
Protocol Implementation in a Vertically Structured Operating System

Richard Black Paul Barham Austin Donnelly Neil Stratford
University of Cambridge

Computer Laboratory
Cambridge, CB2 3QG, U.K.

E-mail: First.Last@cl.cam.ac.uk, e.g. Paul.Barham@cl.cam.ac.uk
Tel: +44 1223 334600

Abstract

A vertically structured Operating System is one in which
neither the “kernel” nor “servers” perform work on be-
half of applications – the former because it exists only to
multiplex the CPU, and the latter in order to avoid Quality
of Service interference between the applications. Instead,
wherever possible, the applications perform all of their own
processing. Such a vertical structure provides many advan-
tages for applications but leads to some interesting prob-
lems and opportunities for protocol stack implementation.
This paper describes the techniques we used in our proto-
col implementation and the benefits that the vertical struc-
ture provided.

1. Introduction

A vertically structured operating system is one in which
applications perform as much of their own processing as
possible rather than having a kernel or shared servers do this
processing on their behalf. In order to avoid duplication of
code, applications can call on a collection of shared code
modules to implement for themselves the system services
traditionally carried out by the kernel or shared servers.

Two examples are the Exokernel [9] and Nemesis [10],
however the motivation for these two systems is different.
In the case of the Exokernel, the principal motivation was
to permit applications to optimize the implementations of
various system services using application-specific knowl-
edge, and thereby improve performance. In the case of
Nemesis, the motivating factor was the desire to simplify
resource accounting as an essential step towards the provi-
sion of Quality of Service (QoS). Performance gains were
merely a pleasant side-effect.

The accounting required to support communications
QoS is most easily performed in the presence of explicit
connections. The initial communications support within

Nemesis was entirely based on ATM, where the connection
oriented nature made associations between VCIs and appli-
cations straightforward. The datagram-based nature of IP
presents an interesting challenge in this respect.

This work has taken Nemesis and added to it support
for standard Internet protocols. It has some clear similar-
ities to previous work on user-space protocol implementa-
tion [3, 8, 15], however there are many novel aspects. Fre-
quently in other work, a user space implementation is an en-
hancement designed to improve performance and/or reduce
latency. The kernel protocol implementation remains and
is used for handling the unusual cases – timeouts, retrans-
missions, data transfer when the application is swapped-out,
connection establishment and the like. In some cases, wire-
compatibility has been sacrificed, and in others the appli-
cation must be trusted not to forge addresses in transmitted
packets.

In our work, the intent is to provide Nemesis-style QoS
guarantees (see section 2) to IP “flows” and to provide the
secure environment required when no backup kernel proto-
cols are available. Although the design of the network stack
will necessarily be focused on IP, we believe it to be flexible
enough to cope with other networking technologies.

In section 2 we describe the relevant background of
Nemesis and related work. Section 2.2 describes the buffer-
ing and packet I/O mechanisms in Nemesis, section 3 de-
scribes the protocol stack design and section 4 its current
implementation. Finally sections 5 and 6 present the per-
formance and conclusions.

2. Background

The environment being considered here is that of a gen-
eral purpose workstation being used to run a variety of ap-
plications, some of which will be processing continuous
media. The application mix and load will be dynamic and
even individual applications may change their demands as
they proceed through “phase changes”.



H/W

S/W Sched.



Device I/O under Nemesis is very different from contempo-
rary operating systems (figure 2). Once again a rigid sepa-
ration of control- and data-path operations is enforced. The
data-path portion of a device driver does the minimum nec-
essary to securely multiplex the real hardware resources ac-
cording to pre-negotiated QoS guarantees. Such servers are
coded with care to avert as much QoS crosstalk as possible;
we address this problem for network device drivers in this
paper.

In an ideal world all devices would provide an interface
where they could be accessed on the data path without use
of a device driver. Such devices have been termed “User
Safe Devices” [13]. The U-Net network interface [3] pro-
vides secure low-latency communication via direct applica-
tion access, but would require additional quality of service
functions in the Nemesis environment.

Space here prevents us from describing the overall struc-
ture of Nemesis in greater detail, however the core of the
system and its general state in May ’95 were described
in [10]. We now proceed to describe the work we have done
in implementing traditional protocol families on that base.

2.2. Communications support

The bulk (asynchronous) data transport mechanism in
Nemesis is known as an Rbuf channel [5]. The design is
based on a separation of the three logical issues in I/O:

� The actual data buffering memory.

� The aggregation mechanisms (for Application Data
Unit (ADU) support).

� The memory allocation.

To preserve QoS the I/O channels are designed to be com-
pletely independent. No resources are shared between them.

2.2.1. Data area. The Rbuf Data Area consists of a small
number (e.g. 1) of contiguous regions of the virtual address
space. These areas are always backed by physical memory
(from the real resources allocated by the memory system)
and a fast mechanism is provided for converting virtual ad-
dresses into physical addresses for use by drivers which per-
form DMA.

Access rights for the data area are determined by the di-
rection of the I/O channel. It must be at least writable in the
domain generating the data and at least readable in the do-
main receiving the data. Together these arrangements guar-
antee to a device driver that the memory area is always ac-
cessible without page-faulting. The data area is considered
volatile and is always updateable by the domain generating
the data.

2.2.2. Control areas. A collection of regions in the data
area may be grouped together (e.g. to form a packet) using
a data structure known as an I/O Record or iorec. An iorec
is similar to the Unix structure called an iovec, except that
as well as a sequence of base and length pairs, an iorec in-
cludes a header indicating the number of such pairs which
follow it (the header is padded to make it the same size as a
pair).

The domains pass iorecs between them to indicate which
addresses are being used for the “transfer”. The iorecs are
passed using two circular buffers known as control areas
each of which is managed in a producer / consumer arrange-
ment (and mapped with appropriate memory permissions).
A pair of event count channels3 is provided between the do-
mains to mediate access to each circular buffer. Thus each
simplex I/O channel has two control areas and four event
channels (figure 3).

Full
Empty

Unused

Control Area (B to A)

Domain BDomain A

Control Area (A to B

Event Channels
head
tail

head
tail

head
tail

head
tail

Data Area

Figure 3. Control areas for an I/O channel

Each control area functions as a FIFO buffer for the meta
information about the communication between the two do-
mains. Note that there is no requirement for either end of
the I/O channel to process the data in a FIFO manner, that
is merely how the buffering between the two ends is imple-
mented. The sizes of the control areas are fixed per-channel;
this provides for a limit on the number of packets outstand-
ing and an effective form of back-pressure preventing live-
lock.

Since the event counts for both control areas are avail-
able to the user of an Rbuf channel it is possible to operate
in a non-blocking manner. By reading the event counts as-
sociated with the circular buffers, instead of blocking on
them, a domain can ensure both that there is a packet ready
for collection and also that there will be space to dispose of
it in the other control area. Routines for both blocking and
non-blocking access are standard parts of the Rbuf library.

3The basic Inter-Domain Communication (IDC) primitive in Nemesis.



2.2.3. Buffer management. An I/O channel can be op-
erated in one of two different modes. In Transmit Master
Mode (TMM), it is the originator of the data which chooses
the addresses in the Rbuf data area. Whereas in Receive
Master Mode (RMM) the operation of the control areas is
indistinguishable from TMM, the difference is that the Rbuf
data area is mapped with the permissions reversed and the
data is placed in the allocated areas by the non-master side.
It is the receiver of the data which chooses the addresses in
the Rbuf data area.

As well as choosing the addresses, the Manager is also
responsible for keeping track of which parts of the data area
are “free” and which are “busy”.

2.2.4. Complex channels. Multi-destination communica-
tions (e.g. reception of multicast packets to multiple do-
mains) is handled using multiple TMM where the master
writes the same iorecs into more than one channel and ref-
erence counts the use of a single shared data area. If any do-
main is receiving too slowly (e.g. to the extent that its con-
trol area fills) then the transmitting domain will drop further
packets to that one client only; other multicast clients will
be unaffected.

Rbuf channels may also be extended to form chains span-
ning additional domains; in such cases the other domains
may also have access to the data area and additional control
areas and event channels are required.

3. Design

At a philosophical level, the inarguable design goals of
Operating System networking design are to maximize the
tradeoff between “performance” and “resources” without
compromising “security”. Exactly what this represents at
a lower level tends to vary less in security considerations
– that a principal may not forge its name (i.e. send packets
which purport to be from another IP address, port number,
or Ethernet address) or access other principal’s data (i.e. be
able to read data for others), than in performance consider-
ations.

Performance goals can be various. In the oft-criticized
Berkeley mbuf design, the goal was to permit communica-
tion on slow networks using as little memory as possible
bearing in mind that the entire process may be swapped out.
In the more recent U-Net system [3] the goal was low la-
tency. Likewise, there is frequently a bandwidth tradeoff
associated with the number of clients supported.

Our performance goal is to sustain the QoS guarantees
available to applications. Fortunately this is compatible
with latency and bandwidth desires.

3.1. Hardware considerations

In [5], it was proposed that network adapters be classified
into two categories, self-selecting and non-self-selecting.
Self-selecting hardware is able to demultiplex received data
to its (hopefully final) destination directly; DEC’s ATM-
Works 750 (OTTO) board is a good example of such hard-
ware. 3Com’s popular 3c509 Ethernet board is an example
of non-self-selecting hardware; it delivers all incoming data
to a small on-card circular buffer, leaving the device driver
or (more commonly) the protocol stack to perform the de-
multiplexing and copy the data to its eventual destination.

Some protocols have sufficiently simple
(de)multiplexing that it is reasonable to make use of
such support directly in the hardware. Obvious exam-
ples include basic AAL5 access over either the U-Net
modified Fore Systems ATM interface, or the Nemesis
ATMWorks [2] driver.4 Less obvious examples are the
Autonet-One Buffer Queue Index (BQI) scheme for TCP
connections [15], or the Ipsilon scheme for allocating ATM
circuits to IP flows [12]. In such schemes the security
information referred to above is assumed to have been
transmitted to the peer during flow establishment.

For other protocols (such as the Internet Protocol fam-
ily), things are somewhat more tricky and can rarely be
performed in hardware. For receive it is at least necessary
to perform some form of packet-classify operation on the
packets. It is to these protocols and network interfaces that
we now turn our attention.

3.1.1. Receive. In our current architecture, all network
adapter cards are abstracted into ones capable of self-
selection. This requires drivers for non-self-selecting cards
to include some packet filtering in order to demultiplex re-
ceived data. This must be done before the memory ad-
dresses that the data is to be placed in can be known, and
will usually require that the data be placed in some private
memory belonging to the device driver where it can be ex-
amined. On hardware which presents the data as a FIFO
from which the CPU requests each successive byte or word,
the device driver can combine copying the header out of
the FIFO with packet filtering. It can then leave the main
body of the data in the FIFO, to be retrieved once its fi-
nal destination is known. This avoids the need for private
driver memory and (more importantly) a copy from it into
the client buffers.

Once the packet filter has determined which protocol
stack instance (or “flow”) the packet is for the device driver
must copy the packet into the Rbuf data area associated with
that flow. Unfortunately both the packet-filtering operation

4This requires a very small amount of work in the device driver to trans-
fer the descriptor rings to and from the interface, and to demultiplex the
report ring.



and (particularly) the copy consume CPU resources which
are not directly accounted to the client and therefore have
implications for QoS provision. We return to the copy prob-
lem below in section 3.5.

3.1.2. Transmit. For transmission the device driver has a
similar, though slightly simpler procedure to perform. The
header of the outgoing packet must be checked to ensure
compliance with security. This is like packet filtering ex-
cept that, for almost all protocols, it can be achieved using
a simple compare and mask; there is no demultiplexing on
the fields and much information is pre-computable. Note
that since the Rbuf data area remains concurrently writable
by the client, the header of the packet must be copied to
some device-driver private memory either before or as part
of the checking process.

shared
protocol

code

Flow
Manager

application
code

network card driver

packet filter demux

application
code

sh
ar

ed
 p

ro
to

co
l c

od
e

sh
ar

ed
 p

ro
to

co
l c

od
e

flow setup
requests

filter
installation

user space

kernel

Figure 4. Logical interaction of components
in the protocol stack. Actual structure is as
shown in figure 1.

3.2. Flow manager

Flow setup and teardown is handled by a Flow Manager
server process. Once a connection has been set up, the Flow
Manager takes no further part in handling the actual data for
client applications; the Flow Manager is on the control path
only. All protocols (including datagram protocols such as

UDP) are treated as based on a flow between a local and a
remote Service Access Point (SAP).5

Figure 4 shows the logical interactions between four
user-space domains (two applications, the Flow Manager,
and a device driver), each having its own protection domain
(shown as dotted rectangles). Each solid arrow represents
a simplex Rbuf I/O channel; there are two for each duplex
flow.

Since the Flow Manager is a system process, it is trusted
to perform port allocation and update driver packet filters
in a consistent fashion. For standard protocols, this means
we can use built-in native code to perform the packet fil-
tering, and for non-standard protocols, packet filter descrip-
tions can safely be compiled down to machine code to be
executed directly by the device driver. Our use of packet fil-
tering technology also allows for easy extension in the range
protocols that can be handled.

The Flow Manager ensures that it is the last resort han-
dler for unrecognised packets; it can of course introduce
discard patterns into the filter if it wishes. By this means,
unsolicited packets cause the appropriate ICMP or TCP
RST segment to be returned. If the packet was a TCP con-
nection request then it performs a call-back to the appli-
cation which had previously registered the SAP. Note that
in principle, an application that was concerned about TCP
opens could arrange that they be handled by an appropri-
ately constructed flow, in a domain that had the required
QoS guarantees. This provides a way of limiting the effects
of SYN attacks [6], since only the attacked service will be
degraded.

The Flow Manager is also responsible for maintaining
per-host and per-interface state. This includes arbitrating
access to resources such as port numbers, ARP cache main-
tenance, and holding the routeing tables. Changes to the
routeing tables, and other out-of-band changes, are treated
as changes in the real underlying resource (e.g. of interface
bandwidth) and the flow must be re-organised (e.g. to the
new device driver); the application will receive a call-back
with the new details. Since higher level protocols such as
TCP are attempting to monitor the dynamic effective band-
width available, this explicit notification of real network
change does them no dis-service.

3.3. Application stack

The application contains a vertically structured protocol
stack for each IP flow. By this, we mean that it never in-
teracts with stacks for other flows.6 The Flow Manager has
provided the application with a secure channel through to

5This is effectively required by RFC1122 (Host requirements) section
4.1.3.3, though many other networking stacks ignore this.

6Unless, of course, an application should choose to multiplex a number
of flows onto the same Rbuf channel.



the device driver, and the application has obtained an Rbuf
data area for the channel. These unshared resources are
used by each protocol instance to ensure the QoS for the
application.

Since the Nemesis scheduler is providing QoS guaran-
tees for the CPU to the applications, the protocol code is
capable of implementing any timers and retransmissions it-
self. The Nemesis virtual processor interface makes it sim-
ple to arrange for upcalls at the appropriate times.

In practice, most protocol stacks created by an applica-
tion will use a standard shared library of protocol processing
code, as described in section 4.2. An application is however
free to implement its protocol stack as it wishes, since it
cannot possibly compromise the rest of the system. The
concept of Integrated Layer Processing (ILP) which may be
used for efficiency reasons within the application’s stack [7]
is completely orthogonal to the mechanism by which the
stacks are separated.

3.4. Driver scheduling

The device driver is responsible for policing use of the
network by client applications: an application should not
be able to use transmit bandwidth it has not explicitly been
granted, nor should applications swamped by unprocessed
received data cause data loss for other applications which
are able to keep up.

Our device drivers perform traffic shaping by scheduling
transmissions according to resource allocations set up by
the Flow Manager. Receive backlogs are dealt with auto-
matically since Rbuf channels provide hard back-pressure
due to their explicit buffering. If an application does not
send empty buffers to the driver frequently enough, the
driver drops its packets. Thus applications which keep up
are not unfairly penalised as a result of those which don’t.

3.5. Moving the copy

In section 3.1.1 we described a problem for QoS in which
the data copy required in the device driver for non-self-
selecting interfaces causes CPU time not to be attributed
to the application but to the device driver. We now describe
a scheme for averting this problem.

3.5.1. Call-Priv. Nemesis has a concept called a call-priv
(originally developed for the windowing system and de-
scribed in [2]). This is best thought of as a pseudo-opcode
— that its name is similar to the Alpha processor’s call pal
is not accidental. A call-priv is a trap into trusted code pro-
vided by a device driver which allows some operation to
take place in the privileged protection domain of the callee,
but on the CPU time of the caller. The following require-
ments must be met:

� Interrupts (and scheduling) are disabled throughout.

� The code must have a maximum running time which
is sufficiently small so as not to alter the scheduling
behaviour of the system.

� The code must make no callbacks to application code.

� The code must not attempt to perform any synchroni-
sation (e.g. block).

� The code must not access any addresses which may
page-fault.

The Spin system [4] also permits downloading code into
the kernel. In that case the intention is to permit any ap-
plication to provide compiler signed safe code into the ker-
nel. Whilst some of the requirements (such as modifiability
and being call-back free) are the same as for call-privs, the
scheduling requirements are very different – for their much
larger kernel, the halting problem requires that they run
the downloaded sections within schedulable kernel threads
which are absent from the Nemesis architecture.

Note that the call-priv is very different from the thread
migration model, since the execution environment during
the privileged state is very restricted. The restriction that
call-privs may not make callbacks implicitly prohibits nest-
ing them.

3.5.2. Call-Priv in communications. When using non-
self-selecting hardware, it is possible to arrange that the de-
vice driver receives all of the data into some protected pri-
vate memory. The device driver can then operate the Rbuf
channels to the applications’ protocol stacks in TMM giv-
ing in the Rbuf control areas the addresses of the data within
the device driver’s private memory. The application can not
access the data directly, but can use the call-priv mechanism
to copy the data to the final required position.

This technique effectively moves the copy from the de-
vice driver into the application at the cost of the data struc-
tures which must be maintained by the device driver to per-
mit the call-privs to check their requests. Since the per-
formance goal is QoS rather than outright bandwidth this
technique is advantageous.

4. Current implementation

This section describes our current (simple) implementa-
tion of the described design. Although under active devel-
opment it is, nevertheless, already possible to measure the
reduction in QoS crosstalk that this design provides.



4.1. Flow manager implementation

Applications communicate with the Flow Manager us-
ing same-machine RPC.7 Applications wishing to use the
network make a flow setup request to the Flow Manager; if
the local port requested is free the request succeeds. The
Flow Manager constructs a transmit filter, extends the re-
ceive packet filter, and installs them within the device driver
domain. The Flow Manager completes the binding between
the two domains and returns a Flow Information Block
(FIB) to the calling application.

Applications may use the FIB to configure the proto-
col code to format packets correctly for that particular flow.
This configuration information includes such details as the
local and remote IP address and port numbers, but also in-
cludes the source and destination (or next hop) Ethernet ad-
dresses. Although all of these details are provided by the
Flow Manager to the application to enable it to generate cor-
rectly formatted packets, the guarantee that they are correct
comes from the transmit filter downloaded from the Flow
Manager into the device driver.

Our current implementation of the Flow Manager is used
primarily for connection setup; its other functions as de-
scribed in section 3.2 are not yet fully implemented.

4.2. Application protocol implementation

In order to minimize QoS crosstalk a fresh set of re-
sources is associated with each new flow, so that no con-
tention for them can occur. Each new flow receives two8

Rbuf I/O channels, an Rbuf data area, and a FIB. The Rbuf
data area is sized in an application specific manner.

An application is free to use whatever protocol code it
chooses, but in order to allow us to experiment with a wide
variety of protocol compositions, we have implemented a
highly modular stack. Each protocol layer presents two
Rbuf-like interfaces by which data can be sent to or received
from the network. Because each protocol layer looks just
like the direct connection to the device driver, layers can be
composed with ease. Note that although the semantics of
an Rbuf communications channel are used between layers,
there is no need to actually have a real Rbuf I/O channel
present: no protection domain is being crossed. Instead, or-
dinary procedure calls are used to pass iorecs from layer to
layer, leading to an efficient and flexible implementation.

Since iorecs are used to describe packets in transit, a
naı̈ve way of adding a header to a packet would be to re-
write the iorec to have an additional entry for the new header
(similar to adding an mbuf on the front of a chain in Unix).
This is inefficient as it increases the length of the iorec, and
adds embedded store management. Instead the flow-based

7Also implemented using shared memory and event channels.
8or in rare simplex cases, one.

nature of the communication is used to pre-calculate the to-
tal size of header required for all layers. Whilst this is stan-
dard practice in many fixed composition systems, it is rarer
when protocols can be composed arbitrarily on a per-flow
basis.

4.3. Device drivers

There currently exist device drivers for a number of net-
work cards. Various support libraries exist to allow transfor-
mation of the iorecs into physical addresses for DMA, and
for performing the packet filtering checks required by the
Flow Manager. Application protocol stacks are required to
use data areas with a sensible alignment. Non-aligned pack-
ets will be discarded. This permits numerous optimisations
in the packet filtering code.

In our initial implementation the packet filtering was per-
formed using the Berkeley Packet Filter (BPF) [11] because
of its ease in porting to our environment. More recently we
have exploited the trusted nature of the Flow Manager to
use native code to demultiplex well-known protocols. For
non-standard protocols we have adopted some of the parse
tree flattening from MACH Packet Filter (MPF).

An additional benefit of MPF is its ability to demulti-
plex IP fragments by keeping relevant state. We intend to
offer applications two different selective filters – one which
does the complete job, and another which will only receive a
packet if the fragments arrive in the correct order. The latter
is likely to prove beneficial for environments in which unex-
pected fragment arrival is almost certainly due to fragment
loss, and / or where reordering would be tedious for the ap-
plication. Such an environment might be NFS requests over
a local Ethernet segment.

We use a template-based integrated copy-and-check
transmit filter routine, giving us a zero-copy transmit path.

4.4. Transmit scheduling

Since transmit bandwidth on a network interface is a real
resource, the driver must provide mechanisms to schedule it
according to QoS parameters. For interfaces like the DEC
ATMWorks 750, this rate control is provided by the hard-
ware. For other devices (e.g. Ethernet) this scheduler is pro-
vided by software.

The choice of scheduling algorithm is often dependent
on the constraints of the device. The fact that the underlying
real resource server may not be working at constant rate but
is affected by the other traffic sharing the same media (e.g.
Ethernet) complicates matters.

One of the principal issues is the ability of applications
to explicitly state the time period over which their guarantee
should hold, and therefore limit the “burstiness” which they



0

5

10

15

20

25

0 5 10 15 20 25 30 35 40 45

M
bi

t/s
ec

seconds

(a) Transmit guarantees (out of 100ms)

4ms
8ms

12ms
16ms
20ms
24ms

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25

M
bi

t/s
ec

seconds

(b) Use of slack time on transmit

slack
guaranteed 1
guaranteed 2
guaranteed 3
guaranteed 4

Figure 5. Ethernet transmit: (a) QoS levels, and (b) slack time

will observe. There is also a familiar latency / bandwidth
tradeoff.

We have considered Stride Scheduling [16] and various
other related algorithms [17], but at present we are using
a modified form of the CPU scheduler already present in
Nemesis (the atropos scheduler described in [10]). It guar-
antees a rate specified by an allocation period and a slice
within that period, and also supports best-effort service-
classes. This scheduler permits some amount of experimen-
tation with the above issues.

5. Evaluation

Previous publications on Nemesis have reported on its
abilities in handling Audio and Video streams. In this sec-
tion we present four experiments which we have performed
to measure the effectiveness of our QoS schemes for con-
ventional protocols and network interfaces; we have chosen
IP and 100Mbit Ethernet for our apparatus.

5.1. Transmit

The purpose of these experiments is to show that Neme-
sis provides an adequate mechanism for control of the real
resource of transmit bandwidth on an interface. To demon-
strate this, a simple test application was written which trans-
mits a stream of MTU-sized UDP packets as fast as pos-
sible. The bandwidths obtained are recorded on another
machine and integrated over 200ms intervals to give an ap-
proximation of instantaneous bandwidth. During the exper-
iments, the Nemesis machine is also running various system
daemons and is responding to ARP and ICMP correctly and
in a timely manner.

In the first experiment, 6 identical copies of the test ap-
plication are started. Each application however is given a

different QoS guarantee, expressed as a number of ms slice
out of a period of 100ms, and no stream is allowed to use
slack time. The first stream is allocated 4ms out of 100ms
(i.e. 4Mbits/sec); each successive stream is allocated a fur-
ther 4ms, so that the sixth stream is allocated 24ms out of
100ms (for an expected bandwidth of 24Mbit/sec). Since
all 6 applications are running concurrently, this sums to a
total bandwidth of approximately 84Mbit/sec. Note that the
guarantees are of access to the Ethernet device, not neces-
sarily to the network due to collisions etc.

Figure 5(a) shows the bandwidths obtained by each ap-
plication. It can be seen that the allocations are stable over
the whole length of the experiment, and that each applica-
tion obtains a transmit bandwidth proportional to its QoS
guarantee.

In the second experiment, 5 copies of the same applica-
tion are run on the Nemesis machine. The first copy is given
no guarantee, but is allowed to make use of any otherwise
unused transmit bandwidth. The subsequent applications
are started at 5 second intervals and have guarantees rang-
ing from 6ms to 9ms (in 1ms steps) out of every 100ms.

Figure 5(b) shows the Ethernet bandwidths obtained by
each application. It can be seen that the bandwidth achieved
by the initial application starts off at the full line rate, but
decreases as each guaranteed stream comes on-line. The
first guaranteed stream gets 6Mbit/sec and each subsequent
ones get an additional 1Mbit/sec. They are unaffected by
the first stream’s use of slack time.

Finally, a comparison of best-effort transmit bandwidth
against a modern Unix variant (Linux 2.0.29) was made.
Since it is rare for Unix implementations to offer traffic
shaping functions, best-effort performance is all that was
tested. In both cases, two applications send UDP packets as
fast as possible.

Figure 6 shows the bandwidths received over time for



0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

M
bi

t/s
ec

seconds

Best effort transmit comparison

Nemesis stream 1
Nemesis stream 2

Linux stream 1
Linux stream 2

Figure 6. Transmit, best-effort comparison

the streams on Nemesis (the left trace) and Unix (the right
trace). Over the time period graphed the average bandwidth
obtained was 46.1Mbit/sec for Nemesis and 44.1Mbit/sec
for Unix, furthermore it can be seen that Nemesis delivered
that bandwidth in a very much smoother manner than Unix.

5.2. Receive

The purpose of this experiment is to show that the Neme-
sis structure we have developed avoids QoS crosstalk even
in the case of receive overload.

In this experiment, a Nemesis machine (now known
to transmit at a very smooth rate) is used to source two
streams of UDP datagrams at precisely 40Mbits/sec and
45Mbits/sec.

A second Nemesis machine receives these streams, and
runs one consumer application per stream. The first con-
sumer application discards the UDP packets as soon as they
reach the application’s main program (at the top of the ap-
plication stack). The second application “processes” each
packet before reading the next. In addition, after reading
every 20000 packets, it deliberately slows down its packet
processing by spending a greater amount of CPU time on
each packet – this is intended to emulate an overloaded ap-
plication falling behind in its processing of network data.
The desired behaviour is that the overloaded application,
whilst causing the device driver to discard its own packets,
should have no effect on the first application.

Both applications log each packet’s size and arrival time,
while the device driver logs every packet which it must dis-
card.

In figure 7, “no-processing” is the Ethernet bandwidth
received by the UDP application which is steadily receiving
data at 40Mbits/sec without processing each packet. The
second application’s received bandwidth is plotted as “pro-

0

10

20

30

40

50

0 5 10 15 20 25 30

M
bi

t/s
ec

seconds

Application Receive Bandwidth

no-processing
processing

loss

Figure 7. Receive QoS performance

cessing”, and the packet losses recorded by the device driver
are shown labelled “loss”.

Each time the second application decreases its process-
ing rate, the “processing” trace drops while the “loss” trace
rises by the same amount. This occurs because the appli-
cation is processing each packet for sufficiently long that
the buffering it has been allocated has overflowed. Because
packets are being discarded early by the device driver in a
controlled manner, the well-behaved application receiving
40Mbit/sec is completely unperturbed by the actions of the
trailing domain.

6. Conclusions

We are interested in implementing user-space protocol
code for reasons very different from those previously pub-
lished. Our concern for QoS support has led to a system
where the device driver does as little per-packet processing
as possible.

To this end, we have developed a scheme whereby, even
for “dumb” network interfaces, the security of the data in
both receive and transmit can be maintained without a copy
in either direction. This scheme is implemented using a
flow-oriented approach to all communications. An out-of-
band Flow Manager is responsible for creating the data path
and transmit and receive filters that will be used for the du-
ration of the flow.

An initial implementation of our design has already been
measured, and our goal of preserving QoS has been shown
to have been accomplished.

We recommend the use of IP Flows and user protocol
stacks for Quality of Service in addition to the previously
published reasons.



7. Acknowledgements

Many people have worked on Nemesis over the years;
without them, this work would not have been possible.

Figures 1,2,3 and 4 are reproduced in this paper from the
Nemesis documentation with the permission of their respec-
tive copyright owners.

References

[1] T. E. Anderson, B. N. Bershad, E. D. Lazowska, and H. M.
Levy. Scheduler Activations: Effective Kernel Support for
the User-Level Management of Parallelism. ACM Transac-
tions on Computer Systems, 10(1):53–79, February 1992.

[2] P. R. Barham. Devices in a Multi-Service Operating System.
Technical Report 403, University of Cambridge Computer
Laboratory, October 1996. Ph.D. Dissertation.

[3] A. Basu, V. Buch, W. Vogels, and T. von Eicken. U-Net:
A User-Level Network Interface for Parallel and Distributed
Computing. Proceedings of the 15th ACM SIGOPS Sympo-
sium on Operating Systems Principles, Operating Systems
Review, 29(5):40–53, December 1995.

[4] B. Bershad, S. Savage, P. Pardyak, E. G. Sirer, D. Becker,
M. Fiuczynski, C. Chambers, and S. Eggers. Extensibility,
Safety and Performance in the SPIN Operating System. Pro-
ceedings of the 15th ACM SIGOPS Symposium on Operating
Systems Principles, Operating Systems Review, 29(5):267–
284, December 1995.

[5] R. Black. Explicit Network Scheduling. Technical Report
361, University of Cambridge Computer Laboratory, De-
cember 1994. Ph.D. Dissertation.

[6] CERT. TCP SYN Flooding and IP Spoofing Attacks,
September 1996. Availible via ftp from info.cert.org.

[7] D. Clark and D. Tennenhouse. Architectural Considerations
for a New Generation of Protocols. In Computer Commu-
nication Review, volume 20(4), pages 200–208. ACM SIG-
COMM, September 1990.

[8] A. Edwards, G. Watson, J. Lumley, D. Banks, C. Calam-
vokis, and C. Dalton. User-space protocols deliver high
performance to applications on a low-cost Gb/s LAN. In
Computer Communication Review, volume 24, pages 14–
23. ACM SIGCOMM, September 1994.

[9] D. Engler, F. Kaashoek, and J. O’Toole Jr. Exokernel: an
operating system architecture for application-level resource
management. In Proceedings of the 15th ACM SIGOPS
Symposium on Operating Systems Principles, Operating
Systems Review, 1995.

[10] I. M. Leslie, D. McAuley, R. Black, T. Roscoe, P. Barham,
D. Evers, R. Fairbairns, and E. Hyden. The Design and Im-
plementation of an Operating System to Support Distributed
Multimedia Applications. IEEE Journal on Selected Ar-
eas In Communications, 14(7):1280–1297, September 1996.
Article describes state in May 1995.

[11] S. McCanne and V. Jacobson. The BSD Packet Filter: A
New Architecture for User-level Packet Capture. In USENIX
Winter 1993 Conference, pages 259–269, January 1993.

[12] P. Newman, W. L. Edwards, R. Hinden, E. Hoffman, F. C.
Liaw, T. Lyon, and G. Minshall. Ipsilon Flow Management
Protocol Specification for IPv4 - Version 1.0. Internet RFC
1953, May 1996.

[13] I. Pratt. User-Safe Devices. PhD thesis, University of Cam-
bridge Computer Laboratory, 1997. (In Preparation).

[14] T. Roscoe. Linkage in the Nemesis Single Address
Space Operating System. ACM Operating Systems Review,
28(4):48–55, October 1994.

[15] C. A. Thekkath, T. D. Nguyen, E. Moy, and E. D. La-
zowska. Implementing Network Protocols at User Level.
In Computer Communication Review, volume 24, pages 64–
73. ACM SIGCOMM, September 1993.

[16] C. A. Waldspurger and W. E. Weihl. Stride Scheduling: De-
terministic Proportional-Share Resource Mangement. Tech-
nical report, MIT Laboratory for Computer Science, June
1995. Technical Memo MIT/LCS/TM-528.

[17] H. Zhang and S. Keshav. Comparison of Rate-Based Service
Disciplines. In Computer Communication Review, volume
21(4), pages 113–121. ACM SIGCOMM, September 1991.


