
Silo: Predictable Message Latency in the Cloud

Keon Jang Justine Sherry∗ Hitesh Ballani Toby Moncaster∗
Intel Labs UC Berkeley Microsoft Research University of Cambridge

Santa Clara, CA Berkeley, CA Cambridge, UK Cambridge, UK

ABSTRACT
Many cloud applications can benefit from guaranteed latency
for their network messages, however providing such pre-
dictability is hard, especially in multi-tenant datacenters. We
identify three key requirements for such predictability: guar-
anteed network bandwidth, guaranteed packet delay and guar-
anteed burst allowance. We present Silo, a system that of-
fers these guarantees in multi-tenant datacenters. Silo lever-
ages the tight coupling between bandwidth and delay: con-
trolling tenant bandwidth leads to deterministic bounds on
network queuing delay. Silo builds upon network calculus
to place tenant VMs with competing requirements such that
they can coexist. A novel hypervisor-based policing mecha-
nism achieves packet pacing at sub-microsecond granularity,
ensuring tenants do not exceed their allowances. We have
implemented a Silo prototype comprising a VM placement
manager and a Windows filter driver. Silo does not require
any changes to applications, guest OSes or network switches.
We show that Silo can ensure predictable message latency
for cloud applications while imposing low overhead.

CCS Concepts
•Networks→ Data center networks; Cloud computing;

Keywords
Network QoS; Latency SLA; Guaranteed Latency; Traffic
Pacing; Network Calculus

1. INTRODUCTION
Many cloud applications are distributed in nature; they

comprise services that communicate across the network to
∗Work done during internship at Microsoft Research
Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than the author(s) must be honored. Abstracting with credit is
permitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.

SIGCOMM ’15, August 17 - 21, 2015, London, United Kingdom
c© 2015 Copyright held by the owner/author(s). Publication rights licensed to

ACM. ISBN 978-1-4503-3542-3/15/08. . . $15.00

DOI: http://dx.doi.org/10.1145/2785956.2787479

generate a response. Often, the slowest service dictates user
perceived performance [1,2]. To achieve predictable perfor-
mance, such applications need guaranteed latency for net-
work messages. However, the consequent network require-
ments vary with the application. For example, real-time an-
alytics [3,4] and Online Data-Intensive (OLDI) applications
like web search and online retail [1,2] generate short mes-
sages that are sensitive to both packet delay and available
network bandwidth. For large message applications like data-
parallel jobs [5–7], message latency depends only on net-
work bandwidth.

However, today’s public cloud platforms are agnostic to
these network demands. Studies of major cloud providers
have found that both the bandwidth and packet delay across
their network can vary by an order of magnitude [8–12]. As
we show in §2.1, this can lead to significant variability in
application performance, particularly at the tail. Such per-
formance variability is a key barrier to cloud adoption [13],
especially for OLDI applications. For example, moving Net-
flix to Amazon EC2 required re-architecting their whole sys-
tem since “AWS networking has more variable latency” [14].
It also complicates application design as programmers are
forced to use ad-hoc mitigation techniques [15,16].

We thus try to answer the question: What minimum set of
network knobs will allow each tenant to independently de-
termine the maximum latency for messages between its vir-
tual machines (VMs)? We identify three key requirements
to achieve this, (i) guaranteed bandwidth; (ii) guaranteed
packet delay; and (iii) guaranteed burst allowance so that
applications can send multi-packet bursts at a higher rate.
Of course, some applications may only need some or even
none of these guarantees.

These network requirements pose a few challenges. Guar-
anteeing packet delay is particularly difficult because delay
is an additive end-to-end property. We focus on network de-
lay, and argue that in datacenters, queuing is the biggest con-
tributor to it (and its variability). Bounding queuing delay is
hard because it requires precise control over how indepen-
dent flows interact with each other at all network switches
along their paths. A further challenge is that guaranteed packet
delay is at odds with the guaranteed burst requirement. Al-
lowing some applications to send traffic bursts can increase
delay experienced by others; synchronized bursts can even
cause packet loss.

Unfortunately, none of the existing work on cloud network
performance meets all three requirements (§7). Guarantee-
ing tenant bandwidth alone does not cater to bursty appli-
cations with small messages [17–21]. Solutions for low net-
work latency [15,22,23] or flow deadlines [24–26] cannot
guarantee message latency in multi-tenant settings.

We present Silo, a system that allows datacenter opera-
tors to give tenants guaranteed bandwidth, delay and burst
allowances for traffic between their VMs. The key insight
behind Silo’s design is that end-to-end packet delay can be
bounded through fine-grained rate control at end hosts. Cruz’s
pioneering work [27,28] described a calculus for computing
delay bounds for multi-hop networks while Parekh and Gal-
lagher [29,30] developed tighter bounds when switches per-
form weighted fair queuing.

The tight coupling between guaranteed bandwidth and de-
lay also underlies a lot of research on Internet QoS [31].
However, applying it to cloud settings poses new challenges
and opportunities. First, unlike Internet QoS, cloud providers
have the added flexibility of controlling the placement of
traffic sources. Second, instead of guaranteeing per-flow band-
width, today’s cloud pricing model dictates per-tenant guar-
antees. Finally, the delay bound analysis relies on strict en-
forcement of burst and bandwidth limits which is hard to
achieve at high link rates. For example, enforcing a 9 Gbps
rate limit, on a packet-by-packet basis, for a source sending
1.5KB packets on a 10 Gbps link requires an inter-packet
spacing of just 133ns.

Silo’s two components, a VM placement manager and a
hypervisor-based packet pacer, address these challenges. Over-
all, this paper makes the following contributions:

• We identify the network guarantees necessary for predictable
message latency, and present the design, implementation
and evaluation of Silo.

• We present a novel admission control and VM placement
algorithm that uses network calculus to efficiently map
tenants’ multi-dimensional network guarantees to two sim-
ple constraints regarding switch queues.

• We design a software packet pacer for fine-grained rate
limiting of VM traffic. To achieve sub-microsecond packet
spacing while imposing low CPU overhead, the pacer uses
a novel technique called Paced IO Batching that couples
IO batching with “void” packets—dummy packets that
are forwarded by the NIC but dropped by the first hop
switch. This allows the pacer to space out actual data pack-
ets without NIC support.

An important feature of Silo’s design is ease of deploy-
ment. It does not require changes to network switches, NICs,
tenant applications or guest OSes. Silo can also leverage
switch-based prioritization to accommodate best effort ten-
ants that do not need any guarantees. We have implemented
a Silo prototype comprising a VM placement manager and
a Windows Hyper-V kernel driver for packet pacing. The
network driver is able to saturate 10Gbps links with low
CPU overhead while achieving a minimum packet spacing

0%

20%

40%

60%

80%

100%

0 1000 2000 3000 4000

C
D

F

Latency (μs)

Memcached alone

Memcached with netperf

Figure 1: CDF of memcached request latency with and
without competing traffic.

of 68ns. Through testbed experiments, we show that Silo en-
sures low and predictable message latency for memcached [32]
without hurting bandwidth hungry workloads (§6.1). Packet-
level simulations show that Silo improves message latency
by 22× at the 99th percentile (and 2.5× at the 95th) as com-
pared to DCTCP [15] and HULL [22] (§6.2).

A drawback of Silo is its impact on network utilization.
Giving delay and bandwidth guarantees to tenants can result
in up to 11% reduction in network utilization and 4% fewer
accepted tenants compared to giving only bandwidth guar-
antees. Surprisingly, we find that Silo can actually improve
both the network and overall cloud utilization than when ten-
ants get no guarantees at all (§6.3).

2. NETWORK REQUIREMENTS
We define a message as a unit of application data, com-

prising one or more packets, exchanged across the network.1

Throughout the paper, we use message “latency” as the time
to transfer a complete message and “delay” for the packet de-
lay. In this section, we show that network contention can hurt
application performance significantly. We also argue why
predictable message latency is important for cloud applica-
tions and derive the consequent network requirements.

2.1 Motivation
Many recent studies of the internal network in cloud dat-

acenters show that the network bandwidth and packet delay
between VMs can vary significantly [8–11]. In recent work,
Mogul et al. [12] find that, across two cloud providers, the
99.9th percentile packet delay is typically an order of mag-
nitude more than the median.

To demonstrate the impact of such network-level variabil-
ity on application performance, we ran a simple experiment
with memcached, a popular in-memory key-value store [33].
We use a testbed with five servers, each running six VMs
(more details in §6.1). There are two tenants, A and B, each
with three VMs per server. Tenant A runs a memcached
server on one VM, and clients on all other VMs. Its work-
load mimics Facebook’s ETC workload, and represents gen-
eral cache usage of multiple cloud applications [33]. Tenant
B generates all-to-all TCP traffic using netperf, modeling
the shuffle phase of a bandwidth intensive application like
MapReduce.

1We use the term “message” instead of the more commonly
used “flow” since cloud applications often multiplex many
messages onto a single flow (i.e. transport connection).

Figure 1 shows the CDF for the latency of Tenant A’s
memcached requests with and without Tenant B. We find
that request latency increases significantly due to network
contention; at 99th percentile, it is 270µs for memcached
alone whereas it is 2.3ms with interfering traffic. At 99.9th

percentile, it suffers from timeouts and latency spikes to 217ms.
Similarly, QJUMP [34] shows that network contention can

hurt typical cloud workloads; it is shown to worsen tail per-
formance by 50× for clock synchronization using PTPd and
3× for Naiad, an iterative data-flow application.

2.2 Importance of Predictable Message La-
tency

For some cloud applications, poor performance directly
hurts revenue. More broadly, many cloud applications need
to meet service-level latency objectives (SLOs) [12,16]. For
example, OLDI applications need to serve end user requests
within a time budget, typically 200-300ms [15]. Similarly,
users want their data analytics jobs finished in a timely fash-
ion which, given the pay-per-hour cloud pricing model, also
ensures predictable job cost [13,35].

To achieve such predictable performance, cloud applica-
tions require predictable message latency. This is a conse-
quence of two features common to many applications: they
rely on distributed execution and messaging latency is a sig-
nificant fraction of the latency for application tasks. For ex-
ample, in Facebook’s Hadoop cluster [36], 33% of job com-
pletion time is due to messaging.

By contrast, to cope with variable network performance
in today’s cloud platforms, designers resort to ad-hoc tech-
niques like introducing artificial jitter when sending parallel
messages [15], replicating request messages and choosing
the fastest response [16], etc. Unpredictable network perfor-
mance even restricts many applications to dedicated clusters.
Providing message latency guarantees, apart from helping
such applications migrate to the cloud, can obviate the need
for band-aid solutions [34]. It can even simplify application
logic — if a web-search task that needs to respond in 20ms
knows that the response latency is at most 4ms, it can take
16ms to process the query.

2.3 Deconstructing message latency
An open question is the kind of network guarantees that

cloud providers can offer and that tenants will benefit from—
message latency guarantees, tail latency SLOs, or lower-level
guarantees (like bandwidth and packet delay)? We argue that
the latter option is most suitable for Infrastructure-as-a-Service
(IaaS) cloud providers, and as explained below, can be used
by tenants to determine latency bounds for their messages.

The latency for a message comprises the time to transmit
its packets into the network and the time for the last packet
to propagate to the destination. This simple model excludes
end host stack delay. Thus,

Msg. Latency ≈ Transmission delay + In-network delay

≈ Message size
Network bandwidth

+ In-network delay (1)

B
a

n
d

w
id

th

se
n

si
ti

v
it

y

Delay sensitivity

Low

High

High

X X

X

Batch

analytics

HPC, High freq.

trading

Monitoring apps,

simple websites

X

OLDI, streaming

analytics

Figure 2: Diverse network demands of cloud apps.
PPPPPPPBurst

Bandwidth
B 1.4B 1.8B 2.2B 2.6B 3B

M 99 77 55 45 38 33
3M 99 22 8 3.6 1.9 1.1
5M 99 6.1 0.9 0.2 0.06 0.02
7M 99 1.6 0.09 0.01 0 0
9M 98 0.4 0.01 0 0 0

Table 1: Percentage of messages whose latency exceeds
the guarantee. Messages (size M) have Poisson arrivals
and an average bandwidth requirement of B.

For large messages, the latency is dominated by the trans-
mission delay component. This applies to data-parallel ap-
plications [5,6] which are thus termed “bandwidth-sensitive”.
By contrast, applications that send sporadic single packet
messages are “delay-sensitive” as the in-network delay com-
ponent dominates. Examples include monitoring services and
simple web services. Between these two extremes are appli-
cations that mostly generate small messages but at a high
rate. For example, the network traffic for a typical OLDI ap-
plication like web search is dominated by 1.6–50KB mes-
sages [15,24]. For such applications, both components of
equation 1 are significant, i.e. the message latency depends
both on network bandwidth and delay.

Figure 2 summarizes these arguments; some cloud appli-
cations are sensitive to available bandwidth, some are sen-
sitive to in-network delay, some to both. Thus, to achieve
guaranteed message latency, a general cloud application re-
quires:

R1. Guaranteed network bandwidth. This bounds the trans-
mission delay component of message latency.

R2. Guaranteed packet delay. This bounds the in-network
delay component of message latency.

2.3.1 Burstiness requirement
Requirements R1 and R2, together, are necessary and suf-

ficient to ensure guaranteed message latency. However, this
necessitates that an application’s bandwidth guarantee match
it maximum consumption. This will lead to significant net-
work under-utilization since many cloud applications have
bursty workloads, i.e. their maximum bandwidth require-
ment significantly exceeds the average bandwidth.

To understand the interplay between the amount of guar-
anteed bandwidth and message latency, we experiment with
a synthetic application that generates messages, with Pois-
son arrivals, between two VMs. Assuming the average band-
width required is B, the latency for a message of size M

Application

Guest OS

Virtual Switch

NIC

Application

Guest OS

Virtual Switch

NIC
SILO guarantee

Packet path

Physical Network

Guest VM

Hypervisor

Physical

infrastructure

Figure 3: Silo’s delay guarantee is from the NIC at the
sender to the NIC at the receiver.

should be less than M
B + d, where d is the packet delay

guarantee (see eq. 1). The first row in Table 1 shows that
when the application is guaranteed its average bandwidth re-
quirement, the latency for 99% of messages exceeds their
guarantee. This is due to exponential inter-arrival times be-
tween messages. Increasing the bandwidth guarantee, by it-
self, is insufficient; even when the guarantee is 3× the aver-
age bandwidth, 33% messages are late.

To accommodate such workload burstiness, we propose
a burst allowance for VMs. Specifically, a VM that has not
been using its guaranteed bandwidth in the past is allowed to
send a few messages at a higher rate. Table 1 shows that as
we increase both the sending VM’s burst allowance and its
bandwidth guarantee, the percentage of late messages drops
sharply; with a burst of 7 messages and 1.8x the average
bandwidth, only 0.09% messages are late. Thus, the third
requirement for guaranteed message latency is–
R3. Guaranteed burst allowance. Bursty workload applica-

tions need to be able to send short traffic bursts.

3. SCOPE AND DESIGN INSIGHTS
Of the three network requirements, guaranteeing packet

delay is particularly challenging because all components of
the end-to-end path add delay. Below, we define the scope
of our delay guarantees and provide intuition regarding the
feasibility of guaranteeing packet delay.

Scope. In virtualized datacenters, the end-to-end path of
packets comprises many layers. Figure 3 shows this path; at
the sender, packets go through the guest OS network stack,
the hypervisor and the NIC before being sent onto the wire.
Broadly, a packet’s total delay comprises two components:
end-host delay (shown with dashed line), and network delay
(shown with solid line). The latter component includes delay
at the NIC and at network switches. Many proposals reduce
end-host delay [37,38]. Since we target IaaS cloud settings
where tenants can deploy arbitrary OSes, we restrict our fo-
cus to the part of the end-to-end path controlled by the cloud
provider. Thus, we guarantee network delay, i.e. the delay
from the source NIC to the destination NIC.

3.1 Guaranteeing network delay
Network delay comprises the propagation, forwarding and

queuing delay across NICs and the network. In datacenters,
physical links are short and have high capacity, so the propa-
gation and forwarding delay is negligible, and queuing delay
dominates (even for full bisection networks [39,40]).

We build on the observation that rate limiting the senders
in a network ensures a deterministic upper bound for net-
work queuing [28,30,41]. For example, consider n flows across

at a network link. Each flow is guaranteed some bandwidth
and is allowed to burst one packet at a time. Assuming the
total bandwidth guaranteed across all flows is less than the
link capacity, the maximum queue build up at the link is n
packets. While Silo shares this insight with Internet QoS ar-
chitectures like IntServ [31], it further tackles two new chal-
lenges posed by cloud settings.
1. Tenant-level guarantees and VM placement. Instead of
flow-level guarantees, Silo gives tenants their own private
network with tenant-level guarantees. Furthermore, Silo uses
the flexibility of VM placement to maximize the number of
tenants that can be accommodated. To this end, we extend
Cruz’s network calculus techniques to derive delay bounds
based on tenant-level bandwidth guarantees, and then use
them to drive the placement of VMs (§4.2).
2. Fine-grained pacing. Our queuing delay analysis assumes
that VM traffic is in strict conformance to its guarantees.
Thus, end hosts need to control the rate and burstiness of
their traffic at a packet-level timescale. Today’s software pac-
ers are typically inaccurate and do not scale with number of
flows [42]. The problem is exacerbated by the fact that, to
achieve good forwarding performance, network stacks rely
on aggressive batching of packets sent to the NIC. This fur-
ther contravenes the fine-grained pacing requirement.

The obvious solution of pacing at the NIC itself is im-
practical because NICs only offer small number of rate lim-
ited queues, and flows that share the same hardware queue
can suffer from head of line blocking. SENIC proposes a
hardware and software hybrid approach to achieve scalable
and accurate pacing [42]. Instead, we devise a software-only
pacing mechanism that uses dummy or “void” packets to
precisely control packet gap while retaining I/O batching to
handle traffic at 10 Gbps (§4.3.1).

4. DESIGN
Silo couples virtual machines (VMs) with guarantees for

network bandwidth, packet delay and burst allowance. It re-
lies on two components: a VM placement manager with visi-
bility of the datacenter topology and tenants’ guarantees, and
a packet pacer in the hypervisor at each server. The place-
ment manager admits tenants and places their VMs across
the datacenter such that their guarantees can be met (§4.2),
and configures the pacers. The pacers coordinate with each
other and dynamically determine the rate limit for individual
VMs, thus ensuring that VM traffic conforms to their band-
width and burst allowance (§4.3).

4.1 Silo’s network guarantees
With Silo, tenants can imagine their VMs as being con-

nected by a private “virtual” network, as shown in Figure 4.
A virtual link of capacity B and propagation delay d

2 con-
nects each VM to a virtual switch. Each VM’s traffic is shaped
by a virtual token bucket with average bandwidthB and size
S. The network capabilities of a VM are thus captured using
three parameters, {B, S, d}:

(i). a VM can send and receive traffic at a maximum rate
of B Mbps,

VM 1 VM N

Bandwidth B

B

Each VM has an average

bandwidth of B. But it can

burst S bytes at a rate of Bmax

Virtual Switch Tenant with N VMs

Virtual token bucket

controls VM’s burstiness

Delay d/
2

Figure 4: A tenant’s virtual network.

(ii). a VM that has under-utilized its bandwidth guarantee
is allowed to send a burst of at most S bytes,

(iii). a bandwidth-compliant packet is guaranteed to be de-
livered, from the sending to receiving NIC, within d µs.

Just as today’s cloud providers offer a few classes of VMs
(small, medium, etc.), we expect providers will offer a few
classes of network guarantees. Tools like Cicada [43] allow
tenants to automatically determine their bandwidth guaran-
tees. Inferring delay requirements automatically may be fea-
sible too [12]. Some tenants may only need bandwidth guar-
antees; for example, a tenant running a data-analytics job.
In §4.4, we show that Silo can leverage switch-based priori-
tization to accommodate tenants without any network guar-
antees and ensure they co-exist with tenants with guarantees.

Guarantee semantics. We have chosen our guarantees to
make them useful for tenants yet practical for providers. As
with past proposals [18,19,44,45], a VM’s bandwidth guar-
antee follows the hose model, i.e. the bandwidth for a flow
is limited by the guarantee of both

B
y

te
s

Time

S

1500

A(t)
 = Bt + S = AB,S

B
A’(t)

Bmax

B
y

te
s

Time

S

A(t)

S(t)

q

p

(a) (b)

Figure 6: (a) Two arrival curves. (b) An arrival curve,
A(t) and a switch’s service curve, S(t).

lay guarantees lead to the second queuing constraint. These
constraints then dictate VM placement.

In the following sections, we detail our placement algo-
rithm. We assume a multi-rooted tree network topology preva-
lent in today’s datacenters. Such topologies are hierarchical;
servers are arranged in racks that are, in turn, grouped into
pods. Each server has a few slots where VMs can be placed.

4.2.2 Queue bounds
We begin by describing how we use basic network calcu-

lus concepts [28,41,46] to determine the queue bounds for
network switches. We then take advantage of Silo’s tenant-
level bandwidth guarantees to tighten the delay bounds, and
use this as a building block for our VM placement algorithm.
Source Characterization. Traffic from a VM with band-
width guarantee B and burst size S is described by a arrival
curve A(t) = Bt + S, which provides an upper bound for
traffic generated over a period of time. We will refer to this
curve as AB,S . This arrival curve is shown in figure 6(a) and
assumes that the VM can send a burst of S bytes instanta-
neously. While we use this simple function for exposition,
our implementation uses a more involved arrival curve (la-
belled A′ in the figure) that captures the fact that a VM’s
burst rate is limited to Bmax.
Calculating queue bound. Arrival curves can be used to
determine queue bounds for network switches. Just as traf-
fic arriving at a switch is characterized by its arrival curve,
each switch port is associated with a service curve that char-
acterizes the rate at which it can serve traffic. Figure 6(b)
illustrates how these two functions can be used to calculate
the maximum queuing at the port or its queue bound. Ini-
tially the arrival curve A(t) is larger than the service curve
S(t) because of initial burst of traffic; so the queue starts to
build up. However, as time reaches t = p, the aggregate traf-
fic that the switch can serve exceeds the aggregate traffic that
can arrive. This means that at some point during the interval
(0, p] the queue must have emptied at least once.

The horizontal distance between the curves is the time
for which packets are queued. Hence, the maximum queuing
delay experienced by a packet at the switch is q, the maxi-
mum horizontal distance between the curves (i.e., the largest
q such that S(t) = A(t− q)). This is the port’s queue bound.

The analysis above allows us to calculate the queue bound
at a switch directly receiving traffic from a VM. Next we
describe how arrival curves can be added (when traffic from
VMs merges at a switch) and propagated across switches to
determine the queuing across a multi-hop network.

S
1 S

2

f
1

f
2

f
2

f
1

Figure 7: Switch S1 causes packet bunching for flow f1.
.

Adding arrival curves. Arrival curves for VMs can be com-
bined to generate an aggregate arrival curve. For example,
adding arrival curvesAB1,S1 andAB2,S2 yieldsAB1+B2,S1+S2.
However, as explained below, the semantics of our guaran-
tees allow us to generate a tighter arrival curve when adding
curves for VMs belonging to the same tenant.

Consider a tenant with N VMs, each with an average band-
width B and burst allowance S. The arrival curve for each
VM’s traffic is AB,S . Imagine a network link that connects
the tenant’s VMs such that m VMs are on the left of the link
and the remaining (N −m) are on the right. We want to add
the m arrival curves for the VMs on the left to generate an
aggregate curve for all traffic traversing the link from left to
right. Our choice of bandwidth guarantees using hose-model
implies that the total bandwidth guaranteed for the tenant
across the link is min(m, N −m)*B [18]. By contrast, burst
allowances are not destination limited, so the maximum traf-
fic burst across the link from left to right ism∗S bytes. Thus,
instead of AmB, mS , we can derive a tighter (i.e. more accu-
rate) aggregate arrival curve: Amin(m,N−m)∗B, mS .
Propagating arrival curves. After traffic egresses a switch,
it may no longer be shaped according to the properties it
arrived at the switch with. For example, consider Figure 7:
flow f1 has a rate of C/2 (link capacity is C), and flow f2
has a rate of C/4. Both have a burst size of one packet; so
f1’s arrival curve is AC

2 ,1 and f2’s is AC
4 ,1. However, as

shown in the figure, f1’s burst size is doubled as it egresses
the switch. Its arrival curve changes to AC

2 ,2. Note that a
flow’s average bandwidth cannot change through a switch,
only the burst size is impacted.

To compute the arrival curve for a flow after it egresses
a switch, we use Kurose’s analysis [41] which shows that
the upper-bound on the burst introduced by a switch port de-
pends on its p value—the maximum interval over which its
queue must be emptied at least once (see Fig. 6). However,
this analysis means that the arrival curve for egress traffic
depends on a port’s p value which, in turn, depends on other
flows using the port. To make the egress arrival curve in-
dependent of competing traffic, we use the port’s queue ca-
pacity c as a looser bound on the egress burst size (to avoid
packet loss, p ≤ q). A port’s queue capacity is a static value
given by the size of its packet buffer, but can be set to a lower
value too. In the worst case, every packet sent by a VM over
the interval [0, c] may be forwarded as one burst. Since a VM
with arrival curve AB,S can send at most B.c + S bytes in
time c, the egress traffic’s arrival curve is AB,(B.c+S).

4.2.3 Placement algorithm
We have designed a placement algorithm that uses a greedy

first-fit heuristic to place VMs on servers. We first describe

how we map a new tenant’s network guarantees to two sim-
ple queuing constraints at switches. These constraints thus
characterize a valid VM placement and guide the algorithm.

Valid placement. For the tenant’s bandwidth guarantees to
be met, we must ensure that network links carrying its traffic
have sufficient capacity. Further, VMs can send traffic bursts
that may temporarily exceed link capacities. Switch buffers
need to absorb this excess traffic, and we must ensure that
switch buffers never overflow. In combination, these restric-
tions imply that for each switch port between the tenant’s
VMs, the maximum queue buildup (queue bound) should be
less than the buffer size (queue capacity). Formally, if V is
the set of VMs being placed and Path(i, j) is the set of ports
between VMs i and j, the first constraint is

Q-boundp ≤ Q-capacityp, ∀p ∈ Path(i, j), i, j ∈ V

For packet delay guarantees, we must ensure that for each
pair of VMs belonging to the new tenant, the sum of queue
bounds across the path between them should be less than the
delay guarantee. However, a port’s queue bound changes as
tenants are added and removed which complicates the place-
ment. Instead, we use a port’s queue capacity, which always
exceeds its queue bound, to check delay guarantees. Thus,
for a tenant with delay guarantee d, the second constraint is∑

p∈Path(i,j)

Q-capacityp ≤ d, ∀i, j ∈ V

Finding valid placements. A request can have many valid
placements. Given the oversubscribed nature of typical dat-
acenter networks, we adopt the following optimization goal:
find the placement that minimizes the “height” of network
links that may carry the tenant’s traffic, thus preserving net-
work capacity for future tenants. Servers represent the low-
est height of network hierarchy, followed by racks and pods.
We place a tenant’s VMs while greedily optimizing this goal.
First, we attempt to place all requested VMs in the same
server. If the number of VMs exceeds the number of VM
slots per server, we attempt to place all VMs in the same
rack—for each server inside the rack, we use the queuing
constraints on the server’s uplink switch port to determine
the number of VMs that can be placed at the server. If all
requested VMs can be accommodated at servers within the
rack, the request is accepted. Otherwise we consider the next
rack and so on. If the request cannot be placed in a single
rack, we attempt to place it in a pod and finally across pods.

Other constraints. An important concern when placing VMs
in today’s datacenters is fault tolerance. Our placement al-
gorithm can ensure that a tenant’s VMs are placed across
some number of fault domains. For example, if each server is
treated as a fault domain, we will place the VMs across two
or more servers. Beyond this, VM placement may need to ac-
count for other goals such as ease of maintenance, reducing
VM migrations, etc. Commercial placement managers like
Microsoft’s Virtual Machine Manager model these as con-
straints and use multi-dimensional bin packing heuristics to
place VMs [47]. Our queuing constraints could be added to
these systems; we defer an exploration to future work.

B1, S B2, S BN, S

B, S

Bmax, 1

Traffic destined

to VM 1

Token bucket drains

at rate B with a max

burst of S bytes

Ensures VM’s traffic has
avg rate B, max rate Bmax,

and burst of S bytes

Ensures hose model

bandwidth guarantees
…….

Figure 8: VM traffic is paced using a hierarchy of token
buckets to ensure it conforms to network guarantees, i.e.
its bandwidth guarantee (B) and burst allowance (S).

4.3 End host pacing
Silo’s VM placement relies on tenant traffic conforming

to their bandwidth and burstiness specifications. To achieve
this, a pacer at the end host hypervisor paces traffic sent by
each VM. Figure 8 shows the hierarchy of token buckets
used by the pacer to enforce traffic conformance. The bot-
tom most token bucket ensures a VM’s traffic rate can never
exceed Bmax, even when sending a burst. The middle token
bucket ensures the average traffic rate is limited to B and
the maximum burst size is S bytes. At the top is a set of to-
ken buckets, one each for traffic destined to each of the other
VMs belonging to the same tenant. These are needed to en-
force the hose model semantics of guaranteed bandwidth;
i.e. the actual bandwidth guaranteed for traffic between a
pair of VMs is constrained by both the sender and the desti-
nation. To enforce the hose model, the pacers at the source
and destination hypervisor communicate with each other like
EyeQ [20]. This coordination determines the rate Bi for the
top token buckets in Figure 8 such that

∑
Bi ≤ B.

4.3.1 Paced IO Batching
The placement of VMs assumes their traffic strictly con-

forms to their arrival curve. Thus, the token buckets should
ideally be serviced at a per-packet granularity with accurate
spacing between the packets. For example, if a VM with a
1 Gbps rate limit sends 1.5KB packets on a 10 Gbps link,
the packets should be separated by 10.8µs. This precludes
the use of I/O batching techniques since today’s NICs trans-
mit an entire batch of packets back-to-back [22]. With a typ-
ical batch size of 64KB used by offloading techniques like
TSO, all packets for our example VM would be sent at line
rate. This increases the amount of network queuing and can
even result in packet loss. However, disabling IO batching
results in high CPU overhead and reduces throughput; in ex-
periments with batching disabled, we cannot even saturate a
10Gbps link. One solution is to implement pacing at the NIC
itself [22,42]. However, this requires hardware support. For
ease of deployment, we design a software solution.

We propose Paced IO batching, a technique that allows
us to reduce the IO overhead while still pacing packets at
sub-microsecond timescales. To achieve this, we use “void
packets” to control the spacing between data packets for-
warded by the NIC. A void packet is a packet that will be
forwarded by the NIC but discarded by the first switch it en-
counters. This can be achieved, for example, by setting the
packet’s destination MAC address the same as the source
MAC. Such void packets do not increase the power con-
sumption at the NIC and switch because most of power is

VM1

2Gbps

VM2

1Gbps

1

2

SILO

Pacer

1

2 2 2

1 1

V 1V 2V1VV VV12

V = Void packets

10GbE

NIC
…

Batch of 40 packets = 49.2 µs

2Gbps 5 packet interval

Figure 9: VM1’s guarantee is 2Gbps, VM2’s is 1Gbps.
Use of void packets achieves packet level pacing in the
face of NIC burstiness.

consumed for keeping the link active [48]. We note that in-
jecting void packets requires disabling TCP Segmentation
Offload (TSO), however VMs can still send large segments
to the hypervisor to minimize the overhead for VM-to-hypervisor
communication.

Figure 9 illustrates how we use void packets. The link ca-
pacity is 10Gbps and VM1 is guaranteed 2Gbps, so every
fifth packet sent to the NIC belongs to VM1. In every batch
of 40 packets sent to the NIC, twelve are actual data pack-
ets, while the rest 28 are void packets. While the NIC for-
wards the entire batch of packets as is, all void packets are
dropped by the first hop switch, thus generating a correctly
paced packet stream. The minimum size of a void packet,
including the Ethernet frame, is 84 bytes. So, at 10Gbps, we
can achieve an inter-packet spacing as low as 68ns.

4.4 Tenants without guarantees
Silo relies on rate limiting tenants to give packet delay

guarantees. However, this can hurt network utilization since
tenants cannot use spare network capacity. We evaluate this
in §6.3. We note that some cloud applications are indeed not
network-limited, so they do not need any network guaran-
tees. Such “best-effort tenants” can be used to improve net-
work utilization. Silo leverages 802.1q priority forwarding
in switches to support best-effort tenants. Traffic from such
tenants is marked by our pacer as low priority while traffic
from tenants with guarantees is higher priority. Thus, such
tenants share the residual network capacity. It is also possi-
ble for tenant with guarantees to be able to send low priority
traffic to achieve higher throughput by using schemes like
RC3 [49]. We leave this for future work.

5. IMPLEMENTATION
We have implemented a Silo prototype comprising a VM

placement manager and a software pacer implemented as a
Windows NDIS filter driver. The pacer driver sits between
the virtual switch (vswitch) and the NIC driver, so we do not
require any modification to the NIC driver, applications or
the guest OS. It implements token buckets and supports to-
ken bucket chaining. We use virtual token buckets, i.e. pack-
ets are not drained at an absolute time, rather we timestamp
when each packet needs to be sent out. This requires an extra
eight bytes in each packet’s metadata. The overhead is negli-
gible in comparison to the size of the packet buffer structure:
160 bytes in Windows NET BUFFER and 208 bytes in Linux
skb [50,51].

At high link rates, I/O batching is essential to keep the
CPU overhead low. For accurate rate limiting with I/O batch-

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0

0.5

1

1.5

2

2.5

3

1 2 3 4 5 6 7 8 9 10

P
ac

k
et

 r
at

e
(M

p
p

s)

C
P

U
 u

sa
g
e

(c
o

re
s)

Rate limit (Gbps)

CPU

Pkts/s

No pacing (10Gbps)

(a) CPU usage

0

2

4

6

8

10

1 2 3 4 5 6 7 8 9 10

T
h

ro
u

g
h

p
u

t
(G

b
p

s)

Rate limit (Gbps)

Data

Void

Data (ideal)

(b) Throughput
Figure 10: Microbenchmarks show Silo’s pacer is able to
saturate 10Gbps links with low CPU overhead.

ing, we need two key properties. The first is to keep the pre-
cise gap between packets within a batch; we achieve this us-
ing void packets. The second is to schedule the next batch
of packets before the NIC starts to idle. This is essential to
guarantee burst allowance but challenging since we want to
keep the batch size small so that NIC queuing delay is lim-
ited. We borrow the idea of soft-timers [52] and reuse ex-
isting interrupts as a timer source. Our pacer does not use a
separate timer, but triggers sending the next batch of packets
upon receiving a DMA (Direct Memory Access) completion
interrupt for transmit packets. We use a batch size of 50 µs
when pulling out packets from the token buckets.

Pacer microbenchmarks. We evaluate our pacer implemen-
tation in terms of throughput and the CPU overhead. We use
physical servers equipped with one Intel X520 10GbE NICs,
and two Intel Xeon E5-2665 CPUs (8 cores, 2.4Ghz). Over-
all, we find that the pacer is able to saturate 10Gbps links
with low CPU overhead.

Figure 10(a) shows the CPU usage of the entire system by
varying the rate limit imposed by the pacer. The right most
bar is CPU usage when the pacer is disabled. LSO is dis-
abled in all cases. The red solid line represents the number
of transmitted packets per second, including void packets.
The pacer consumes 0.6 cores to generate only void pack-
ets at 10 Gbps. As the actual data rate increases, the overall
CPU utilization goes up to ≈2.1 cores worth of CPU cycles
at 9 Gbps. The reason is that at 9 Gbps, the pacer needs to put
1/10th of MTU sized packets (150 bytes) between all the data
packets, which results in high packet rate. The graph shows
that the overall CPU usage is proportional to the packet rate
shown in the red line. At full line-rate of 10 Gbps, our pacer
incurs less than 0.2 cores worth of extra CPU cycles as com-
pared to no pacing. Since void packets are generated only
when there is another packet waiting to be sent, the pacer
does not incur any extra CPU overhead when the network is
idle.

0%

20%

40%

60%

80%

100%

0 1000 2000 3000 4000

C
D

F

Latency (μs)

TCP (idle)
TCP
Silo - req1
Silo - req2
Silo - req3

(a) Memcached latency CDF

2.30

217.43

0.27 0.40

1.08

4.47

0.68

3.86

0.56
1.99

0

1

10

100

1,000

99th %-ile 99.9th %-ile

L
at

en
cy

 (
m

s)

Silo req1 Silo req2 Silo req3

TCP (idle) TCP

Silo guarantee: 2.01

(b) Memcached tail latency

0.0

0.2

0.4

0.6

0.8

1.0

TCP Silo

req1

Silo

req2

Silo

req3

R
el

at
iv

e
th

ro
u
g
h
p

u
t

netperf (B)

memcached (A)

(c) Throughput

Figure 11: Testbed experiments involving two tenants, A and B, with 15 VMs each. Silo achieves lower and predictable
message latency for memcached, even with a competing bandwidth-hungry workload generated using netperf.

Req 1 Req 2 Req 3
Tenant A B A B A B
Bandwidth (BMbps) 210 3,123 315 3,018 420 2,913
Burst (S) 1.5KB 1.5KB 1.5KB 1.5KB 1.5KB 1.5KB
Packet Delay (d) 1ms N/A 1ms N/A 1ms N/A
Burst rate (Bmax) 1Gbps N/A 1Gbps N/A 1Gbps N/A

Table 2: Tenant network guarantees for the testbed ex-
periments. We set combined bandwidth at each host
(3× (BA +BB)) to be link capacity (10Gbps).

In Figure 10(b), we show the throughput for both void
packets and data packets. Except at 9 Gbps, the pacer sus-
tains 100% of the link capacity, and achieves actual data rate
at more than 98% of the ideal rate.

Placement microbenchmarks. To evaluate the scalability
of the placement manager, we measured the time to place
tenants in a simulated datacenter with 100K hosts with an av-
erage tenant requesting 49 VMs (as in [18,45]). Over 100K
requests, the maximum placement time is 1.15s.

6. EVALUATION
We evaluate Silo across three platforms: a small scale pro-

totype deployment, a medium scale packet-level simulator,
and a datacenter scale flow-level simulator. The key findings
are as follows:

(i). Through testbed experiments with memcached, we ver-
ify that our prototype can offer bandwidth, delay and burst
guarantees. This ensures improved and predictable perfor-
mance for memcached without impacting bandwidth sensi-
tive workloads (who get predictable performance too).

(ii). Through ns2 simulations, we show that Silo signif-
icantly improves tail message latency as compared to state-
of-the-art solutions like DCTCP [15], HULL [22], and Okto-
pus [18]; none of these achieve predictable message latency.

(iii). Through flow-level simulations, we evaluate our VM
placement algorithm, and find that it can result in a small re-
duction in accepted tenants and network utilization as com-
pared to when tenants only get bandwidth guarantees. Sur-
prisingly, as compared to the status quo, Silo can improve
both network and overall cloud utilization.

6.1 Testbed experiments
We deployed our prototype across five physical servers

connected to a 10GbE switch. Each server is equipped with
either two Intel Xeon E5-2630 (6 cores, 2.6Ghz) or two E5-

2650 (8 cores, 2.6Ghz) processors, and an Intel X520 10GbE
NIC. Our testbed experiments comprise two tenants, A and
B, each with 15 VMs. We launch six VMs per server, and
assign three to each tenant. Tenant A runs the ETC trace
of Facebook workloads [33] using memcached. We generate
value sizes and inter arrival times using generalized pareto
distribution with parameters from the trace [33]. Tenant B
runs netperf to generate TCP traffic emulating the shuffle
phase in mapreduce.
Guarantees. To determine Tenant A’s network requirements,
we measured the bandwidth and packet sizes by running
memcached in isolation. The average packet size is around
400 B, and the average value size in our workload is 300 B;
the maximum value size is 1 KB. A burst allowance of
1.5KB is thus enough to handle a burst of three to four re-
quests on average. The average bandwidth requirement (Bavg)
is 210 Mbps. Since the instantaneous bandwidth required
can vary, we experimented with varying bandwidth guar-
antees for tenant A. This allows us to evaluate the tradeoff
between memcached request latency and overall utilization.
The tenants’ guarantees are shown in Table 2. Requirements
1, 2, and 3 in Table 2 allocateBavg, 1.5×Bavg , and 2×Bavg

respectively for Tenant A, and the remaining bandwidth for
Tenant B.
Memcached latency. We plot the CDF of latency for mem-
cached in Figure 11(a). Figure 11(b) shows the 99th and
99.9th percentile latency. We measure latency for five dif-
ferent scenarios: (a) Tenant A and B running simultaneously
with the three different configurations for Silo in Table 2
(Silo req 1–3); (b) Tenant A running memcached in isolation
(labelled as “TCP (idle)”); and (c) Tenant A and B running
simultaneously without using Silo (labelled as “TCP”). TCP
incurs very high latency compared to memcached running
in isolation. Figure 11(b) shows it even suffers timeouts at
99.9th percentile resulting in over 200ms latency.

In these experiments, the message latency guarantee for
memcached with Silo is 2.01ms. Silo stays well within this
guarantee even at 99th percentile. At 99.9th percentile, Silo
stays within the message latency guarantee when tenant A
is guaranteed twice its average bandwidth requirement (req
3). However, it exceeds the guaranteed latency by a little
when the bandwidth guarantee is lower (req 1–2). This is due
to the bursty nature of the memcached workload. We also
experimented with a higher burst allowance of 3 KB, and

 0.1

 1

 10

 100

Silo TCP DCTCP Hull Okto Okto+M
e
s
s
a
g

e
 L

a
te

n
c
y
 (

m
s
)

99th
95th

Median

Figure 12: Message latency for class-A tenants.

Class A Class B
Communication pattern All to 1 All to all
Bandwidth (B) 0.25Gbps 2Gbps
Burst length (S) 15KB 1.5KB
Delay guarantee (d) 1000µs N/A
Burst rate (Bmax) 1Gbps N/A

Table 3: Tenant classes and their average network re-
quirements.

found that it lowers memcached’s 99.9th percentile latency
to 4.3ms, 2.5ms, and 1.8ms for req-1–3 respectively.
Throughput. We measured the throughput of memcached
and netperf to evaluate whether Silo’s use of strict bandwidth
reservation impacts network utilization. In Figure 11(c), we
plot the relative throughput of both Silo and TCP against
when Tenant A and Tenant B are running alone with stan-
dard TCP. For TCP, the netperf traffic gets 94% of the link
capacity while memcached transaction rate drops by seven
times. This is because memcached does synchronous trans-
actions with limited concurrency, and inflated latency leads
to low throughput even when network bandwidth is avail-
able. When Silo is used, Tenant A’s throughput increases
as we increase its reservation, and reaches 100% for req-3.
However, at the same time, Tenant B can still use 92% to
99% of bandwidth achieved by TCP alone.

Overall, we find that Silo delivers guarantees for packet
delay, burst and bandwidth. This significantly improves the
performance of a latency sensitive application like mem-
cached without hurting bandwidth hungry applications. More-
over, both sets of applications get predictable performance.

6.2 Packet level simulations
We use ns2 to compare Silo against state-of-the-art solu-

tions. Instead of using two specific tenants, we model two
classes of tenants. Class-A contains delay-sensitive tenants
that run a small message application, and require bandwidth,
delay and burst guarantees. Each class-A tenant has an all-
to-one communication pattern such that all VMs simultane-
ously send a message to the same receiver. This coarsely
models the workload for OLDI applications [15]. Class-B
tenants only require bandwidth guarantees. Such tenants have
an all-to-all communication pattern, as is common for data
parallel applications. The bandwidth and burst requirements
of tenants are generated from an exponential distribution with
the parameters in table 3.

Simulation setup. We model 10 racks, each with 40 servers
and 8 VMs per server, resulting in 3200 VMs. We use a
multi-rooted tree topology for the cloud network. The capac-

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25

C
D

F
 (

%
 o

f
te

n
a
n

ts
)

Messages with RTOs (%)

Silo
TCP

HULL
Okto

Figure 13: Class-A tenants whose messages incur RTOs.

Silo TCP DCTCP Hull Okto Okto+
Outliers-1x 0 23.1 47.3 46.9 91 20.2
Outliers-2x 0 21.7 17.4 15.6 80.7 19.1
Outliers-8x 0 21.5 14.4 14.4 36.5 19

Table 4: Outlier tenants, i.e. tenants whose 99th per-
centile message latency exceeds the latency estimate.

ity of each network link is 10Gbps and the network has an
oversubscription of 1:5, as is the norm in datacenters [53].
We model commonly used shallow buffered switches [54]
with 312KB buffering per port (queue capacity is 250µs).
The number of tenants is such that 90% of VM slots are oc-
cupied. For Silo, VMs are placed using its placement algo-
rithm. For Oktopus, we use its bandwidth-aware algorithm [18].
For other solutions, we use a locality-aware algorithm that
greedily places VMs close to each other.

Class-A tenants. Figure 12 shows the message latency for
class-A tenants across 50 runs. Silo ensures low message la-
tency even at the 99th percentile while all other approaches
have high tail latency. With Oktopus, VMs cannot burst, so
the message latency is high, both at the median and at the
tail. At 99th percentile, message latency is 60× higher with
Oktopus as compared to Silo. “Okto+” is an Oktopus ex-
tension with burst allowance. Hence, it reduces the median
latency but still suffers at the tail. This is because it does not
account for VM bursts when placing VMs which can lead
to switch buffer overflows (see example in §4.2). We note
that TCP is used as the transport protocol for Silo, Okto, and
Okto+ on top of their rate enforcement. Using DCTCP with
Okto+ still suffers from packet losses and TCP timeouts as
the placement of VMs does not ensure switch buffers can
actually absorb traffic bursts.

With DCTCP and HULL, message latency is higher by
22x at the 99th percentile (and 2.5x at the 95th). Two factors
lead to poor tail latency for these approaches. First, class-A
tenants have an all-to-one traffic pattern that leads to con-
tention at the destination. Second, none of these approaches
isolate performance across tenants by guaranteeing band-
width, so class-A small messages compete with large mes-
sages from class-B tenants. This leads to high tail latency
and losses for small messages. Figure 13 shows that with
TCP, for 21% of class-A tenants, more than 1% of messages
suffer retransmission timeout events (RTOs). With HULL,
this happens for 14% of tenants. Thus, by itself, neither low
queuing (ensured by DCTCP and HULL) nor guaranteed
bandwidth (ensured by Oktopus) is sufficient to ensure pre-
dictable message latency.

 0

 20

 40

 60

 80

 100

 0 1 2 3 4

C
D

F
 (

%
 o

f
te

n
a
n

ts
)

Message latency/Estimated latency (class-B tenants)

Silo
TCP

HULL
Okto

Figure 14: Message latency for class-B tenants.

We also look at outlier tenants, i.e. class-A tenants whose
99th percentile message latency is more than the latency esti-
mate. Table 4 shows that Silo results in no outliers. Since we
observe outliers with other approaches, we mark the fraction
of outliers whose latency exceeds the estimate by 1x, 2x or
8x. With DCTCP and HULL, 14.4% tenants are 8x outliers.
Class-B tenants. Since Silo does not let tenants exceed their
bandwidth guarantee, it can impact the performance of class-
B tenants with large messages whose completion is dictated
by the bandwidth they achieve. Figure 14 shows the average
message latency for class-B tenants, normalized to the mes-
sage latency estimate. For clarity, we omit the DCTCP (simi-
lar to HULL) and Okto+ lines. With Silo and Oktopus, tenant
bandwidth is guaranteed, so all large messages finish by the
estimated time. With TCP and HULL, the message latency
varies. 65% of tenants achieve higher bandwidth with HULL
as compared to Silo but there is a long tail with many tenants
getting very poor network bandwidth. This shows how Silo
trades-off best-case performance for predictability.

6.3 Large-scale simulations
We use a flow-level simulator to evaluate Silo’s VM place-

ment algorithm and its impact on network utilization at scale.
Simulation setup. We model a public cloud datacenter with
32K servers connected using three tier network topology with
1:5 oversubscription at each level. The arrival of tenant re-
quests is a Poisson process. By varying the average arrival
rate, we can control the average datacenter occupancy. Each
tenant runs a job that transfers a given amount of data be-
tween its VMs. Each job also has a minimum compute time.
A job is said to finish when all its flows finish and the com-
pute time has expired. 50% tenants belong to class-A while
the rest belong to class-B. We compare Silo’s placement
against two approaches: Oktopus placement that guarantees
VM bandwidth only and locality-aware placement (Locality)
that greedily places a tenant’s VM close to each other. For
Silo and Oktopus, a tenant’s flows are assigned bandwidth
based on its guarantee with no bandwidth sharing across ten-
ants, while for greedy placement, we emulate ideal TCP be-
havior by sharing bandwidth fairly between all flows.
Workload. As before, Class-A tenants have an all-to-one
workload. To study the impact of different traffic patterns,
Class-B tenants have a “Permutation-x” workload—each VM
has flows to x randomly chosen other VMs. By varying x,
we control the tenant’s traffic pattern. Note that for a tenant
with N VMs, Permutation-N is an all-to-all traffic pattern.

Admittance ratio. We first use a Permutation-1 workload
for class-B tenants. Figure 15(a) shows the fraction of ten-

 60

 70

 80

 90

 100

Locality Oktopus Silo

A
d
m

it
te

d
 r

e
q
u
e
s
ts

 (
%

)

Total Class-B Class-A

(a) Occupancy = 75%

 60

 70

 80

 90

 100

Locality Oktopus Silo

A
d
m

it
te

d
 r

e
q
u
e
s
ts

 (
%

)

Total Class-B Class-A

(b) Occupancy = 90%

Figure 15: Admitted requests with Permutation-1 work-
load for class-B tenants.

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

N
e
tw

o
rk

 U
ti

li
z
a
ti

o
n

 (
%

)

Datacenter occupancy (%)

Silo
Oktopus

Locality (TCP)

(a) Permutation-1 traffic

 0

 20

 40

 60

 80

 100

0.5 0.75 1 2 N

N
e
tw

o
rk

 U
ti

li
z
a
ti

o
n

 (
%

)

"x" in Permuation-x traffic

Silo
Oktopus

Locality (TCP)

(b) Occupancy = 90%

Figure 16: Average network utilization with varying dat-
acenter occupancy and varying traffic patterns.

ants admitted with 75% datacenter occupancy. Silo rejects
4.5% of tenants while locality-aware placement accepts all
of them and Oktopus rejects 0.3%. This is because Silo en-
sures that both the delay and bandwidth requirements of ten-
ants are met, and can reject tenants even if there are empty
VM slots. With Silo, the rejection ratio is higher for Class-A
tenants as their delay requirements are harder to meet.

However, as the datacenter occupancy increases and ten-
ants arrive faster, the admittance ratio of the locality-aware
placement drops. Figure 15(b) shows that at 90% occupancy,
it rejects 11% of tenants as compared to 5.1% rejects by
Silo. This result is counter-intuitive. Locality-aware place-
ment will only reject requests if there are insufficient VM
slots. By contrast, Silo can reject a request, even when there
are empty VM slots, if the request’s network guarantees can-
not be met. The root cause is that locality-aware placement
does not account for the bandwidth demands of tenants. So
it can place VMs of tenants with high bandwidth require-
ments far apart. Such tenants get poor network performance
and their jobs get delayed. These outlier tenants reduce the
overall cloud throughput, causing subsequent requests to be
rejected. With Silo, tenants get guaranteed bandwidth, so no
tenant suffers from poor network performance.

Network utilization. With Silo, tenants cannot exceed their
bandwidth guarantees which can result in network under-
utilization. We study Silo’s impact on network utilization
with varying occupancy and traffic patterns, and find that,
surprisingly, Silo can actually match and even improve uti-
lization as compared to the status quo.

Figure 16(a) shows the average network utilization in our
experiments with varying datacenter occupancy. As low oc-

Unmodified Guarantee Cloud support Work conservation Fine-

H/W OS App Bandwidth Packet
delay Burst Message

latency Placement Tenant
Isolation

Intra
tenant

Inter
tenant

grained
pacing

Silo 3 3 3 3 3 3 3 3 3 3 7† 3
Packet
delay

guarantee

QJUMP [34] 3 3 3 3 3 7 3 7 7 3 3 7
Fastpass [23]] 3 3 3 3 7 7 7 7 7 3 3 3
TDMA Ethernet [55] 3 7 3 3 3 7 3 7 7 3 3 7

Internet
QoS

ATM [56] 7 7 7 3 3 3 3 7 3? 3 3 7‡

IntServ [31] 7 7 7 3 3 3 3 7 3? 7 7 7
Stop and Go [57] 7 7 7 3 3 3 3 7 3? 7 7 7‡

Bandwidth
guarantee

Oktopus [18] 7 7 3 3 7 7 7 3 3 3 7 7
Hadrian [21] 7 7 3 3 7 7 7 3 3 3 3 7
EyeQ [20] 3 3 3 3 7 7 7 3 3 3 3 7

Flow deadline
D3 [24] 7 7 7 7 7 3 3 7 7 3 3 7
PDQ [26] 7 7 7 7 7 3 3 7 7 3 3 7
D2TCP [25] 3 7 7 7 7 3 3 7 7 3 3 7

Low latency
pFabric [58] 7 7 3 7 7 3 7 7 7 3 3 7‡

DCTCP [15] 3 7 3 7 7 7 7 7 7 3 3 7
HULL [22] 7 7 3 7 7 7 7 7 7 3 3 3

†Silo’s guarantee is not work-conserving across tenants, however Silo can use switch priorities to support tenants without guarantees and
achieve work-conservation. ‡These do not require nor benefit from fine-grained pacing at the end host. ?Although these systems are not
designed for the cloud, their support for traffic classes can achieve tenant isolation.]Fastpass’s centralized packet scheduling can support
any policy in theory. However, it does not provide scheduling mechanisms for guarantees, and its scalability to datacenters is unknown.

Table 5: Comparison of related work in terms of design choices.

cupancy, there is not much difference between the approaches.
At an occupancy of 75%, network utilization with Silo is ac-
tually 6% higher than with locality-aware placement (which
uses an ideal-TCP for bandwidth sharing). This results from
two factors. First, locality-aware placement naturally mini-
mizes network traffic by co-locating VMs close to each other
while Silo may be forced to place VMs across servers to
meet their guarantees. Second, as mentioned above, a small
fraction of outlier tenants that get poor network performance
with the locality approach also hurt network utilization. As
compared to Oktopus, Silo’s network utilization is lower by
9-11% at high occupancy. This is the price we pay for ac-
commodating delay requirements of class-A tenants as it causes
Silo to accept fewer requests than Oktopus and reduces net-
work utilization.

Figure 16(b) shows the utilization with varying traffic pat-
terns for class-B tenants. When such tenants have a sparse
traffic matrix (eg., Permutation-0.5 traffic), Silo can result in
∼4% drop in utilization. However, as the tenant traffic ma-
trix becomes denser, network utilization with Silo surpasses
locality-aware placement.

Other simulation parameters. We repeated these experi-
ments while varying other simulation parameters. We omit
the results but highlight a couple of trends. The requests
admitted by Silo when datacenter occupancy is lower than
75% are similar to the ones shown in Figure 15(a). As we
increase the size of switch buffers or reduce network over-
subscription, Silo’s ability to accept tenants increases since
the network is better provisioned.

7. RELATED WORK
Silo adds to a rich literature on network guarantees and

optimization. We briefly discuss the work most relevant to
Silo, and summarize the key differences in Table 5.

Many recent efforts look at cloud network sharing. They
propose different sharing policies, including fixed guaran-
tees [17,18], minimum bandwidth guarantees [19,20], and

per-tenant fairness [59]. However, these proposals focus solely
on bandwidth, thus catering to bandwidth-sensitive applica-
tions. They do not provide bounded packet delay and the
ability to burst.

QJUMP [34] is the closest to Silo among recent works;
it uses rate limiting and priorities, and allows different traf-
fic classes at different points of the trade off between net-
work latency and throughput. However, it only provides a la-
tency guarantee for very low bandwidth traffic; higher band-
width traffic can incur variable message latency. By contrast,
Silo provides an intuitive abstraction for tenants described
by bandwidth, delay, and burst guarantees. It ensures isola-
tion between tenants, and a tenant can independently deter-
mine it message latency. In terms of mechanisms, Silo addi-
tionally uses a novel placement algorithm to maximize the
number of tenants that can be accommodated.

Numerous solutions achieve low latency in private data-
centers by ensuring small network queues [15,22], by ac-
counting for flow deadlines [24–26], through network prior-
itization [34,58] or centralized rate allocation [23]. Silo tar-
gets predictable message latency in multi-tenant datacenters
and three key factors differentiate our work. First, these pro-
posals do not isolate performance across tenants; i.e., they do
not guarantee a tenant’s bandwidth nor control total bursti-
ness on network links. The former hurts the latency of both
small and large messages while the latter hurts small mes-
sages. In §6.2, we show that DCTCP and HULL can suf-
fer from high and variable message latency, especially when
there is competing tenant traffic. Similarly, with D3 [24],
PDQ [26] and D2TCP [25], there is no guarantee for a mes-
sage’s latency as it depends on the deadlines of messages of
other tenants. And a tenant can declare tight deadlines for its
messages, thus hurting other tenants.

Second, with public clouds, we cannot rely on tenant co-
operation. Tenants can use the transport protocol of their
choice and cannot be expected to pass application hints like
deadlines. Thus, a hypervisor-only solution is needed. Fi-

nally, apart from HULL [22], none of these solutions look
at queuing delay at the NIC itself. Overall, while these solu-
tions work well for the class of applications or environment
they were designed for, they do not guarantee end-to-end
message latency for diverse cloud applications.

The early 1990’s saw substantial work on providing net-
work performance guarantees to Internet clients. ATM [56]
and its predecessors [60] provided different kinds perfor-
mance guarantees. Stop and Go [57] is the proposal most
similar to Silo in terms of architecture. However, it intro-
duces a new queueing discipline at switches while Silo does
not require any switch changes. More broadly, much of the
work from this era focuses on novel queueing disciplines at
switches [61–63]; Zhang and Keshav [64] provide a com-
parison of these proposals. We chose to avoid this in favor
of better deployability. Silo works with commodity Ether-
net. Further, Silo leverages the flexibility of placing VMs,
an opportunity unique to datacenters. Finally, Silo pushes to
much higher performance in terms pacing traffic; by using
void packets, Silo can achieve sub-microsecond granular-
ity pacing with very low CPU overhead. However, Silo can
still benefit from using hardware offloading like SENIC [42]
which eliminates the overhead of pacing and disabling TSO.

8. CONCLUSION
In this paper we target predictable message latency for

cloud applications. We argue that to achieve this, a general
cloud application needs guarantees for its network bandwidth,
packet delay and burstiness. We show how guaranteed net-
work bandwidth makes it easier to guarantee packet delay.
Leveraging this idea, Silo enables these guarantees without
any network and application changes, relying only on VM
placement and end host packet pacing. Our prototype can
achieve fine grained packet pacing with low CPU overhead.
Evaluation shows that Silo can ensure predictable message
completion time for both small and large messages in multi-
tenant datacenters.

Acknowledgements. We thank Richard Black and Austin
Donnelly for the suggestion regarding the packet pacing method.
We thank the anonymous reviewers and our shepherd Teemu
Koponen for their helpful comments. We are grateful to Dongsu
Han, Sangjin Han, Thomas Karagiannis, Keunhong Lee, Sue
Moon, Aurojit Panda, Greg O’Shea, and Andy Slowey for
discussions and help with experiments.

9. REFERENCES
[1] V. Jalaparti, P. Bodik, S. Kandula, I. Menache, M. Rybalkin,

and C. Yan. Speeding up Distributed Request-Response
Workflows. In Proc. of ACM SIGCOMM, 2013.

[2] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati,
A. Lakshman, A. Pilchin, S. Sivasubramanian, P. Vosshall,
and W. Vogels. Dynamo: amazon’s highly available
key-value store. ACM SIGOPS, 41(6), 2007.

[3] C. Engle, A. Lupher, R. Xin, M. Zaharia, M. J. Franklin,
S. Shenker, and I. Stoica. Shark: Fast Data Analysis Using
Coarse-grained Distributed Memory. In Proc. of ACM
SIGMOD, 2012.

[4] S. Melnik, A. Gubarev, J. J. Long, G. Romer, S. Shivakumar,
M. Tolton, and T. Vassilakis. Dremel: interactive analysis of
web-scale datasets. In Proc. of VLDB, 2010.

[5] J. Dean and S. Ghemawat. MapReduce: Simplified Data
Processing on Large Clusters. In Proc. USENIX OSDI, 2004.

[6] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad:
Distributed Data-Parallel Programs from Sequential Building
Blocks. In Proc. EuroSys, 2007.

[7] R. Chaiken, B. Jenkins, P.-A. Larson, B. Ramsey, D. Shakib,
S. Weaver, and J. Zhou. SCOPE: easy and efficient parallel
processing of massive data sets. In Proc. VLDB, 2008.

[8] A. Li, X. Yang, S. Kandula, and M. Zhang. CloudCmp:
comparing public cloud providers. In Proc. ACM IMC, 2010.

[9] J. Schad, J. Dittrich, and J.-A. Quiané-Ruiz. Runtime
measurements in the cloud: observing, analyzing, and
reducing variance. In Proc. VLDB, 2010.

[10] Y. Xu, Z. Musgrave, B. Noble, and M. Bailey. Bobtail:
Avoiding Long Tails in the Cloud. In Proc. of USENIX NSDI,
2013.

[11] Y. Xu, M. Bailey, B. Noble, and F. Jahanian. Small is Better:
Avoiding Latency Traps in Virtualized Data Centers. In Proc.
of SoCC, 2013.

[12] J. C. Mogul and R. R. Kompella. Inferring the Network
Latency Requirements of Cloud Tenants. In Proc. of
USENIX HotOS, 2015.

[13] Michael Armburst et al. Above the Clouds: A Berkeley View
of Cloud Computing. Technical report, University of
California, Berkeley, 2009.

[14] 5 Lessons We’ve Learned Using AWS.
http://techblog.netflix.com/2010/12/
5-lessons-weve-learned-using-aws.html.

[15] M. Alizadeh, A. G. Greenberg, D. A. Maltz, J. Padhye,
P. Patel, B. Prabhakar, S. Sengupta, and M. Sridharan. Data
center TCP (DCTCP). In Proc. ACM SIGCOMM, 2010.

[16] J. Dean and L. A. Barroso. The tail at scale. Commun. ACM,
56(2):74–80, Feb. 2013.

[17] C. Guo, G. Lu, H. J. Wang, S. Yang, C. Kong, P. Sun, W. Wu,
and Y. Zhang. SecondNet: A Data Center Network
Virtualization Architecture with Bandwidth Guarantees. In
Proc. ACM CoNext’10.

[18] H. Ballani, P. Costa, T. Karagiannis, and A. Rowstron.
Towards Predicable Datacenter Networks. In Proc. ACM
SIGCOMM, 2011.

[19] L. Popa, G. Kumar, M. Chowdhury, A. Krishnamurthy,
S. Ratnasamy, and I. Stoica. FairCloud: Sharing the Network
In Cloud Computing. In Proc. ACM SIGCOMM, 2012.

[20] V. Jeyakumar, M. Alizadeh, D. MaziÃĺres, B. Prabhakar, and
C. Kim. EyeQ: Practical Network Performance Isolation at
the Edge. In Proc. USENIX NSDI, 2013.

[21] H. Ballani, K. Jang, T. Karagiannis, C. Kim,
D. Gunawaradena, and G. O’Shea. Chatty Tenants and the
Cloud Network Sharing Problem. In Proc. USENIX NSDI,
2013.

[22] M. Alizadeh, A. Kabbani, T. Edsall, B. Prabhakar, A. Vadhat,
and M. Yasuda. Less is More: Trading a little Bandwidth for
Ultra-Low Latency in the Data Center. In Proc. USENIX
NSDI, 2012.

[23] J. Perry, A. Ousterhout, H. Balakrishnan, D. Shah, and
H. Fugal. Fastpass: A Centralized Zero-Queue Datacenter
Network. In Proc. of ACM SIGCOMM, 2014.

[24] C. Wilson, H. Ballani, T. Karagiannis, and A. Rowstron.
Better Never than Late: Meeting Deadlines in Datacenter
Networks. In Proc. ACM SIGCOMM, 2011.

[25] B. Vamana, J. Hasan, and T. N. Vijaykumar. Deadline-Aware
Datacenter TCP (D2TCP). In Proc. ACM SIGCOMM, 2012.

[26] C.-Y. Hong, M. Caesar, and P. B. Godfrey. Finishing Flows
Quickly with Preemptive Scheduling. In Proc. ACM
SIGCOMM, 2012.

[27] R. Cruz. A Calculus for Network Delay, Part I: Network
Elements in Isolation. IEEE Transactions on Information
Theory, 37(1):114–131, January 1991.

[28] R. Cruz. A Calculus for Network Delay, Part II: Network
Analysis. IEEE Transactions on Information Theory,
37(1):132–141, 1991.

[29] A. Parekh and R. Gallager. A Generalized Processor Sharing
Approach to Flow Control in Integrated Services Networks:
The Single-Node Case. IEEE/ACM Transactions on
Networking (ToN), 1, June 1993.

[30] A. Parekh and R. Gallager. A Generalized Processor Sharing
Approach to Flow Control in Integrated Services Networks:
The Multiple -Node Case. IEEE/ACM Transactions on
Networking (ToN), 1, April 1994.

[31] D. Clark, S. Shenker, and L. Zhang. Supporting real-time
applications in an integrated services packet network:
Architecture and mechanism. In Proc. ACM SIGCOMM,
1992.

[32] P. Saab. Scaling memcached at Facebook, 2008.
http://www.facebook.com/note.php?note_id=39391378919.

[33] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and
M. Paleczny. Workload Analysis of a Large-scale Key-value
Store. In Proc. ACM SIGMETRICS, 2012.

[34] M. P. Grosvenor, M. Schwarzkopf, I. Gog, R. N. M. Watson,
A. W. Moore, S. Hand, and J. Crowcroft. Queues don’t
matter when you can JUMP them! In Proc. USENIX NSDI,
2015.

[35] H. Herodotou, F. Dong, and S. Babu. No One (Cluster) Size
Fits All: Automatic Cluster Sizing for Data-intensive
Analytics. In ACM SOCC, 2011.

[36] M. Chowdhury, M. Zaharia, J. Ma, M. Jordan, and I. Stoica.
Managing data transfers in computer clusters with orchestra.
In Proc. ACM SIGCOMM, 2011.

[37] B. Lin and P. A. Dinda. Vsched: Mixing batch and
interactive virtual machines using periodic real-time
scheduling. In Proc. ACM/IEEE Supercomputing, 2005.

[38] C. Xu, S. Gamage, P. N. Rao, A. Kangarlou, R. R. Kompella,
and D. Xu. vSlicer: latency-aware virtual machine scheduling
via differentiated-frequency CPU slicing. In Proc. HPDC’12.

[39] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim,
P. Lahiri, D. A. Maltz, P. Patel, and S. Sengupta. VL2: a
scalable and flexible data center network. In Proc. of ACM
SIGCOMM, 2009.

[40] M. Al-Fares, A. Loukissas, and A. Vahdat. A scalable,
commodity data center network architecture. In Proc. of
ACM SIGCOMM, 2008.

[41] J. Kurose. On Computing Per-Session Performance Bounds
in High-Speed Multi-Hop Computer Networks. In Proc.
ACM SIGMETRICS, 1992.

[42] S. Radhakrishnan, Y. Geng, V. Jeyakumar, A. Kabbani,
G. Porter, and A. Vahdat. Senic: Scalable nic for end-host
rate limiting. In Proc. USENIX NSDI, 2014.

[43] K. LaCurts, J. C. Mogul, H. Balakrishnan, and Y. Turner.
Cicada: Introducing Predictive Guarantees for Cloud
Networks. In Proc. USENIX HotCloud, 2014.

[44] N. G. Duffield, P. Goyal, A. Greenberg, P. Mishra, K. K.
Ramakrishnan, and J. E. van der Merive. A flexible model
for resource management in virtual private networks. In

Proc. ACM SIGCOMM, 1999.
[45] D. Xie, N. Ding, Y. C. Hu, and R. Kompella. The Only

Constant is Change: Incorporating Time-Varying Network
Reservations in Data Centers. In Proc. ACM SIGCOMM,
2012.

[46] J.-Y. Le Boudec and P. Thiran. Network Calculus: A Theory
of Deterministic Queuing Systems for the Internet. Lecture
Notes in Computer Science. Springer-Verlag, 2001.

[47] S. Lee, R. Panigrahy, V. Prabhakaran, V. Ramasubramanian,
K. Talwar, L. Uyeda, and U. Wieder. Validating Heuristics
for Virtual Machines Consolidation. Technical Report
MSR-TR-2011-9, MSR, 2011.

[48] Energy Efficient Switches , 2009.
http://www.cisco.com/c/dam/en/us/products/collateral/
switches/catalyst-2960-series-switches/cisco_catalyst_
switches_green.pdf.

[49] R. Mittal, J. Sherry, S. Ratnasamy, and S. Shenker.
Recursively cautious congestion control. In Proc. USENIX
NSDI, 2014.

[50] NDIS Filter Driver. http://msdn.microsoft.com/en-us/library/
windows/hardware/ff556030(v=vs.85).aspx.

[51] Linux SKB.
http://lxr.free-electrons.com/source/include/linux/skbuff.h.

[52] M. Aron and P. Druschel. Soft timers: efficient microsecond
software timer support for network processing. ACM
Transactions on Computer Systems (TOCS), 18(3):197–228,
2000.

[53] Luiz Andrr Barroso and Urs Holzle. The Datacenter as a
Computer: An Introduction to the Design of Warehouse-Scale
Machines. Morgan & Claypool Publishers, 2009.

[54] 10GE ToR port buffers.
http://www.gossamer-threads.com/lists/nanog/users/149189.

[55] B. C. Vattikonda, G. Porter, A. Vahdat, and A. C. Snoeren.
Practical tdma for datacenter ethernet. In Proc. EuroSys,
2012.

[56] S. Minzer. Broadband isdn and asynchronous transfer mode
(atm). Communications Magazine, IEEE, 27(9):17–24, 1989.

[57] S. J. Golestani. A Stop-and-Go Queueing Framework for
Congestion Management. In Proc. ACM SIGCOMM, 1990.

[58] M. Alizadeh, S. Yang, M. Sharif, S. Katti, N. McKeown,
B. Prabhakar, and S. Shenker. pFabric: Minimal
Near-Optimal Datacenter Transport. In ACM SIGCOMM,
2013.

[59] T. Lam, S. Radhakrishnan, A. Vahdat, and G. Varghese.
NetShare: Virtualizing Data Center Networks across
Services. Technical Report CS2010-0957, University of
California, San Diego, May 2010.

[60] G. Finn. RELIABLE ASYNCHRONOUS TRANSFER
PROTOCOL (RATP). RFC 916.

[61] D. Ferrari and D. Verma. A Scheme for Real-Time Channel
Establishment in Wide-Area Networks. IEEE Journal on
Selected Areas in Communications, 8(3):368–379, April
1990.

[62] D. Verma, H. Zhang, and D. Ferrari. Guaranteeing Delat
Jitter Bounds in Packet Switching Networks. In Proc. IEEE
Conference on Communications Software (TriComm), 1991.

[63] C. R. Kalmanek, H. Kanakia, and S. Keshav. Rate Controlled
Servers for Very High-Speed Networks. In Proc. IEEE
Global Telecommunications Conference, 1989.

[64] H. Zhang and S. Keshav. Comparison of Rate-Based Service
Disciplines. In Proc. ACM SIGCOMM, 1991.

