
 

 

 

 

 

 

 

Specification Mining for Digital Circuits with  
Applications on Verification and Diagnosis 

 
 

Wenchao Li, Alessandro Forin 

Microsoft Research 

 

August 21, 2009 

 

 

Technical Report 

MSR-TR-2009-114 
 
 
 
 
 

Microsoft Research 

Microsoft Corporation 

One Microsoft Way 

Redmond, WA 98052 



 

2 

 



 

3 

 

Specification Mining for Digital Circuits with  
Applications on Verification and Diagnosis 

 

 

Wenchao Li, Alessandro Forin 

Microsoft Research 

 
 

Abstract 
 

Software and hardware systems are often built without 

detailed documentation. The correctness of these 

systems can only be verified as well as the 

specifications are written. The lack of sufficient 

specifications often leads to misses of critical bugs, 

design re-spins, and time-to-market slips. In this 

paper, we address this problem by mining specification 

dynamically from simulation traces. Given an 

execution trace, we mine recurring temporal behaviors 

in the trace that match a set of pattern templates. 

Subsequently, we synthesize them into complex 

patterns by merging events in time and chaining the 

patterns using inference rules. We specifically 

designed our algorithm to make it highly efficient and 

meaningful for digital circuits. In addition, we propose 

a pattern-mining diagnosis framework where   

specifications mined from error-labeled traces are 

used to automatically pinpoint the sources of error.  In 

this work, we focus on traces from digital circuits, but 

any ordered trace of events is amenable to this 

analysis. We demonstrate the effectiveness of our 

approach on industrial-size examples.  

 

1 Introduction 
 

Formal specifications can succinctly capture a 

system’s behaviors. One can then leverage verification 

techniques such as model checking [23] to ensure the 

correctness of the system. However, as hardware 

designs rapidly grow in complexity, this is becoming a 

very expensive proposition. For instance, Intel reported 

that in 2005 the manpower assigned to design was a 

third of that assigned to validation [17]. Furthermore, 

the difficulty of formalizing a complete set of formal 

properties has significantly hindered the wide-spread 

adoption of formal and semi-formal techniques. Hence, 

in order to render automated verification techniques 

effective, there is a constant need to add new 

properties or modify existing ones.  Recently, 

Kupferman et al. [2] developed a theory of mutations 

that enables the strengthening of weak specifications. 

However, the goal of automatically synthesizing a 

complete set of proper specifications remains elusive 

even for the state-of-the-art.  

 Specification mining is a promising alternative. It 

is the process of extracting specifications, either 

statically from the description of a system, or 

dynamically from its executions. The specifications 

mined in turn allow us to better understand the system, 

verify its correctness, and manage possible evolutional 

changes. In this work, we dynamically mine recurring 

patterns from existing simulation traces. These patterns 

can then be examined by the engineer to see whether 

they match the designer’s intent and check with further 

verification. The intuition is that frequent patterns are 

likely to be true. Figure 1 illustrates the high-level tool 

flow. Our tool takes a trace and optionally a user-

defined event definition as input, and generates a set of 

behavioral patterns that are always true in the trace as 

output. A trace is a sequence of events ordered by the 

time of occurrence. Events in this case are the 

valuations of a set of signals in a circuit.  Given the 

trace, we match it to a library of parametric patterns. 

The matching algorithm is discussed in detail in 

Section 4. We also provide a post-processing ranking 

module to produce the most interesting properties.  

 

Figure 1: Specification Mining for Verification 

Specification mining not only closes the loop in 

verification environments such as coverage-driven 

simulation or formal verification, it can also provide 

useful information for diagnosis. We propose a 

pattern-mining based trace diagnosis framework that 

can be used to simultaneously understand the error and 

locate it. Figure 2 show how our specification mining 

engine is used as a subroutine to determine the 

distinguishing patterns between a normal trace and an 

error trace. The distinguishing patterns are the patterns 

that exist in one trace but not in the other, or patterns 
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that exist in both traces but with conflicting timing 

bounds. After finding these patterns, we apply a 

localization procedure to pinpoint the source of error. 

 

Figure 2: Specification Mining for Diagnosis 

In this paper, we make these key contributions: 

- A novel dynamic specification mining 

technique especially designed for general 

digital circuits. Our tool efficiently mines 

non-trivial specifications and is highly 

scalable; 

- A novel trace-diagnosis technique based on 

specification mining that achieves good 

accuracy for very large circuits.  

The paper is organized as follows. Section 2 gives 

an extensive survey on related literature of 

specification mining. Section 3 illustrates the main 

concepts and formally defines the problem. Section 4 

describes the algorithms for mining specification in 

digital circuits. Section 5 describes a pattern-mining 

based technique for diagnosis. Section 6 presents 

experimental results. Section 7 concludes.   

2 Related Work 
 

Many techniques have been proposed to automatically 

reverse-engineer specifications from a system 

[6][7][8][10][12][13][14]. The study of automatically 

generating specifications goes back as early as [3][4]. 

These specifications can be simple predicates in 

programs, or temporal specifications which specify the 

ordering of events (such as function calls), or general 

programming rules [5]. The specifications generated 

can then be used to formally verify a program’s 

correctness, to assist in debug [9], or to detect 

malicious behaviors [11].  

Specifications are typically learned dynamically 

from an execution trace (or a set of traces). A trace can 

be a sequence of function calls or a sequence of 

memory transactions on a bus. Daikon [13] is one of 

the most well-known tools that mine value-based 

invariants. We focus on mining temporal properties in 

this work. Most existing mining tools produce 

temporal properties in the form of automata. In 

addition, dynamic analysis mainly targets strongly-

observed sub-behaviors. Automata-based techniques 

generally fall into two categories. The first one learns a 

single complex specification (usually as a finite 

automaton) over a specific alphabet [8][25], and then 

extracts scenarios to one's flavor. In [8], Ammons et al. 

first produces a probabilistic automaton that accepts 

the trace and then extracts from it likely properties. 

However, extracting a single finite state machine from 

trace has been proved to be NP-hard [26]. To achieve 

better scalability, one can first learn multiple small 

specifications and then post-process them to form more 

complex state machines. Engler et al. [27] first 

introduce the idea of mining simple alternating 

patterns. Several subsequent efforts [9][7][10][12] 

built upon this work. For example, Javert [12] locates 

all instances of the alternating pattern (a b)* and a 

resource usage pattern (a b* c)*. The tool then 

composes these patterns into larger ones by using a set 

of inference rules. Javert is similar in spirit to our 

work. We focus on patterns that are meaningful for 

digital circuits and provide a merging procedure that 

can compose events in time.  

Dynamic techniques have also been directed to 

cope with potentially imperfect traces. Various 

measures have been proposed to measure a property’s 

statistical significance. Support and confidence are two 

common measures used in the data mining community. 

PR-Miner [5] makes use of frequent itemset mining to 

find highly correlated function calls. These two 

measures sometimes result in desirable monotonicity 

and non-redundancy properties that can give a 

potentially combinatorial speed-up and reduction in the 

number of properties mined [14]. One advantage of the 

template-based approach over the data mining 

approach is that the template-based approach is 

particularly amenable to online analysis whereas the 

data mining approach usually requires indexing the 

events at the beginning. In our work, we do not 

explicitly handle imperfectness in traces other than 

allowing them to be open-ended. However, it is 

straightforward to extend our technique to compute the 

statistical significance for each property by keeping 

track of the number of occurrences of the constituent 

events. 

In general, the quality of the trace directly impacts 

the quality of the specifications mined. Since dynamic 

analysis can only infer specifications from existing 

traces, coverage remains a fundamental limitation. 

Recently, Csallner et al. [28] leverage dynamic 

symbolic execution to improve the quality of their 

inferred invariants.  

Specifications can also be learned by reasoning 

about the program statically. For example, Alur et al. 

[1] proposes the use of predicate abstraction together 

with automata learning to automatically synthesize 

interface specifications for Java classes. Whaley et al. 

[25] proposes the use of type information in object-

oriented programs to produce an automaton that 
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encodes legal call sequences of operations of that type. 

Shoham et al. [29] mines Java client API rules using an 

automata-based abstraction that represents unbounded 

event sequences. Static and dynamic analyses 

complement each other. We refer the readers to [22] 

for a detailed comparison of the two techniques.  

Various circuit-specific mining techniques have 

been proposed by taking into account some special 

hardware properties. In [32], the authors propose a tool 

that mines simple likely invariants such as one-hot 

encodings or fixed-delay pairs. Fey and Drechsler [31] 

mine repeated patterns where patterns are valuations of 

signals at various time steps (e.g. st=1∧ st+1=0). While 

their approach is general, the timing requirement can 

be too strict for complex interactions and it deals with 

only a small set of signals over a predefined interval 

each round. Isaksen and Bertacco [24] propose the use 

of inferred boundary labels to generate transaction 

diagrams from a trace. Their methodology is 

particularly suitable for analyzing protocols. We focus 

on the mining of temporal properties for large general 

circuits.  

 

3 Concepts and Definitions 
 

This section formally introduces the dynamic 

specification mining problem for digital circuits and 

describes the parametric patterns that we mine.  

We denote S as the set of signals in a digital 

circuit. Each s ∈ S can be either a register or a wire. 

We use vs,t to denote the valuation of s at time t (We 

restrict ourselves to valuations of signals at rising 

edges of their corresponding clocks). An event e is a 

tuple < 𝑠 , 𝑣 , 𝑡 >, where 𝑠  is a set of signals and 𝑣  is the 

corresponding valuations at time t. In this work, we do 

not define events as assignments of signals across 

cycles. The alphabet Σ is the set of distinct events. A 

trace 𝜏 is a set of events (partially) ordered by their 

time of occurrence. A slice 𝜂 of a trace is defined as 

the set of events that occur at the same time. We 

consider finite traces in this work.  
Definition 3.1 (Projection) The projection 𝜋 of a 

trace 𝜏 over an alphabet Σ, 𝜋Σ(𝜏) is defined as 𝜏 with 

all events not in Σ deleted.  
Definition 3.2 (Specification Pattern) [7] A 

specification pattern is a finite state automaton 𝐴 =
(𝑄, Σ, 𝛿, 𝑞0, 𝐹), where 𝑄 is a finite set of states, Σ is the 

set of input events, 𝛿 ∶ 𝑄 →  Σ × 𝑄 is the transition 

function, 𝑞0 is the single starting state, and 𝐹 is the set 

of accepting states. A pattern is satisfied over a trace 𝜏 

with alphabet Σ′ ⊇ Σ iff 𝜋Σ 𝜏 ∈  ℒ(𝐴) i.e. the 

projection of the trace on the pattern alphabet is in the 

language of the pattern automaton.  

Definition 3.3 (Binary Pattern) A binary pattern 

is defined as a specification pattern with an alphabet 

size of 2. A binary pattern between events a and b is 

denoted as aRb.  

Our specification pattern miner takes a trace, a set 

of pattern templates and optionally an event definition 

as input, and produces all pattern instances that are 

satisfied over the trace as output. In this paper, we 

focus on the more challenging problem of mining of 

specifications without an explicit event definition. We 

adapt our techniques to some special characteristics of 

digital circuits to make them both efficient and 

meaningful.  

One key difference between a digital circuit and a 

piece of software is that a digital circuit can be thought 

of as a massive concurrent process, in which thousands 

of events occur at every clock cycle. In traditional 

software specification mining problems the size of the 

problem is relatively small; we have to handle traces of 

millions of cycles in length, potentially thousands of 

events at every cycle, and generally a large alphabet. In 

addition, we need to modify the definition of events to 

make the analysis meaningful. For example, an 

interesting event can be the start of a request (transition 

of value 0 to value 1), but the request signal can stay at 

1 for a while until a response is received. We introduce 

the notion of delta event, which is defined formally as 

the following. 

Definition 3.4 (Delta Event) A delta event, ∆e, is 

an event such that at least one of its constituent signals 

changes value from the previous valuation, i.e. ∆e ≜ 

𝑒 =  𝑠 , 𝑣 , 𝑡  s.t. ∃ 𝑣𝑠,𝑡 ∈ 𝑣  ∧  𝑣𝑠,𝑡  ≠ 𝑣𝑠,𝑡−1.  

Given these definitions, our mined patterns can be 

expressed succinctly in LTL [21] or as regular 

expressions. For example, we can express that every 

request must be eventually followed by a grant as “G 

(request → F grant)” in LTL, where the operator G 

specifies that globally at every point in time a certain 

property holds, and F specifies that a property holds 

either currently or at some point in the future. The set 

of binary patterns that our tool mines is illustrated 

below.  

Alternating (A) We restrict ourselves to only 

delta events. An alternating pattern between two delta 

events ∆a and ∆b can be then succinctly described by 

the regular expression (∆a ∆b)*. Note that this does 

not mean ∆b follows ∆a immediately in the next cycle. 

We denote this pattern as aAb. Figure 3 shows the 

corresponding finite automaton.  
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i 

Figure 3: Finite Automaton for the Alternating 

Pattern 

Until (U) The until pattern can be used to describe 

behaviors such as “the request line stays high until the 

corresponding response is received.” Figure 4 shows a 

trace where this pattern is satisfied. Formally, the LTL 

formula is “G (∆a → X (a U ∆b)).”ii We denote the 

pattern as aUb.  

 

Figure 4: Request stays high until a Response is 

received. 

Next (X) The next pattern corresponds to the LTL 

formula “G (∆a → X ∆b).” We denote it as aXb. Note 

that aXb implies aUb. One can also generalize this 

pattern to fixed-delay pairs.  

Eventual (F) The eventual pattern can be 

described by the LTL formula “G (∆a → 𝑋 𝐹 ∆𝑏).” 

We denote this as aFb. Note that aAb, aUb and aXb all 

imply aFb. We output aXb from aFb based on the 

timing bounds. 

Timing information is often crucial to specify a 

behavior. For example, a system may require every 

two requests to be separated by at least 3 cycles and 

the response to be received within 5 cycles of issuing a 

request. In this work, we compute the relevant timing 

bounds on the fly.  

Our tool first mines all binary pattern instances 

that are satisfied over the trace given the templates. 

Subsequently, the simple patterns are merged in time 

and then synthesized to form more complex patterns 

using the inference rules. These procedures are 

described in detail in Section 4.2. 

                                                           
i Unlabeled transitions basically include the rest of the 

events in the alphabet such that the automaton is also 

deterministic.   
ii The U operator is the strong until, which means ∆b 

has to be eventually true for the formula to be true.  

 

4 Mining and Summarization 
 

We exploit the highly modular nature of hardware 

design to keep the problem tractable. We partition the 

trace by module into many disjoint sub-traces and 

analyze them separately. This allows us to scale our 

technique easily to industrial-size designs. Empirical 

results also suggest that partitioning the trace does not 

decrease the quality of the specifications mined even 

though we have a smaller alphabet to mine from for 

each trace. The rest of this section describes our 

techniques in detail. Section 4.1 describes the mining 

algorithm. Section 4.2 describes how complex 

specifications can be synthesized. Section 4.3 

discusses some useful specification ranking metrics.  

 

4.1 Specification Mining 
 

We adopt the approach of mining small automata. We 

allow only a slight degree of imperfection when 

handling open-ended traces. This allows us to adapt the 

analysis to any snapshot of a trace or to an ongoing 

execution of the system (i.e. online). Informally, this 

means that a pattern may have its last occurrence non-

accepting as long as it is not in an error state. The 

specification mined can be immediately examined by 

the user or synthesized as online monitors for other 

executions. While this greatly reduces false-positives, 

the tradeoff is that we may lose the potential to debug 

the current trace since a frequent but non-universal 

pattern may indicate an erroneous behavior.  

Gabel and Su [7] formalize the pattern-based 

specification mining problem and show that its general 

form is NP-hard through reduction from the 

Hamiltonian Path problem. Therefore, it makes sense 

to mine patterns with a small pattern alphabet size to 

avoid the potential exponential blow-up. The approach 

taken in Perracotta [10] requires O(n
k
) space and O(n

k-

1
l) time for an input alphabet size of n, a pattern 

alphabet size of k, and a trace of length l. Gabel and Su 

[7] propose the use of Binary Decision Diagram 

(BDD) to improve the tractability of the problem. 

However, while they show significant speedup using 

the symbolic technique, the practical input alphabet 

size is still 3. In addition, the performance of BDD-

based techniques depends heavily on the good variable 

ordering, and finding the optimum variable ordering is 

again NP-hard [15].   

Our algorithm mines binary patterns with timing 

bounds as discussed in Section 3. We adopt the 

Perracotta approach but extend it to handle traces with 

multiple events at the same cycle and to mine richer 
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binary patterns. While we have to allocate a quadratic 

space and perform linear-time operation per slice, we 

can use bit-strings and bit-masking to improve the 

algorithm’s efficiency. The algorithm is briefly 

outlined below. All the events are delta events here, 

which we write just as e. The algorithm for mining 

aUb is shown below, where a and b are events that 

contain a single binary variable.  

Algorithm 1: Mine aUb 

function UNTILMINE (𝜂: slice, t: time) 

 foreach (event e in 𝜂) // update row   

  for (i = 0; i < alphabet_size; i++) 

   if (table[inde, i] == 0) table[inde, i] = 1; 

   else if (table[inde, i] == 2) tabe[inde, i] = -1;  
   

   end if 
  end for 

 end foreach 

   

 foreach (event e in 𝜂) // update column 

  for (j = 0; j < alphabet_size; j++) 

   if (alphabet[j] == ¬eiii)  

    for (k = 0; k < alphabet_size; k++) 

     if (table[j, k] == 1) table[j, inde] = 2;  

end if 

    end for 

   else if ((table[j, inde] == 1) |  

(table[j, inde] == 2)) 

    table[j, inde] = 0; 

   end if 

  end for 

 end foreach 

end function 

The algorithm basically updates the associated 

pattern automaton in each entry of the pattern table, for 

each slice of the trace, in an online fashion. The 

number 0 and -1 correspond to the accepting stateiv 

and the error state of the automaton respectively. The 

algorithm for mining aAb is similar, provided we avoid 

using two events from the same slice to update the 

same pattern. The final algorithm requires O(n
2
) space 

                                                           
iii This means the binary variable takes the opposite 

value.  
iv 1 is also accepting if we allow open-ended trace. 

and O(mnl) time, where m is the maximum number of 

events per slice.  

 

4.2 Specification Summarization 
 

Specification summarization is essential to keep the set 

of properties to a manageable size. It eliminates 

redundant specifications and helps specification 

comprehension. We perform three summarization 

procedures – event merging, pattern chaining and 

graph composition.  

We first merge the patterns in parallel by matching 

their time of occurrence. For example, if both (a b)* 

and (a c)* are true, and b and c always occur at the 

same time, we can merge them to form (a b∧c)*. We 

keep the indices of occurrences for the events in each 

pattern so that a recursive procedure suffices to merge 

such patterns maximally by scanning their occurrences 

as time increases (by moving a pointer pointing at the 

time of occurrence). The algorithm is outlined below.  

Algorithm 2: Merge aRb 

function MERGE (P: list of pattern instances) 

 if (|P|==1) 

  return P; 

 else if (all instances at last occurrence in P) 

  return P; 

 else if (some instances at last occurrence in P) 

  return append(ended instances in P,  

MERGE (remaining instances)); 

 else  

  return append(MERGE (instances with earliest 
current occurrence in P), 

  MERGE (remaining instances)); 

    end if 

end function 

This parallel merging procedure is particular 

useful when no event definition is provided. A 

hardware module in a typical CPU core can have 

hundreds of signals running in parallel and many of 

them are highly correlated. In Section 6, we 

demonstrate that this simple recursive procedure 

significantly improve the quality of specifications 

while reduces their number.  

After we merge the patterns in parallel, we 

repeatedly apply a set of inference rules to the results 

to obtain even more complex patterns. Some inference 

rules for chaining binary relational patterns are 
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illustrated below. It is straightforward to generalize 

them for further composition of similar patterns.  

 

Alternating Pattern Chaining Rule [12]:  

(∆a ∆b)*  (∆b ∆c)*   (∆a ∆c)* 

(∆a ∆b ∆c)* 

Next Pattern Chaining Rule: 

G (∆a → X ∆b)  G (∆b → X ∆c) 

G (∆a → (X ∆b ∧ X X ∆c)) 

Eventual-Until Pattern Chaining Rule: 

G (∆a → X F ∆b)  G (∆b → X (b U ∆c)) 

G (∆a →X F (bU ∆c)) 

We further graphically compose the resulting 

patterns to create an edge from a to b for patterns aRb. 

Every disjoint sub-graph represents a complex 

behavior amongst its constituent events.  

 

4.3 Specification Ranking 
 

The process of merging and chaining also allows us to 

further sieve through the set of specifications for the 

most interesting ones. For example, if one is interested 

in complex interactions, we can output only patterns 

with alphabet size greater than a user-specified 

threshold. Alternatively, we can rank patterns 

according to their frequencies, timing distributions or 

time of first occurrence.  

 

5 Trace Diagnosis 
 

Verification has been a difficult task and diagnosis is 

even harder. Dramatic increase in design complexity in 

recent years is making these activities a very expensive 

proposition. Such validation process can consume 35% 

of chip development time on average [30]. Bugs are 

even more difficult to diagnose in the post-silicon 

environment due to limited observability, 

reproducibility and dependence on physical 

parameters.  

In this paper, we also consider the problem of 

debugging potential multiple errors given a set of 

correct traces and a single error trace. Our goal is to 

localize the error to the part of the circuit where the 

error occurred.  

A number of diagnosis approaches have been 

proposed in the literature. As observed by Console et 

al [16], these approaches either require models that 

describe the correct behavior of the system or they 

need models for the abnormal (faulty) behaviors. Our 

approach is similar to the consistency-based methods 

[18]. In the traditional consistency-based reasoning 

approach, if a system can be described using a set of 

constraints, then diagnosis can be accomplished by 

identifying the set (often minimal) of constraints that 

must be excluded in order for the remaining constraints 

to be consistent with the observations. While this 

approach does not require knowledge of how a 

component of the system fails (a fault model), it 

requires the complete specification of the correct 

system. 

Our approach is similar to the consistency-based 

method but we do not need to start with a set of 

specifications. Instead, we mine specifications from 

traces and use them to localize the errors. Our 

approach does not require the RTL description of the 

system to be known, which makes it especially 

appealing for any gray-box systems. In addition, we do 

not need to align the correct traces with the incorrect 

trace. The trace diagnosis problem can be described as 

the following: 

Given a correct trace 𝜏 jointly produced by a set 

of modules M, and an incorrect trace 𝜏 ′  over the same 

alphabet Σ produced by M’ such that some m ∈ M’ is 

erroneous (different from its counterpart in M), the 

diagnosis task is to localize the error to m.       

We assume that the error is detectable. This means 

that there exists a mechanism to label a trace with 

respect to some correctness criteria. Typically, such 

mechanism relies on checking some end-to-end 

behaviors or observing whether an exception is raised.  

Consistency is defined with respect to the 

specifications mined from the correct trace. 

Specifically, if a pattern is only observed in the error 

trace but not in the correct trace, or if the pattern in the 

error trace violates the timing bounds in the correct 

trace, we record it as a potential suspect for error. An 

error can propagate to other modules and in turn cause 

more erroneous behaviors later. In light of this, we 

rank the diagnosis candidates by the time of its first 

violation. The module which the top candidate belongs 

to gives the localization result. Since the pattern itself 

describes a specific erroneous behavior, our approach 

also produces useful insights into what the error 

actually is.  

We present a case study on a microprocessor in 

Section 6 to demonstrate the effectiveness of this 

diagnostic approach. It also serves as a way to evaluate 

the completeness of the specifications mined. 

Intuitively, reasonable complete specifications should 

allow us to catch many different errors.  
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6 Experimental Results 
 

We experiment with the MIPS core in the extensible 

MIPS processor developed by Pittman et al [19]. 

eMIPS is a dynamically extensible processor 

architecture based on the MIPS R4000 instruction set 

[20]. The core contains 278 modules and over 20000 

signals. We only track signals with width less than 5. 

This is a simple heuristic to quickly prune away the 

various data paths, because we do not start with a 

manual event definition. We use ModelSim to simulate 

the eMIPS core and the trace is recorded as a VCD 

dump file. The input to the simulation system is a 

(binary) C program that runs on the eMIPS core, 

transmitting packets over an on-chip multiprocessor 

router. The experiments are run on a netbook with an 

Intel Atom 1.60 GHz processor and 1.0 GB of RAM.  

The first experiment is meant to evaluate both the 

efficiency of our specification mining algorithm and 

the usefulness of the specification compaction 

procedure. The length of the trace is 5 million cycles. 

We ended up tracking 5945 delta events from the 

signals. It took a total of 11 minutes and 47 seconds to 

mine all the specifications, including reading the dump 

file from disk and merging the specifications 

afterwards. Figure 5 shows that the specification 

summarization procedure significantly compacts 

specifications. The parallel merging procedure reduces 

the number of specifications by more than 5 times and 

the chaining procedure further reduces the number of 

specifications.  

 

Figure 5: Number of Specifications Mined 

In the second experiment, we syntactically 

injected faults into the MIPS core and then used our 

mining-based diagnosis approach to localize the fault. 

We performed three case studies. In the first one, we 

inverted the dne_r signal in the Block_RAM 

Controller from 1’b0 to 1’b1, as an example of a very 

common programming mistake that is often hard to 

locate. In the second, we changed the we_r signal in 

the Block_RAM Interface module from 4’b0 to 4’b6. 

This is an example of a multi-bit error. In the last, we 

changed the rdstate signal conditionally in the 

Register_File_Read module from 2’b00 to 2’b10 when 

it is in state 2’b01. This represents an erroneous state 

machine transition. We produced from each case an 

error trace of 1 million cycles, which is also 

approximately 1 million cycles before the error is first 

observed. In all three case studies, our diagnosis 

technique ranked the faulty module as a top candidate 

among the 278 modules. However, on average 6 other 

modules are also ranked as top candidates. This is due 

to the fact that some signals in these modules are 

combinational output of the error, and these signals in 

turn violate some local properties mined in their 

modules. While it is possible to overcome this by 

tracking only the registers, the tradeoff is that since we 

track less signals, we will lose some behavioral 

coverage. The time taken to produce the diagnosis 

candidate for each case was under 20 minutes on the 

previously described machine. While these results are 

indicative of the effectiveness of our diagnosis 

framework, we would like to experiment more with 

localizing transient faults while observing only the 

interface signals between modules, which are often the 

only observables in a post-silicon debug environment.  

 

7 Discussion and Conclusion 
 

The spirit of dynamic specification mining is to 

quickly generalize recurring patterns in a trace as 

universal specifications for the system. However, an 

inherent limitation with this approach is that the 

quality of the specification mined is only as good as 

the trace. A large recall rate can seriously undermine 

the effectiveness of this technique if a lot of the 

specifications mined turn out to be incorrect. One way 

to mitigate this problem is to prune out erroneous 

specifications by taking the intersection of 

specifications (from a common alphabet) mined from 

different traces. Although we are still interested in 

specifications in the disjoint alphabets, the problem is 

significantly different from the one in software where 

each path usually entails a unique behavior (and the 

goal there is to exercise all unexplored branches as fast 

as possible [34]). In the case of digital circuits, we can 

leverage works in coverage-directed testing to simulate 

many behaviors as fast as possible. An alternative is to 

prototype the circuit on a piece of reconfigurable logic 

(often a FPGA) and iteratively generate online 

assertion checkers for specifications mined from each 

trace. Lu and Forin [33] present the PSL-to-Verilog 

compiler which efficiently generates hardware 

monitors from PSL specifications based on logic 

rewriting. An attractive property of these monitors is 

that they are in fact software instrumentations realized 

5477

1072 986

0

1000

2000

3000

4000

5000

6000

Original Parallel Chain



 

10 

 

in hardware, and therefore do not alter a program’s 

temporal behavior in any way. The monitors execute 

concurrently with the program and validate the 

properties that they are synthesized from with zero 

execution overhead. At each iteration, an invalidated 

monitor either indicates the existence of a bug or an 

erroneous behavior.  

In conclusion, we have proposed a scalable and 

extensible specification-mining framework that is 

suitable for general digital circuits. In addition, we 

have shown that our specification mining procedure is 

effective as a subroutine for trace diagnosis. 

Evaluation shows that (a) the mining algorithm is 

practical, requiring only minutes of computation even 

for a very large-scale example, (b) for human benefit, 

the mined specifications can be automatically 

compacted by about a factor of 5x, (c) the diagnostic 

use is effective in pinpointing the error location to the 

correct module when each of three popular 

programming mistakes is applied to a very large-scale 

example. In the future, we would like to experiment 

our diagnosis technique with different types of faults. 
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