

Specification Mining for Digital Circuits with
Applications on Verification and Diagnosis

Wenchao Li, Alessandro Forin

Microsoft Research

August 21, 2009

Technical Report

MSR-TR-2009-114

Microsoft Research

Microsoft Corporation

One Microsoft Way

Redmond, WA 98052

2

3

Specification Mining for Digital Circuits with
Applications on Verification and Diagnosis

Wenchao Li, Alessandro Forin

Microsoft Research

Abstract

Software and hardware systems are often built without

detailed documentation. The correctness of these

systems can only be verified as well as the

specifications are written. The lack of sufficient

specifications often leads to misses of critical bugs,

design re-spins, and time-to-market slips. In this

paper, we address this problem by mining specification

dynamically from simulation traces. Given an

execution trace, we mine recurring temporal behaviors

in the trace that match a set of pattern templates.

Subsequently, we synthesize them into complex

patterns by merging events in time and chaining the

patterns using inference rules. We specifically

designed our algorithm to make it highly efficient and

meaningful for digital circuits. In addition, we propose

a pattern-mining diagnosis framework where

specifications mined from error-labeled traces are

used to automatically pinpoint the sources of error. In

this work, we focus on traces from digital circuits, but

any ordered trace of events is amenable to this

analysis. We demonstrate the effectiveness of our

approach on industrial-size examples.

1 Introduction

Formal specifications can succinctly capture a

system’s behaviors. One can then leverage verification

techniques such as model checking [23] to ensure the

correctness of the system. However, as hardware

designs rapidly grow in complexity, this is becoming a

very expensive proposition. For instance, Intel reported

that in 2005 the manpower assigned to design was a

third of that assigned to validation [17]. Furthermore,

the difficulty of formalizing a complete set of formal

properties has significantly hindered the wide-spread

adoption of formal and semi-formal techniques. Hence,

in order to render automated verification techniques

effective, there is a constant need to add new

properties or modify existing ones. Recently,

Kupferman et al. [2] developed a theory of mutations

that enables the strengthening of weak specifications.

However, the goal of automatically synthesizing a

complete set of proper specifications remains elusive

even for the state-of-the-art.

 Specification mining is a promising alternative. It

is the process of extracting specifications, either

statically from the description of a system, or

dynamically from its executions. The specifications

mined in turn allow us to better understand the system,

verify its correctness, and manage possible evolutional

changes. In this work, we dynamically mine recurring

patterns from existing simulation traces. These patterns

can then be examined by the engineer to see whether

they match the designer’s intent and check with further

verification. The intuition is that frequent patterns are

likely to be true. Figure 1 illustrates the high-level tool

flow. Our tool takes a trace and optionally a user-

defined event definition as input, and generates a set of

behavioral patterns that are always true in the trace as

output. A trace is a sequence of events ordered by the

time of occurrence. Events in this case are the

valuations of a set of signals in a circuit. Given the

trace, we match it to a library of parametric patterns.

The matching algorithm is discussed in detail in

Section 4. We also provide a post-processing ranking

module to produce the most interesting properties.

Figure 1: Specification Mining for Verification

Specification mining not only closes the loop in

verification environments such as coverage-driven

simulation or formal verification, it can also provide

useful information for diagnosis. We propose a

pattern-mining based trace diagnosis framework that

can be used to simultaneously understand the error and

locate it. Figure 2 show how our specification mining

engine is used as a subroutine to determine the

distinguishing patterns between a normal trace and an

error trace. The distinguishing patterns are the patterns

that exist in one trace but not in the other, or patterns

4

that exist in both traces but with conflicting timing

bounds. After finding these patterns, we apply a

localization procedure to pinpoint the source of error.

Figure 2: Specification Mining for Diagnosis

In this paper, we make these key contributions:

- A novel dynamic specification mining

technique especially designed for general

digital circuits. Our tool efficiently mines

non-trivial specifications and is highly

scalable;

- A novel trace-diagnosis technique based on

specification mining that achieves good

accuracy for very large circuits.

The paper is organized as follows. Section 2 gives

an extensive survey on related literature of

specification mining. Section 3 illustrates the main

concepts and formally defines the problem. Section 4

describes the algorithms for mining specification in

digital circuits. Section 5 describes a pattern-mining

based technique for diagnosis. Section 6 presents

experimental results. Section 7 concludes.

2 Related Work

Many techniques have been proposed to automatically

reverse-engineer specifications from a system

[6][7][8][10][12][13][14]. The study of automatically

generating specifications goes back as early as [3][4].

These specifications can be simple predicates in

programs, or temporal specifications which specify the

ordering of events (such as function calls), or general

programming rules [5]. The specifications generated

can then be used to formally verify a program’s

correctness, to assist in debug [9], or to detect

malicious behaviors [11].

Specifications are typically learned dynamically

from an execution trace (or a set of traces). A trace can

be a sequence of function calls or a sequence of

memory transactions on a bus. Daikon [13] is one of

the most well-known tools that mine value-based

invariants. We focus on mining temporal properties in

this work. Most existing mining tools produce

temporal properties in the form of automata. In

addition, dynamic analysis mainly targets strongly-

observed sub-behaviors. Automata-based techniques

generally fall into two categories. The first one learns a

single complex specification (usually as a finite

automaton) over a specific alphabet [8][25], and then

extracts scenarios to one's flavor. In [8], Ammons et al.

first produces a probabilistic automaton that accepts

the trace and then extracts from it likely properties.

However, extracting a single finite state machine from

trace has been proved to be NP-hard [26]. To achieve

better scalability, one can first learn multiple small

specifications and then post-process them to form more

complex state machines. Engler et al. [27] first

introduce the idea of mining simple alternating

patterns. Several subsequent efforts [9][7][10][12]

built upon this work. For example, Javert [12] locates

all instances of the alternating pattern (a b)* and a

resource usage pattern (a b* c)*. The tool then

composes these patterns into larger ones by using a set

of inference rules. Javert is similar in spirit to our

work. We focus on patterns that are meaningful for

digital circuits and provide a merging procedure that

can compose events in time.

Dynamic techniques have also been directed to

cope with potentially imperfect traces. Various

measures have been proposed to measure a property’s

statistical significance. Support and confidence are two

common measures used in the data mining community.

PR-Miner [5] makes use of frequent itemset mining to

find highly correlated function calls. These two

measures sometimes result in desirable monotonicity

and non-redundancy properties that can give a

potentially combinatorial speed-up and reduction in the

number of properties mined [14]. One advantage of the

template-based approach over the data mining

approach is that the template-based approach is

particularly amenable to online analysis whereas the

data mining approach usually requires indexing the

events at the beginning. In our work, we do not

explicitly handle imperfectness in traces other than

allowing them to be open-ended. However, it is

straightforward to extend our technique to compute the

statistical significance for each property by keeping

track of the number of occurrences of the constituent

events.

In general, the quality of the trace directly impacts

the quality of the specifications mined. Since dynamic

analysis can only infer specifications from existing

traces, coverage remains a fundamental limitation.

Recently, Csallner et al. [28] leverage dynamic

symbolic execution to improve the quality of their

inferred invariants.

Specifications can also be learned by reasoning

about the program statically. For example, Alur et al.

[1] proposes the use of predicate abstraction together

with automata learning to automatically synthesize

interface specifications for Java classes. Whaley et al.

[25] proposes the use of type information in object-

oriented programs to produce an automaton that

5

encodes legal call sequences of operations of that type.

Shoham et al. [29] mines Java client API rules using an

automata-based abstraction that represents unbounded

event sequences. Static and dynamic analyses

complement each other. We refer the readers to [22]

for a detailed comparison of the two techniques.

Various circuit-specific mining techniques have

been proposed by taking into account some special

hardware properties. In [32], the authors propose a tool

that mines simple likely invariants such as one-hot

encodings or fixed-delay pairs. Fey and Drechsler [31]

mine repeated patterns where patterns are valuations of

signals at various time steps (e.g. st=1∧ st+1=0). While

their approach is general, the timing requirement can

be too strict for complex interactions and it deals with

only a small set of signals over a predefined interval

each round. Isaksen and Bertacco [24] propose the use

of inferred boundary labels to generate transaction

diagrams from a trace. Their methodology is

particularly suitable for analyzing protocols. We focus

on the mining of temporal properties for large general

circuits.

3 Concepts and Definitions

This section formally introduces the dynamic

specification mining problem for digital circuits and

describes the parametric patterns that we mine.

We denote S as the set of signals in a digital

circuit. Each s ∈ S can be either a register or a wire.

We use vs,t to denote the valuation of s at time t (We

restrict ourselves to valuations of signals at rising

edges of their corresponding clocks). An event e is a

tuple < 𝑠 , 𝑣 , 𝑡 >, where 𝑠 is a set of signals and 𝑣 is the

corresponding valuations at time t. In this work, we do

not define events as assignments of signals across

cycles. The alphabet Σ is the set of distinct events. A

trace 𝜏 is a set of events (partially) ordered by their

time of occurrence. A slice 𝜂 of a trace is defined as

the set of events that occur at the same time. We

consider finite traces in this work.
Definition 3.1 (Projection) The projection 𝜋 of a

trace 𝜏 over an alphabet Σ, 𝜋Σ(𝜏) is defined as 𝜏 with

all events not in Σ deleted.
Definition 3.2 (Specification Pattern) [7] A

specification pattern is a finite state automaton 𝐴 =
(𝑄, Σ, 𝛿, 𝑞0, 𝐹), where 𝑄 is a finite set of states, Σ is the

set of input events, 𝛿 ∶ 𝑄 → Σ × 𝑄 is the transition

function, 𝑞0 is the single starting state, and 𝐹 is the set

of accepting states. A pattern is satisfied over a trace 𝜏

with alphabet Σ′ ⊇ Σ iff 𝜋Σ 𝜏 ∈ ℒ(𝐴) i.e. the

projection of the trace on the pattern alphabet is in the

language of the pattern automaton.

Definition 3.3 (Binary Pattern) A binary pattern

is defined as a specification pattern with an alphabet

size of 2. A binary pattern between events a and b is

denoted as aRb.

Our specification pattern miner takes a trace, a set

of pattern templates and optionally an event definition

as input, and produces all pattern instances that are

satisfied over the trace as output. In this paper, we

focus on the more challenging problem of mining of

specifications without an explicit event definition. We

adapt our techniques to some special characteristics of

digital circuits to make them both efficient and

meaningful.

One key difference between a digital circuit and a

piece of software is that a digital circuit can be thought

of as a massive concurrent process, in which thousands

of events occur at every clock cycle. In traditional

software specification mining problems the size of the

problem is relatively small; we have to handle traces of

millions of cycles in length, potentially thousands of

events at every cycle, and generally a large alphabet. In

addition, we need to modify the definition of events to

make the analysis meaningful. For example, an

interesting event can be the start of a request (transition

of value 0 to value 1), but the request signal can stay at

1 for a while until a response is received. We introduce

the notion of delta event, which is defined formally as

the following.

Definition 3.4 (Delta Event) A delta event, ∆e, is

an event such that at least one of its constituent signals

changes value from the previous valuation, i.e. ∆e ≜

𝑒 = 𝑠 , 𝑣 , 𝑡 s.t. ∃ 𝑣𝑠,𝑡 ∈ 𝑣 ∧ 𝑣𝑠,𝑡 ≠ 𝑣𝑠,𝑡−1.

Given these definitions, our mined patterns can be

expressed succinctly in LTL [21] or as regular

expressions. For example, we can express that every

request must be eventually followed by a grant as “G

(request → F grant)” in LTL, where the operator G

specifies that globally at every point in time a certain

property holds, and F specifies that a property holds

either currently or at some point in the future. The set

of binary patterns that our tool mines is illustrated

below.

Alternating (A) We restrict ourselves to only

delta events. An alternating pattern between two delta

events ∆a and ∆b can be then succinctly described by

the regular expression (∆a ∆b)*. Note that this does

not mean ∆b follows ∆a immediately in the next cycle.

We denote this pattern as aAb. Figure 3 shows the

corresponding finite automaton.

6

i

Figure 3: Finite Automaton for the Alternating

Pattern

Until (U) The until pattern can be used to describe

behaviors such as “the request line stays high until the

corresponding response is received.” Figure 4 shows a

trace where this pattern is satisfied. Formally, the LTL

formula is “G (∆a → X (a U ∆b)).”ii We denote the

pattern as aUb.

Figure 4: Request stays high until a Response is

received.

Next (X) The next pattern corresponds to the LTL

formula “G (∆a → X ∆b).” We denote it as aXb. Note

that aXb implies aUb. One can also generalize this

pattern to fixed-delay pairs.

Eventual (F) The eventual pattern can be

described by the LTL formula “G (∆a → 𝑋 𝐹 ∆𝑏).”

We denote this as aFb. Note that aAb, aUb and aXb all

imply aFb. We output aXb from aFb based on the

timing bounds.

Timing information is often crucial to specify a

behavior. For example, a system may require every

two requests to be separated by at least 3 cycles and

the response to be received within 5 cycles of issuing a

request. In this work, we compute the relevant timing

bounds on the fly.

Our tool first mines all binary pattern instances

that are satisfied over the trace given the templates.

Subsequently, the simple patterns are merged in time

and then synthesized to form more complex patterns

using the inference rules. These procedures are

described in detail in Section 4.2.

i Unlabeled transitions basically include the rest of the

events in the alphabet such that the automaton is also

deterministic.
ii The U operator is the strong until, which means ∆b

has to be eventually true for the formula to be true.

4 Mining and Summarization

We exploit the highly modular nature of hardware

design to keep the problem tractable. We partition the

trace by module into many disjoint sub-traces and

analyze them separately. This allows us to scale our

technique easily to industrial-size designs. Empirical

results also suggest that partitioning the trace does not

decrease the quality of the specifications mined even

though we have a smaller alphabet to mine from for

each trace. The rest of this section describes our

techniques in detail. Section 4.1 describes the mining

algorithm. Section 4.2 describes how complex

specifications can be synthesized. Section 4.3

discusses some useful specification ranking metrics.

4.1 Specification Mining

We adopt the approach of mining small automata. We

allow only a slight degree of imperfection when

handling open-ended traces. This allows us to adapt the

analysis to any snapshot of a trace or to an ongoing

execution of the system (i.e. online). Informally, this

means that a pattern may have its last occurrence non-

accepting as long as it is not in an error state. The

specification mined can be immediately examined by

the user or synthesized as online monitors for other

executions. While this greatly reduces false-positives,

the tradeoff is that we may lose the potential to debug

the current trace since a frequent but non-universal

pattern may indicate an erroneous behavior.

Gabel and Su [7] formalize the pattern-based

specification mining problem and show that its general

form is NP-hard through reduction from the

Hamiltonian Path problem. Therefore, it makes sense

to mine patterns with a small pattern alphabet size to

avoid the potential exponential blow-up. The approach

taken in Perracotta [10] requires O(n
k
) space and O(n

k-

1
l) time for an input alphabet size of n, a pattern

alphabet size of k, and a trace of length l. Gabel and Su

[7] propose the use of Binary Decision Diagram

(BDD) to improve the tractability of the problem.

However, while they show significant speedup using

the symbolic technique, the practical input alphabet

size is still 3. In addition, the performance of BDD-

based techniques depends heavily on the good variable

ordering, and finding the optimum variable ordering is

again NP-hard [15].

Our algorithm mines binary patterns with timing

bounds as discussed in Section 3. We adopt the

Perracotta approach but extend it to handle traces with

multiple events at the same cycle and to mine richer

7

binary patterns. While we have to allocate a quadratic

space and perform linear-time operation per slice, we

can use bit-strings and bit-masking to improve the

algorithm’s efficiency. The algorithm is briefly

outlined below. All the events are delta events here,

which we write just as e. The algorithm for mining

aUb is shown below, where a and b are events that

contain a single binary variable.

Algorithm 1: Mine aUb

function UNTILMINE (𝜂: slice, t: time)

 foreach (event e in 𝜂) // update row

 for (i = 0; i < alphabet_size; i++)

 if (table[inde, i] == 0) table[inde, i] = 1;

 else if (table[inde, i] == 2) tabe[inde, i] = -1;

 end if
 end for

 end foreach

 foreach (event e in 𝜂) // update column

 for (j = 0; j < alphabet_size; j++)

 if (alphabet[j] == ¬eiii)

 for (k = 0; k < alphabet_size; k++)

 if (table[j, k] == 1) table[j, inde] = 2;

end if

 end for

 else if ((table[j, inde] == 1) |

(table[j, inde] == 2))

 table[j, inde] = 0;

 end if

 end for

 end foreach

end function

The algorithm basically updates the associated

pattern automaton in each entry of the pattern table, for

each slice of the trace, in an online fashion. The

number 0 and -1 correspond to the accepting stateiv

and the error state of the automaton respectively. The

algorithm for mining aAb is similar, provided we avoid

using two events from the same slice to update the

same pattern. The final algorithm requires O(n
2
) space

iii This means the binary variable takes the opposite

value.
iv 1 is also accepting if we allow open-ended trace.

and O(mnl) time, where m is the maximum number of

events per slice.

4.2 Specification Summarization

Specification summarization is essential to keep the set

of properties to a manageable size. It eliminates

redundant specifications and helps specification

comprehension. We perform three summarization

procedures – event merging, pattern chaining and

graph composition.

We first merge the patterns in parallel by matching

their time of occurrence. For example, if both (a b)*

and (a c)* are true, and b and c always occur at the

same time, we can merge them to form (a b∧c)*. We

keep the indices of occurrences for the events in each

pattern so that a recursive procedure suffices to merge

such patterns maximally by scanning their occurrences

as time increases (by moving a pointer pointing at the

time of occurrence). The algorithm is outlined below.

Algorithm 2: Merge aRb

function MERGE (P: list of pattern instances)

 if (|P|==1)

 return P;

 else if (all instances at last occurrence in P)

 return P;

 else if (some instances at last occurrence in P)

 return append(ended instances in P,

MERGE (remaining instances));

 else

 return append(MERGE (instances with earliest
current occurrence in P),

 MERGE (remaining instances));

 end if

end function

This parallel merging procedure is particular

useful when no event definition is provided. A

hardware module in a typical CPU core can have

hundreds of signals running in parallel and many of

them are highly correlated. In Section 6, we

demonstrate that this simple recursive procedure

significantly improve the quality of specifications

while reduces their number.

After we merge the patterns in parallel, we

repeatedly apply a set of inference rules to the results

to obtain even more complex patterns. Some inference

rules for chaining binary relational patterns are

8

illustrated below. It is straightforward to generalize

them for further composition of similar patterns.

Alternating Pattern Chaining Rule [12]:

(∆a ∆b)* (∆b ∆c)* (∆a ∆c)*

(∆a ∆b ∆c)*

Next Pattern Chaining Rule:

G (∆a → X ∆b) G (∆b → X ∆c)

G (∆a → (X ∆b ∧ X X ∆c))

Eventual-Until Pattern Chaining Rule:

G (∆a → X F ∆b) G (∆b → X (b U ∆c))

G (∆a →X F (bU ∆c))

We further graphically compose the resulting

patterns to create an edge from a to b for patterns aRb.

Every disjoint sub-graph represents a complex

behavior amongst its constituent events.

4.3 Specification Ranking

The process of merging and chaining also allows us to

further sieve through the set of specifications for the

most interesting ones. For example, if one is interested

in complex interactions, we can output only patterns

with alphabet size greater than a user-specified

threshold. Alternatively, we can rank patterns

according to their frequencies, timing distributions or

time of first occurrence.

5 Trace Diagnosis

Verification has been a difficult task and diagnosis is

even harder. Dramatic increase in design complexity in

recent years is making these activities a very expensive

proposition. Such validation process can consume 35%

of chip development time on average [30]. Bugs are

even more difficult to diagnose in the post-silicon

environment due to limited observability,

reproducibility and dependence on physical

parameters.

In this paper, we also consider the problem of

debugging potential multiple errors given a set of

correct traces and a single error trace. Our goal is to

localize the error to the part of the circuit where the

error occurred.

A number of diagnosis approaches have been

proposed in the literature. As observed by Console et

al [16], these approaches either require models that

describe the correct behavior of the system or they

need models for the abnormal (faulty) behaviors. Our

approach is similar to the consistency-based methods

[18]. In the traditional consistency-based reasoning

approach, if a system can be described using a set of

constraints, then diagnosis can be accomplished by

identifying the set (often minimal) of constraints that

must be excluded in order for the remaining constraints

to be consistent with the observations. While this

approach does not require knowledge of how a

component of the system fails (a fault model), it

requires the complete specification of the correct

system.

Our approach is similar to the consistency-based

method but we do not need to start with a set of

specifications. Instead, we mine specifications from

traces and use them to localize the errors. Our

approach does not require the RTL description of the

system to be known, which makes it especially

appealing for any gray-box systems. In addition, we do

not need to align the correct traces with the incorrect

trace. The trace diagnosis problem can be described as

the following:

Given a correct trace 𝜏 jointly produced by a set

of modules M, and an incorrect trace 𝜏 ′ over the same

alphabet Σ produced by M’ such that some m ∈ M’ is

erroneous (different from its counterpart in M), the

diagnosis task is to localize the error to m.

We assume that the error is detectable. This means

that there exists a mechanism to label a trace with

respect to some correctness criteria. Typically, such

mechanism relies on checking some end-to-end

behaviors or observing whether an exception is raised.

Consistency is defined with respect to the

specifications mined from the correct trace.

Specifically, if a pattern is only observed in the error

trace but not in the correct trace, or if the pattern in the

error trace violates the timing bounds in the correct

trace, we record it as a potential suspect for error. An

error can propagate to other modules and in turn cause

more erroneous behaviors later. In light of this, we

rank the diagnosis candidates by the time of its first

violation. The module which the top candidate belongs

to gives the localization result. Since the pattern itself

describes a specific erroneous behavior, our approach

also produces useful insights into what the error

actually is.

We present a case study on a microprocessor in

Section 6 to demonstrate the effectiveness of this

diagnostic approach. It also serves as a way to evaluate

the completeness of the specifications mined.

Intuitively, reasonable complete specifications should

allow us to catch many different errors.

9

6 Experimental Results

We experiment with the MIPS core in the extensible

MIPS processor developed by Pittman et al [19].

eMIPS is a dynamically extensible processor

architecture based on the MIPS R4000 instruction set

[20]. The core contains 278 modules and over 20000

signals. We only track signals with width less than 5.

This is a simple heuristic to quickly prune away the

various data paths, because we do not start with a

manual event definition. We use ModelSim to simulate

the eMIPS core and the trace is recorded as a VCD

dump file. The input to the simulation system is a

(binary) C program that runs on the eMIPS core,

transmitting packets over an on-chip multiprocessor

router. The experiments are run on a netbook with an

Intel Atom 1.60 GHz processor and 1.0 GB of RAM.

The first experiment is meant to evaluate both the

efficiency of our specification mining algorithm and

the usefulness of the specification compaction

procedure. The length of the trace is 5 million cycles.

We ended up tracking 5945 delta events from the

signals. It took a total of 11 minutes and 47 seconds to

mine all the specifications, including reading the dump

file from disk and merging the specifications

afterwards. Figure 5 shows that the specification

summarization procedure significantly compacts

specifications. The parallel merging procedure reduces

the number of specifications by more than 5 times and

the chaining procedure further reduces the number of

specifications.

Figure 5: Number of Specifications Mined

In the second experiment, we syntactically

injected faults into the MIPS core and then used our

mining-based diagnosis approach to localize the fault.

We performed three case studies. In the first one, we

inverted the dne_r signal in the Block_RAM

Controller from 1’b0 to 1’b1, as an example of a very

common programming mistake that is often hard to

locate. In the second, we changed the we_r signal in

the Block_RAM Interface module from 4’b0 to 4’b6.

This is an example of a multi-bit error. In the last, we

changed the rdstate signal conditionally in the

Register_File_Read module from 2’b00 to 2’b10 when

it is in state 2’b01. This represents an erroneous state

machine transition. We produced from each case an

error trace of 1 million cycles, which is also

approximately 1 million cycles before the error is first

observed. In all three case studies, our diagnosis

technique ranked the faulty module as a top candidate

among the 278 modules. However, on average 6 other

modules are also ranked as top candidates. This is due

to the fact that some signals in these modules are

combinational output of the error, and these signals in

turn violate some local properties mined in their

modules. While it is possible to overcome this by

tracking only the registers, the tradeoff is that since we

track less signals, we will lose some behavioral

coverage. The time taken to produce the diagnosis

candidate for each case was under 20 minutes on the

previously described machine. While these results are

indicative of the effectiveness of our diagnosis

framework, we would like to experiment more with

localizing transient faults while observing only the

interface signals between modules, which are often the

only observables in a post-silicon debug environment.

7 Discussion and Conclusion

The spirit of dynamic specification mining is to

quickly generalize recurring patterns in a trace as

universal specifications for the system. However, an

inherent limitation with this approach is that the

quality of the specification mined is only as good as

the trace. A large recall rate can seriously undermine

the effectiveness of this technique if a lot of the

specifications mined turn out to be incorrect. One way

to mitigate this problem is to prune out erroneous

specifications by taking the intersection of

specifications (from a common alphabet) mined from

different traces. Although we are still interested in

specifications in the disjoint alphabets, the problem is

significantly different from the one in software where

each path usually entails a unique behavior (and the

goal there is to exercise all unexplored branches as fast

as possible [34]). In the case of digital circuits, we can

leverage works in coverage-directed testing to simulate

many behaviors as fast as possible. An alternative is to

prototype the circuit on a piece of reconfigurable logic

(often a FPGA) and iteratively generate online

assertion checkers for specifications mined from each

trace. Lu and Forin [33] present the PSL-to-Verilog

compiler which efficiently generates hardware

monitors from PSL specifications based on logic

rewriting. An attractive property of these monitors is

that they are in fact software instrumentations realized

5477

1072 986

0

1000

2000

3000

4000

5000

6000

Original Parallel Chain

10

in hardware, and therefore do not alter a program’s

temporal behavior in any way. The monitors execute

concurrently with the program and validate the

properties that they are synthesized from with zero

execution overhead. At each iteration, an invalidated

monitor either indicates the existence of a bug or an

erroneous behavior.

In conclusion, we have proposed a scalable and

extensible specification-mining framework that is

suitable for general digital circuits. In addition, we

have shown that our specification mining procedure is

effective as a subroutine for trace diagnosis.

Evaluation shows that (a) the mining algorithm is

practical, requiring only minutes of computation even

for a very large-scale example, (b) for human benefit,

the mined specifications can be automatically

compacted by about a factor of 5x, (c) the diagnostic

use is effective in pinpointing the error location to the

correct module when each of three popular

programming mistakes is applied to a very large-scale

example. In the future, we would like to experiment

our diagnosis technique with different types of faults.

References

[1] R. Alur, P. Černy, P. Madhusudan and W. Nam.

Synthesis of Interface Specifications for Java Classes. In

Proc. 32nd ACM POPL, pages 98-109, 2005.

[2] O. Kupferman, W. Li, S. A. Seshia. A Theory of

Mutations with Applications to Vacuity, Coverage, and

Fault Tolerance. In Proc. 8th FMCAD, pages 1-9, 2008.

[3] M. Caplain. Finding invariant assertions for proving

programs. In Int. Conf. on Reliable software, 1975.

[4] B. Wegbreit. The synthesis of loop predicates.

Communications of the ACM, 17(2), 1974.

[5] Z. Li and Y. Zhou. PR-Miner: automatically extracting

implicit programming rules and detecting violations in

large software code. In Proc. ESEC/FSE, pages 306-

315, 2005.

[6] Sankaranarayanan, S., Ivanči, F., and Gupta, A. Mining

library specifications using inductive logic

programming. In Proc. of ICSE '08.

[7] Gabel, M. and Su, Z. Symbolic mining of temporal

specifications. In Proc. of ICSE '08.

[8] Ammons, G., Bodík, R., and Larus, J. R. Mining

specifications. In Proc. of POPL'02.

[9] W. Weimer and G. C. Necula. Mining Temporal

Specifications for Error Detection. In Proc. of

TACAS’05.

[10] Yang, J., Evans, D., Bhardwaj, D., Bhat, T., and Das,

M. Perracotta: mining temporal API rules from

imperfect traces. In Proc. of ICSE '06.

[11] Christodorescu, M., Jha, S., and Kruegel, C. Mining

specifications of malicious behavior. In ESEC-FSE'07.

[12] Gabel, M. and Su, Z. Javert: fully automatic mining of

general temporal properties from dynamic traces. In

Proc. of SIGSOFT '08/FSE-16.

[13] Ernst, M. D. et al. The Daikon system for dynamic

detection of likely invariants. Sci. Comput. Program.

69, 2007.

[14] Lo, D., Khoo, S., and Liu, C. Mining past-time temporal

rules from execution traces. In Proc. of WODA’08.

[15] Beate Bollig, Ingo Wegener. Improving the Variable

Ordering of OBDDs is NP-Complete. IEEE

Transactions on Computers, 1996.

[16] L. Console and P. Torasso. A spectrum of logical

definitions of model-based diagnosis. Comput. Intell.,

1991.

[17] P. Patra. On the cusp of a validation wall. IEEE Des.

Test, 24(2):193–196, 2007.

[18] J. de Kleer, A. K. Mackworth, and R. Reiter.

Characterizing diagnosis and systems. Artificial

Intelligence, 56, 1991.

[19] Pittman, R. N., Lynch, N. L., Forin, A. eMIPS, A

Dynamically Extensible Processor. MSR-TR-2006-143,

Microsoft Research, WA, October 2006

[20] J Heinrich. MIPS 4000 Microprocessor User’s Manual.

1994.

[21] Manna, Z. and Pnueli, A. The Temporal Logic of

Reactive and Concurrent Systems. Springer-Verlag

1992.

[22] M. Ernst. Static and Dynamic Analysis: Synergy and

Duality. In Work. On Dynamic Analysis, 2003.

[23] E. Clarke, O. Grumberg, D. Peled. Model Checking.

MIT Press, 1999.

[24] B. Isaksen, V. Bertacco. Verification through the

Principle of Least Astonishment. In Proc. of ICCAD’06.

[25] Whaley, J., Martin, M. C., and Lam, M. S. Automatic

extraction of object-oriented component interfaces. In

Proc. of ISSTA '02.

[26] E. Gold. Complexity of automatic identification from

given data. Information and Control, 37, 302-320, 1978.

[27] D. Engler, et al. Bugs as Deviant Behavior: a General

Approach to Inferring Errors in System Code. In

SOSP’01.

[28] Csallner, C., Tillmann, N., and Smaragdakis, Y. DySy:

dynamic symbolic execution for invariant inference. In

Proc. of ICSE '08.

[29] S. Shoham, E. Yahav, S. Fink, M. Pistoia. Static

specification mining using automata-based abstractions.

In Proc. of ISSTA’07.

[30] M. Abramovici, P. Bradley, K. Dwarakanath, P. Levin,

G. Memmi, and D. Miller. A reconfigurable design-for-

debug infrastructure for socs. In Proc. of DAC’06.

[31] G. Fey and R. Drechsler. Improving simulation-based

verification by means of formal methods. In Proc. of

ASPDAC’04.

11

[32] S. Hangla, N. Chandra, S. Narayanan, S. Chakravorty.

Iodine: A tool to automatically infer dynamic invariants

for hardware designs. In Proc. of DAC’05.

[33] Lu, H., Forin, A. The Design and Implementation of

P2V, An Architecture for Zero-Overhead Online

Verification of Software Programs. MSR-TR-2007-99,

Microsoft Research, WA, August 2007.

[34] Nikolai Tillmann, Jonathan de Halleux. In Proc. of TAP

2008, the 2nd International Conference on Tests and

Proofs, LNCS, vol. 4966, pages 134-153, April 2008.

http://research.microsoft.com/en-us/projects/emips/p2v_report.pdf
http://research.microsoft.com/en-us/projects/emips/p2v_report.pdf
http://research.microsoft.com/en-us/projects/emips/p2v_report.pdf

