
 

ABSTRACT 
We introduce a layout manager that exploits the robust 

sensing capabilities of next-generation head-worn displays 

by embedding virtual application windows in the user’s 

surroundings. With the aim of allowing users to find 

applications quickly, our approach leverages spatial 

memory of a known body-centric configuration. The layout 

manager balances multiple constraints to keep layouts 

consistent across environments while observing geometric 

and visual features specific to each locale. We compare 

various constraint weighting schemas and discuss outcomes 

of this approach applied to models of two test 

environments. 
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INTRODUCTION 
A new generation of head-worn displays (HWDs) is rapidly 

advancing, and lightweight form factors such as Microsoft 

Hololens are capable of reliably detecting the wearer’s 

surroundings in real time. This spatial information can be 

leveraged to integrate personal information displays into the 

environment to support analytic tasks that rely on multiple 

sources of information [3, 6, 7]. However, the ideal 

placement remains an open research question; although 

much work has explored configurations in display space, 

little attention has been given to content layout on the 

surface structure of a sensed 3D model of the environment. 

This paper explores the transition of window layouts from 

body-centric to world-based reference frames [6]. For 

example, imagine a mobile HWD content manager that 

arranges your favourite apps in a body-centric ‘bubble’. 

When you arrive at your home or office, you can ‘pin’ this 

window layout onto the surrounding surfaces (Figure 1). 

Some key requirements we apply to such transitions are 1) 

to integrate content with existing surface structure, 2) to 

maintain the spatial relationship of windows so the user can 

locate apps quickly, and 3) to prevent app windows from 

occluding important objects in the environment. 

We propose using the device wearer’s egocentric coordinate 

system as a reference frame for world-fixed spatial layouts. 

This approach serves the dual purpose of leveraging reliance 

on body-centric spatial memory and maintaining consistency 

between different environments. However, layouts must also 

respect geometric differences between different spaces, for 

instance to avoid overlapping surface boundaries or 

occluding scene objects. We developed a layout manager that 

balances multiple constraints, including spatial constancy, 

visual salience, surface fit, window overlap and relative 

order. 

RELATED WORK 
A line of work following Bell et al. [2] on view management 

for augmented reality uses constraint-based algorithms for 

managing virtual content, typically to keep object labels from 

overlapping and close to their point of origin. Constraints are 

 
Figure 1. Transitions of application window layouts to world-fixed coordinates are derived from a common body-centric layout (a). 

This approach maintains relative spatial consistency while integrating application layouts into diverse surroundings (b, c). © B. Ens 
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often combined using force-based algorithms [10], however a 

greedy approach has been noted to increase dynamic layout 

stability [9]. We instead apply a random walk approach 

[8, 14] that observes global layout constraints. Although 

some recent work has used vanishing line detection to align 

virtual content with real-world surfaces [13], view 

management generally occurs in 2D display space or on a set 

of view-aligned planes [21]. In contrast, we are interested in 

3D spatial layouts and draw from early work by Feiner et 

al. [7] and Billinghurst et al. [3] that imagined multiple 

windows arranged in body-centric configurations or 

anchored to world objects. 

We follow a use case similar to the Office of the Future [16], 

in which applications are embedded on walls and other 

surfaces in the environment.  Thus our work  overlaps with 

research on projection-based systems that can detect and 

adapt to the surrounding 3D structure [5, 15, 17]. One 

closely-related work [22] describes a multi-projector 

window-manager that maximizes available projection space, 

but does not address background saliency. Following the 

vision of such works on a HWD platform presents specific 

challenges, in particular the limited field of view (FoV) of 

current displays [6]. To help mitigate this issue, we aim to 

leverage spatial memory [1, 17] by applying a constraint of 

spatial constancy [18, 20], which has received little attention 

in the context of spatial user interfaces. 

A LAYOUT MANAGER FOR SPATIAL 

CONSTANCY 
We created a layout manager for see-through, stereoscopic 

HWDs that embeds virtual 2D application windows in a 3D 

environment. Using a sensor-generated model, layouts are 

created at run time based on the current pose (i.e. position 

and orientation) of the user. Each generated layout balances 

several constraints (described below) to arrive at a given 

layout. The main goals of the layout manager are threefold: 

1) Conform to surface structure – Virtual app windows are 

superimposed on real-world surfaces, observing attributes 

such as surface boundaries and occluding objects. 

2) Maintain layout consistency – We apply a spatial 

constancy constraint to maintain window positions relative to 

the user. Additional constraints try to maintain relative order 

and prevent overlap [2, 9, 21]. 

3) Preserve background information – Window positions are 

adjusted to prevent interference with important scene content. 

While there are many possible attributes to observe (e.g. 

colour, texture, contrast, object edges [9]), we focus on visual 

salience [9], which models human visual importance. 

Implementation 

We implemented our layout manager using Unity3D on a 

desktop computer with an NVIDIA Quadro 600 GPU. We 

created two mock environments for development and testing, 

resembling a typical office and living room (Figure 2a, b). 

Layouts are viewed through an Epson BT-100 stereoscopic 

HWD with 23° diagonal FoV, tethered by composite video 

input. By tracking the HWD with a Vicon system, virtual 

content appears through the HWD to be accurately 

superimposed on the physical environments. 

Algorithm 

Our layout manager follows a Monte Carlo approach [11] 

shown to be effective for creating constraint-bases layouts in 

3D space [8, 14]. Input consists of data extracted form a 

mesh model and a single photo of each environment. The 

mesh models (Figure 2g, h) are created with Kinect 

Fusion [12] and the photos (Figure 2a, b) are taken with a 

typical SLR camera with a wide-angle lens (110°). We begin 

by searching the vertices of the mesh models for regions of 

uniform surface normal, from which we extract a set of 

surface polygons (Figure 2c,d)  using a greedy search with 

Hough transforms [19]. Meanwhile, we compute a saliency 

map of both scenes using the AIM saliency algorithm of 

Bruce and Tsotsos [4] (Figure 2e, f). We chose this saliency 

method from many available options because of the high 

contrast and preserved boundary regions in the saliency map. 

Finally, we calibrate the model with image space (Figure 

2g, h) to allow saliency queries of 3D model points. 

 

Figure 2.  Office (a) and living room test environments (b). 

Surface polygons (c, d) generated from the mesh models (g, h). 

Saliency maps using AIM [4] (light regions are high salience, 

contrast increased for demonstration; e, f). Saliency maps 

projected on mesh models (red nodes are high salience; g, h). 



The layout solution space is a set of all possible assignments 

of a set of application windows W to unique points in a 

discretized set PE. We define a ‘goodness’ function 

𝑮𝒐𝒐𝒅𝒏𝒆𝒔𝒔(𝑳) ≔  ∑ 𝜶𝒊 ∙ 𝒓𝒊(𝑳𝒊)𝒊  where αi is an optional 

weight, 𝑟𝑖: (𝑂𝑖 ⊆ 𝑂) → ℝ is a constraint operating on the 

parameters O, L is a proposed layout solution, and Li is a 

layout subset containing windows with constraints Oi. 

The algorithm iteratively evaluates the goodness function on 

layouts of randomly positioned windows. Layouts are 

confined to a region 90° wide × 45° high, centered on the 

forward view, discretized into points at increments of 5°. 

Windows are resized to maintain apparent angular width. We 

update the solution if improvement is found or with 

probability p < 0.005. This factor allows the algorithm to 

escape local maxima to find better solutions. We run 2000 

iterations of this algorithm to generate an initial solution, then 

an additional 500 iterations for a ‘fine-tuning’ phase, where 

the pool of positions for each window is restricted to within 

0.2m of the previous iteration. The primary phase finds a 

‘good’ layout from the whole available space and the fine-

tuning phase optimizes that layout within the local maxima. 

Mean run-time of the procedure is 3.26 s. 

Our current implementation uses the following constraints: 

Adherence enforces spatial constancy by minimizing the 

angular distance of a window’s location from its default 

body-centric position (Figure 3a). The score is calculated as 

1 − 𝑑2, where d is the absolute angular displacement 

normalized by a maximum angle of 30°. 

Nonocclusion uses visual saliency to minimize the occlusion 

of important scene objects. The score 1 − 𝑠4, where s is the 

salience of the occupied region normalized by the scene’s 

maximal salience value. High scores are given to windows in 

regions with low salience.  

We apply several local window constraints: View Direction 

(to align windows closely to the user’s forward view), 

Surface Fit (whether a window lies fully in a polygon), and 

Line-of-Sight (window corners are unoccluded). Additional 

global layout constraints are Relative Order of windows 

(whether windows maintain their spatial relations e.g. left-

of), and Overlap (whether windows overlap others). 

DISCUSSION 
In preliminary trials we found the nondeterministic algorithm 

to be relatively consistent. However the number of iterations 

can be increased to improve consistency between trials or 

decreased to reduce run time. One advantage of our approach 

is that a finer discretization of space will have negligible 

effect on run time, whereas greedy search [9] complexity 

would increase with PE.  

Figure 3 shows outputs of our layout algorithm with the 

constraint weighting schemas defined in Table 1, which vary 

the balance of Adherence and Nonocclusion. The Balanced 

schema (Figure 3b) is ideally tuned to balance these 

contrasting factors in our test environments. Through trial 

and error, we found that the Nonocclusion constraint requires 

a higher weight than Adherence to prevent windows from 

often overlapping high salience regions, such as the area 

surrounding the desktop monitors in the office setting (Figure 

2g). The Constancy schema (Figure 3c) has a Nonocclusion 

weight of zero. This theoretically causes each window to be 

projected onto the nearest surface in line with its default 

position (similar to Figure 1a), however the other constraints 

cause some deviation. Conversely, the Saliency schema 

(Figure 3d) has an Adherence weight of zero. This causes 

windows to congregate in low salience basins of the 

environment’s saliency map, regardless of their distance from 

the default location. We provide the View-direction 

constraint in place of Adherence to help prevent windows 

from moving to extreme distances from the user’s forward 

view.  

LIMITATIONS AND FUTURE WORK 
In this work we use a body-centric reference frame for 

allowing windows to be found quickly given a limited FoV. 

However, there are other possible interpretations of spatial 

constancy, for instance placement of objects relative to 

semantically meaningful objects. We also note that applying 

a body-centric layout on a world-fixed frame assumes a 

‘primary’ user pose within the room. There are many cases 

where this holds true, for instance in a typical office or in 

one’s favourite cozy chair. Many interesting research 

questions are presented with more complex situations. For 

instance, how should a layout behave if a user frequently 

rotates between two different orientations? In future, we plan 

 

Figure 3. a) Default window locations set in ‘floating’ array 

50 cm from viewing position (green sphere).  Results of 

weighting schemas b) Balanced, c) Constancy, and d) Saliency. 

Layout Adherence Nonocclusion 

View-

direction 

Balanced 1 2 0 

Constancy 1 0 0 

Saliency 0 2 1 

Table 1. Three possible constraint weighting schemas 

promoting different mixtures of spatial constancy and visual 

saliency. All other weights are set to their default value of 1. 



to explore the benefits and trade-offs of body-centric vs 

world-based approaches to spatial constancy and combine 

these in a single layout manager.  

Dynamic environments pose additional questions, for 

instance whether users would prefer windows to dynamically 

change position when someone enters the room, or to be 

temporarily occluded. Planned improvements include real-

time extraction of the environment model and layout 

optimization, for instance by eliminating the mesh model or 

cropping to reduce raycasting operations used to detect 

occluded surface regions. This will allow us to explore 

additional design challenges, such as predicting and reacting 

to stimuli from people or other moving objects in the 

environment. 

CONCLUSION 
We introduce a HWD layout manager that integrates 

applications into the built environment. Our implementation 

focuses on providing spatial constancy for consistency 

between environments while observing local features such as 

surface structure and visual saliency. We apply these and 

some additional constraints on window layouts in two test 

environments with varying visual information density. 
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