

ABSTRACT
We introduce a layout manager that exploits the robust

sensing capabilities of next-generation head-worn displays

by embedding virtual application windows in the user’s

surroundings. With the aim of allowing users to find

applications quickly, our approach leverages spatial

memory of a known body-centric configuration. The layout

manager balances multiple constraints to keep layouts

consistent across environments while observing geometric

and visual features specific to each locale. We compare

various constraint weighting schemas and discuss outcomes

of this approach applied to models of two test

environments.

Author Keywords

Head-worn displays; HWD; HMD; window manager; view

management; spatial constancy; visual saliency.

ACM Classification Keywords

H.5.3 [Information interfaces and presentation]: User

interfaces

INTRODUCTION
A new generation of head-worn displays (HWDs) is rapidly

advancing, and lightweight form factors such as Microsoft

Hololens are capable of reliably detecting the wearer’s

surroundings in real time. This spatial information can be

leveraged to integrate personal information displays into the

environment to support analytic tasks that rely on multiple

sources of information [3, 6, 7]. However, the ideal

placement remains an open research question; although

much work has explored configurations in display space,

little attention has been given to content layout on the

surface structure of a sensed 3D model of the environment.

This paper explores the transition of window layouts from

body-centric to world-based reference frames [6]. For

example, imagine a mobile HWD content manager that

arranges your favourite apps in a body-centric ‘bubble’.

When you arrive at your home or office, you can ‘pin’ this

window layout onto the surrounding surfaces (Figure 1).

Some key requirements we apply to such transitions are 1)

to integrate content with existing surface structure, 2) to

maintain the spatial relationship of windows so the user can

locate apps quickly, and 3) to prevent app windows from

occluding important objects in the environment.

We propose using the device wearer’s egocentric coordinate

system as a reference frame for world-fixed spatial layouts.

This approach serves the dual purpose of leveraging reliance

on body-centric spatial memory and maintaining consistency

between different environments. However, layouts must also

respect geometric differences between different spaces, for

instance to avoid overlapping surface boundaries or

occluding scene objects. We developed a layout manager that

balances multiple constraints, including spatial constancy,

visual salience, surface fit, window overlap and relative

order.

RELATED WORK
A line of work following Bell et al. [2] on view management

for augmented reality uses constraint-based algorithms for

managing virtual content, typically to keep object labels from

overlapping and close to their point of origin. Constraints are

Figure 1. Transitions of application window layouts to world-fixed coordinates are derived from a common body-centric layout (a).

This approach maintains relative spatial consistency while integrating application layouts into diverse surroundings (b, c). © B. Ens

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full

citation on the first page. Copyrights for components of this work owned by others

than ACM must be honored. Abstracting with credit is permitted. To copy otherwise,

or republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from Permissions@acm.org.

SUI '15, August 08 - 09, 2015, Los Angeles, CA, USA

© 2015 ACM. ISBN 978-1-4503-3703-8/15/08…$15.00

DOI: http://dx.doi.org/10.1145/2788940.2788954

mailto:Permissions@acm.org

often combined using force-based algorithms [10], however a

greedy approach has been noted to increase dynamic layout

stability [9]. We instead apply a random walk approach

[8, 14] that observes global layout constraints. Although

some recent work has used vanishing line detection to align

virtual content with real-world surfaces [13], view

management generally occurs in 2D display space or on a set

of view-aligned planes [21]. In contrast, we are interested in

3D spatial layouts and draw from early work by Feiner et

al. [7] and Billinghurst et al. [3] that imagined multiple

windows arranged in body-centric configurations or

anchored to world objects.

We follow a use case similar to the Office of the Future [16],

in which applications are embedded on walls and other

surfaces in the environment. Thus our work overlaps with

research on projection-based systems that can detect and

adapt to the surrounding 3D structure [5, 15, 17]. One

closely-related work [22] describes a multi-projector

window-manager that maximizes available projection space,

but does not address background saliency. Following the

vision of such works on a HWD platform presents specific

challenges, in particular the limited field of view (FoV) of

current displays [6]. To help mitigate this issue, we aim to

leverage spatial memory [1, 17] by applying a constraint of

spatial constancy [18, 20], which has received little attention

in the context of spatial user interfaces.

A LAYOUT MANAGER FOR SPATIAL

CONSTANCY
We created a layout manager for see-through, stereoscopic

HWDs that embeds virtual 2D application windows in a 3D

environment. Using a sensor-generated model, layouts are

created at run time based on the current pose (i.e. position

and orientation) of the user. Each generated layout balances

several constraints (described below) to arrive at a given

layout. The main goals of the layout manager are threefold:

1) Conform to surface structure – Virtual app windows are

superimposed on real-world surfaces, observing attributes

such as surface boundaries and occluding objects.

2) Maintain layout consistency – We apply a spatial

constancy constraint to maintain window positions relative to

the user. Additional constraints try to maintain relative order

and prevent overlap [2, 9, 21].

3) Preserve background information – Window positions are

adjusted to prevent interference with important scene content.

While there are many possible attributes to observe (e.g.

colour, texture, contrast, object edges [9]), we focus on visual

salience [9], which models human visual importance.

Implementation

We implemented our layout manager using Unity3D on a

desktop computer with an NVIDIA Quadro 600 GPU. We

created two mock environments for development and testing,

resembling a typical office and living room (Figure 2a, b).

Layouts are viewed through an Epson BT-100 stereoscopic

HWD with 23° diagonal FoV, tethered by composite video

input. By tracking the HWD with a Vicon system, virtual

content appears through the HWD to be accurately

superimposed on the physical environments.

Algorithm

Our layout manager follows a Monte Carlo approach [11]

shown to be effective for creating constraint-bases layouts in

3D space [8, 14]. Input consists of data extracted form a

mesh model and a single photo of each environment. The

mesh models (Figure 2g, h) are created with Kinect

Fusion [12] and the photos (Figure 2a, b) are taken with a

typical SLR camera with a wide-angle lens (110°). We begin

by searching the vertices of the mesh models for regions of

uniform surface normal, from which we extract a set of

surface polygons (Figure 2c,d) using a greedy search with

Hough transforms [19]. Meanwhile, we compute a saliency

map of both scenes using the AIM saliency algorithm of

Bruce and Tsotsos [4] (Figure 2e, f). We chose this saliency

method from many available options because of the high

contrast and preserved boundary regions in the saliency map.

Finally, we calibrate the model with image space (Figure

2g, h) to allow saliency queries of 3D model points.

Figure 2. Office (a) and living room test environments (b).

Surface polygons (c, d) generated from the mesh models (g, h).

Saliency maps using AIM [4] (light regions are high salience,

contrast increased for demonstration; e, f). Saliency maps

projected on mesh models (red nodes are high salience; g, h).

The layout solution space is a set of all possible assignments

of a set of application windows W to unique points in a

discretized set PE. We define a ‘goodness’ function

𝑮𝒐𝒐𝒅𝒏𝒆𝒔𝒔(𝑳) ≔ ∑ 𝜶𝒊 ∙ 𝒓𝒊(𝑳𝒊)𝒊 where αi is an optional

weight, 𝑟𝑖: (𝑂𝑖 ⊆ 𝑂) → ℝ is a constraint operating on the

parameters O, L is a proposed layout solution, and Li is a

layout subset containing windows with constraints Oi.

The algorithm iteratively evaluates the goodness function on

layouts of randomly positioned windows. Layouts are

confined to a region 90° wide × 45° high, centered on the

forward view, discretized into points at increments of 5°.

Windows are resized to maintain apparent angular width. We

update the solution if improvement is found or with

probability p < 0.005. This factor allows the algorithm to

escape local maxima to find better solutions. We run 2000

iterations of this algorithm to generate an initial solution, then

an additional 500 iterations for a ‘fine-tuning’ phase, where

the pool of positions for each window is restricted to within

0.2m of the previous iteration. The primary phase finds a

‘good’ layout from the whole available space and the fine-

tuning phase optimizes that layout within the local maxima.

Mean run-time of the procedure is 3.26 s.

Our current implementation uses the following constraints:

Adherence enforces spatial constancy by minimizing the

angular distance of a window’s location from its default

body-centric position (Figure 3a). The score is calculated as

1 − 𝑑2, where d is the absolute angular displacement

normalized by a maximum angle of 30°.

Nonocclusion uses visual saliency to minimize the occlusion

of important scene objects. The score 1 − 𝑠4, where s is the

salience of the occupied region normalized by the scene’s

maximal salience value. High scores are given to windows in

regions with low salience.

We apply several local window constraints: View Direction

(to align windows closely to the user’s forward view),

Surface Fit (whether a window lies fully in a polygon), and

Line-of-Sight (window corners are unoccluded). Additional

global layout constraints are Relative Order of windows

(whether windows maintain their spatial relations e.g. left-

of), and Overlap (whether windows overlap others).

DISCUSSION
In preliminary trials we found the nondeterministic algorithm

to be relatively consistent. However the number of iterations

can be increased to improve consistency between trials or

decreased to reduce run time. One advantage of our approach

is that a finer discretization of space will have negligible

effect on run time, whereas greedy search [9] complexity

would increase with PE.

Figure 3 shows outputs of our layout algorithm with the

constraint weighting schemas defined in Table 1, which vary

the balance of Adherence and Nonocclusion. The Balanced

schema (Figure 3b) is ideally tuned to balance these

contrasting factors in our test environments. Through trial

and error, we found that the Nonocclusion constraint requires

a higher weight than Adherence to prevent windows from

often overlapping high salience regions, such as the area

surrounding the desktop monitors in the office setting (Figure

2g). The Constancy schema (Figure 3c) has a Nonocclusion

weight of zero. This theoretically causes each window to be

projected onto the nearest surface in line with its default

position (similar to Figure 1a), however the other constraints

cause some deviation. Conversely, the Saliency schema

(Figure 3d) has an Adherence weight of zero. This causes

windows to congregate in low salience basins of the

environment’s saliency map, regardless of their distance from

the default location. We provide the View-direction

constraint in place of Adherence to help prevent windows

from moving to extreme distances from the user’s forward

view.

LIMITATIONS AND FUTURE WORK
In this work we use a body-centric reference frame for

allowing windows to be found quickly given a limited FoV.

However, there are other possible interpretations of spatial

constancy, for instance placement of objects relative to

semantically meaningful objects. We also note that applying

a body-centric layout on a world-fixed frame assumes a

‘primary’ user pose within the room. There are many cases

where this holds true, for instance in a typical office or in

one’s favourite cozy chair. Many interesting research

questions are presented with more complex situations. For

instance, how should a layout behave if a user frequently

rotates between two different orientations? In future, we plan

Figure 3. a) Default window locations set in ‘floating’ array

50 cm from viewing position (green sphere). Results of

weighting schemas b) Balanced, c) Constancy, and d) Saliency.

Layout Adherence Nonocclusion

View-

direction

Balanced 1 2 0

Constancy 1 0 0

Saliency 0 2 1

Table 1. Three possible constraint weighting schemas

promoting different mixtures of spatial constancy and visual

saliency. All other weights are set to their default value of 1.

to explore the benefits and trade-offs of body-centric vs

world-based approaches to spatial constancy and combine

these in a single layout manager.

Dynamic environments pose additional questions, for

instance whether users would prefer windows to dynamically

change position when someone enters the room, or to be

temporarily occluded. Planned improvements include real-

time extraction of the environment model and layout

optimization, for instance by eliminating the mesh model or

cropping to reduce raycasting operations used to detect

occluded surface regions. This will allow us to explore

additional design challenges, such as predicting and reacting

to stimuli from people or other moving objects in the

environment.

CONCLUSION
We introduce a HWD layout manager that integrates

applications into the built environment. Our implementation

focuses on providing spatial constancy for consistency

between environments while observing local features such as

surface structure and visual saliency. We apply these and

some additional constraints on window layouts in two test

environments with varying visual information density.

ACKNOWLEDGMENTS
We thank NSERC for funding this project.

REFERENCES
[1] Agarawala, A. and Balakrishnan, R. Keepin’ it real:

Pushing the desktop metaphor with physics, piles and

the pen. Proc. CHI ’06, ACM (2006), 1283-1292.

[2] Bell, B., Feiner, S. and Höllerer, T. View management

for virtual and augmented reality. Proc. UIST ’01, ACM

(2001), 101-110.

[3] Billinghurst, M., Bowskill, J., Jessop, M. and Morphett,

J. A wearable spatial conferencing space. Proc. ISWC

‘98, IEEE (1998), 76-83.

[4] Bruce, N. and Tsotsos, J. Saliency based on information

maximization. Proc. NIPS ’05 (2005), 155, 162.

[5] Cao, X. and Balakrishnan, R. Interacting with

dynamically defined information spaces using a

handheld projector and a pen. Proc. UIST ’06, ACM

(2006), 225-234.

[6] Ens, B., Finnegan, R. and Irani, P. The Personal Cockpit:

A spatial interface for effective task switching on head-

worn displays. Proc. CHI ’14, ACM (2014), 3171-3180.

[7] Feiner, S. MacIntyre, B., Haupt, M. and Solomon, E.

Windows on the world: 2D windows for 3D augmented

reality. Proc. UIST ’93, ACM (1993), 145-155.

[8] Gal, R., Shapira, L. Ofek, E., and Kohli, P., FLARE:

Fast Layout for Augmented Reality Applications, Proc.

ISMAR ’14, ACM (2014), 207-212.

[9] Grasset, R., Langlotz, T., Kalkofen, D., Tatzgern, M.

and Schmalstieg, D. 2012. Image-driven view

management for augmented reality browsers. Proc.

ISMAR '12, IEEE (2012), 177-186.

[10] Hartmann, K., Ali, K. and Strothotte, T. Floating labels:

Applying dynamic potential fields for label layout. In

Smart Graphics, Butz, A., Krüger, A. and Oliver, P.

(eds.). Springer, 101-113.

[11] Hastings, W. K., Monte Carlo sampling methods using

markov chains and their applications. Biometrika 57, 1

(1970), 97-109.

[12] Izadi, S., Kim, D., Hilliges, O., Molyneaux, D.,

Newcombe, R., Kohli, P., Shotton, J., Hodges, S.,

Freeman, D., Davison, A., and Fitzgibbon, A.

KinectFusion: Real-time 3D reconstruction and

interaction using a moving depth camera. Proc. UIST

‘11, ACM (2011), 559-568.

[13] Lee, W., Park, Y., Lepetit, V. and Woo, W. Video-based

in situ tagging on mobile phones. TCSVT 21, 10, IEEE

(2011), 1487-1496.

[14] Merrell, P., Schkufza, E.,Li, Z., Agrawala, M., and

Koltun, V. Interactive furniture layout using interior

design guidelines. TOG 30, 4, ACM (2011).

[15] Raskar, R., van Baar, J., Beardsley, P., Willwacher, T.,

Rao, S. and Forlines, C. iLamps: Geometrically aware

and self-configuring projectors. Proc. SIGGRAPH ’03,

ACM (2003), 809-818.

[16] Raskar, R., Welch, G., Cutts, M., Lake, A., Stesin, L.

and Fuchs, H. The office of the future: A unified

approach to image-based modelling and spatially

immersive displays. Proc. SIGGRAPH ’98, ACM

(1998), 179-188.

[17] Rekimoto, J. and Saitoh, M. Augmented surfaces: A

spatially continuous work space for hybrid computing

environments. Proc. CHI ’99, ACM (1999), 378-385.

[18] Scarr, J., Cockburn, A., Gutwin, C. and Bunt, A.

Improving command selection with CommandMaps.

Proc. CHI ’12, ACM (2012), 257-266.

[19] Silberman, N., Shapira, L., Gal, R. and Kohli, P. A

contour completion model for augmenting surface

reconstructions. Proc. ECCV ’14, ACM (2014), 488-

503.

[20] Tak, S., Cockburn, A., Humm, K., Ahlström, D.,

Gutwin, G. and Scarr, J. Improving window switching

interfaces. Proc. INTERACT ’09, Springer (2009), 187-

200.

[21] Tatzgern, M., Kalkofen, D., Grasset, R. and

Schmalstieg, D. Hedgehog labeling: View management

techniques for external labels in 3D space. Proc. VR ’14,

IEEE, 27-32.

[22] Waldner, M., Grasset, R., Steinberger, M. and

Schmalstieg, D. Display adaptive window management

for irregular surfaces. Proc. ITS ’11, ACM (2011), 222-

231.

