear peak and troughs, indicating a significant potential
for power savings during the troughs.

Figure 2 shows the CDF of time spent at different
utilization levels, where utilization is normalized to the
peak seen in each trace. Substantial periods of time are
spent with utilization much lower than the peak. Hence
there is significant scope for exploiting these periods for
power savings, even in a system that is optimally provi-
sioned, i.e., with no power wasted at peak load.

3 Design and implementation

The base system model for Sierra is that of a repli-
cated, cluster-based object store similar to GFS [5], the
Windows Azure blob store [1], FAB [10], or Ursa Mi-
nor [2]. The base system is designed to provide scala-
bility, load balancing, high availability, fault tolerance,
and read/write consistency. We first briefly describe the
basic architecture of Sierra, which is largely based on
current best practices. We then outline the challenges in
making such a system power-proportional without losing
the other properties, and present in detail the techniques
Sierra uses to address these challenges.

3.1 Basic architecture

Figure 3 shows the basic architecture of Sierra. Sierra
provides read/write access to objects in units ofchunks.
The chunk size is a system parameter: a typical value
is 64 MB. Each chunk is replicated on multiplechunk
servers; the default replication factor is 3. For any given
chunk, one of the replicas is designated as the primary
at any given time, and the others are secondaries. At
any time a chunk server will be the primary for some
of the chunks stored on it and a secondary for the oth-
ers. All client read and write requests are sent to the
primary, which determines request ordering and ensures
read/write consistency. Since we are designing a general-
purpose storage system for use by a variety of applica-
tions, Sierra supports overwriting existing data in addi-
tion to appends of new data. Client reads and writes can
be for arbitrary byte ranges within a chunk.

Read requests are sent by the primary to the local
replica; write requests are sent to all replicas and ac-
knowledged to the client when they all complete. Load
balancing in Sierra is done by spreading a large num-
ber of chunks uniformly over a smaller number of chunk
servers, and also by choosing primaries for each chunk
randomly from the available replicas of that chunk.

Metadata service (MDS)

Chunk servers

ch
un
k I
D,
 pr
im
ary

,...

read (chunk ID, offset, size,...)

write (chunk ID, offset, size, data,...)

Client

loo
ku
p(o

bje
ct
ID
, o
ffs
et)

loa
d s

tat
ist
ics

ge
ar
sc
he
du
les

Gear scheduling

service

Figure 3: Sierra architecture

Sierra has a centralized metadata service (MDS),
which functions as a naming service. It is implemented
as an in-memory, deterministic state machine which can
be replicated for high availability using state machine
replication techniques [11]. It maps each object to its
constituent chunks, and each chunk to its current pri-
mary. The MDS is not on the data path between clients
and chunk servers; its state is updated when chunks are
created or deleted but not when they are read or written.

The MDS also tracks chunk server availability, reas-
signs primaries as necessary, and initiates recovery ac-
tions when a server fails permanently. Availability is
tracked through periodic heartbeats from chunk servers
to the MDS. In response to each heartbeat, the MDS
sends the chunk server a lease for the set of chunks that it
is currently the primary for, and the locations of the sec-
ondaries for those chunks. Leases are set to expire before
the MDS times out the heartbeat, and servers send fresh
heartbeats before their leases expire. The MDS reassigns
primaries on demand for chunks whose primaries have
lost their lease. A chunk server with an expired lease
will return an error to a client trying to access data on it;
after a timeout period the client fetches and caches the
new chunk metadata from the MDS.

3.2 Challenges

This baseline design provides good consistency, avail-
ability, load balancing and fault tolerance when all or
most chunk servers are available. However, there are
several challenges in saving power and maintaining these
properties when significant numbers of servers are peri-
odically powered down and up.

The first challenge in achieving power savings islay-
out: the assignment of chunks to chunk servers. Sec-
tion 3.3 shows how a “naive random” approach, although
simple and good for load balancing, does not give a good
tradeoff between power savings and availability. This
is surprising because this is the most commonly used
approach today. To address the problem we devised a
power-aware layout, described in Section 3.3. This al-

3

Microsoft Research Ltd. Technical Report MSR-TR-2009-153, November 2009

A

B

C D

EF

(a) Naive random

A
B

C

D

F
E

Replica group 1

Replica group 2

(b) Naive grouping

A
B

D

F

E

C

G
e
a
r

g
ro
u
p
 0

G
e
a
r

g
ro
u
p
 1

(c) Power-aware grouping

Figure 4: Different layouts for 6 chunks, 4 servers, and 2-way replication.

lows anr-way replicated system to be in any gearg such
that only g

r
of the servers need to be active to keepg

replicas of each object on an active server.
The second challenge is to correctly predict the num-

ber of servers required at any time to sustain the system
load, so that excess servers can be turned off. This is
done by thegear scheduler component of Sierra. This
component tracks and predicts the load on chunk servers
on a coarse time granularity (hours to days). Based on
load predictions, it then sends “gear schedules” to the
chunk servers specifying when they should shut down
and start up. We have found that a simple predictor based
on the hour of day works well on the workloads we have
evaluated. Section 3.4 describes the load metrics and pre-
diction algorithm used by the gear scheduler.

A third challenge is maintaining availability and load
balancing during gear transitions, i.e., server power-ups
and power-downs. While we use standard techniques to
deal with server failures, we do not treat server power-
ups and power-downs identically to failures. The reason
is that, unlike failures, we expect a significant fraction of
the servers to change their power state at least once over
the period of a day. Section 3.5 describes how Sierra
pro-actively migrates primaries away from a server that
is about to be powered down. Hence, at every gear level,
Sierra ensures that every chunk primary is on an active
server, and that the primaries are uniformly distributed
across the currently active servers.

While primary migration gives availability and load-
balancing for reads, we also want to support writes to
chunks during low-gear periods, when all replicas of the
chunks are not available. Further, we want writes dur-
ing low-gear periods to maintain the replication factorr;
to maintain read/write consistency (i.e., every read sees
the result of the last committed write); and to ensure
that writes are eventually applied to all chunk replicas
when they become available. Sierra achieves this using a
replicated short-term versioned store, described in Sec-
tion 3.6. This is a service that can use spare disk band-

width and capacity on existing chunk servers, and/or a
small number of dedicated servers. This mechanism also
lets Sierra chunk servers support overwriting of chunk
data, even when one or more replicas have failed. Hence
chunk data is kept available for both reading and writing
as long as at least one replica is on an active server.

As a final challenge, in addition to existing failure
modes such as chunk server failures, Sierra must han-
dle new failure modes, e.g., failure of an active replica
when other replicas are powered down. Section 3.7 de-
scribes fault tolerance in Sierra, focusing on the novel
failure modes and solutions in Sierra.

3.3 Power-aware layout

The layout defines the way in which chunks are assigned
to chunk servers at chunk creation time. Our goal is a
layout that allowsr−g

r
of the servers to be powered down

(wherer is the replication factor and0 ≤ g ≤ r) while
keepingg replicas of each chunk available. We refer to
this as putting the system in thegth gear. Thus, a 3-way
replicated system could be in gears 3, 2, 1, or 0. Gear
0, while possible in theory, is unlikely to be useful in
practice, due to the high latency penalty of waiting for a
server to start up to service a request.

One simple approach is thenaive random layout: each
new chunk is assigned replicas on three servers chosen
at random. However, we discovered that this severely
limits the scope for power savings. This layout makes
it hard to power down more thanr − 1 servers in the
entire system. Figure 4(a) shows a simple example with
4 servers, 6 chunks, and 2-way replication. Since every
chunk is 2-way replicated, we would like to be able to put
2 of 4 servers into standby at low load and yet keep one
replica of each chunk available. With the layout shown,
however, it is not possible to put more than one server
into standby (there is at least one object for which both
replicas would be unavailable if we did so). As the size
of the system increases, the independent random layout

4

Microsoft Research Ltd. Technical Report MSR-TR-2009-153, November 2009

Power-down Rebuild
Naive random r − g N

Naive grouping N r−g

r
1

Power-aware grouping N r−g

r
N
r

Table 1: Number of servers that can be powered down in
gearg, and the write parallelism for data rebuild.N is
the total number of servers andr is the replication level.

makes it increasingly improbable that more thanr − g

servers can be powered down while still keepingg active
replicas of every chunk. Additionally, with this layout,
finding a maximal set of servers that can be turned off
without losing availability is likely to be computationally
hard, since it is a special case of the NP-complete set
covering problem.

An alternative approach is to put servers intoreplica
groups, each of sizer (Figure 4(b)). A chunk is then as-
signed to one replica group rather than tor independently
chosen servers. Now we can switch offr − g servers in
each replica group and still haveg replicas of each object
available. However, naive grouping of servers reduces
the rebuild parallelism. When a server suffers a perma-
nent failure, with naive grouping its entire contents must
be rebuilt (re-replicated) on a single new server, and this
server becomes the bottleneck for the rebuild process.
With a typical commodity disk with a write bandwidth
of 80 MB/s and 1 TB of data, this would take 3.6 hours.
With the naive random approach on the other hand, each
chunk stored on the failed server can be independently
rebuilt on any of the other servers in the system. This
gives a high degree of rebuild parallelism, and hence a
higher rebuild rate.

Sierra uses a generalized notion of grouping that
achieves both power savings and high rebuild parallelism
by usingpower-aware grouping. Each server is assigned
to exactly one ofr gear groups. Each new chunk is as-
signed exactly one replica from each gear group; selec-
tion of the server within each gear group is done uni-
formly at random. Now the system can be put into any
gearg by turning off r − g gear groups. If a server in
some gear groupG fails, then its data can be rebuilt in
parallel on all remaining servers inG. Thus the rebuild
parallelism isN

r
whereN is the total number of servers.

Table 1 summarizes the three approaches. Note that all
three layouts are equivalent with respect to load balanc-
ing of client requests, since all three allow chunk replicas
and primaries to be spread uniformly over servers.

The above analysis also applies to cross-rack replica-
tion. For each of the three layouts, we can further con-
strain the replica choice such that different replicas are
in different fault domains, typically different racks in the
data center. However, the naive random policy will still

2 2 2 2

3 3 3 3

1 1 1 1

1 1 1 1

(a) Rack-aligned

2 3 1 2

3 1 2 3

1 2 3 1

1 2 3 1

(b) Rotated

Figure 5: Two ways of configuring gear groups

only be able to turn offr − g racks, rather thanr−g

r
of

all servers. Similarly the naive grouping policy can only
rebuild over one rack rather than1

r
of the racks.

Sierra uses power-aware grouping with cross-rack
replication. It supports two variants: rack-aligned and
rotated (Figure 5). While both allow the same number of
servers to be turned off in a given gear, the location of the
servers is different. In the rack-aligned case, all servers
in a given rack are in the same power state; this could al-
low some additional power savings, for example, by turn-
ing off rack-wide equipment such as switches. However,
the rotated layout might be useful if it is more important
to distribute the powered-up servers (and hence the ther-
mal load) evenly across racks. For concreteness, in the
rest of the paper will assume a gear-grouped, cross-rack,
and rack-aligned layout.

3.4 Gear scheduler

The main aim of gear shifting is to exploit the 24-hour
cycle in load. It does not make sense to gear-shift at a
time scale of minutes or seconds, since a server can take
several minutes to start up and several seconds to come
out of standby. Hence, in Sierra we gear-shift on a time
scale of hours: the aim is to shift gears a few times a day
to capture the broad diurnal patterns in load.

The load metric used by the gear scheduler uses the
rate of reads and of writes, both aggregated over all the
chunk servers; the write rate is weighted by a factorr,
since each write is replicatedr times. It also considers
separately the random-access I/O rate measured in IOPS,
and the streaming I/O rate measured in MB/s. Given the
known performance per chunk server in terms of IOPS
and MB/s, the load can then be computed in units of the
number of chunk servers required to sustain the load.

Lnonseq =
TotalIOPSread

ServerIOPSread

+ r ·
TotalIOPSwrite

ServerIOPSwrite

Lseq =
TotalMBPSread

ServerMBPSread

+ r ·
TotalMBPSwrite

ServerMBPSwrite

L = max(Lnonseq, Lseq)

5

Microsoft Research Ltd. Technical Report MSR-TR-2009-153, November 2009

The load is measured at 1 sec intervals on each chunk
server, and aggregated once an hour. By default we use
the peak (i.e., maximum) load observed in the hour as
the load for that hour: since I/O load is often bursty,
using the mean value can significantly degrade perfor-
mance during bursts. The gear scheduler then predicts
the load for each hour of the following day, by averaging
the past load samples for that hour in previous days.

To compute the gearg for a given hour, the gear sched-
uler measures whether the predicted load for that hour
exceeds1

r
, 2

r
, etc. of the total number of chunk servers

N . It then chooses the lowest gear which leaves enough
servers active to sustain the load:

g =

⌈

L

N
r

⌉

The Sierra gear scheduler is a centralized component
that periodically aggregates load measurements from all
the chunk servers, and computes the gear schedules for
the following day. For any given gearg, the servers in the
first r−g gear groups are scheduled to be powered down.
The gear schedules are then pushed to the chunk servers,
and each server follows its own gear schedule. Over sev-
eral days, the gear scheduler rotates the ordering of the
gear groups, so that in the long term all servers spend
an equal amount of time powered up. This allows all
servers to do background maintenance tasks, e.g., scrub-
bing, during idle periods.

3.5 Primary migration protocol

Sierra balances load by spreading primaries uniformly
across active servers, and hence across active gear
groups. This means that when servers in some gear group
G are powered down, any chunk primaries on those
servers would become unavailable, and clients would
not be able to access those chunks. Since Sierra han-
dles server failures using a heartbeat mechanism (Sec-
tion 3.7), we could simply treat the power-down events
as failures; the MDS will reassign the primaries when it
detects a failure. However, this will result in data being
unavailable until the “failed” server’s leases expire.

To avoid this, Sierra chunk servers pro-actively mi-
grate all chunk primaries onto other replicas before pow-
ering down, using the following migration protocol. If a
serverS wishes to power down, it executes the following
protocol for each chunkC for whichS is a primary:

1. S updates its in-memory state to mark itself as a
secondary for chunkC. An error will be returned
on future client requests. Client requests currently
in flight will complete normally.

2. S signals the MDS withreleased primary(C).
3. The MDS randomly picks another replicaS′ of the

chunk C as its primary and modifies its internal

state to reflect this.
4. The MDS signalsS′ with become primary(C).
5. S′ initializes any required in-memory state and

starts servicing client requests as the primary forC.
The window of unavailability for chunkC is now one
network round trip plus the time required to update MDS
state and initialize the new primary onS′. If a client
accessesC during this short window it will retry the op-
eration, converting this temporary unavailability into a
higher latency.

When the chunk serverS has no more primaries or
outstanding requests, it sends a final “standby” message
to the MDS and goes into standby. The MDS then sends
“gear shift” messages to all the peers ofS (i.e., servers
which share one or more replicated chunk withS) to in-
form them thatS is no longer active. This is an opti-
mization that avoids peers ofS timing out on requests to
S when accessing it as a secondary. When a chunk server
S wakes up from standby it resumes sending heartbeats
to the MDS. When the MDS receives a heartbeat from
a server that was previously in standby, it rebalances the
load by moving some primaries from other servers toS.
This is done by sendingS a list of chunk IDs to acquire
primary ownership for, and the current primary for each.
S then contacts each of the current primaries, which then
initiate a primary migration protocol similar to the above.

In Sierra, chunks are collected into chunk groups to
reduce the number of MDS operations involved in pri-
mary migration. All chunks in a chunk group are guar-
anteed to be replicated on the same servers, and have
the same primary at any given time. Migration of pri-
maries requires one MDS operation per chunk group
rather than per chunk. Chunks are assigned randomly to
chunk groups on creation. The number of chunk groups
is a system parameter that trades off MDS load for fine-
grained load balancing across servers. Sierra currently
uses 64N chunk groups whereN is the total number of
chunk servers.

3.6 Replicated short-term versioned store

We want writes to be stored persistently and consistently
even when chunk replicas are powered down or other-
wise unavailable. The replicated short-term versioned
store is used by Sierra primaries to ensure these prop-
erties. The basic design of this store is similar to that
used in our previous work in the context of RAID ar-
rays [7, 8], but has now evolved as a distributed system
component. Here we give a high-level description of its
basic properties and (network) optimizations in the dis-
tributed setting.

When one or more secondaries is unavailable (pow-
ered down for example), a Sierra primary enters “logging
mode”. In this mode it sends writes to the short-term ver-

6

Microsoft Research Ltd. Technical Report MSR-TR-2009-153, November 2009

Client

Secondaries

Primary

Log client

chunk files

Loggers

Chunk files

Non

logging

mode

writes

All

writes
Reads

Logging

mode

writes

log-structured, versioned storage

Reclaims

Figure 6: Data paths in logging and non-logging modes.
The dotted box represents a single chunk server acting as
a primary.

sioned store instead of the secondaries. When all secon-
daries are available again, the primary startsreclaiming
the writes: data is read from the versioned store, written
to all replicas, and then deleted from the versioned store.

Although the short-term store can share disk resources
with the existing storage, i.e., the chunk servers, it is
logically a separate service. Versions are essential in
the short-term store to ensure that the state visible to
clients is consistent and recoverable. The chunk servers
on the other hand are designed to run on standard file
systems such as NTFS or ext3, which do not support ver-
sioning. Using a separate implementation for the short-
term store also allows us to optimize it for the write-
dominated workload and the relative short lifetime of
stored data items. Specifically, the short-term store uses
a log-structured disk layout which is known to work well
in this scenario.

The short-term store has two components: alog client
that is associated with each primary, andloggers which
send writes to a local on-disk log file. When in logging
mode, the log client sends each write tor loggers in r dif-
ferent racks, maintaining the same fault-tolerance prop-
erties as the chunk data. Log clients track the location
and version of logged data in memory; this state can be
reconstructed from the loggers after a failure. Figure 6
shows the logging and reclaim data paths from the point
of view of a single chunk server primary.

When sending writes to the versioned store, the pri-
mary also writes them to the local replica. This allows
reads to be served from the local replica and reduces the
load on the versioned store. It also avoids rewriting this
cached data to the primary during reclaim. The metadata
that tracks these locally cached writes is kept in memory,
is small, but is not recoverable. Thus, this optimization

C C C L

C C C L

C C C L

C C C L

(a) Dedicated

C C C C

C C C C

C C C C

C C C C

L L L L

L L L L

L L L L

L L L L

(b) Co-located

Figure 7: Two ways of configuring loggers (L) and chunk
servers (C)

only helps primaries that have not failed or migrated. In
all cases correctness is maintained, with data being read
from the loggers, if necessary, to service a client read.

Loggers can be run on dedicated servers or co-located
with chunk servers. Figure 7 shows examples of a dedi-
cated and a co-located configuration. The dedicated con-
figuration has the advantage that it minimizes contention
between the chunk server workload and the logger work-
load, specifically allowing the loggers to service mostly
writes, for which they are optimized. The dedicated con-
figuration does require additional resources; however, we
expect that these additional resources will be small, e.g.,
one dedicated logger per 20 chunk servers in a rack.

For each logging mode write, the log client can choose
any r available loggers that are on different racks. In
our previous work using the versioned store, these were
chosen primarily by disk load. However, in a scalable
distributed system such as Sierra, it is important also to
minimize the network overheads of using the versioned
store, and especially to minimize the use of scarce cross-
rack network bandwidth. Hence for every log write, the
log client for a chunk groupG sorts the loggers in its
logger view in the following order:

1. Loggers on the same server as a replica ofG,
2. Loggers in the same rack as a replica ofG,
3. Loggers in other racks.

Within each of these groups, loggers are sorted by disk
load. For each log write the client greedily chooses the
first r loggers that are in different racks. For log reads
and reclaims only one logger is needed, the one closest
to the primary (either co-located or on the same rack).

3.7 Fault tolerance and recovery

Sierra uses standard techniques (heartbeats and primary
reassignment) to maintain read availability during tran-
sient errors; additionally it uses the short-term versioned
store to maintain write availability. Here we describe
how we handle new failure modes resulting from gear-
shifting.

Failures when in low gear: Chunk server failures

7

Microsoft Research Ltd. Technical Report MSR-TR-2009-153, November 2009

might occur when in low gear, when some of the chunk
servers are already in standby. When the MDS detects
failure of a chunk serverS, it wakes up all the servers that
share any chunks withS. Since wakeup from standby
typically takes a few seconds, and even powering up a
machine can be done in minutes, this does not signifi-
cantly increase the window of vulnerability for a second
and third failure. However, when the system is already
in the lowest gear (gear 1), failure of a server can cause
the last active replica of a chunk to become unavailable
while other replicas are being woken up. This will re-
sult in a large latency penalty for any client accessing the
chunk during this window.

The Sierra gear scheduler takes theminimum gear
level gmin as a policy input. The value of this parameter
depends on the desired tradeoff between power savings
and the risk of temporary unavailability on failure. We
expect that for a 3-way replicated system,gmin will typ-
ically be 1 (for higher power savings) or 2 (for higher
availability). Gear 0 is problematic because any access
to a chunk will see a large latency penalty even in the
absence of failures.gmin = 3 will not save any power.

Logger failures: Logger servers can also fail. When
a server fails, this log data becomes unavailable; how-
ever, two other replicas of each log record are still avail-
able on other servers. Thus, logged data has the same
level of fault tolerance as unlogged data. One option to
maintain this fault tolerance is to re-replicate data within
the logging service on failure. However, since the data
will eventually be reclaimed back to the chunk replicas,
this results in wasted work. Instead, Sierra primaries re-
claim at high priority any at-risk data, i.e., logged data
with fewer than three available replicas. At the end of
the reclaim, the data will be no longer on the loggers but
three-way replicated on chunk servers.

Permanent failures in low gear: On a permanent fail-
ure, the MDS initiates the rebuild of data stored on the
failed server; this requires peers of the failed server to
be powered up to participate in the rebuild. Sierra pow-
ers up peers of a serverS whenever a transient failure is
suspected onS. Hence the time to power up the peers
is overlapped with the detection of permanent failure. In
any case, the time to transfer the data to new replicas
dominates the total recovery time. Hence, waking up
machines in standby does not significantly increase the
window of vulnerability to a second permanent failure.

Replica divergence: In a primary/backup replication
system such as Sierra, it is possible for a server failure
during a write request to result in replica divergence, with
some replicas having applied the write and others not.
Note that this problem is not specific to Sierra but to all
systems which apply updates concurrently to replicas. In
Sierra primaries react to update failures by re-sending the
update to the versioned store. The versioned store avoids

replica divergence by using explicit versions. If the pri-
mary fails, then the client will retry the request, and the
new primary will send the update to the versioned store.
However, if both the primary and the client fail while a
write request is in flight, then replica divergence is pos-
sible. If this scenario is a concern, thenchain replica-
tion [13] could be used, where updates are applied seri-
ally to the replicas rather than in parallel. Chain repli-
cation prevents replica divergence at the cost of higher
update latencies. We have not currently implemented
chain replication; however, adding it to the system only
requires small changes and is orthogonal to the gearing
and power-saving aspects of Sierra.

3.8 Implementation status

The evaluation in the following section is based on our
Sierra prototype, which is implemented entirely at user
level, with the MDS and each chunk server each running
as a user-level process, and a client-side library that ex-
ports objectread(), write(), delete() and create() calls.
The core Sierra implementation is 10 KLOC of C code,
with an additional 8 KLOC for the logger and log client
implementations. Although the MDS is implemented
as a deterministic state machine we have not currently
implemented MDS replication; however, standard tech-
niques exist for state machine replication and we are con-
fident that the MDS could be replicated if required.

4 Evaluation

In Section 2 we saw that large data center services such
as Hotmail as well as small data center services such
as the Cambridge file servers, have substantial poten-
tial for power savings. Realizing this potential using
Sierra requires sufficient, predictable troughs in the I/O
load. Additionally, we would like the baseline system
to have good, scalable performance, to maintain perfor-
mance while in low gear and while transitioning between
gears, and to have efficient rebuild of data on server fail-
ure. In this section we evaluate these different aspects of
Sierra using real workloads as well as microbenchmarks.

First, Section 4.1 evaluates the accuracy of our load
prediction algorithm as well as the expected power sav-
ings, from the three workloads described in Section 2:
Hotmail, Messenger, and Cambridge. This analysis is
based on coarse-grained measurements of load aggre-
gated over the entire services for one week.

The rest of the section then evaluates the Sierra pro-
totype running on a cluster testbed. We use I/O request
traces from a small sample of Hotmail servers to mea-
sure the power savings and performance on real hard-
ware. Using microbenchmarks, we then show the scal-

8

Microsoft Research Ltd. Technical Report MSR-TR-2009-153, November 2009

 0

 0.5

 1

 1.5

 2

 2.5

 3

 1 2 3 4 5 6

N
o

rm
a

li
s

e
d

 R
M

S
 e

rr
o

r

Number of training days

Cambridge
Hotmail

Messenger

Figure 8: Prediction accuracy

ing of the base system’s read/write performance and data
rebuild rate as function of layout.

4.1 Load trace analysis

We applied the simple “hour of day” load prediction al-
gorithm (see Section 3.4) to the aggregated load mea-
surements described in Section 2; the load metric used
was mean bytes transferred per hour, since that is all we
have available from this data. For each of the three work-
loads, we have 7 days of data. We train the predictor on
the firstn days of the data and test it on the remaining
7 − n days. The error metric is the root-mean-square
(RMS) error, normalized by the mean load during the
test period to give a scale-free measure of error. Figure 8
shows how the error changes asn is increased.

We see that for Hotmail and Messenger, the error is
low even after a single day of training and does not
change significantly afterward. For Cambridge this error,
while initially high, drops as more training data is used.
These load errors translate into gear selection errors as
follows (using 6 days for training and 1 for testing): for
Hotmail all gears are correct; for Messenger, 90% of the
time the gears were correct; for Cambridge, 75% of the
time the gears were correct.

The left half of Figure 9 estimates the correspond-
ing power consumed, defined as the average fraction of
servers that cannot be switched off using Sierra. The
numbers assume correct gear selection as defined by the
actual load (i.e., an “oracle” predictor). The power sav-
ings look promising, but we cannot deduce how well
workloads would perform in lower gears. In the next
section, we evaluate power savings and performance for
a live run of Hotmail I/O traces on real hardware.

4.2 Hotmail I/O traces

The next few sections show results obtained using I/O
traces from 8 Hotmail back-end servers over a 48-hour
period, starting at midnight (PDT) on Monday August 4
2008. Note that these I/O traces are from a different time
period than the Hotmail load traces shown so far. The
I/O traces are taken at the block device level, i.e., be-
low the main memory buffer cache but above the storage
hardware. During our experiments we disable caching,
prefetching and write-backs, thus enabling accurate trace
replay. During trace collection, each I/O to a block de-
vice results in a trace record containing the timestamp,
the device number, the type of request (read or write),
the logical block position accessed, and the number of
blocks read or written.

The I/O traces include accesses both to data files (e-
mail messages), which form the bulk of the storage ca-
pacity used, and metadata databases (user profiles, search
indexes, etc.). Data files can be directly stored as objects
in Sierra, whereas the metadata would be best stored us-
ing distributed tables. Since Sierra is a blob store and
not a distributed table service, we ignore accesses to the
metadata, which would have to be hosted elsewhere.

We map the traces to Sierra usingvirtual disks. Each
block device in the trace maps to a virtual disk, which
corresponds to a unique object ID in Sierra. The vir-
tual disk object is then stored in Sierra as a set of chunks
corresponding to logical extents within the disk. Thus,
the trace replay mechanism converts an access of<block
device, logical block number, size in blocks> to <object
ID, offset in bytes, size in bytes>.

We measure the power savings and performance of
Sierra based on these traces. As we only have 2 days of
traces it is not meaningful to train a model for gear pre-
diction. Hence, we use the “oracle” gear selection policy
for these I/O traces.

4.3 Testbed setup and provisioning

Our experimental testbed consists of 31 identical servers
in 3 racks in one data center. Each rack has a Cisco
Catalyst 3750E as a Top-of-Rack (ToR) switch providing
1 Gbps ports for the servers, and a 10 Gbps fiber uplink to
a Cisco Nexus 5000. The testbed is assigned 10 servers
in each rack, plus an extra server in one of the racks on
which we run the MDS. Each server has two four-core
2.5 Ghz Intel Xeon processors, 16 GB of RAM, a 1 TB
system disk and a 1 TB disk that holds the Sierra chunk
files and log files. Although the machines have plentiful
RAM, we do not use it for caching in our experiments,
to match the traces available, which are taken below the
main memory buffer cache. Each server runs Windows
Server 2008 Enterprise Edition, SP1.

9

Microsoft Research Ltd. Technical Report MSR-TR-2009-153, November 2009

m
in
=
 1

M
e
s
s
e
n
g
e
r

m
in
=
 2

H
o
tm
a
il

=
 1
 (
c
h
u
n
k
s
rv
)

=
 2
 (
c
h
u
n
k
s
rv
)����������������������

	
��
����
�
C
a
m
b
ri
d
g
e

g
m
in

M
e
s
s
e
n
g
e
r

g
m
in

H
o
tm
a
il

g
m
in
=
 1
 (
c
h
u
n
k
s
rv
)

g
m
in
=
 2
 (
c
h
u
n
k
s
rv
)

����������� ��� ������� ��� ���� ��!� "!� #� � ��� $�� ��� %& '� ��!�(
	
Figure 9: Estimated power consumed for three services
and actual power consumed for the Hotmail I/O trace

A note on terminology: throughout the paper we use
bytes, not bits, e.g., MB, not Mb, and standard powers-
of-two notation, e.g., 1 KB is 1024 bytes (not 1000).

For meaningful experimental results it is important
to correctly provision the system for the workload, i.e.,
chose the correct number of chunk servers. Overpro-
visioning the system would increase the baseline sys-
tem’s power consumption unnecessarily, and thereby in-
flate the relative power savings of Sierra. Underprovi-
sioning the system would also be meaningless because
the system could not sustain the peak load even with all
servers powered up.

In addition to performance, we must also match the
availability and capacity requirements of the workload.
For availability, we place each replica in a separate fault
domain (in our case, in a separate rack). For capacity, we
are limited by the total storage capacity of our servers,
which is not sufficient to hold the entirety of the virtual
disks in the trace. However, it is sufficient to store the
specific chunks that are accessed during any of our ex-
perimental runs, if we use a chunk size of 1 MB. Hence,
for each experiment, we pre-create exactly the chunks
that are accessed during the experiment, using a chunk
size of 1 MB. In practice a larger chunk size, e.g., 64 MB
is more common [5].

To calculate the number of chunk servers needed
to support a workload, we use the load metricL de-
scribed in Section 3.4. It converts four workload met-
rics — streaming read and write bandwidth (in MB/s)
and random-access read and write IOs per second (IOPS)
— to a single metric in units of chunk servers. The
server metrics (e.g.,ServerIOPSwrite), are obtained
by benchmarking the servers in the system (Table 4 in
Section 4.6 shows the results.) We then use the maxi-
mum value ofL over the trace, rounded up to the nearest
multiple of 3 for 3-way replication.

The peak load in our traces happens just after mid-
night during what we believe is a 2-hour period of main-

 0

 10

 20

 30

 40

 50

 60

06:00 12:00 18:00 00:00 06:00 12:00 18:00 00:00

L
o

a
d

 l
e
v
e
l
(#

s
e
rv

e
rs

)

Time (4-5 August 2008)

Steady state

Up-shift

Down-shift

Gear level
Peak load

Figure 10: Gear schedule for Hotmail I/O trace

tenance background activity. We do not provision for this
peak, but for the peak excluding this maintenance win-
dow. We do keep the maintenance period in the highest
gear though. If we provisioned for the background peak,
or ran the 2-hour period in gear 1 (intuitively the back-
ground jobs need to complete but are unlikely to have
tight performance requirements) we would save more
power.

For the Hotmail traces this methodology resulted in
15 chunk servers to meet the performance requirement
(5 in each rack). The trace replay clients are load bal-
anced on 9 of the remaining machines (3 in each rack).
For all the performance experiments, we compared two
configurations. TheSierra configuration had the above 5
chunk servers and 1 dedicated logger per rack. TheBase-
line configuration was provisioned with the same total
resources, i.e., 6 chunk servers per rack and no loggers.
In all cases we pre-create the necessary system state, in-
cluding logger state, by first replaying the relevant pre-
ceding portions of the trace (up to 8 hours in one case).

4.4 Power savings

This section presents the results of replaying the Hotmail
traces on the Sierra testbed. We first show the power sav-
ings achieved using the gear scheduler’s decisions. We
then present the performance results from live runs.

Figure 10 shows the load metric for each hour of the
Hotmail I/O trace, and the gear chosen by the oracle pre-
dictor for each hour. The right half of Figure 9 shows
shows the actual power consumed as a percentage of the
baseline system, which has the same total number of
servers (18). We show the results for two policies: the
default policy (gmin = 1) where the system is required
to keep a minimum of one active replica per object, and a
“high availability” policy (gmin = 2) where two replicas
are always kept active per object, to avoid any temporary
unavailability if a server fails.

10

Microsoft Research Ltd. Technical Report MSR-TR-2009-153, November 2009

��������
��

����	
 ��� ��

�������� ������

���� ������ ����� �� � !"� #$%& � !"�'��(
(a) Mean response time

)**)+*,**,+*-**-+*+**
./0123 415 406

789:;<=: ><:??8
+@**@+* ABCDEF GBDBC HI GJKLB MNOP GJKLBQ10R

(b) 99th percentile response time

Figure 11: Performance comparison for Hotmail I/O trace

We make two observations. First, the actual power
savings from this real run match the analytical expecta-
tions for Hotmail. Second, even with agmin = 2 policy
the power savings are significant. These numbers include
the power consumption of the loggers. Since our testbed
is small, and we need one logger per rack at minimum,
the loggers’ contribution is actually larger than in a real
system. The last two bars in Figure 9 show the power
consumed by the 15 chunk servers alone, as a percent-
age of a baseline system with 15 chunk servers. We see
that the power savings are very close to that predicted
from the Hotmail load traces (forgmin = 1). In a larger
system setup we expect a much lower ratio of loggers to
chunk servers than the 1:5 seen here (this expectation is
confirmed in the next section), hence the relative power
cost of the loggers will decrease.

4.5 Performance and efficiency

For the performance experiments, we selected three trace
segments that represent the worst case for three aspects
of Sierra. Thesteady-state experiment chooses, of all the
1-hour periods spent in the lowest gear, the one with the
highest peak load. The aim is to show the performance
impact of putting the system in a low gear. TheUp-shift
experiment chooses the transition into the highest gear
having the largest amount of logged data. The aim is to
show the performance impact of reclaiming logged data
to the chunk servers. The run is from 10 minutes be-
fore the transition until 1 hour after the transition. The
Down-shift experiment chooses the down-transition hav-
ing the highest load in the minute immediately follow-
ing the transition. The aim here is to show the effect on
clients of the primary migration protocol and any result-
ing client retries. The run is from 10 minutes before the
transition until 10 minutes after the transition. Figure 10
shows the times in the trace corresponding to the three
experiments.

Total data logged in 48 hrs 166 GB
Time in top gear 14 hrs
Required reclaim rate 3.4 MB/s
Data reclaimed in up-shift 22 GB
Achieved reclaim rate 6.3 MB/s
Logger avg. queue size (steady state) 0.09
Logger avg. queue size (reclaim) 2.3

Table 2: Reclaim statistics

Request response times: Figure 11 shows the per-
formance of the baseline and Sierra configurations dur-
ing the three experiments; we show both the mean re-
sponse time and the 99th percentile response time. We
make several observations. First, given that these are the
worst three scenarios, the performance penalty for Sierra
is small. Second, the steady-state and down-shift exper-
iment results show that our provisioning methodology is
reasonable; the performance in the lower gear (Sierra) is
comparable to the performance in gear 3 (Baseline). For
both experiments the main reason performance slightly
degrades is that our provisioning method only consid-
ers first-order performance metrics (IOPS and stream-
ing bandwidth). In reality, workloads have second-order
properties too (e.g., spatial and temporal locality) that
our method does not capture. Third, the up-shift experi-
ment sees the worst performance degradation of all three,
since the foreground workload in the highest gear inter-
feres at the disk with the reclaim process. We look next
in depth at the reclaim rate and possibilities for improv-
ing the performance during up-shift even further.

Reclaim rate: A key requirement is that the reclaim
rate be sufficient so that the amount of logged data does
not increase over the course of a day, since the loggers
are not provisioned or optimized for long-term storage.
Hence, we also estimated the required reclaim rate (top
half of Table 2), by measuring the number of unique
bytes logged just before each up-shift in the 48-hour pe-

11

Microsoft Research Ltd. Technical Report MSR-TR-2009-153, November 2009

Number of migrations 102
Total migration time 28 ms
Number of retries 77

Table 3: Down-shift statistics

riod, and summing these values. This gives an upper
bound on the amount of data that needs to be reclaimed
when in high gear. Another key requirement is that the
reclaim process should not interfere with the foreground
workload. We saw in the previous experiment that the
interference can lead to some performance degradation.

The bottom part of Table 2 shows the measurements
from the up-shift run. We easily meet the first require-
ment: the reclaim rate should be 3.4 MB/s, and we
achieve 6.3 MB/s. Note that these reclaim rates indicate
the network is unlikely to be a bottleneck. We can meet
the second requirement and thus decrease performance
degradation further if we throttled the reclaim process
to 3.4 MB/s. We believe the right way to slow this pro-
cess down is to have support for native background (low-
priority) I/O in Sierra, where the reclaim I/Os would get
background priority. We are in the process of implement-
ing this support.

Since the chunk servers are currently the bottleneck
for reclaim, we can increase the number of chunk servers
per logger until the loggers or the network become a
bottleneck. In our experiments we found that the log-
gers had an average disk queue size of only 2.3 while
reclaiming, indicating a low level of load to achieve al-
most twice the target reclaim rate. The logger queue size
in the steady-state experiment was only 0.09. The net-
work usage is similarly low. Hence we believe that in a
larger system we can support a substantially higher ratio
of chunk servers to loggers than in our small testbed.

Primary migration : We measured the time it takes
to migrate primaries when down-shifting. This process
should be quick, so that few client requests have to retry.
Measurements from the down-shift experiment indicate
that it took a total of 28 milliseconds to migrate 102
chunk group primaries, as shown in Table 3. Within
this period, each primary would have a smaller win-
dow of unavailability corresponding to its own migra-
tion. This resulted in 77 client requests retrying once
(out of 254,536 total requests in the 20 minute interval).

Metadata state size: We measured the amount of
metadata for the longest experiment, the up-shift one.
The metadata service had about 100 MB of state in-
memory. It contained information on 320 chunk groups
and 4.6 million chunks. Hence, the MDS has on average
23 bytes of data per chunk or 320 KB of data per chunk
group, i.e., a very small overhead.

Writes Reads
Bandwidth (MB/s) 82/82/82 82/82/82
IOPS 144/179/224 129/137/147

Table 4: Single-server performance. The min/avg/max
metric is shown for 5 runs.

Writes Reads
Bandwidth (MB/s) 96 (246) 348(738)
IOPS 465(537) 1152(1233)

Table 5: Peak performance. In brackets is theideal per-
formance as nine times the performance of a single server
for reads, and a third of that for writes.

4.6 Microbenchmarks

The goal of this section is to measure using microbench-
marks, the scalability of Sierra’s read/write performance
as well as the impact of layout on rebuild rates.

Single-server performance: This experiment estab-
lishes a baseline single-server performance. First, we
measure single client streaming read and write band-
width from a single server in MB/s using 64 KB reads
and writes to a 2.4 GB file. Second, we measure random-
access read and write performance in IOPS (I/Os per sec-
ond) by sending 100,000 IOs to the server. The client
keeps 64 requests outstanding at all times. Table 4 shows
the results. Write performance is more variable than read
performance due to inherent properties of NTFS.

Multi-server performance: This experiment shows
the peak performance of our system when multiple
servers and clients are accessing data. Rack 1 is used
for chunk servers. Rack 2 is used for the clients. The
metadata service is placed on a machine in rack 1. 9
clients (each identical in setup to the single one above)
make read and write requests to 9 chunk servers. Table 5
shows the results in terms of aggregate server perfor-
mance. Variance is measured across clients. For all write
experiments it is negligible. For the streaming read ex-
periment the minimum client performance was 37 MB/s
and the highest was 41 MB/s. For the random-access
read experiment the minimum client performance was
109 IOPS and the highest was 137 IOPS.

Several observations can be made. First, in all cases,
reads are faster than writes (by about 3x) because 3-way
replication reduces the writes’ “goodput” to one-third.
Second, the servers’ disks become the bottleneck for the
random-access workloads. All numbers in those cases
are close to the ideal. Third, we only get around a third of
the expected bandwidth with streaming reads and writes.
This is because of a well-known problem: lack of perfor-
mance isolation between concurrent streams. Streaming
accesses from one client interleave with accesses from

12

Microsoft Research Ltd. Technical Report MSR-TR-2009-153, November 2009

100

150

200

250

300

R
e
b
u
il
d
 r
a
te
 (
M
B
/s
)

64 MB chunks

1 MB chunks

0

50

100

0 2 4 6 8

R
e
b
u
il
d
 r
a
te
 (
M
B
/s
)

Number of write servers

Figure 12: Rebuild rate

other clients and the combined accesses to the disk are
not sequential anymore. A technique like Argon [14]
would solve the problem, but we have not yet imple-
mented it.

Recovery and layout: Choosing the correct layout is
important for power savings, but also for recovery dur-
ing permanent failures. Our scheme accommodates both
needs. This next experiment shows recovery rates when
we kill one server holding approximately 200 GB of data.
We vary the number of write servers one can rebuild on.
This serves to show the difference between naive group-
ing and power-aware grouping, first discussed in Sec-
tion 3.3. With naive grouping, there would only be one
write server, and the rebuild rate for the failed server’s
data correspondingly low. Figure 12 shows the results.
As expected, the rebuild rate increases linearly with the
number of servers.

We used a chunk size of 1 MB throughout the paper
due to the need to accommodate the Hotmail I/O trace’s
capacity requirement on our testbed. Chunk sizes could
be larger in practice, and we re-evaluated rebuild rates
with a chunk size of 64 MB. As seen from Figure 12,
the large chunk size improves the rebuild rate substan-
tially. Although we are rebuilding 200 GB in both cases,
larger chunks mean fewer per-chunk fixed costs associ-
ated with copying a chunk (e.g., fewer file creates, which
are expensive). Larger chunks also reduce the perfor-
mance interference mentioned earlier, between multiple
chunks being rebuilt in parallel on the same server. In
our experiments, we are able to increase rebuild rate lin-
early with the number of write nodes, at both 1 MB and
64 MB chunk sizes. With a sufficient number of write
nodes, the network would become the bottleneck; due to
the small scale of our testbed, the chunk servers remain
the bottleneck.

5 Related Work

Section 3 described the non-power related previous work
on which Sierra builds on: scalable distributed storage
systems [1, 2, 5, 10] and our own previous work on short-
term versioned stores [7, 8]. We also note that a large
amount of work exists in saving power by turning off
servers that are stateless or that have in-memory state that
can be migrated. This allows consolidation of the CPU
workload during troughs and is complementary to Sierra.

Here we contrast Sierra with previous work on saving
energy in server storage. Sierra is designed for clusters
of commodity servers, where “failure is a common case”
and the system must keep data available despite server
failures. Previous work is mostly aimed at saving power
within RAID arrays attached to individual servers, and
does not address the challenges of maintaining availabil-
ity in a distributed system. A second key difference is
that in Sierra I/O requests do not block waiting for a com-
ponent to wake up from a low power state. This “spin-
up wait” is a problem for many schemes based on enter-
ing low power states when idle. Powering entire servers
down would extend this wait from seconds to minutes.

Write off-loading [7] exploits long periods of low,
write-only load on RAID arrays on enterprise servers.
During these periods, all the disks in the array are spun
down, and the write load is consolidated onto versioned
logs on a small number of active volumes, and reclaimed
in the background when the original volume is spun up.
However reads that go to a spun-down volume cannot be
serviced until all the disks spin up again.

Popular Data Concentration (PDC) [9] exploits spatial
rather than temporal workload properties, by periodically
migrating hot data onto a small number of disks, and
spinning down the cold disks. However, when the “cold”
data is eventually accessed, the relevant disk must be
spun up. PDC intentionally unbalances the load across
disks, and a subset of the disks must now deliver the per-
formance previously delivered by all of them. Hence,
this is only applicable for disk arrays that are overprovi-
sioned for performance, i.e., capacity-constrained ones.

Hibernator [16] adapts to varying loads by changing
the rotational speed of disks in a RAID array. Data is kept
available except while changing speeds. However this re-
lies on multi-speed disks, which are not widely available
today and they seem unlikely to enter widespread use.

Power-aware RAID (PARAID) [15] applies the notion
of “gears” to RAID arrays. Data is simultaneously stored
on multiple RAID arrays of different sizes, overlaid on
the same set of disks. A RAID array with fewer disks
is used when load is low, with the remaining disks being
spun down. Data is kept available at the price of keeping
one copy of it in each overlaid RAID array. This wastes
both capacity and write bandwidth.

13

Microsoft Research Ltd. Technical Report MSR-TR-2009-153, November 2009

6 Future work and conclusion

In the short term, there is room for fine tuning the
implementation of our protocols and improving perfor-
mance (e.g., especially for handling performance insu-
lation among concurrent streams). In the medium-term
we plan to investigate the potential for more fine-grained
gearing, i.e., turn individual servers on and off in re-
sponse to load rather than entire gear groups. We also
want to investigate the tradeoffs involved when erasure
codes are used for redundancy instead of replication.

In addition, we believe our work on Sierra opens up
three broad future research directions. First, it is worth
examining ways of “filling the troughs” with more work,
rather than powering servers down. For very large data
centers the server cost is higher than the power cost [6]
and improving server utilization could be more cost effi-
cient than saving power. Troughs could be filled by run-
ning additional background tasks unrelated to the current
services, e.g., by offering a generic utility computing ser-
vice. Additionally, existing services could be modified so
that their background maintenance tasks are more care-
fully scheduled.

Second, work is needed to align methods methods for
consolidating computational tasks (e.g., virtualization)
with the I/O load consolidation that Sierra offers. Re-
moving both CPU and I/O load from a server allows the
entire server to be powered down, rather than individ-
ual components. Ideally the system should also preserve
locality while shifting gears, i.e., the co-location of com-
putation with the data it computes on.

Third, more work is needed to achieve power-
proportionality for optimistic concurrency control sys-
tems such as Amazon’s Dynamo [4], which uses “sloppy
quorums” to achieve a highly available, “eventually con-
sistent” system. Similarly it would be interesting to ex-
tend the ideas from Sierra (which has a fail-stop failure
model) to Byzantine fault-tolerant systems.

In conclusion, Sierra is, to the best of our knowl-
edge, the first power-proportional distributed storage sys-
tem. Achieving power-proportionality required main-
taining similar consistency, fault-tolerance and availabil-
ity as a default storage system, all while ensuring good
performance. Live runs of a subset of a large-scale ser-
vice, Hotmail, confirmed that achievable power savings
match expected ones.

7 Acknowledgements

We thank Bruce Worthington and Swaroop Kavalanekar
for the Hotmail I/O traces, Tom Harpel and Steve Lee for
the Hotmail and Messenger load traces, Dennis Crain,
Mac Manson and the MSR cluster folks for the hardware

testbed and the IT facilities in Microsoft Research Cam-
bridge for the Cambridge traces.

References

[1] Windows Azure Platform. http://www.
microsoft.com/azure, Oct. 2009.

[2] M. Abd-El-Malek, W. V. Courtright II, C. Cranor, G. R.
Ganger, J. Hendricks, A. J. Klosterman, M. Mesnier,
M. Prasad, B. Salmon, R. R. Sambasivan, S. Sinnamo-
hideen, J. D. Strunk, E. Thereska, M. Wachs, and J. J.
Wylie. Ursa Minor: versatile cluster-based storage. In
Proc. USENIX Conference on File and Storage Technolo-
gies (FAST), Dec. 2005.

[3] L. A. Barroso and U. Ḧolzle. The case for energy-
proportional computing.IEEE Computer, 40(12):33–37,
2007.

[4] G. DeCandia, D. Hastorun, M. Jampani, G. Kakula-
pati, A. Lakshman, A. Pilchin, S. Sivasubramanian,
P. Vosshall, and W. Vogels. Dynamo: Amazon’s highly
available key-value store. InProc. ACM Symposium on
Operating Systems Principles (SOSP), Oct. 2007.

[5] S. Ghemawat, H. Gobioff, and S.-T. Leung. The Google
file system. InACM Symposium on Operating System
Principles, Lake George, NY, Oct. 2003.

[6] J. Hamilton. Resource consumption shaping.
http://perspectives.mvdirona.com/2008/
12/17/ResourceConsumptionShaping.aspx,
Jan. 2008.

[7] D. Narayanan, A. Donnelly, and A. Rowstron. Write off-
loading: Practical power management for enterprise stor-
age. InProc. USENIX Conference on File and Storage
Technologies (FAST), San Jose, CA, Feb. 2008.

[8] D. Narayanan, A. Donnelly, E. Thereska, S. Elnikety, and
A. Rowstron. Everest: Scaling down peak loads through
I/O off-loading. Proc. Symposium on Operating Systems
Design and Implementation (OSDI), 2008.

[9] E. Pinheiro and R. Bianchini. Energy conservation tech-
niques for disk array-based servers. InProc. Annual Inter-
national Conference on Supercomputing (ICS’04), June
2004.

[10] Y. Saito, S. Frølund, A. Veitch, A. Merchant, and
S. Spence. FAB: building distributed enterprise disk ar-
rays from commodity components. InProc. International
Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), Oct. 2004.

[11] Schneider. Implementing fault-tolerant services using the
state machine approach: A tutorial.CSURV: Computing
Surveys, 22, 1990.

[12] SNIA. IOTTA repository. http://iotta.snia.
org/, Jan. 2009.

[13] R. van Renesse and F. B. Schneider. Chain replication
for supporting high throughput and availability. InOSDI,
pages 91–104, 2004.

14

Microsoft Research Ltd. Technical Report MSR-TR-2009-153, November 2009

[14] M. Wachs, M. Abd-El-Malek, E. Thereska, and G. R.
Ganger. Argon: performance insulation for shared stor-
age servers. InFAST, 2007.

[15] C. Weddle, M. Oldham, J. Qian, A.-I. A. Wang, P. Rei-
her, and G. Kuenning. PARAID: The gear-shifting power-
aware RAID. InProc. USENIX Conference on File and
Storage Technologies (FAST’07), Feb. 2007.

[16] Q. Zhu, Z. Chen, L. Tan, Y. Zhou, K. Keeton, and
J. Wilkes. Hibernator: Helping disk arrays sleep through
the winter. InProc. ACM Symposium on Operating Sys-
tems Principles (SOSP), Brighton, United Kingdom, Oct.
2005.

15

