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Abstract. Abstract interpretation techniques prove properties of pro-
grams by computing abstract fixpoints. All such analyses suffer from
the possibility of false errors. We present a new counterexample driven
refinement technique to reduce false errors in abstract interpretations.
Our technique keeps track of the precision losses during forward fixpoint
computation, and does a precise backward propagation from the error to
either confirm the error as a true error, or identify a refinement so as to
avoid the false error.

Our technique is quite simple, and is independent of the specific ab-
stract domain used. An implementation of our technique for affine tran-
sition systems is able to prove invariants generated by the StInG tool [19]
without doing any specialized analysis for linear relations. Thus, we hope
that the technique can work for other abstract domains as well. We sketch
how our technique can be used to perform shape analysis by simply defin-
ing an appropriate widening operator over shape graphs.

1 Introduction

Abstract interpretation [8] is a generic technique to compute sound fixpoints for
programs. Suppose we are interested in checking if a program satisfies invariant
ϕ. If the fixpoint computed by an abstract interpretation of the program P
satisfies ϕ, then we know that all concrete behaviors of the program satisfy ϕ.
However, if such a fixpoint does not satisfy the property ϕ, then there are two
possibilities: (1) the program does not satisfy ϕ (we have found a “true error” in
the program), or (2) the program indeed satisfies the property ϕ, but the abstract
interpretation was not precise enough to verify it (we have found a “false error”
in the program). Losing precision while computing fixpoints is inevitable if we
want to analyze programs with infinite domains, or scale the analysis to large
programs. However, losing too much precision leads to too many false errors and
reduces usability of the analysis tool.

Predicate abstraction [10] is a particular form of abstract interpretation. Tools
based on predicate abstraction to verify finite state interface protocols on pro-
grams have become popular over the past few years [4, 12, 6]. In order to reduce
false errors, these tools analyze an abstract counterexample to check if the coun-
terexample is feasible in the concrete program. If the counterexample is infeasible
they add more predicates to improve precision of predicate abstraction. This pro-
cess, called counterexample driven refinement continues iteratively until (1) the
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property is proved, or (2) a true error is found, or (3) either time or memory is
exhausted [14, 7].

Abstract interpretations operate over lattices, and compute overapproxima-
tions to semantics of programs as fixpoints. Such fixpoint computations may
not converge if the lattice has infinite ascending chains. Widening is a technique
used to ensure convergence of fixpoint computations. The widening operator ∇
has the property that for all x and y the result x∇y is greater than both x
and y. Furthermore, widening guarantees convergence of fixpoint computation
in the following sense. Given any infinite increasing sequence x0, x1, x2, . . ., the
sequence y0, y1, y2, . . . given by y0 = x0 and yi+1 = yi∇(yi ∪ xi+1) is guaran-
teed to converge. Examples of widening operators on polyhedral domains can be
found in [9, 3].

In this paper, we present a new counterexample driven refinement that can
be used to reduce false errors in any abstract interpretation. Precision loss in
abstract interpretation occurs primarily due to widen operators. We parameter-
ize the abstract interpreter with a set of hints, which specify the steps in the
fixpoint computation where more precise operators should be used in place of
widen. Initially the set of hints is empty. We analyze spurious counterexamples
and make additions to the set of hints, thereby guiding the fixpoint to be as
precise as necessary to prove the property of interest. Furthermore, powerset
domains can add further precision to abstract interpretation. However, power-
set domains do not scale to large programs without aggressive use of widening.
We describe how counterexample driven refinement can be applied to powerset
domains. The key idea here is a new connector that allows lifting a widening
operator from a base domain to the corresponding widen operator in a power-
set domain. We explain our technique informally using two examples below. A
formal description is given in Section 2.

Consider the example program shown in Figure 1(a). For this example, we use
the abstract domain of convex polyhedra. First, we perform a symbolic fixpoint
computation applying widening every time along the back edge of the while-
loop to ensure termination. When the loop head is first encountered, we have
the symbolic state S0

∆= 0 ≤ x ≤ 2 ∧ 0 ≤ y ≤ 2. After executing the loop body
once, we get a new set of states 2 ≤ x ≤ 4 ∧ 2 ≤ y ≤ 4. We perform widening
to obtain the set S1

∆= 0 ≤ x ∧ 0 ≤ y. It turns out that S1 is a fixpoint for the
loop. However, this loop invariant is not sufficient to ensure that x �= 4 ∨ y �= 0,
and the analysis reports that the assertion may fail.

The error state reached by the analysis is x = 4 ∧ y = 0, which is a false
error that resulted due to the imprecision in the widening operator. Inspired by
approaches to perform counterexample driven refinement for predicate abstrac-
tion [7], we propagate this error state backwards, using pre-image computations,
and determine that the first application of widening is responsible for the false
error, and that using least upper bound (lub) instead of widening in the first
iteration avoids the error. Thus, we add iteration count 1 to the set of hints.

Using the updated hints, we recompute the abstract fixpoint, using the lub

operator (convex hull for convex polyhedral domain) in the first iteration. This
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(a)

(b)

assume 0 ≤ x ≤ 2
assume 0 ≤ y ≤ 2
while(∗)

x := x + 2
y := y + 2

Fix point computed:

0 ≤ x ∧ 0 ≤ y∧
y ≤ x + 2 ∧ x ≤ y + 2

x := 0; m := 0
while(x < N)

if(∗)
m := x

x := x + 1
if(N > 0)

assert 0 ≤ m < N
x

m
Fix point computed:

0 ≤ x ∧ m = 0 ∨
0 ≤ m ∧ m + 1 ≤ x

x

y

∧ x ≤ N

assert !((x = 4) ∧ (y = 0))

Fig. 1. (a) Example program that has a stair-case like reachable region (b) Example
program that finds the index of the minimum element in an array

results in the set of states S′
1

∆= 0 ≤ x ≤ 4 ∧ 0 ≤ y ≤ 4 ∧ y ≤ x + 2 ∧ x ≤ y + 2.
Applying widening after second iteration we get the set of states S′

2
∆= 0 ≤

x ∧ 0 ≤ y ∧ y ≤ x + 2 ∧ x ≤ y + 2. This turns out to be the fixpoint for the loop
as well and is strong enough to prove the assertion.

Next, consider the example program shown in Figure 1(b). The program
searches for the index m of the minimum element in an array of size N . The
array contents and the minimum element have been abstracted out, and only the
updates to the index variables m and x have been retained. No loop invariant
expressed as a single convex polyhedron is strong enough to prove the assertion.
Thus, we need to use sets of convex polyhedra as our abstract domain. As we
describe below, our technique discovers a disjunctive loop invariant that is strong
enough to prove the assertion.

We start by performing symbolic fixpoint computation, applying widening
every time along the back edge of the while-loop to ensure termination. When
the loop-head is first encountered, we have the set of states S0

∆= x = 0 ∧ m = 0.
After executing the loop body once, we get a new set of states x = 1 ∧ m =
0 ∧ x ≤ N . We perform widening to obtain the set S1

∆= x ≥ 0 ∧ m = 0. The
second iteration of the loop produces different states depending on whether the
if branch is taken inside the loop: (x ≥ 1 ∧ x ≤ N ∧ m = 0) ∨ (x ≤ N ∧ x =
m+1 ∧ m ≥ 0). Applying widening again, we obtain the set S2

∆= x ≥ 0 ∧ m ≥ 0.
It turns out that S2 is a fixpoint for the loop. However, this loop invariant is
not sufficient to ensure that m < N , and the analysis reports that the assertion
may fail.
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The error state reached by the analysis is m ≥ N ∧ x ≥ 0 ∧x ≥ N ∧N > 0.
This is a false error that resulted due to imprecision in the widening operator.
Here again we propagate this error state backwards using pre-image computa-
tions, and determine that the second application of widening is responsible for
the false error, and that using lub operation instead of widening in the second
iteration avoids the error. Thus, we add iteration count 2 to the set of hints.

Using the updated hints, we recompute the abstract fixpoint, taking care
to use lub operator after the second iteration. This results in the set of states
S′

2
∆= (x ≥ 0 ∧ m = 0)∨(x ≤ N ∧ x = m+1 ∧ m ≥ 0) after the second iteration.

Continuing the fixpoint computation, we apply widening after the third iteration
resulting in a set of states S′

3
∆= (x ≥ 0 ∧ m = 0)∨(x ≥ m+1 ∧ x ≤ N ∧ m ≥ 0).

It turns out that S′
3 is a fixpoint for the loop. Further, it is strong enough to

prove the assertion. Note that the computed loop invariant has a disjunction,
and our refinement algorithm was necessary to prove the assertion.

The above description of our technique is informal and simplistic. We give
a precise description in Section 2. In our second example, we have assumed
the existence of widening operators that operate over finite powerset domains.
Section 3 shows how to lift widening operators over base domains to widen-
ing operators over power-set domains, using the theory developed in [1]. In
particular, we define a new connector �, which provides a lifted widening op-
erator over the powerset domain with appropriate precision necessary for our
purposes.

Widening is non-monotonic, and thus refining the widening operator in the
earlier stages of fixpoint computation, could result in a larger set of states in a
later iteration! We present a simple technique to avoid this problem in Section 4,
using reachable states computed from the previous iteration.

We have implemented our technique for affine transition systems. Our imple-
mentation is able to prove invariants generated by the StInG tool [19] without
doing any specialized analysis for linear relations. Section 5 presents empirical
results from running our implementation. Our technique is independent of the
specific abstract domain used. To illustrate this, Section 6 defines lub and widen
operators for an abstract domain of shape graphs, and enables our counterexam-
ple driven refinement to do shape analysis. Section 7 surveys related work and
Section 8 concludes the paper.

2 Algorithm

We first present the algorithm in a very simple setting. Assume that we have a
possibly infinite domain called States. We assume that the domain States has
a precise lub operator ∪, and a widening operator ∇. A transition system Θ
is a pair 〈I, θ〉. I ⊆ States and θ : 2States → 2States. Informally, θ is referred
to as the “image” operator, which takes a set of current states as input, gives
the set of possible next states as output. We use θ−1 to denote the “pre-image”
operator, which takes the set of current states as input, and gives the set of
previous states as output.
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Transition systems are generated by programs. We describe the link between
programs and transition systems below. A program P is a triple 〈V, I, T 〉 where

– V is a finite set of variables, each of which takes valuations from a potentially
infinite domain. A state is a valuation to all the variables in V . The set of
all possible valuations to V is the domain States.

– I is a set of initial valuations to variables in V .
– T ⊆ States × States is a binary relation such that T (s, s′) holds whenever

it is possible for the program to transition from state s to state s′ in one
step.

A program P = 〈V, I, T 〉 gives rise to a transition system Θ = 〈I, θ〉, where
θ(S) = {s′ | ∃s ∈ S.T (s, s′)}, and θ−1(S) = {s | ∃s′ ∈ S.T (s, s′)}

A specification ψ ⊆ States is a set of bad states that we do not want the
system to reach. To check if a system Θ = 〈I, θ〉 satisfies a specification ψ,
we first compute an over-approximation to the set of reachable states of the
system, and check if the over-approximation intersects ψ. The least fixpoint
PreciseReach(Θ) = µX.I∪X∪θ(X) precisely represents the set of all reachable
states of the system, though the fixpoint computation may not terminate. The
system Θ satisfies specification ψ iff PreciseReach(Θ) ∩ ψ = ∅.

Widening operators from the abstract-interpretation community can help en-
sure termination of the fixpoint computation, at the cost of losing precision. If
S1 and S2 are two sets such that S1 ⊆ S2, then S3 = S1∇S2 is a set such that
S1 ⊆ S3 and S2 ⊆ S3. Further, there is some metric (such as the number of con-
juncts in the formula representing the set) that decreases from S1 to S3. Thus, if
we consider the least fixpoint WidenReach(Θ) = µX.(I ∪X)∇(I ∪ X ∪ θ(X)),
it is guaranteed that (1) the computation of WidenReach(Θ) will terminate,
and (2) WidenReach(Θ) ⊇ PreciseReach(Θ). Thus, we can conclude that
Θ satisfies specification ψ if WidenReach(Θ) ∩ ψ = ∅. On the other hand, if
WidenReach(Θ) ∩ ψ �= ∅, we cannot distinguish between the possibilities that
either the system Θ does not satisfy ψ or the computation of WidenReach lost
too much precision.

If we can keep track of the intermediate states in the fixpoint computation,
then we can generate an abstract counterexample that can be automatically an-
alyzed to classify if the error found is a false error or true error. If it is a false
error, the analysis can also identify the precise point at which the abstract coun-
terexample needs to be refined to avoid the recurrence of this specific false error.

More formally, let us consider the stages of the fixpoint computation
WidenReach(Θ) = µX.(I ∪ X)∇(I ∪ X ∪ θ(X)). Let R0 = I, and let
Ri = Ri−1∇(Ri−1 ∪ θ(Ri−1)). Suppose n is the smallest index such that
Rn ∩ ψ �= ∅. Let ψn = ψ. If (Rn−1 ∪ θ(Rn−1)) ∩ ψn = ∅, then we note that
step n is the exact index where the precision loss for the false error happened,
and replace the widening operator with the lub operator in that particular step
of the fixpoint computation. Otherwise, if (Rn−1 ∪ θ(Rn−1)) ∩ ψn �= ∅, then we
compute ψn−1 = θ−1(Rn ∩ψn), and check if (Rn−2 ∪ θ(Rn−2))∩ψn−1 = ∅. This
process continues until either an index is found where the widening operator
needs to be refined into a lub operator (∪) to avoid the false error, or we find
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AbsRefine(Θ = 〈I, θ〉, ψ)

hints := ∅

(R,i,result) := AbstractFixPoint(Θ, ψ, hints)

if result = true then

return true

else

newHints := Refine(Θ, ψ, i, R)

hints := hints ∪ {newHints}

end if

end while

i := count

while true do

while i > 0 do

ψ := R[i] ∩ ψ

if (R[i − 1] ∪ θ(R[i − 1])) ∩ ψ = ∅ then

return i

else

i := i − 1; ψ := θ−1(ψ)

end if

end while

assert i = 0 ∧ R[i] ∩ ψ �= ∅

print error trace and exit

Refine(Θ = 〈I, θ〉, ψ, count, R)

Requires count ≥ 0 ∧ R[count] ∩ ψ �= ∅

Returns step i where ∇ is replaced by ∪

AbstractFixPoint(Θ = 〈I, θ〉, ψ, hints)

Returns (R, i, result), where array R is

an array of set of states, result is boolean

and i is integer

while true do

if i ∈ hints then

{precise next set of states}

R[i] := R[i − 1] ∪ θ(R[i − 1])

else

{next set of states using widen}

R[i] := R[i − 1]∇(R[i − 1] ∪ θ(R[i − 1]))

end if

if R[i] ∩ ψ �= ∅ then

{We are not sure if System Θ satisfies ψ}

return (R, i,false)

end if

if R[i] = R[i − 1] then

{fixpoint, System Θ satisfies ψ}

return (R, i,true)

end if

i := i + 1

endwhile

i := 1; R[0] := I

if I ∩ ψ �= ∅ then

return (R, 0,false)

end if

Fig. 2. Iterative Refinement

that the repeated backward propagation of the error state intersects with the
initial states R0 = I, in which case we have evidence of a true error.

The procedure AbsRefine in Figure 2, together with the procedures Abstract-
FixPoint and Refine give a complete description of our iterative refinement
procedure.

3 A Widening Operator for Finite Powerset Domains

In procedure AbstractFixPoint, we use a widening operator ∇ which takes as
operands two arbitrary sets of states. The widening operator for convex polyhedral
domain is studied at length in [9, 3]. The original widening operator as defined by
Cousot and Halbwachs [9] did not allow for disjunctions in the first operand. If
our abstraction refinement procedures are to be applied to powerset domains, a
widening operator needs to be defined for that domain. In this section we show
how to lift a widening operator over a base domain to a widening operator over
its powerset domain. We follow the framework provided by Bagnara, Hill and Zaf-
fanella [1], but define a new connector to provide the appropriate precision.

An abstract domain D̂ = 〈D, �,0, ⊕〉 is a join-semilattice where � is the
partial order, 0 is the bottom element of the lattice and the lub d1 ⊕ d2 exists
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for all d1, d2 ∈ D. For example, convex hull is such an operator for convex
polyhedra. For all d1, d2 ∈ D, we will use the notation d1 � d2 to mean that
d1 � d2 and d1 �= d2.

Let d1 = ∧i ci. Then, the standard widening operator [9] is defined as

d1∇d2
∆= ∧{cj | d2 � cj}

For a set S, let ℘(S) be the powerset of S, and let ℘f (S) be the set of all finite
subsets of S. The operator ⊕ is overloaded so that, for each S ∈ ℘f (D), ⊕S
denotes the lub of S. A set S ∈ ℘(D) is non-redundant if and only if 0 /∈ S and
∀d1, d2 ∈ S : d1 � d2 ⇒ d1 = d2. The set of finite non-redundant subsets of D
is denoted by ℘fn(D, �). The reduction function Ω�

D : ℘f (D) → ℘fn(D) maps
each finite set into its non-redundant counterpart as follows:

Ω�
D(S) ∆= S \ {d ∈ S | d = 0 ∨ ∃d′ ∈ S.d � d′}

The finite powerset domain over D̂ is the join-semilattice

D̂P = 〈℘fn(D, �), �P ,0P , ⊕P 〉

where 0P = ∅ and ∀S1, S2 ∈ ℘fn(D, �), S1 ⊕P S2
∆= Ω�

D(S1 ∪ S2), and S1 �P S2
if and only if ∀d1 ∈ S1 : ∃d2 ∈ S2.d1 � d2.

We say that S1 � S2 if and only if either S1 = 0P or S1 �P S2 and ∀d2 ∈
S2 : ∃d1 ∈ S1.d1 � d2. Our goal is to define a connector operator �, such that
for all S1, S2 ∈ ℘fn(D, �), if S1 �p S2, then S1 � (S1 � S2). Intuitively, S1 � S2
is obtained by minimally combining the elements of S2 so as to obtain an S′

2
such that S1 � S′

2. More precisely, let Ŝ2 be a maximal subset of S2 such that
∀d̂ ∈ Ŝ2 : ∃d1 ∈ S1. d1 � d̂. and let S̃2

∆= ⊕{d | d ∈ S2 \ Ŝ2}. For any d̂ ∈ Ŝ2, let
Jd̂

∆= (S2 \ {d̂}) ∪ (d̂ ⊕ S̃2). We define S1 � S2 to be a minimal element(with
respect to �P ) from the set {Jd̂ | d̂ ∈ Ŝ2}. We find that this particular definition
of the connector yields very good results in our abstraction refinement algorithm.
It is easily checked that if S1 �p S2, then S1 � S1 �S2. Let S1, S2 ∈ ℘fn(D, �),
where S1 � S2. Then, S1∇P S2 is defined as follows:

S1∇P S2
∆= let S′

2 = if (S1 � S2) then S2 else S1 � S2 in
S′

2 ⊕P Ω�
D({d1∇d2 ∈ D | d1 ∈ S1, d2 ∈ S′

2, d1 � d2})

To illustrate the need for the connector operator, recall the example from
Figure 1(b) from Section 1. Recall that during the second iteration of the
refinement loop, the symbolic state after second iteration of the fixpoint is
S′

2
∆= (x ≥ 0 ∧ m = 0) ∨ (x ≤ N ∧ x = m + 1 ∧ m ≥ 0). The new

symbolic state that is generated after one more execution of the loop body is
Snew = (x ≤ N ∧ x = m+2 ∧ m ≥ 0). Here S′′

2
∆= S′

2 ⊕P Snew
∆= (x ≥ 0 ∧ m =

0) ∨ (x ≤ N ∧ x = m + 1 ∧ m ≥ 0) ∨ (x ≤ N ∧ x = m + 2 ∧ m ≥ 0).
Our goal is to compute S′

3
∆= S′

2 ∇P S′′
2 . Since S′

2 � S′′
2 does not hold,

we need to compute S′
2 � S′′

2 by merging some of the elements of S′′
2 . Here
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Ŝ′′
2

∆= (x ≥ 0 ∧ m = 0) ∨ (x ≤ N ∧ x = m + 1 ∧ m ≥ 0) and
S̃′′

2
∆= (x ≤ N ∧ x = m + 2 ∧ m ≥ 0). If we merge S̃′′

2 with first element
of Ŝ′′

2 then the result is S′
2 � S′′

2
∆= (x ≥ 0 ∧ m ≥ 0 ∧ x ≥ m) whereas if we

merge S̃′′
2 with second element of Ŝ′′

2 then the result is S′
2 �S′′

2
∆= (x ≥ 0 ∧ m =

0) ∨ (x ≤ N ∧ m ≥ 0 ∧ x ≥ m + 1 ∧ x ≤ m + 2). The result of widening in
the first case is x ≥ 0 ∧ m ≥ 0 which is less precise than the widening result of
second case (x ≥ 0 ∧ m = 0) ∨ (x ≤ N ∧ x ≥ m + 1 ∧ m ≥ 0) when using
the widening operator defined in [9] for the base domain of convex polyhedra.
Thus, it is seen that choosing the minimal result (second case) is necessary to
obtain a fixpoint that is strong enough to prove the assertion. Our definition of
connector is necessary to prove this example, and most of the other examples
we have encountered.

Using the theory developed in [1], it can be shown that ∇P satisfies the
convergence properties of a widening operator. Without transforming S2 to S′

2
using the � connector, such convergence guarantees cannot be given (see [1]).
In Section 2, when we discuss the algorithm, we did not explicitly mention the
difficulties of dealing with powerset domains. The operator ∪ used in Section 2
corresponds to ⊕P operator defined in this Section.

4 Dealing with Non-monotonicity

One technical issue with widening is its non-monotonicity. That is, if S1 ⊆ S′
1

and S2 ⊆ S′
2, then it is not necessarily the case that (S1∇S2) ⊆ (S′

1∇S′
2). Thus,

refining the widening operator to a least upper bound operation in step i of the
abstract fixpoint computation, could result in a larger set of states in a later
iteration! However, this problem can be easily avoided since we already keep
track of the intermediate set of states reached at each iteration of the abstract
fixpoint computation. At every iteration of the abstract fixpoint computation,
we can intersect the states reached at step i with the set of states reached at step
i during the previous iteration of the abstract fixpoint computation. If the step
count i is greater than the number of steps required in the previous iteration,
then we can intersect with the fixpoint computed in previous iteration. The
modified algorithm is shown in [11].

Progress guarantee. With the monotonic abstraction refinement procedure,
it is clear that in the successive abstraction iterations we compute more precise
abstract fixpoint as compared to the previous iteration. We can make a stronger
statement about progress by defining an ordering between counterexamples. An
abstract counterexample C is a sequence of set of states R0, R1, . . . , Rn such that
(1) Ri is the set of states computed in step i of the abstract fixpoint computation,
and (2) Rn ∩ ψ �= ∅ ∧ ∀i < n.Ri ∩ ψ = ∅. The length of counterexample C
is denoted by |C|. We define a binary relation ≺c on abstract counterexamples
as C1 ≺c C2 iff either (1) |C1| < |C2|, or (2) |C1| = |C2| and ∀i.0 ≤ i < |C1| :
Ri(C2) ⊆ Ri(C1) ∧ ∃i.0 ≤ i < |C1| : Ri(C2) ⊂ Ri(C1). We state our progress
guarantees below.
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Theorem 1. Let Ci be the abstract counterexample generated during the itera-
tion i of abstraction computation. Then, we have for all i ≥ 0, Ci ≺c Ci+1.

Lemma 1. Let Ci be the counterexample of length n generated during the ith
iteration of abstraction, then after at most n iterations of refinement and ab-
straction, counter examples generated, if any, will be of length greater than n.

The proof of Theorem 1 is given in [11]. Lemma 1 follows from Theorem 1 and
the fact that the set of hints monotonically increases in successive iterations of
refinement. All these results make use of our assumption from Section 2 that the
lub operator ∪ in algorithm MAFixpoint is precise. Lemma 1 guarantees that if
an abstract counterexample is a false error, then it will necessarily get refined in
bounded number of refinement iterations and will never reappear as an abstract
counterexample at subsequent iterations of iterative refinement. However, there
is no guarantee that the iterative refinement loop will ever terminate. In practice,
we terminate the outer iterative refinement loop after a certain time or memory
limit is exhausted and return the answer “don’t know”.

Systematic abstraction refinement. For powerset abstract domains like the
sets of convex polyhedra, the least upper bound operator ⊕ is the non-redundant
union as defined in Section 3. Thus the refinement will add more and more dis-
juncts to the reachable set of states. It is possible that this increase in the number
of disjuncts will continue infinitely even though the assertion can be satisfied by
an abstract fixpoint computed by merging some intermediate disjuncts and do-
ing widening later on. Thus intermediate merging may provide convergence. We
use the connector � operator described in Section 3 as an operator to merge
some disjuncts into one convex polyhedra. The refinement algorithm now checks
whether using the merging operation instead of widening avoids error. If it does
then widening operator is replaced by the merge operation. Thus we have three
upper bound operators ∪, � and ∇ of decreasing precision. The refinement algo-
rithm can now refine a widening operator to either � operator or a ∪ operator.
It can also refine the � operator to ∪ operator. The hints that are generated
by the refinement algorithm now are of the form 〈i, op〉, where i is the step
number and op ∈ {∪, �} is the operator to be applied after that step. The
procedure MAFixPoint in [11] gives the abstraction procedure which ensures
monotonicity and uses the new hints just described.

If the refinement algorithm returns 〈i, ∪〉 then, it is clear that refining the
widening operator in step i to lub will remove the abstract counterexample.
However, if the refinement algorithm returns 〈i, �〉, then the widening operator
in step i could be replaced either by a ∪ or by �. It is not clear whether it is
provident to convert the widening operation to ∪ or � in this case. It is possible
that exactly one choice results in computation of the abstract fixpoint necessary
to prove the property, whereas the other choice leads to non-termination of the
abstraction refinement cycle. Thus, it is more advantageous to try both possibil-
ities. The procedure SARefinement in [11] systematically tries both possibilities
if the refinement returns 〈i, �〉.
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5 Implementation and Empirical Results

Our implementation is for an imperative language with integer variables, and
usual control structures including sequencing, conditionals and loops. The im-
plementation is based on the algorithm SARefinement from [11], but it differs in
three ways: (1) While the algorithm SARefinement from [11] is fully symbolic,
the implementation does a mixture of explicit and symbolic state exploration.
In particular, the control (program counter) is kept explicit, and we never merge
symbolic constraints from two different program counters. (2) Widening is per-
formed in our implementation only along the back edges of loops. Thus, at join
points such as the end of if-then-else statements, the states from the two branches
are kept separate unless they turn out to be identical. (3) We use two heuristics
to prune the space of refinements explored by the algorithm. The first heuristic
disallows conversion of widening to � in consecutive iterations of refinement. In
such a case, we convert widening to ∪ in the latter iteration. The second heuris-
tic restricts the size of set H in procedure SARefinement to 3. Any successive
refinement does not increase size of H , but converts the widening to one of � or
∪ depending on the first heuristic.

Our prototype implementation uses the library PPL [2] for polyhedral op-
erations. We have run our program on a machine with Intel Pentium 3.0GHz
processor, 512 KB cache and 512 MB RAM.

We have experimented with two widening operators for polyhedral domain: (1)
the original widening operator defined by Cousot and Halbwachs [9] (we refer to
this as “CH78”), and (2) the widening operator defined by Bagnara,Hill, Ricci and
Zaffanella [3] (we refer to this as “BHRZ03”). Both these widening operators are
defined for convex polyhedra. Since our abstract domain is the set of convex poly-
hedra, we use Section 3 to lift these widening operators to the powerset domain.

We evaluated the implementation on two sets of examples. The results show
that our technique is robust, regardless of the widening operator used.

The first set of examples were obtained from Rustan Leino [15], and are part of
his test suite for the tool Boogie. All these programs have embedded assertions
in the program and our goal is to discover loop invariants strong enough to
prove the assertions. Two of these programs (Prog 7 and Prog 9) are incorrect,
in that the assertions fail. Table 1 shows for each of the two different widening
operators, the time taken, and the number of widenings that were converted
to ∪ and � respectively, to either prove the assertion or find the error. Our
implementation is able to successfully prove the assertions in all the 11 correct
programs, and it is able to find the error in the two erroneous programs. Out
of the 11 correct programs, 5 programs require non-trivial iterative refinement.
Prog1 is the example from Figure 1(b). Prog8 is very similar to Prog1, except
that the assertion after the while loop is stronger. It asserts that (0 ≤ m <
N ∧ x = N). Our iterative refinement computes the more precise invariant
(x−m = 1 ∧ 0 ≤ m ≤ 1 ∧ 1+m ≤ N)∨ (m = 0 ∧ 0 ≤ x ≤ 1)∨ (m = 0 ∧ 1 ≤
x ≤ N)∨ (2 ≤ x ≤ N ∧ m ≥ 0 ∧ x ≥ m+1) needed to prove the property. The
choice of the widening operator (CH78 or BHRZ03) influences only the number
of refinement steps, but not the ability of our technique to prove the property.



484 B.S. Gulavani and S.K. Rajamani

Table 1. Experimental results, Programs on left are from Rustan Leino [15], Programs
on right are from the StInG web page [18]. The column head (I) indicates the time
(in sec) taken for example program to be verified and column head (II). indicates the
number of refinement steps (∪, �). * programs are incorrect(i.e., assertion fails).

Program CH78 BHRZ03 Program CH78 BHRZ03
Name I II I II Name I II I II
Prog0 0.055 (1, 1) 0.054 (1, 1) See-Saw 0.816 (3, 3) 0.811 (3, 3)
Prog1 0.01 (0, 0) 0.011 (0, 0) Robot-HH96 0.01 (0, 0) 0.01 (0, 0)
Prog2 0.012 (0, 0) 0.014 (0, 0) Berkeley 0.098 (1, 1) 0.085 (0, 1)
Prog3 0.014 (0, 0) 0.01 (0, 0) Berkeley-nat 0.432 (2, 1) 3.44 (2, 1)
Prog4 0.047 (2, 0) 0.138 (2, 2) Heapsort 0.719 (2, 1) 0.162 (0, 1)
Prog5 0.058 (2, 0) 0.093 (2, 1) Train-RM03 0.022 (0, 0) 0.02 (0, 0)
Prog6 0.035 (1, 0) 0.021 (0, 0) EFM 0.06 (0, 0) 0.06 (0, 0)
Prog7* 0.01 (0, 0) 0.009 (0, 0) EFM1 0.06 (0, 0) 0.06 (0, 0)
Prog8 0.097 (2, 1) 0.268 (3, 2) LIFO 3.325 (3, 3) 1.29 (2, 1)
Prog9* 0.01 (0, 0) 0.008 (0, 0) LIFO-NAT 29.55 (7, 5) 2.537 (2, 2)
Prog10 0.015 (0, 0) 0.011 (0, 0) cars-midpt ≥10000 (≥3, ≥3) ≥10000 (≥3, ≥3)
Prog11 0.029 (0, 0) 0.032 (0, 0) barber 10.48 (3, 3) 17.12 (3, 3)
Prog12 0.01 (1, 0) 0.014 (1, 0) Swim-pool 11.13 (3, 3) 18.029 (3, 3)

Swim-pool-1 11.24 (3, 3) 18.50 (3, 3)

The second set of examples are available at the StInG website [18]. The StInG
tool [18, 19] uses Farkas’ Lemma to synthesize the strongest linear invariant. We
requested Sriram Sankaranarayanan to provide the exact invariants that StInG
computes. Then, we modified the examples to assert the invariant computed by
StInG (the invariants are also now available at [18]). Then, we used our iterative
refinement algorithm to prove these assertions. Our implementation is able to
prove the invariants in all examples with the exception of the program ‘cars-
midpt’. This run took more than 10000 seconds but had done only 6 refinement
steps. Thus, we are unsure if the algorithm will converge if more refinement steps
can be executed. We find that the polyhedral operations are very time consuming
in this example. The last powerset widening call to the PPL library took 6910
seconds, where both arguments to this widening operation had 4 disjuncts with
an average of 125 constraints per disjunct.

Though the invariants generated by StInG itself do not contain disjunctions,
our iterative refinement algorithm used disjunctions in some cases to prove these
invariants. Again, the choice of the widening operator (CH78 or BHRZ03) influ-
ences only the number of refinement steps, but not the ability of our technique
to prove the property.

6 Shape Analysis

We briefly sketch an abstract domain for representing heap configurations, with
lub and widen operators. This immediately enables application of our iterative
refinement algorithm to do shape analysis [17]. Our approach does not capture
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reachability information in the heap, and only certain programs with unbounded
state spaces can be verified using our approach. Our approach currently does not
have all the sophistications of [17].

A Boolean Linked List Program (BLL Program for short) is a single-procedure
program with a finite number of variables, where every variable has the following
datatype:

class Node {
bool data;
Node next;

}

BLL programs allow dynamic creation of objects, so they have potentially infinite
state spaces. Our abstract domain is the domain of abstract heap graphs Ĝ =
〈G, �,0G , ⊕〉. Let V = {v1, v2, . . . , vn} be the variables in a BLL Program P . An
abstract heap graph A of program P is a 5-tuple 〈UA,VA,DataA,NextA,ZA〉,
where (1) UA is a finite set of nodes {U0, U1, . . . , Uk}, (2) VA: V → 2UA

,
maps every variable to a set of nodes, (3) DataA : UA → {0, 1, �} maps the
data field of each node to boolean values or �, and (4) NextA: UA → 2UA

,
maps the next field of each node to a set of nodes, and (5) ZA ⊆ UA is the
subset of nodes that are designated as summary nodes. An abstract heap graph
represents a set of concrete heap graphs. A concrete heap graph represents a state
of a BLL Program, which is a set of heap addresses, with variables pointing
to specific addresses, and specific concrete values to objects in each of these
addresses. The concretization function γ maps every abstract heap graph to a
set of concrete heap graphs. The lub of two abstract heap graphs A and B
such that UA ∩ UB = ∅, is intuitively just the disjoint union of the two heap
graphs. The widen of two abstract heap graphs A and B, given by C = A∇B
is intuitively obtained by fixing the nodes of the result to UA and adding more
edges representing B into A, and updating to coarser data values representing
nodes of B into nodes of A. A precise description of the concretization function
γ, the lub operator, and the widening operator can be found in [11].

The intuition is that the application of the lub operator can add more nodes
to the abstract heap graph, but the application of the widening operator cannot.
Thus, if the lub operator is used only a finite number of times during the
fixpoint, the number of nodes in the abstract heap graph stops growing after
a finite number of iterations. Thereafter, the fixpoint converges after sufficient
applications of widening.

Using this abstract domain, we are able to prove some programs that allo-
cate unbounded number of nodes by using our refinement algorithm. Consider
the program shown in Figure 3. First, our abstract fixpoint computation uses
widening along the back edge of every while loop. Intuitively, repeated applica-
tions of the widening operator allow only one summary node, which results in
the second abstract heap graph in Figure 3. This invariant is not strong enough
to prove the assertion. Then, our refinement algorithm detects that the second
widening in the second while loop is the reason for the loss of precision and
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head := null; p := null;

while (*) {

p := new node;

p.data := 0;

p.next := head;

head := p;

}

p := head;

while (p != null) {

assume (p != null);

p.data = 1;

p := p.next;

}

assume (p = null);

p := head;

while (*) {

assume (p != null);

assert (p.data = 1);

p := p.next;

}

Abstract heap graph after first while loop

Imprecise heap graph obtained using widening in the 

second while loop (not sufficient to prove assertion)

Heap graph obtained after doing one refinement, 

where widening in the second iteration of the second 

while loop is converted to LUB (sufficient to prove 

assertion)

Fig. 3. Example program that creates an unbounded linked list

converts this widen to lub. After this refinement, subsequent applications of the
widening operator are now able to allow two summary nodes as shown in the
third abstract heap graph in Figure 3. In this domain, converting widen to lub

results in allowing more nodes in the the resulting fixpoint. This is analogous
to adding more disjuncts by converting widen to lub in the powerset domain of
convex polyhedra.

7 Related Work

Counterexample driven refinement [14], has gained popularity in recent
years [7, 4], as a technique to prove properties of systems, while reducing false
errors. Several tools based on counterexample driven refinement have appeared
in the past few years [4, 12, 6]. All these efforts use predicate abstraction [10],
which is a particular case of abstract interpretation [8]. In contrast to these ef-
forts, we present a technique to refine any abstract interpretation automatically
using counterexamples. Thus, our work has the potential to make counterexam-
ple driven refinement more broadly applicable to a variety of abstract domains,
in order to reduce false errors.

Techniques to reduce precision loss due to widening have been studied in
the abstract interpretation community. We compare our work with (1) generic
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approaches that work for any abstract domain, and (2) specific approaches for
particular abstract domains. In the category of generic approaches, Jeannet,
Halbwachs and Raymond partition the abstract domain with predicates on the
control state [13] to improve precision. They first perform a combination of for-
ward and backward analysis, and use predicates present in the conditionals in
the program to do such partitioning. Unlike their approach we use a backward
propagation of the abstract counterexample in the spirit of [7] to generate re-
finement hints. Bourdouncle has noted that more precise abstract domains can
be obtained by applying widening only in certain equations (cutting of depen-
dence loops) [5]. Bourdouncle also defines new widening operators together with
disjunctive completion by representing sets of abstract elements. This approach
does not use counterexamples to refine the abstract domain. In the category
of approaches that are specific to particular domains, the StInG tool [18, 19]
uses Farkas’ Lemma to synthesize linear invariants by extracting non-linear con-
straints on the coefficients of a target invariant from an affine program. Unlike
StInG, our technique uses fixpoints, and is independent of the abstract domain.

Leino and Logozzo use counterexample contexts obtained from the theorem
prover to re-run the abstract interpreter restricted to the counterexample con-
text, with the hope of obtaining more precise loop invariants [16]. This approach
has philosophical similarities to our approach, but there are several technical
differences. Their approach is implemented entirely inside the theorem prover,
unlike ours. Unlike the technique presented here, there is no progress guarantee
with their approach, and their technique does not stop the iterative refinement
if there is a true error.

8 Conclusion

We presented a new counterexample driven refinement technique that can refine
any abstract interpretation, and tune the precision depending on the property of
interest. Our technique is independent of the abstract domain used. We instan-
tiated the technique for affine programs and our implementation is able to prove
invariants generated by the StInG tool. We also sketched how the technique can
be applied to do shape analysis.

Acknowledgment. We thank Rustan Leino for providing his example programs
from the Boogie project, and Sriram Sankaranarayanan for providing us the
invariants generated by StInG. We thank Supratik Chakraborty, Prasad Naldurg
and Mooly Sagiv for insightful discussions.

References

1. R. Bagnara, P. Hill, and E. Zaffanella. Widening operators for powerset domains.
In VMCAI 04: Verification, Model Checking and Abstract Interpretation. Springer-
Verlag, 2004.

2. R. Bagnara, P. M. Hill, and E. Zaffanella. PPL: The Parma Polyhedral Library —
http://www.cs.unipr.it/ppl/.



488 B.S. Gulavani and S.K. Rajamani

3. R. Bagnara, P.M. Hill, E. Ricci, and E. Zaffanella. Precise widening opertors for
convex polyhedra. In SAS 03: Static Analysis. Springer-Verlag, 2003.

4. T. Ball and S. K. Rajamani. Automatically validating temporal safety properties
of interfaces. In SPIN 01: SPIN Workshop, LNCS 2057. Springer-Verlag, 2001.

5. F. Bourdoncle. Abstract interpretation by dynamic partitioning. Journal of Func-
tional Programming, 2(4):407–423, 1992.

6. S. Chaki, E. M. Clarke, A. Groce, S. Jha, and H. Veith. Modular verification of
software components in C. IEEE Transactions on Software Engineering, 30(6):388–
402, 2004.

7. E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided
abstraction refinement. In CAV 00: Computer-Aided Verification, LNCS 1855,
pages 154–169. Springer-Verlag, 2000.

8. P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for the
static analysis of programs by construction or approximation of fixpoints. In POPL
77: Principles of Programming Languages, pages 238–252. ACM, 1977.

9. P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among
variables of a program. In POPL 78: Principles of Programming Languages, pages
84–97. ACM Press, 1978.
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