
SIMILAR SHAPE RETRIEVAL IN MARS 

Kaushik Chakrabarti Michael Ortega-Binderberger Kriengkrai Porkaew Sharad Mehrotra 

University of Illinois, University of California 
kaushikc,miki,porkaew @ acm.org, sharad@ics.uci.edu 

ABSTRACT 

This paper presents a novel approach to representing 2-d shapes 
that adaptively models different portions of the shape at different 
resolutions, having higher resolution where it improves the qual- 
ity of the representation and lower resolution elsewhere. The 
proposed representation is invariant to scale, translation and ro- 
tation. The representation is amenable to indexing using existing 
multidimensional index structures and can thus support efficient 
similarity retrieval. Our experiments show that the adaptive res- 
olution technique performs significantly better compared to the 
fixed resolution approach previously proposed in the literature. 

1. INTRODUCTION 
Large repositories of digital images are becoming increas- 
ingly common in many application areas such as e-commerce, 
medicine, medidentertainment, education and manufacturing. 
There is an increasing application need to search these reposito- 
ries based on their visual content. For example, in e-commerce 
applications, shoppers would like to find items in the store based 
on, in addition to other criteria like category and price, visual 
criteria i.e. items that look like a selected item (e.g., all shirts 
having the same color/pattern as a chosen one). To address this 
need, we are building the Multimedia Analysis and Retrieval 
System (MARS), a system for effective and efficient content- 
based searching and browsing of large scale multimedia reposi- 
tories [8]. MARS represents the content of images using visual 
features like color, texture and shape along with textual descrip- 
tions. The similarity between two images is defined as a combi- 
nation of their similarities based on the individual features [8]. 

One of the most important features that represent the visual 
content of an image is the shape of the object(s) in an image 
[7, 5 ,  6, 41. In this paper, we address the problem of similar 
shape retrieval in MARS. We propose a novel adaptive resolu- 
tion (AR) representation of 2-d shapes. We show that our repre- 
sentation is invariant to scale, translation and rotation. We show 
how each shape, represented by AR, can be mapped to a point 
in a high dimensional space and can hence be indexed using a 
multidimensional index structure [ 11. We define a distance mea- 
sure for shapes and discuss how similarity queries, based on the 
above distance measure, can be executed efficiently using the 
index structure. The experimental results demonstrate the effec- 
tiveness of our approach and its superiority to the fixed resolu- 
tion (FR) technique previously proposed in the literature. 

2. RELATEDWORK 

In this section, we describe the fixed resolution approach and 
other prior work on shape retrieval. 
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Fixed Resolution (FR) Representation In the FR approach 
proposed by Lu and Sajjanhar [ 5 ] ,  a grid, just big enough to 
cover the entire shape, is overlaid on the shape. Each cell of the 
grid has the same size (hence the name fixed resolution). For ex- 
ample, in Figure l(a), the shape is overlaid with a 8 x 8 grid. If 
we assume the grid to be 256 x 256 pixels, each cell is 32 x 32 
pixels in size. Some grid cells are fully or partially covered by 
the shape and some are not. A bitmap is derived for the shape by 
assigning 1 to any cell with more than 15% of the pixels covered 
by the shape, and 0 to each of the other cells. The shape repre- 
sented by the bitmap is shown in Figure l(a) (below the 8 x 8 
grid overlay). The quality of the representation (i.e. how closely 
it approximates the actual shape) improves as we go to higher 
resolutions. Figure 1 (b) shows that a higher resolution bitmap 
(16 x 16 grid) represents the better (i.e. closer approximation to 
the original shape) than the 8 x 8 representation. 

Type of - (a) Fixed Rwlulion (b) Fired Resolulion (c) Adaptive Resolulion (d) Adapuve Resolution 
mprerenmion (8x8) (16x16) (16 recmgles) (32 rrccangles) 

Figure 1 : Fixed resolution and adaptive resolution representa- 
tions 

To support similarity queries, [5] defines a distance measure 
between shapes. The distance between two shapes is defined 
as the number of bits by which their bitmaps differ from each 
other. A similarity query computes the distance of the query 
shape from every shape in the database and returns the IC clos- 
est matches as answers to the user. [5] shows that the higher the 
resolution, the more closely it approximates the actual shape, 
higher the accuracy of the answers (in terms of satisfying the 
information need of the user). But high resolution also raises the 
query cost: at higher resolutions, we need more bits to represent 
each shape which increases both the U0 cost (as we need to scan 
a larger sized database) as well as the CPU cost (as we need to 
compute distances between longer bit sequences) of the query. 
The choice of the resolution thus presents a tradeoff between the 
query cost and accuracy. 

Indexing in FR Approach There is no obvious way to index 
bitmaps. The only way to answer a similarity query is to se- 
quentially scan the entire database i.e. compute the distance of 
the query from every item in the database. This technique is not 
scalable to large databases consisting of millions of shapes as it 
may take minutes or even hours to answer a query. To circum- 
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(b) Quadtree decomposition of bitmap (gray indicates internal node, 
black indicates all bits 1, white indicates all bits 0). 
Numbers indicate z-order 

(a) Bitmap 
(c) Adaptive Representation 

produced by quadtree 
decompostion 
(Numbers indicate z-order) 

(d) Adaptive representation 
after merging rectangles 
based on z-order 

Figure 2: Adaptive resolution representations 

vent the problem, we propose to index the shapes using a multi- 
dimensional index structure (e.g., R-tree, SS-tree, Hybrid Tree). 
The index structure would reduce the cost of the query from lin- 
ear (of sequential scan) to logarithmic to the size of the database, 
thus making the similarity queries scale to large sized databases. 
To use the index, instead of assigning a bit to a grid cell, we as- 
sign a count to each cell: the count being the number of pixels in 
the cell that are covered by the shape. For a 8 x 8 grid, we will 
get 64 values for each shape, thus mapping each shape to a point 
in a 64-dimensional space. The shapes can now be indexed us- 
ing a 64-d point index structure. For a nl x n2 grid, the number 
of dimensions d = nl.7~2. We can use a suitable L, metric as 
the distance measure between the d-dimensional vectors. Given 
a query which is also a point in the d-dimensional space, we 
can use the index structure to quickly find the k shapes that are 
closest to the query using the standard k nearest neighbor algo- 
rithm [3]. As mentioned before, higher the resolution, more the 
dimensionality, higher the accuracy of the answers, but higher 
the execution cost of the query. We will refer to this count-based 
(and not the bit-based) representation as the FR representation 
for the rest of the paper. 

Other shape retrieval techniques Other shape representation 
techniques include Fourier descriptors [9], moment descriptors 
[7], boundary points [6] and rectangle decomposition [4]. Re- 
cent studies have shown that the FR approach performs better 
than most of these approaches [5]. 

3. ADAPTIVE RESOLUTION APPROACH 
Rotation, Scale and Translation Normalization. Before we 
present the new shape representation, we describe how we nor- 
malize the shape to make it invariant to rotation, scale and trans- 
lation. Our normalization strategy is similar to that of [5] devel- 
oped for the FR representation. To guarantee rotation invariance, 
we need to convert an arbitrarily oriented shape into a unique 
common orientation. We first find the major axis of the shape 
i.e. the straight line segment joining the two points PI and P2 
on the boundary farthest away from each other [5]. Then we 
rotate the shape so that its major axis is parallel to the x-axis. 
This orientation is still not unique as there are two possibilities: 
PI can be on the left or on the right. We solve the problem by 
computing the centroid of the polygon and making sure that the 
centroid is below the major axis, thus guaranteeing an unique 
orientation. Let us now consider scale invariance. We define the 
bounding rectangle (BR) of a shape as the rectangle with sides 
parallel to the x and y axes just large enough to cover the entire 
shape (after rotation). Note that the width of the BR is equal to 
the length of the major axis. To achieve scale invariance, we pro- 
portionally scale all shapes so that their BRs have the same fixed 
width. In this paper, we fix the width of the BR to 256 pixels. We 
make the BR a square by fixing its height to 256 pixels as well; 
non-square shapes are handled by placing the shape at the bot- 

tom of the BR and padding zeroes in the remaining (upper) part 
of the BR. The shape is translation invariant as it is represented 
with respect to its BR (i.e. lower left comer of BR is considered 
(070)). 

Adaptive Resolution Representation The problem with the 
FR representation is that it uses the same resolution to represent 
the entire shape. There are certain portions of the shape where 
low resolution is sufficient i.e. increasing the resolution does not 
improve the quality of the representation for these portions of 
the shape (e.g., the lower rectangular portion of the shape in 
Figures l(a) and (b)). Using high resolution for these regions in- 
creases the number of dimensions without improving the query 
accuracy. On the other hand, there are portions of the shape (e.g., 
the upper portion of the shape in Figures l(a) and (b)) where 
higher resolution improves the quality of the representation sig- 
nificantly. For these regions, the improvement in query accuracy 
obtained by using high resolution is worth the extra cost of hav- 
ing more dimensions. Also, high resolution is usually not neces- 
sary for the interior of a shape but is important near the border 
of the shape. Having the same resolution for the entire shape is 
wasteful in terms of the number of dimensions used to represent 
the shape and hence the query cost. 

To overcome the shortcomings of the FR representation, we 
propose an adaptive resolution (AR) representation of shapes 
i.e. a representation where the resolution of the grid cells varies 
from one portion of the shape to another, having higher resolu- 
tion where it improves the quality of representation and lower 
resolution where it does not. An adaptive representation of the 
same shape is shown in Figure l(c). It uses 16 grid cells to repre- 
sent the entire shape but the cells have different resolutions (i.e. 
sizes). The cells in the lower portion and interior of the shape 
have lower resolution (i.e. larger size) while those in the upper 
portion and near the borders have higher resolution (i.e. smaller 
size). Figure l(d) shows another adaptive representation of the 
same shape with 32 grid cells. Note that as the number of cells 
increases, more cells are added to the portion of the shape where 
higher resolution is required while the other portions remain un- 
changed. 

Computing AR representation Using Quadtree Decomposi- 
tion We compute the AR representation of a shape by apply- 
ing quadtree decomposition on the bitmap representation of the 
shape. The bitmap is constructed in the same way as the FR 
approach discussed in [5] (cf. Section 2). We use the highest 
resolution bitmap for the decomposition (i.e. each grid cell is 
1 x 1 pixels) but lower resolution bitmaps could be used as 
well. The decomposition is based on successive subdivision of 
the bitmap into four equal-size quadrants. If a bitmap-quadrant 
does not consist entirely of 1s or entirely of Os (i.e. the shape 
“partially covers” the quadrant), it is recursively subdivided into 
smaller and smaller quadrants until we reach bitmap-quadrants, 
possibly 1 x 1 pixels in size, that consist entirely of 1s or en- 
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Distance(int *shapel, int *shape2) 

i=O, j=O; 
while ( i  < 11 AND j < n) 

if ith rect r l  of shape1 overlaps with j th  rect r2 of shape2 
common-area += OverlapArea(r1, r2); 
if (rl is bigger than r2) j++; 
else i++; 

else I /  r l  and r2 do not overlap 
if (ZValue(r1) > ZValue(r2)) j++; 
else i++; 

areaofshapel = $0’’ Area of ith rectangle; 
areaofshape2 = C , ’ ~ ~ l ’  Area of ith rectangle; 
unioniuea = areaofshape 1 + area-ofshape2 - common-area; 

return distance; 
distance = 1 - common-area.  

u n i o n d r e a  ’ 

Table 1: Computing distance between two shapes. 

tirely of Os (termination condition of the recursion). Figure 2(a) 
shows a 8 x 8 bitmap of the shape in Figure 1 and Figure 2(b) 
shows the quadtree decomposition of the bitmap. Each node in 
the quadtree covers a rectangular (always square) region of the 
bitmap. The level of the node in the quad tree determines the 
size of the rectangle. The intemal nodes (shown by gray circles) 
represent “partially covered” regions, the leaf nodes shown by 
white boxes represent regions with all Os while the leaf nodes 
shown by black boxes represent regions with all 1s. The “all 
1” regions are used to represent the shape. Figure 2(b) has 16 
such rectangular regions and the shape represented is shown in 
Figure 2(c). Since we perform the quadtree decomposition on 
the 256 x 256 bitmap, the number of black leaf nodes in the 
quadtree is usually far more than the number n of rectangles we 
want to choose to represent the shape. In that case, we choose 
the n largest rectangles i.e. we do not choose any black leaf node 
at level i unless we have chosen all the black leaf nodes at level 
j ,  j < i where the levels are numbered in increasing order from 
top to bottom. In this way, we can cover the bulk of the shape 
with a few rectangles (i.e. small values of n) and add details to 
the shape as we add more rectangles (i.e. larger values of n). 

Indexing , After the n rectangles are chosen, we sort them 
based on z-order. The number sequence assigned to the black 
leaf nodes of the quad tree in Figure 2(b) represent the z-order. 
The same numbers are shown on the corresponding rectangles 
in Figure 2(c). Note that the z-ordering is simply a left-to-right 
ordering of the n selected black leaf nodes in the quad tree. We 
represent the shape as a sequence of the n rectangles. Since the 
rectangles are always squares, we can describe each rectangles 
by 3 numbers: its center C = (C,, Cy) and its size (i.e. side 
length) S. We represent the shape as a sequence of 3n numbers 
where 3i, 3i + 1 and 3i + 2 numbers represent the C,, Cy and S 
of the ith rectangle (0 5 i 5 (n- 1)) in the n-sequence. We have 
thus mapped each shape to a point in 3n-dimensional space. We 
can now index the shapes using a 3n-dimensional index struc- 
ture. The choice of n depends on the desired dimensionality d 

/of the index structure i.e. n = $. 

Executing Similarity Queries Using Multidimensional Index 
Structure To support similarity queries, we must first choose 
a distance measure between shapes. We choose the popular 
“area difference” distance measure previously used in [5,4]. The 
area difference is the area of the regions where the two shapes 
do not match when they are overlaid on each other. To normal- 

ize the measure, we divide the area difference by the area cov- 
ered by the two shapes together i.e. area of the union of the two 
shapes. To be able to answer similarity queries using a mulridi- 
mensional index structure, we should be able to efficiently com- 
pute (1) the distance between two points i.e. between two shapes 
represented using the AR representation and (2) the minimum 
distance (MINDIST) between a point and a node of the multidi- 
mensional index structure [l] .  Once we can compute the above 
distances, we can answer a similarity query by executing the k-  
NN algorithm on the multidimensional index structure [3]. The 
algorithm works as follows. It maintains the nodes and objects 
of the index structure in the priority queue in increasing order of 
their distances from the query and uses the queue to traverse the 
tree in the same order. At each step, it pops the item from the 
top of the queue: if it is an object, it is added to the result list, 
if it is a node, it computes, using the above distance functions, 
the distance of each of its children from the query and pushes 
it back to the queue. The algorithm stops when the result set 
contains k objects. We first present the function to compute the 
distance between two points. Given two shapes sl and s2 con- 
sisting of n rectangles each (i.e. represented as 3n-dimensional 
points), a naive way to compute the distance is to compare all 
pairs of rectangles and compute the distance between them. This 
approach is computationally expensive (0(n2)). We exploit the 
following properties of Z-ordering to compute the distance in 
O(n)  time. Let r l  and 7-2 be two rectangles of sl and s2 re- 
spectively. First, if rl  and 7-2 do not overlap with each other 
and ZValue(r1) > ZValue(r2) and rl’ is a rectangle in sl 
that appears after r l  (i.e. ZValue(r1’) > ZValue(r l ) ) ,  then 
rl’ and 7-2 do not overlap with each other. Second, if r l  and 
r2 overlap with each other and r l  is larger than 7-2 (i.e. r l  is 
totally covers 7-2) and rl’ is a rectangle in s l  that appears af- 
ter r l  (i.e. ZValue(r1’) > ZValue(r l ) ) ,  then rl’ and 7-2 do 
not overlap with each other (see [23 for proofs). The procedure 
to compute the distance is shown in Table 1. We have also de- 
signed an algorithm to compute the MINDIST i.e. the minimum 
distance between a point and node of the index structure. We do 
not describe the algorithm here due to space limitations but can 
be found in [2]. We can now answer similarity queries efficiently 
by executing it as a k-NN query on the multidimensional index 
structure. 

Optimization The quality of the representation (and hence the 
accuracy of the answers) increases with the number of rectan- 
gles, but so does the dimensionality and hence the query cost. 
We present an optimization that increases the number of rect- 
angles without increasing the number of dimensions. We merge 
rectangles together if they are (1 )  “mergeable” i.e. produce a 
rectangle when merged and (2) appear consecutively in the z- 
ordered sequence. Figure 2(d) shows the set of rectangles in 
Figure 2(c) after the merging. Since this representation is more 
compact (i.e. we can represent the same shape with less num- 
ber of rectangles), for a given choice of dimensionality d, we 
can represent the shape more accurately. The merging based on 
z-order ensures that the distance functions described above can 
be used with some minor modifications. Unlike in the unmerged 
representation, the rectangles in the merged representation can 
be non-squares; hence, we need to store two sizes S, and S, 
for each rectangle instead of one. To represent n rectangles, we 
need 4n numbers instead of 3n. For a desired dimensionality d, 
the number of rectangles to choose to represent the shape is 
instead of 5. 

4. EXPERIMENTS 
We conducted several experiments to evaluate the ef- 
fectiveness of the AR representation and compare it 
with the FR representation. For our experiments, we 
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Figure 3: Precision-recall graph for FR tech-Figure 4: Precision-recall graph for ARFigure 5:  Comparison of FR and AR tech- 
nique. technique. 

used the "islands" file in the polygon dataset of the 
Sequoia benchmark (available online at http://s2k- 
ftp.cs.berkeley.edu:8000/sequoialbenchmarrWpolygon/). The 
dataset contains 21,021 shapes. For a given query, we generate 
the ground truth by executing the query against the highest 
resolution bitmap representation of the shape (i.e. each grid cell 
is 1 x 1 pixel) and retrieve the top k answers. We refer to these 
answers as the relevant set. We then execute the query against a 
given low resolution FR representation using the index structure 
and retrieve the top k answers. We refer to these answers as the 
retrieved set. We compare the relevant and retrieved sets for 
various values of IC (we vary k from 10 to 100) and we plot the 

as I , r e l e v a n t l  I )  graphs for various resolutions (4 x 4, 
8 x 4 , 8  x 8, 16 x 8 and 16 x 16). The result is shown in Figure 
3. All the measurements are averaged over 100 queries. The 
graph shows that the quality of the answers improves as the 
resolution increases. We repeat the above experiment for the AR 
representation. The result is shown in Figure 4. The graph shows 
that the quality of the answers improves with the increase in the 
number of rectangles. Note that we are doubling the number 
of dimensions at each step in both cases but the improvement 
in the quality of answers at each step is more significant in the 
AR technique compared to the FR technique. The reason is 
that in the AR case, the additional rectangles concentrate on 
improving the representation only where it is necessary. On the 
other hand, in the FR case, the resolution is increased equally 
all over, as much in the unnecessary portions as in the necessary 
ones, thus diluting the effect and not improving the quality of 
representation as much as in AR case. 

We compare the two techniques in terms of the quality of 
retrieval when the same number of dimensions are used to rep- 
resent the shape. For a given recall, we compute the precision 
of the two techniques at a given dimensionality. Note that for 
the FR presentation of 7 2 1  x 7 2 2  resolution, the dimensionality 
is 721.112 while for the AR approach with 71 rectangles, the di- 
mensionality is 412. In Figure 5 ,  we plot the precision at 100% 
recall for various dimensionalities for both techniques. The AR 
technique significantly outperforms the FR technique in terms 
of precision at almost all dimensionalities. For example, at 100 
dimensions, the AR technique has about 70% precision while 
the FR technique has about 50% precision. We observed similar 
behaviour at other values of recall. This shows that AR is a more 
compact representation i.e. with the same number of dimen- 
sions, AR approximates the original shape better than FR and 
hence provides higher precision. Assuming that the query cost 
is proportional to the number of dimensions used', the AR tech- 
nique provides significantly better quality answers at the same 

I We have performed experiments using a multidimensional index structure 

precision (defined as Jrelevantnretriewed 
lretrlevedl 9 and recall (defined 

re l evan tnre t r i eved  

niques at 100% recall. 

cost and is hence a better approach to shape retrieval. 

5. CONCLUSION 
Similar shape retrieval is an important problem with a wide 
range of applications. In this paper, we have presented a novel 
adaptive resolution approach to representing 2-d shapes. The 
representation is invariant to scale, translation and rotation. With 
the proposed representation, we can index the shapes using a 
multidimensional index structure and can thus support efficient 
similarity retrieval. Our experiments show that, for the same 
query cost, the adaptive technique provides significantly better 
quality answers compared to the fixed resolution representation 
and is hence a better approach to shape retrieval. 
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