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Abstract 

To reduce memory requirements for texture mapping a model, we build a surface parametrization specialized 
to its signal (such as color or normal).  Intuitively, we want to allocate more texture samples in regions with 
greater signal detail.  Our approach is to minimize signal approximation error — the difference between the 
original surface signal and its reconstruction from the sampled texture.  Specifically, our signal-stretch pa-
rametrization metric is derived from a Taylor expansion of signal error.  For fast evaluation, this metric is 
pre-integrated over the surface as a metric tensor.  We minimize this nonlinear metric using a novel coarse-to-
fine hierarchical solver, further accelerated with a fine-to-coarse propagation of the integrated metric tensor.  
Use of metric tensors permits anisotropic squashing of the parametrization along directions of low signal gra-
dient.  Texture area can often be reduced by a factor of 4 for a desired signal accuracy compared to non-
specialized parametrizations. 

Categories and Subject Descriptors: I.3.7 [Computer Graphics]: Color, shading, shadowing, and texture. 

 

1. Introduction 

Real-time rendering is making increasing use of texture-
mapping features provided by graphics hardware.  Advanced 
rasterization features include multi-texturing, shader expres-
sion trees, and programmable pixel shaders.  Surface signals 
are used to achieve a variety of rendering effects, including 
traditional color mapping, bump mapping (where surface 
normals are the signal), displacement mapping (geometry), 
and self-shadowing (horizon maps21 and polynomial texture 
maps20). 

While these rendering effects can also be computed in vertex 
shaders, texture mapping is advantageous because storing 
and processing texture images is generally more efficient 
than refining the carrier geometry to represent the detailed 
signal at the vertices of a dense mesh.3 

To allow texture mapping, a surface must be parametrized 
onto a texture domain by assigning texture coordinates to its 
vertices.  Given this parametrization, the surface signal is 
sampled into a texture image of the appropriate resolution.  
Texture memory can become a scarce resource in complex 
scenes with many textured objects.  In this work, we exam-
ine how to construct a parametrization to best represent a 
given surface signal using textures as compact as possible.  
We construct such a parametrization as an off-line, auto-
matic preprocess. 

  

(a) geometry-based 
parametrization 

(b) signal-specialized 
parametrization 

Figure 1: Comparison of geometric-stretch and signal-
stretch parametrizations.  The 3D-painted surface signal is 
captured into the 128x128 textures shown above.  The 
blurriness on the left is due to the parametrization’s under-
sampling of detail, which is improved on the right. 
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Most surface parametrization schemes to date assume no a 
priori knowledge of the signal, and instead minimize various 
geometric distortion measures.  In this paper, we consider 
the problem of building a surface parametrization optimized 
for a specific signal.  Intuitively, we want the parametriza-
tion to automatically allocate more texture samples to 
regions with greater signal detail.  Heuristics having this 
behavior could be defined in various ways.  We follow a 
principled approach, which is to minimize the signal ap-
proximation error — the difference between the 
reconstructed signal and the original surface signal.   

Our first contribution is a signal-specialized metric: 

•  The signal-stretch metric integrates signal approximation 
error over the surface (§3.2).  It is derived using a Taylor 
expansion of signal error (see appendix). 

•  During a pre-computation, each mesh face is assigned an 
integrated metric tensor (IMT), which encapsulates how 
much the signal varies over the face, and in what primary 
direction (§3.3). 

•  For fast evaluation, affine transformation rules can 
exactly transform these triangle-based IMTs (§3.4).   

Our second contribution is an efficient parametrization 
algorithm to minimize this metric using a multiresolution 
hierarchy: 

•  The IMTs are computed on the fine mesh triangles, and 
propagated fine-to-coarse in the hierarchy (§4.1). 

•  The chart is parametrized using a coarse-to-fine optimiza-
tion, based on affinely transformed IMTs (§4.2). 

•   The chart boundary parametrization is allowed to move 
during optimization, while still preserving an embedding 
(§4.4). 

•  As a post-process, the chart is relaxed to its tightest 
bounding rectangle, to exploit unused texture space (§4.5). 

The new metric and algorithm are incorporated in a system 
for creating signal-specialized parametrizations of meshes.  
By allocating greater texture density to surface regions with 
signal detail, the resulting parametrizations reduce signal 
approximation error for a given texture size (Figure 1), or 
permit smaller textures for a given approximation error 
(Figure 2).  For our examples, the same signal accuracy is 
achieved with a factor 3-5 savings in texture samples com-
pared to a signal-independent parametrization. 

2. Previous work 

Signal-independent chart parametrization.   Most 
schemes for flattening a surface chart into 2D minimize a 
geometric distortion metric, which assumes no knowledge of 
the surface signal.  Many of these distortion metrics are 
tailored for the authoring problem of mapping an existing 
image onto a surface mesh, rather than the problem of 
sampling a given surface signal. 

 

Eck et al.5 propose the discrete harmonic map, which assigns 
non-uniform springs to the mesh edges.  Duchamp et al.4 
investigate multiresolution solution methods for computing 
harmonic maps.  Floater6 proposes a similar metric with a 
different edge-spring weighting that guarantees an embed-
ding for convex boundaries.  Haker et al.9 compute 
conformal maps onto the sphere.  Hormann and Greiner12 
propose the MIPS parametrization, which attempts to 
preserve the ratio of singular values over the parametriza-
tion.  All four of these metrics disregard absolute stretch 
scale over the surface, with the result that small domain 
areas can map to large regions on the surface. 

Maillot et al.19 base their metric on mesh edge springs of 
nonzero rest length, where rest length corresponds to edge 
length on the surface.  Lévy and Mallet18 use a metric that 
combines orthogonality and isoparametric terms. 

Sander et al.23 focus on making textures as small as possible 
for an unknown surface signal.  Their stretch metric mini-
mizes undersampling by integrating the sum of squared 
singular values over the map.  Intuitively, this measures how 
distances in the domain get stretched when mapped onto the 
surface.  We refer to this metric as geometric-stretch, and 
review it in more detail in Section 3.1, as it contributes 
essential elements to our signal-specialized metric. 

Another contribution of Sander et al.23 is to construct a 
single parametrization over all meshes in a progressive mesh 
sequence.  In this paper we parametrize only a single mesh, 
focusing instead on signal specialization.  Parametrizing a 
single mesh allows us to optimize the chart boundaries to 
arbitrary shapes, resulting in more optimal parametrizations.  
Chart boundary linearity constraints could be re-
incorporated to allow parametrization of PM’s. 

Signal-specialized chart parametrization.   There has been 
relatively little work in exploiting knowledge of the surface 
signal in optimizing the parametrization. 

Given an existing parametrization, Sloan et al.24 warp the 
square texture domain onto itself to more evenly distribute a 
scalar importance field.  Unlike importance, our metric is 
derived directly from signal approximation error, and is 
integrated over the surface.  Our IMT captures signal direc-
tionality, which allows the parametrization to squash in the 
direction across the signal gradient.  We do not restrict the 
chart boundary to be a square. 

Terzopoulos and Vasilescu25 approximate a 2D image using 
a warped grid of sample values.  The warping is achieved 
using a dynamic simulation where grid edge weights are set 
according to local image content.  We consider signals 
mapped onto surfaces in 3D, define the parametrization on a 
coarser, irregular mesh, and store the signal in a texture 
image mapped onto this mesh. 
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Hunter and Cohen14 compress an image as a set of texture-
mapped rectangles, obtained by k-d tree subdivision of the 
image based on frequency content.  In contrast, our pa-
rametrization is continuous, considers a signal defined on a 
surface in 3D, and better adapts to high frequencies along 
diagonal directions. 

Multi-chart parametrization.  To avoid excessive distor-
tion, an arbitrary mesh is generally parametrized using 
multiple charts.  In the limit, distortion can be driven to zero 
by making each triangle its own chart.  However, partition-
ing the surface into many charts has drawbacks.  It 
constrains mesh simplification, requires more inter-chart 
gutter space, leads to mipmap artifacts, and fails to exploit 
continuity across charts.  Thus a balance must be made 
between parametrization distortion and the drawbacks of 
charts. 

Several approaches5,8,16,19,23 directly partition the original 
mesh, while other schemes2,17,22 define the charts using mesh 
simplification. 

For an interactive 3D painting system, Igarashi and 
Cosgrove15 construct charts based on the history of drawing 
operations.  The texture resolution on a surface region is 
selected using the viewing resolution at the time the region 
was last painted.  Our parametrization automatically adapts 
to the content of the signal, and scales the charts based on 
this content. 

The main focus of this paper is the parametrization of a 
single chart using a signal-specialized metric.  To process 
arbitrary meshes, we manually delineate the surface charts 
as in Krishnamurthy and Levoy16, and pack their parametri-
zations as in Sander et al.23, but our method is applicable to 
any “chartification” scheme. 

 

3. Parametrization metric 

3.1 Review of geometric-stretch metric 

fD
domain

(s,t)

S
surface
(x,y,z)

 

To find a good parametrization f of a given surface S onto a 
texture domain D, Sander et al.23 introduce the geometric-
stretch metric ( )fE S , which is derived as follows. 

The Jacobian of the function f is 

[ ] [ ]( , ) ( , )( , ) ( , ) ( , )f s tf s s t f t s tJ s t f s t f s t∂ ∂ ∂ ∂= = . 

The singular values Γ and γ  of this 3 2×  Jacobian matrix 
represent the largest and smallest length obtained when 
mapping unit-length vectors from the texture domain D to 
the surface S, i.e. the largest and smallest local “stretch”.   
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is called the metric tensor of the function f at (s,t).  The 
concept of metric tensor will become important in the 
derivation of our new signal-stretch metric. 

From the singular values Γ and γ, two norms corresponding 
to average and worst-case local stretch are defined as 

( ) ( )2 21 1
2 2 2( , ) f fL s t a cγ= Γ + = +   and  ( , )L s t∞ = Γ  . 

The L2 stretch norm can also be expressed using the trace of 

the metric tensor as ( )1
2 2( , ) fL s t tr M= . 

The squared L2 stretch norm is integrated over the surface S 
to obtain the geometric-stretch metric 

( ) 2
2

( , )

( ) ( , ) ( , )f S

s t D

E L s t dA s t
∈

= ∫∫S , 

where ( ), ( , )s fdA s t M s t ds dt=  is differential surface 
area. 

In our setting where the surface S is a triangle mesh, f is 
piecewise linear and thus its Jacobian Jf is constant over 
each triangle.  Therefore the integrated metric can be rewrit-
ten as a finite sum: 

( )( )1
2( ) ( , ) ( )

i

f f i i s i
D

E tr M s t A
∆ ∈

= ∆∑S , 

where ( )S iA ∆  is the surface area of triangle i∆ , and 
( , )f i iM s t  is the (constant) value of the metric tensor at any 

point ( , )i i is t ∈ ∆ . 

3.2 Signal-stretch metric 

f

h g

D
domain

(s,t)

S
surface
(x,y,z)

Q
signal
q∈ Rn

 

Unlike the geometric-stretch metric, our new metric consid-
ers a signal defined on the surface.  Let this surface signal be 
denoted by the function :g →S Q  where the signal-space 
Q can be vector-valued (e.g. RGB color is a 3-vector in Q). 
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To find a good surface parametrization f, we examine how 
well the function h g f= (from the texture domain D to 
the signal Q) is approximated when reconstructed from a 
discrete sampling over D.  For example, if the signal Q 
varies greatly on a region of the surface S, and the region is 
not allocated adequate space in the texture domain D, then 
the local texture resolution on that region may be insuffi-
cient to accurately represent the signal. 

In the appendix, we derive a metric for signal approximation 
error, Eh(s,t), defined as the difference between h and its 
reconstruction h  from a discrete sampling with spacing δ in 
D.  Our derivation makes two assumptions: (1) h is a 
piecewise constant reconstruction, and (2) the sampling is 
asymptotically dense.  Under these assumptions, the squared 
signal approximation error at a point is 

( ) ( )2
( , ) ( , )3h hE s t tr M s tδ= , 

where ( , ) s s s tT
h h h

s t t t

h h h h
M s t J J

h h h h

 
= =  

 

i i
i i

 

is the metric tensor of the signal function h.  (Here hs and ht 
are n-vectors where n is the dimension of the signal space 
Q.) 

The integrated squared error over the surface S is therefore 

( ) ( )2
( ) ( )3h hE trδ=S SM , 

where 
( , )

( ) ( , ) ( , )h h S

s t D

M s t dA s t
∈

= ∫∫SM  

is the integrated metric tensor (IMT) of the signal function 
h.  Reducing this integral to a sum over domain triangles, we 
obtain 

( )( )
i

h h i
D∆ ∈

= ∆∑SM M , 

where 
( , )

( ) ( , ) ( , )
i

h i h S
s t

M s t dA s t
∈∆

∆ = ∫∫M  . 

Our signal-specialized metric ( )hE S  can be seen as analo-
gous to the geometric stretch from Section 3.1 (neglecting 
the globally constant factor 2 3δ ), but using the metric 
tensor of the signal mapping h rather than the surface 
mapping f.  This is the reason we refer to it as the signal-
stretch metric.  In fact, if the signal reproduces the geometry 
(i.e. g is the identity map), then signal-stretch is equivalent 
to geometric stretch. 

3.3 Computing the IMT 

To compute the integrated metric tensor ( )h i∆M  of the 
signal on each triangle, we consider two cases. 

First, the signal may be a piecewise linear interpolant of 
per-vertex attributes, as for example an RGB color specified 
at each vertex.  In this case, the metric tensor ( , )hM s t  is 
constant over the triangle, just like the geometric ten-
sor ( , )fM s t .  The IMT is therefore the simple product 

( ) ( , ) ( )h i h i i s iM s t A∆ = ∆M . 

For completeness, we derive the Jacobian Jh for a triangle 
whose vertices have parametrizations p1, p2, p3 in D and 
signal q1, q2, q3 in Q.  It is obtained by solving the linear 
system 

( ) ( ) 1 2 3
1 2 3 1 1 1h

p p p
q q q J o

 =  
 

 

where o ∈ Q  completes the affine transform matrix.  Then, 
the metric tensor is T

h h hM J J=  as previously defined. 

The second case is that of a more general signal which has 
more detail than can be described at vertices.  One example 
is a detailed image projected onto the triangle mesh.  In that 
case, we compute ( )h i∆M  using numerical integration.  
Specifically, we apply a number of regular 1-to-4 subdivi-
sions to the triangle, evaluate the signal at all the introduced 
vertices, and then sum the metric tensors of the resulting 
piecewise linear interpolant, just as described above.  In our 
examples, we subdivided each mesh triangle into 64 sub-
triangles to compute the IMT. 

3.4 Affine transformation rule for the IMT 

Within our optimization algorithm (Section 4), we repeat-
edly modify the parametrizations (s,t) of the mesh vertices, 
and examine the change in the signal-stretch func-
tional ( )hE S .  The straightforward implementation would be 
to recompute the integrated metric tensors of the mesh 
triangles based on the modified parametrization.  This is 
prohibitive for two reasons: 

(1) For the case of a general (nonlinear) signal on the mesh, 
the IMT is computed using expensive numerical integration. 

(2) In our hierarchical solver (Section 4), coarse faces are 
used to represent regions of the original surface.  Even if the 
signal is linear on the fine mesh faces, it becomes nonlinear 
on coarse mesh faces, and thus expensive to compute. 

Fortunately, modifying the parametrization results in an 
affine transform of each mesh triangle, so we can exactly 
compute the IMT of a transformed triangle from its original 
IMT using a simple rule.  (Although the domain ∆i of the 
triangle changes, the integral ( )h i∆M  is still integrating the 
same region of the surface, due to the differential area term 
dAS.) 

Let : : ( ', ') ( , )e s t s t→ →D D  be the local affine transform 
from the new triangle parametrization to the old, resulting in 
the new maps f f e′ =  and h h e′ = .  Using the derivative 
chain rule, the new Jacobian is ' ( ', ') ( , ) ( ', ')h h eJ s t J s t J s t=  
where Je is the Jacobian of the map e.  Therefore, the new 
metric tensor is 

' ' '( ', ')

( ', ') ( , ) ( ', ')

T T T
h h h e h h e

T
e h e

M s t J J J J J J

J s t M s t J s t

= =

=
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If e maps triangle vertices from p1', p2', p3' to p1, p2, p3 in D, 
its Jacobian Je can be obtained by solving the linear system  

( ) ( ) 1 2 3
1 2 3 1 1 1

' ' '
e

p p p
p p p J o

 =  
 

 

where o ∈ D  completes the affine transform matrix. 

For the IMT pre-computation in Section 3.3, we always 
store ( )h i∆M  with respect to a canonical parametrization f 
of the triangle i∆ , e.g. one that maps the triangle onto a 
right-isosceles triangle in D.  Then, the affinely transformed 
IMT is 

 ' ( ) ( )T
h i e h i eJ J∆ = ∆M M  (1) 

since the constant multiplication by matrices T
eJ  and eJ  is 

a linear operator that can be factored out of the integration, 
and the integration over the triangle area in 3D is unaffected 
by the transform. 

To summarize, we pre-compute the integrated metric tensors 
on the original mesh faces with respect to canonical face 
parametrizations.  During optimization, we apply the affine 
transform rule to quickly evaluate the modified signal-
stretch metric. 

4. Chart parametrization algorithm 

Our optimization algorithm minimizes the nonlinear signal 
stretch ( )hE S over the parametrizations (s,t) of the mesh 
vertices, while maintaining an embedding. 

The basic strategy is similar to that of Sander et al.23.  After 
obtaining some initial chart parametrization, we minimize 
the nonlinear metric by repeatedly updating individual 
vertex (s,t) coordinates using line searches in the domain.  
Of course, other nonlinear optimization algorithms could be 
substituted, including those exploiting  analytic derivatives.  
To prevent parametric folding, we only consider perturbing 
the vertex within the kernel of the polygon formed by its 
neighboring vertices.  (The kernel of a polygon is the 
intersection of the interior half-planes defined by its bound-
ary edges.)  

For our nonlinear metric ( )hE S , we first compute IMTs on 
each triangle as discussed in Section 3.3.  Perturbing a 
vertex during optimization induces an affine transform on 
each of its adjacent faces.  We minimize the sum of the 
IMTs on these affinely transformed triangles using the 
formula of Section 3.4. 

However, optimizing the chart parametrization using a uni-
resolution algorithm has slow convergence, and often 
converges to bad local minima, particularly for our signal-
stretch metric. 

We improve both the speed and result of optimization using 
a novel multiresolution optimization algorithm.  A hierarchy 
is established over the chart using a progressive mesh (PM) 
representation10.  This PM is only used to accelerate the 
parametrization of the original (fine) mesh; the original 
mesh is not modified.  The PM is constructed by simplifying 
the chart mesh using a sequence of half-edge collapses, with 

a quadric error metric that seeks to preserve the surface 
signal11. 

As described in the next sections, we use this multiresolution 
PM sequence to (1) propagate the signal IMT fine-to-coarse 
from the original mesh to all coarser meshes, and (2) apply a 
coarse-to-fine parametrization algorithm that uses these 
IMTs.  In Section 4.4 we describe how we bootstrap this 
optimization process. 

4.1 Fine-to-coarse metric propagation 

For our hierarchical optimization technique, we need to 
redistribute the IMTs defined on triangles of the fine mesh to 
the triangles of the coarser meshes in the PM sequence.  This 
redistribution must necessarily be inexact, because the 
triangles in the meshes at different resolutions lack any 
nesting property on the surface. 

Transferring IMTs between faces requires expressing them 
with respect to a common coordinate system.  We use the 
current parametrization to do this.  We affinely transform the 
IMTs in the fine mesh triangles from their canonical frames 
to their shapes in the current parametrization. 

Then, for each half-edge collapse in the PM sequence, we 
redistribute the IMTs using the simple 
scheme illustrated on the right.  This 
heuristic scheme has the property that the 
sum of IMTs over mesh triangles is 
maintained at all levels of detail.  Also, 
the redistribution weights are independ-
ent of the current parametrization.  We 
experimented with more complex redis-
tribution weights based on parametric 
overlap areas.  However, these other 
schemes were worse, because the pa-
rametrization can initially be poor (i.e. 
contain highly stretched triangles). 

4.2 Coarse-to-fine parametrization 

Our coarse-to-fine algorithm has the following structure.  
We first create an initial embedding for the few faces in the 
PM base mesh using a brute-force optimization as in Sander 
et al.23, but using the IMTs propagated from the fine mesh.  
Then, for each vertex split refinement operation in the PM 
sequence, we place the newly added vertex at the centroid of 
the kernel of its neighborhood polygon, and proceed to 
optimize it and its neighbors using IMTs: 

// Parametrize the newly added vertex and its neighbors. 
procedure optimize_vertex_split(Vertex vnew) 
   // obtain initial (s,t) for neighborhood to be an embedding 
    vnew.st := centroid(kernel(Neigbhorhood(vnew)))  
    optimize_vertex_parametrization(vnew) 
    repeat vertex_niter times 
        for (v ∈  Neighbors(vnew)) 
            optimize_vertex_parametrization(v) 
        optimize_vertex_parametrization(vnew) 

Specifically, optimize_vertex_parametrization(v) minimizes 
( )' ( )h ff

tr ∆∑ M  for faces f adjacent to v (Equation 1). 

M'1=M
1+M

2
M'2=M3

M'3=M4+M5

edge collapse

M4
M5

M1
M2

M3
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Unlike geometric stretch, the signal-stretch metric can have 
zero gradient since the signal may be locally constant on a 
region of the surface.  Therefore, as a regularizing term we 
add a tiny fraction of geometric stretch to the energy func-
tional minimized.  This prevents the formation of degenerate 
triangles, and ensures that new vertices find non-degenerate 
neighborhood kernels. 

4.3 Iterated multigrid strategy 

The coarse-to-fine (CTF) optimization creates a new pa-
rametrization of the fine mesh.  The new parametrization 
modifies the transformed IMTs on the fine mesh triangles.  
These transformed IMTs can be propagated fine-to-coarse 
(FTC), to be used in another iteration of CTF optimization. 

This process bears some resemblance to the V-cycle com-
monly used in multigrid optimization1, but applied here to 
irregular, non-nested grids. In classical multigrid, the coarse-
level operation is uniquely defined using a restriction 
operation.  In our setting, the mapping g is given at the fine 
resolution only.  Thus, the energy on some coarse mesh can 
only be defined given some pointwise mapping between the 
fine and coarse meshes.  We obtain this mapping implicitly 
by solving for a parametrization at the finest level and using 
this parametrization to propagate IMTs fine to coarse.  Thus, 
the current fine-level solution is actually used to define the 
coarse-level problem. 

To bootstrap this iterative optimization process, we require 
an initial parametrization to transform the IMTs on the finest 
mesh.  We obtain this initial parametrization using a CTF 
optimization with the geometric stretch metric23.  Since we 
don’t yet have IMTs, the CTF optimization refers to the 
geometry of the coarse meshes (x,y,z at each vertex).  This 
CTF strategy was also used by Hormann et al.13 to accelerate 
geometric surface parametrization.  The intuition is that a 
simplified mesh forms a good geometric approximation, and 
therefore its parametrization is a good starting state for 
parametrizing a finer mesh. 

The high-level algorithm can be summarized as: 

procedure optimize_chart_parametrization 
    Pre-compute canonical IMTs on fine mesh faces. 
    Construct progressive mesh of chart. 
    // Initialize the parametrization: 
    CTF optimize geometric metric without IMTs. 
    // iteratively optimize using signal stretch:  
    repeat ftc_ctf_niter times 
        Transform fine mesh IMTs using current param.  
        FTC propagate IMTs to all PM meshes.  // (§4.1) 
        CTF optimize signal stretch using IMTs. // (§4.2) 

A single iteration (ftc_ctf_niter=1) is sufficient for many 
models.  Further iterations (ftc_ctf_niter=3) yield significant 
additional improvement for some models, such as horse and 
gargoyle in Figure 5.  Our multigrid strategy is significantly 
faster than brute-force, single-resolution optimization, as 
shown in Table 1. 

 

 

 

Sidenote.  Earlier in the project, we explored using CTF 
optimization directly on the per-vertex signal instead of 
IMTs.  However, the problem is that the surface signal 
varies too much.  Unlike the geometric signal, it is not well 
approximated on a coarser mesh.  As an example, a color-
map signal usually zigzags across the unit RGB cube many 
times as one traverses the surface.  Thus, an optimized 
coarse mesh often fails to adequately “reserve” space in the 
parametric domain for signal detail present in the finer 
meshes.  The IMTs and their FTC propagation provide this 
lookahead capability, as shown by the results in  Table 1. 

4.4 Chart boundary optimization 

To improve the parametrization quality, we allow chart 
boundary vertices to move in the texture domain, at all 
levels of the coarse-to-fine optimization algorithm.  For this 
to work, we must overcome two problems. 

First, the geometric-stretch and signal-stretch metrics are not 
scale-invariant.  These functionals go to zero as the chart 
becomes infinitely large.  We achieve scale-invariance by 
multiplying the functionals by total chart area.  We find that 
this is preferable to multiplying per-triangle stretch by per-
triangle area because it is computationally more stable. 

Second, it is possible for the optimized chart boundary to 
self-intersect.  To prevent this, when optimizing a chart 
boundary vertex we test for intersections between the two 
adjacent boundary edges and the remaining boundary edges.  
Since there are typically m  boundary elements for a chart 
of m vertices, this brute-force testing is fast. 

One limitation of allowing the chart boundary to take on an 
arbitrary shape in D is that it imposes constraints on subse-
quent mesh simplification.  More vertices need to be 
retained on the simplified mesh to represent the boundaries, 
because their irregular parametric shapes are difficult to 
approximate with coarse polygons.  In this paper our ap-
proach is to simplify the mesh prior to parametrizing it. 

Optimization method Signal 
stretch 
Eh(S) 

Signal 
error 
SAE 

Timing
(secs) 

Floater + brute-force 552.0 38.7 7265

CTF (vertex signal) 90.0 33.4 23

CTF (vertex geometry) 89.1 35.9 21
+1x FTC-CTF IMTs 34.6 18.3 43
+2x FTC-CTF IMTs 32.9 17.7 65
+3x FTC-CTF IMTs 31.2 17.0 88
   + bound.-rect. FTC-CTF 28.7 15.6 118

Table 1: Comparison of parametrization methods on the 
model in Figure 1.  Signal approximation error is measured 
using 128x128 textures.  The final row includes the bound-
ary-rectangle optimization of Section 4.5, and is shown in 
Figure 1b. 
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4.5 Growth to bounding rectangle 

For a single chart, we embed its parametrization into a 
square texture image.  For multi-chart meshes, we find the 
tightest bounding rectangle around each chart, and pack 
these rectangles within the texture as in Sander et al.23.  In 
either case, some texture regions within the bounding square 
or rectangle are left unused.  To reduce these wasted regions, 
we encourage the chart to grow into the unused space.  We 
achieve this using an additional FTC-CTF iteration where 
we remove the chart area penalty but constrain the chart 
boundary to remain within the original bounding rectangle.  
Examples are shown in Figure 5. 

4.6 Relative chart scaling 

When optimizing multi-chart meshes, we apply a separate, 
isotropic scale to each chart to minimize error over the entire 
mesh.  Given N charts with domain areas ai and error metrics 
Ei, we determine for each chart an area scale factor αi (i.e., a 
1D scale by iα in both s and t).  Isotropically scaling a 
chart by αi creates the new error i i iE E α′ = ; for example, a 
chart 4 times bigger has 1

4 the squared signal stretch.  
Therefore we seek to find  

1
1

argmin
N

N

i i
i

Eα α α
=

 
 
 
∑…   such that  

1

1
N

i i
i

aα
=

=∑  

which minimizes summed error after the scaling, subject to 
the constraint that the total rescaled domain area be held 
constant.   

The optimal chart area scalings can be derived in closed 
form using the method of Lagrange multipliers as 

1

N

i i i k k
k

E a E aα
=

= ∑ . 

5. Results 

We have created signal-specialized parametrizations for a 
number of models, as summarized in Table 2 and shown in 
Figure 4 and Figure 5.  All models originated from 3D 
scanning.  The signals on the parasaur and horse were 
created by projecting hand-painted images onto the surfaces.  
The signals on the gargoyle and cat are normal maps.  The 
signal on the face is scanned color data. 

The motivation for texture mapping is to represent detail at a 
finer level than can be represented at the mesh vertices.  In 
our examples, we obtain this detail information either from a 
more detailed geometric model (e.g. normal map), or from 
an externally defined signal (e.g. painted color image).  In 
the first case, we transfer the signal from the more detailed 
mesh by ray-shooting along the interpolated surface nor-
mal22.  In the second case, we projected a high-resolution 
image onto the mesh. 

For the gargoyle and horse models in Figure 5, we manually 
partitioned the mesh into 6 and 5 charts respectively. 

Table 2 shows that our parametrization scheme takes a few 
minutes per model.  These are reasonable execution times 
for automatic preprocessing of a large suite of models. 

Figure 4 qualitatively compares three different parametriza-
tions of the cat surface.  The Floater result is representative 
of parametrizations that ignore absolute surface stretch (e.g. 
also harmonic map, conformal map, MIPS).  The geometric-
stretch parametrization provides the most even distribution 
of texture samples over the surface, as is evident in the 
rightmost column.  Our new signal-stretch parametrization 
adapts the sampling density to local signal detail.  Note how 
the sharp signal transitions near creases are allotted more 
space in the texture domain.  Thus, the reconstructed signal 
is significantly better.  For Figure 4, we omitted the chart 
boundary growth of Section 4.5, to make a fair comparison 
with Floater, and to show the natural shapes that the charts 
adopt using our algorithm.  Considering that 43% of the 
64x64 texture samples are thus unused, the rendering quality 
is surprisingly good. 

To quantify parametrization quality, we measure signal 
approximation error (SAE) as rms difference on a dense set 
of surface points, distributed uniformly according to surface 
area.  For each point, we compute the difference between the 
original signal and the bilinear interpolation of the four 
adjacent texture samples.  For vector-valued signals, we use 
the L2 norm.  Table 1 confirms a good correlation between 
our signal-stretch norm and SAE. 

Figure 3 graphs this signal error as a function of the number 
of texture samples, compared for three parametrizations.  
The graphs show a notable reduction in error from the 
geometric stretch to the signal-specialized metric.  In par-
ticular, a given approximation error can be obtained with a 
factor ~3–5 savings in texture size.  In the top graph, the 
signal-stretch deteriorates at higher texture sizes because the 
curves uses the same 1,000-vertex parametrization for all 
texture resolutions.  For high-resolution textures, it is 
beneficial to increase the parametrization complexity.  By 
comparison, the bottom graph shows the result of using the 
detailed 53,197-vertex mesh to parametrize the signal.  The 
improvement is then more uniform along the whole range of 
texture resolutions. 

 Model #Vertices #Charts Timing
(secs) 

Figure 1 parasaur 3,870 1 49

Figure 5 gargoyle 2,500 6 68

Figure 5 horse 5,000 5 117

Figure 5 face 1,315 1 12

Figure 5 parasaur 3,870 1 49

Figures 3,4 cat 1,000 1 10

Figure 3 cat 53,197 1 556

Table 2: Model sizes and parametrization timings. 
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Most of our examples show the improvement in appearance 
quality for a given texture size.  Figure 2 instead compares 
the texture size required for a given quality level. 

Geometric-stretch Signal-stretch 

texture 256x256;  SAE=6.3 texture 128x128;  SAE=6.3 
Figure 2: These nearly identical renderings demonstrate 
that our parametrization reduces texture size by a factor of 4 
for the same signal approximation error. 

Cat: 1,000-vertex parametrization
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Figure 3: Signal approximation error (SAE) as a function of 
texture size for three parametrizations, using a 1000-vertex 
mesh (top), and using a 53,197-vertex mesh (bottom).  The 
circled points indicate the 64x64 textures rendered in Figure 
4. 

6. Summary and future work 

To reduce the size of texture maps for real-time rendering, 
we introduced the signal-stretch parametrization metric 
derived from a Taylor expansion of signal approximation 
error.  To improve the efficiency and quality of the optimi-
zation, we developed a multiresolution algorithm that 
accumulates the fine signal variation onto the faces of 
coarser meshes, providing “lookahead” during coarse-to-fine 
optimization.  By integrating a metric tensor, we capture 
signal directionality and therefore locally squash the pa-
rametrization perpendicularly to signal gradient.  Our new 
optimization algorithm also accelerates the minimization of 
other parametrization metrics (both linear and nonlinear), 
such as geometric stretch. 

Signal-specialized parametrizations allocate more texture 
samples to mesh regions with greater signal variation.  
Texture resolution can be selected based on the desired 
signal reconstruction accuracy.  Often, a factor 4 reduction 
in texture space is possible, thus allowing more textured 
objects to be rendered in the same scene. 

Specializing a parametrization to a signal offers the greatest 
benefit on surfaces with inhomogeneous signals, i.e. non-
uniform detail.  For homogeneous signals (e.g. the high-
frequency grass texture in Figure 5), the signal-stretch 
metric effectively behaves like geometric-stretch because the 
averaged metric tensor (IMT/area) tends towards the same 
scaled identity matrix everywhere on the surface.  In this 
case, geometric stretch is the best one can hope for. 

Note that our metric applies to signals of arbitrary dimen-
sionality.  In particular, it is possible to specialize a 
parametrization to a combination of signals, such as normals 
and colors, and even the geometric signal itself. 

There are several areas for future work.  We are exploring 
better signal-specialized metrics derived from the Taylor 
expansion of a locally linear reconstruction, instead of the 
current constant-reconstruction assumption.  Our signal-
stretch metric ( )hE S  is proportional to 2δ , so its minimum 
is independent of texture resolution.  If the desired texture 
resolution is known a priori, a better parametrization might 
be attainable by specializing to that resolution.  Also, better 
efficiencies might be achievable by adapting mesh chartifi-
cation to the surface signal.  Finally, rather than simply 
measuring signal-approximation error, we could propagate 
this error through the rendering process, and even consider 
perceptual measures. 
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surface mesh chart 

(1,000 vertices) 
normal-field signal 

(RGB=nx,ny,nz) 
shaded surface 

(a) Input consists of a surface mesh and an associated surface signal.   Here the mesh is simpli-
fied from the scanned model in (b) and its signal is defined by normal-shooting22. 

(b) Detailed scanned mesh of
53,197 vertices used  

as source signal for (a). 

(c) Floater parametrization6.   SAE=51.4 

(d) Geometric-stretch parametrization23.  SAE=16.1 

(e) Signal-stretch parametrization.   SAE=10.7 

Figure 4: Comparison of parametrization schemes for a single chart, where the surface signal is a normal map.  In (c-e), columns 
show: (1) parametrization of chart in texture domain, (2) normal-map signal transferred to texture domain, (3) shaded surface 
using normal-map reconstructed from texture with 64x64 samples, and (4) visualization of mapping a regular 64x64 texture grid
pattern onto the surface.  Signal approximation error (SAE) is the rms L2 difference between the original color signal and its 
reconstruction over the surface.  For this 8-bit/channel normal-map, SAE thus ranges from 0 to 255 3 . 
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Geometric stretch Signal stretch Geometric stretch Signal stretch 

texture 128x128; SAE=16.3 texture 128x128; SAE=8.6 texture 128x128; SAE=75.5 texture 128x128; SAE=42.0 

texture 64x64; SAE=10.8 texture 64x64; SAE=8.2 texture 1024x1024; SAE=13.3 texture 1024x1024; SAE=12.1 

Figure 5: Results comparing traditional geometry-based surface parametrization with our new signal-stretch parametrization.  
For textures of the same size, the signal-stretch parametrization significantly reduces the signal approximation error (SAE) 
over the surface.  The upper left example uses normal maps whereas the other examples use color maps.  The lower right 
example demonstrates that for high-frequency signals, signal-stretch behaves much like geometric-stretch. 
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8. Appendix: Derivation of signal-stretch metric 

As explained in Section 3.2, signal approximation error is 
the difference between the function h and its reconstruction 
h  from a discrete sampling of the texture domain D.  In this 
appendix, we show that the squared pointwise error gives 
rise to the norm ( )2( , ) ( 3) ( , )h hE s t tr M s tδ=  under the 
assumptions of piecewise constant reconstruction and 
asymptotically dense sampling. 

We assume that the domain D con-
tains a regular grid of sample points 
(si,tj), spaced 2δ  apart on each axis.   
As shown on the right, let 
( , ) [ , ] [ , ]s t δ δ δ δ∈ − + × − +  be a local 
coordinate system within the grid 
square ij  about each sample, such 
that ˆˆ( , ) ( , )i js t s s t t ij= + + ∈ . 

Perhaps the simplest reconstruction function h  in the 
neighborhood ij  of each sample is given by the constant 
function ( , ) ( , )ij i jh s t h s t= .  With this reconstruction func-
tion, the pointwise squared error can be expressed as 

2 2
ˆˆ( , ) ( , ) ( , ) ( , ) ( , )h ij i j i jE s t h s t h s t h s s t t h s t= − = + + −  

Using a Taylor expansion about (si,tj), Eh can be rewritten as 

3ˆˆ( , ) ( , ) ( )h ijE s t E s t O δ= +  

where the first term is defined via 

2 2
ˆ ˆ

ˆˆ( , ) ( , ) ( , ) ( , )
ˆ ˆ

ˆ ˆ
ˆ ˆˆ ˆ( , ) .

ˆ ˆ

ij s i j t i j h i j

h h
h i j

h h

s s
E s t h s t h s t J s t

t t

a bs s
s t M s t s t

b ct t

    = =        

    
   = =        

    
 

The average squared error over the grid square ij  is then 

( )3
2

2 31 1
3 3

1 ˆˆ( , ) ( )
4

( ) ( ) .

ij ij

h h

E E s t O ds dt

a c O

δ δ

δ δ

δ
δ
δ δ

+ +

− −

= +

= + +

∫ ∫
 

Normally, we are interested in the squared error integrated 
over surface area.  The integral here ignores the variation of 
differential area ˆˆ( , )SdA s t  within the grid square ij , but 
that variation is insignificant for our asymptotic analysis 
( 0δ → ). 

The error converges to 0 at a rate 2( )O δ .  So, neglecting the 
higher-order terms 3( )O δ , a measure of approximation error 
with piecewise constant reconstruction as 0δ → is 

( ) ( )2
( , ) ( , )3h hE s t tr M s tδ= . 

While this analysis assumes h is continuously differentiable 
over D, it can also be applied heuristically to other functions 
such as piecewise linear ones. 
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