

Design and Testing of a CPU Emulator

Weiqin Ma, Jyh-Charn (Steve) Liu

Texas A&M University

Alessandro Forin

Microsoft Research

August 2009

Technical Report

MSR-TR-2009-155

Microsoft Research

Microsoft Corporation

One Microsoft Way

Redmond, WA 98052

 - 2 -

 - 3 -

Design and Testing of a CPU Emulator

Weiqin Ma Jyh-Charn (Steve) Liu Alessandro Forin
Department of Computer Science Department of Computer Science Microsoft Research

Texas A&M University Texas A&M University One Microsoft Way

College Station, TX 77843 College Station, TX 77843 Redmond, WA 98052

maweiqin@tamu.edu jcliu@neo.tamu.edu sandrof@microsoft.com

Abstract

In this paper, we describe the design and testing

process of an x86 CPU model for the Giano simulator. We

used a hardware-oracle for test generation and as a

reference behavioral specification. We developed an

automatic tester that extracts the CPU specifications from

the published CPU datasheets, and automatically generates

test cases with complete test coverage. The number of

required tests is reduced by many orders of magnitude by

the separate testing of operand routing from computation.

Debugging efficacy is such that the tester is now used

concurrently with the development process, not afterwards.

The hardware-oracle detects and documents several

undocumented or erroneously-specified CPU behaviors

which would be difficult to detect by conventional testing

methods.

1 INTRODUCTION
The correct implementation of CPU emulators is critical for

computer system design, and yet software errors in CPU

simulators can remain undetected for years after the

software is released. For example, implementation errors

for the ADC and SBB instructions in the commercial 8086

emulator [18] were not found until version 4.08. For

variable length instruction sets, such as the x86

instructions, the cascading effects of an error can lead to a

total crash of the emulator. Bugs in Valgrind [17] could

lead to errors in all subsequent instruction executions.

Despite its importance, it is extremely costly and

technically challenging to implement, debug and test CPU

emulators as three separate steps, purely based on software

methods. In addition to programming errors, the incomplete

and often incorrect documentation of CPU instructions is

also an important issue. Specifications are written with the

programmer and compiler writer as targets, not for CPU

implementation or simulation. Consequently, they do not

cover some important details, and leave many behaviors as

“undefined” or “implementation specific”.

The laborious search and matching process of data sheets

for testing and validation is error prone, and slow. When

the hardware for the CPU is available, it is much more

reliable and accurate to use the actual outputs of the

hardware as the ground truth to test and verify the

emulator. Using actual hardware as a reference is what we

call a hardware-oracle.

With the broad applications of CPU emulators for the

design of virtual execution environments, a modular

emulation architecture is highly desirable, so that

instructions can be implemented and verified incrementally

and comprehensively. We adopted the system emulator

Giano [1] as the integration target for this work. Giano has

been used in several product developments, and its source

can be downloaded from the Microsoft web site [23]

Positioned as a multi-platform system simulation

framework, Giano already supports simulation of several

instruction sets such as ARM, PowerPC, VAX, and MIPS.

It provides real-time support, extensive I/O modules, and

an interface to the Xilinx ModelSim hardware simulator.

With this work we have now added support for the popular

x86 instruction set.

In this paper, we propose a hardware-oracle based

implementation methodology for CPU emulators. We use a

real processor to run each instruction being simulated and

check its outputs against that of the simulator. When the

hardware-oracle runs on a bare-bone machine, it can

support testing of all instructions and operations. When the

hardware oracle runs within an application program with

user level privileges, some of the exception and interrupt

related functions will be restricted.

The hardware-oracle eliminates any guessing of the true

behavior of a CPU, and it had already been found highly

effective for the rapid and correct implementation of the

ARM and MIPS modules in Giano. That earlier work was

manual, undocumented, and ad hoc. In this paper we

mailto:maweiqin@tamu.edu
mailto:sandrof@microsoft.com

 - 4 -

present a complete, automatic testing strategy and tool that

leverages the published specifications, in English, from the

Intel PDF files.

We design and test our concepts based on the 32-bit x86

architecture. The printed x86 instruction specifications are

only used as the starting point for implementation -- they

are not needed for subsequent testing when the hardware-

oracle can deliver the required data. Our experiments show

that the new design methodology drastically improves the

productivity in development, debugging, testing, and

validation of the simulator. It also helped identifying

several CPU behaviors which are not documented in the

published CPU manuals.

The rest of this paper is organized as follows. Section 2

describes the overall structure of the emulator. Section 3

described the automated testing framework we developed

for testing the new emulator. Section 4 presents a technique

for reducing considerably the number of tests needed for

full coverage. Section 5 presents the results of our

evaluation. Section 6 presents the related work and Section

7 concludes.

2 Emulator Design
A conceptual illustration of an interpretive CPU emulator is

shown in Figure 1. Each instruction is handled in its own

separate function. The execution flow of our new x86

emulator is also of the type shown in Figure 1. In the

execution loop, it fetches an instruction from memory, then

decodes and executes the instruction. Before fetching the

next instruction, it first checks the trap queue for any

outstanding trap or interrupt requests. We use a lookup

table for opcode decoding so that the execution can directly

jump to the simulation function. We also implemented an

instruction cache and its prefetch controller to improve the

performance of simulation.

Handle Trap/Interrupt Request

Prefecth for Instruction Cache

Pre-Instrumentation

Decode & Execute Instruction

Post-Instrumentation

Generate Trace or Disassembly

Figure 1: The execution flow of the emulator.

The emulator is realized as a dynamic loadable library

(DLL) so that it can be readily embedded into a full system

emulator, or a virtual execution environment. We used a

parser to automatically extract all instruction types, formats,

normal behaviors and their exceptions from the Intel

manuals. The instruction specifications are also formalized

for subsequent implementation and test case generation.

Real-time support is important for system level simulation.

Giano supports real-time execution on a general-purpose

host OS. In this emulator, we provide a real-speed

calibration module to adjust the running speed of the CPU

emulator, in order to match the speeds of CPU, Memory

and IO device modules with the expected clock speed.

2.1 Common Macro Templates

Generally speaking, an instruction set architecture consists

of a few different types of operations, e.g., arithmetic,

Boolean logic, jumps, etc. Within each category different

instructions have very similar ways of handling their

operands, yet cannot be easily or efficiently implemented

as common functions. Using common macro templates

takes advantage of this structural relationship between

instructions and reduces the costs in software

implementation, testing and validation.

A macro template mimics, in a way, how the actual

hardware is implemented by using common and replicated

circuits as much as possible. In addition to the better code

reuse in the implementation, macro templates also help

with debugging and testing. Using the ground truths

provided by the hardware-oracle, we can eliminate software

bugs rapidly and efficiently, because finding a bug in a

template will fix a number of bugs in the related

instructions. Instructions which do not have specific

structural patterns need to be implemented and tested

individually. This technique is particularly useful in the

implementation of complex address and operand classes in

x86 instructions.

We have created several macro templates. A first mining

rule is to search for instructions that have different types of

operands but the same computation logic. For example, the

computation logic in the ADD instruction can be

represented as DEST  DEST + SRC. Many other

instructions have this same general structure. Different

computations can reuse the same simulated logics for

fetching operands and storing the result, only the operation

itself needs to be replaced. A second mining rule is

searching for operand types, and different instructions

which have same type of operands. For example, using the

Intel manual‟s symbolism [9,10,11] the instructions ADD

Eb,Gb; ADC Eb,Gb; AND Eb,Gb; and XOR Eb,Gb have

different operations but the same operands. A third mining

rule is for instructions which similar operands, e.g., INC

eAX; INC eCX; INC eDX; INC eBX. Many other rules can

 - 5 -

be created to streamline the emulator design. We will

discuss some of these rules in the rest of this section.

The operands and addresses of x86 instructions can be 8bit

(byte), 16 bit (word), 32 bit (double), or 64 bit wide. They

are specified in the Operand Size, Address Size, and prefix

fields. The first macro template is the vertical pattern,

which refers to the set of instructions who have the same

type of input and output operands, and only differ in the

„core‟ operation. Instructions in this category include ADD,

ADC, AND, OR, SUB, XOR, SBB, and CMP. Their

operands are of identical types, e.g., ADD Eb,Gb, and their

opcodes are 0x00, 0x10, 0x20, 0x30, 0x08, 0x18, 0x38.

Here, Eb means that the operand can be a memory or

register byte, and Gb means a general register byte.

Within the vertical pattern, there are four different sub-

patterns to represent six types of operands for the

instructions ADD, ADC, AND, OR, SUB, XOR, SBB, and

CMP. These six types of operands include (Eb,Gb),

(Gb,Eb), (Ev,Gv) (Gv,Ev), (AL,Ib), and (rAX,Iz). The

symbols, Ev (Gv), represents the addressing method and

the operand type. For example, E represent that the operand

is a general register or a memory address specified by a

following ModR/M byte. As such, the ADD instruction can

be one of the six different variations: ADD Eb,Gb, ADD

Gb,Eb, ADD Ev,Gv, ADD Gv,Ev, ADD AL,Ib, or ADD

rAX,Iz. By making each of these four operand types into a

macro, we can use just six operand templates under the

vertical pattern to implement a total of 6x8=48 instructions.

Furthermore, there are a total of four combinations for the

six types of operands. By implementing and testing these

types in groups, we save a significant amount of effort.

A second macro template is called the horizontal pattern

for opcodes whose numerical values increase linearly, and

where the opcode value also implies the order of registers

in the operand fields. For instance, the opcodes and

registers of the instructions INC and PUSH are listed in

Table 1.

Using this ordering relationship to organize registers in an

array, we can directly locate the register operand for each

opcode. This pattern is used for implementation of the

instructions PUSH, XCHG, MOV, DEC, and POP.

Table 1: Opcodes of the INC and PUSH instructions.

0x40

INC

eAX

0x41

INC

eCX

0x42

INC

eDX

0x43

INC

eBX

0x44

INC

eSP

0x45

INC

eBP

0x46

INC

eSI

0x47

INC

eDI

0x50

PUSH

rAX

0x51

PUSH

rCX

0x52

PUSH

rDX

0x53

PUSH

rBX

0x54

PUSH

rSP

0x55

PUSH

rBP

0x56

PUSH

rSI

0x57

PUSH

rDI

Some other one-byte opcode instructions that have been

implemented using macro templates are listed in Table 2.

The first column of the table is the template name, the

second column is the instruction element that can be

implemented using the macro template, and the third

column is the total instruction counts for the macro

template. As of the writing of this report, 84.8% (195/230)

of the realized instructions have been implemented using

macro templates. Other instructions not covered by the

above discussions are implemented individually, although

some of them still have un-exploited common patterns. For

instance, the TEST instruction with immediate operands:

TEST AL,Ib and TEST rAX,Iz. These and others will be

consolidated in the follow up phase of the project.

Table 2 Instructions that use code templates

Template

ID
Instruction elements

Instruct

ions

1 ADD Eb,Gb 8

2 ADD Ev,Gv 8

3 ADD Gb,Eb 8

4 ADD Gv,Ev 8

5 ADD AL,Ib 8

6 ADD rAX,Iz 8

7 INC eAX 8

8 DEC eAX 8

9 PUSH rAX 8

10 POP rAX 8

11 JO Jb 16

12 XCHG rCX,rAX 7

13 MOV AL,Ib 8

14 MOV rAX,Iv 8

15 Group#1 Eb,Ib 8

16 Groou#1 Ev,Iz 8

17 Groou#1 Eb,Ib 8

18 Gropu#1 Ev,Ib 8

2.2 Minimal CRT for Stand-alone Execution
When the emulator is used for architectural

experimentation it is desirable to run simple programs with

a minimal overhead. Simulators such as SimpleScalar [24]

directly interpret the binary program as if it was a Unix

program, and by realizing the Unix syscall interface they

can provide services such as printf() and file I/O. To run the

application, the simulator loads the code in simulated

memory, allocates the memory space of a stack, and

invokes the entry point specified in the executable image. If

the image uses shared libraries, it is again the simulator that

 - 6 -

loads them. In a hardware, full-system simulator such as

Giano all we have are CPU, memory, busses, and I/O

devices. How to directly run very simple applications on

the CPU emulator is therefore a challenge. To achieve this

goal, we designed a Minimal C Run Time Library (CRT)

for the emulator to run a C program without providing any

complicated system environment.

The minimal CRT consists of two simple functions. The

start() function initializes the stack pointer using a user-

provided memory array, invokes the program‟s main()

function, and when this returns it terminates the program by

executing a HLT instruction. Note that on a full-system

implementation the HLT instruction does not terminate the

CPU but transfers the execution control back to the

emulator. The putchar() function actually is an empty

function, but by using Giano‟s built-in tracing functionality

every time execution reaches putchar() we can look at the

EAX register and print it as a character on the screen. We

make use of code injection techniques for building the

minimal programs as memory dump images. The system is

therefore unaware of executable file formats. A simple tool

injects the executable binary with jump code at the

beginning position to transfer control to the actual entry

point of the program. The minimal CRT consists of 14 lines

of C code that compile to 19 bytes of code.

In a typical implement/debug/test setup, the minimal CRT

would be used in the debugging and testing phases. Simple

programs are generated and run by the test harness, and the

outputs are verified. As we shall illustrate in the following

sections, both debugging and testing can be made much

more efficient using a hardware- oracle based approach.

2.3 Real-time support
Real-time support is important for real-time system

simulation and research. It is also useful in the general case,

as it provides a more faithful execution and interaction with

external devices and other systems. In this emulator we

provide a real-time module, which can calibrate the

frequency of the CPU emulator. We found that the

following simple scheme is efficient and sufficiently

accurate:

• Every M thousands of clock ticks spin idle for D

microseconds;

• Every N millions of clock ticks check the actual

frequency against the target frequency and adjust

the delay D.

In this way, the effective delay on each clock period is

D/M, which can be as small as a few picoseconds and

therefore would be impossible to realize on a per-period

basis. The inevitable control overhead is also spread over a

larger number of cycles. Checking the actual frequency

involves reading the current time, which on many

Operating Systems is an expensive operation compared to

incrementing a counter and performing an integer division.

As can be seen in Figure 3, the adjustment of the delay

value D is based on a first-order low-pass filter, which

seems sufficient to provide quick convergence without

excessive fluctuations. Again, the cost of this computation

is amortized over N million cycles. This feedback loop not

only matches the target simulation clock speed to the host

computer‟s clock speed, but it also takes care, at least in

part, of the fluctuations in execution speed due to

multiprogramming on a general-purpose and non-Real-

Time commodity Operating System. The result is that the

CPU module executes at the target clock speed while the

user can continue with other activities.

Figure 3: Delay adaptation to match the actual clock

speed of the simulator to the target clock speed.

Delay Calibration

-100

0

100

200

300

400

500

600

57 60 64 67 71 75 79 83 88 92 96 20 10
4

10
8

time(sec)

ns

DelayFactor

TgtIpsTime

CurIpsTime

DelayAdjust

Parsing and

specification

generation

Intel

datasheets
Test Vectors Test Case

Generator

Test cases:

instruction

instances and

their operand

values

CPU smulator

Hardware oracle

Execution Result

Execution Result

Compare

result

Output

Different

Result

Figure 2: The conceptual flow when testing with a hardware-oracle.

 - 7 -

3 Automatic Test Generation

Two key issues in the automated test framework (test

harness) are the automated test vector generation, and the

automated test case generation based on the test vectors. A

test vector of an instruction defines the different fields of

the instruction, their ranges, lengths and other details, so

that they can be used by the test case generator to generate

a series of test cases. Each test case represents an

instruction with one distinct combination of argument

values. Each test case consists of a set of test runs to assess

the correctness of the CPU emulator by operating the

instruction on selected operand values. Because there is no

simple expression which can describe the relationship

between an opcode and its operands, the only available

information is the published manuals of the CPU, and the

physical device itself. As a result, we developed an

automated test vector generator based on the parsing of the

PDF files for the Intel manuals. The test vectors are used by

a table-driven, automated test case generator to generate all

testing cases for both the emulator and the hardware-oracle.

Each automatically generated pair {instruction, input

processor state} is run by the hardware-oracle, which

generates the output processor state. The triple {instruction,

input processor state, output processor state} is sent as a

test case to the CPU emulator for execution, to test the

correctness of the CPU emulator by comparing their

outputs. Note that in addition to a pass/fail result, the

emulator will provide the developer with its own output

processor state. The quad {instruction, input processor state,

output processor state, error processor state} provides the

necessary information for efficiently pinpointing the error.

In case of a poorly or erroneously documented instruction,

the set of quads completely tabulate the required behavior.

3.1 Test Vector Generation

The Intel manuals define the instruction formats using such

symbol as sign, word, mod, reg, r/m, sreg, etc., see Figure 4.

Both the test vector and test cases of an instruction are

generated in a deterministic fashion, following these

formats. We designed a parser which takes operand tables

in the instruction format and encodings part of the x86

manual [10,11,12] as its input and generates test vectors for

most instructions. For a small number of instructions, e.g.,

BOUND, CPUID etc, whose formats were not fully

documented in the manual, it is necessary to manually

locate their technical descriptions from other manual

volumes to create their test vectors case by case. All test

vectors are collected in a computer-readable file, which can

then be edited as necessary to cope with errors and

omissions in the specifications.

Opcode ModR/M SIB Displacement ImmediatePrefix

Figure 4: Basic structure for an x86 instruction [11]

A test vector for an instruction consists of several records.

Consider the instruction ADC as an example. The Intel

manual[11] reports seven possible encodings, one of them

is as follows:

Register to memory 0001 000w: mod reg r/m

The parser generates the test vector for this specific

encoding as follows:

 name ADC // instruction name (and optional reference index)

 inst 2 16 0 // 2 bytes, opcode 0x16, 2nd byte initialized as 0x00

 w 0 0 // both byte and word forms, per byte 0, bit 0

 reg 1 3 // the reg-ister is encoded in first byte, from 3rd bit

 md 1 6 // mod encoded starting at 6th bit of the first byte

 rm 1 0 // register/memory at first byte, starting 0th bit

 end // end of instruction

Each test vector represents the general format of an

instruction, its initial values, and also fields whose values

need to be enumerated for the complete testing of the

instruction. Each unique combination of these field values

represents one distinct mode of the instruction, or a test

case. For example, we could generate an instruction “0x11

0x90” by replacing the “w” bit with 1, “mod” bits with

b“10”, “R/M” with “000”, and “reg” with b“010”. We will

then have to provide specific values for the indicated

registers or memory location. An overview of the

automated design and testing system for CPU emulators is

shown in Figure 2.

3.2 Test Case Generation

Test cases are executable instructions, instantiated from the

abstract instruction specifications defined in the test vector.

For each test case we also need to generate different

operand values to evaluate the functional correctness of the

CPU emulator under different numerical values. It is

relatively easier to handle register based operands, but it is

more complicated to deal with memory based operands.

One major challenge is the correct handling of all the

addressing modes defined in the MODRM byte, which may

be further expanded to include two additional bytes: the

SIB byte (0,1 byte length) and Displacement byte (0,1,2,

byte length according to the operand size). Some

instructions may also include immediate operand values of

1, 2, or 4-byte long. Furthermore, the addressing modes are

somewhat irregular, and include a number of special cases.

Consequently, even the simple task of computing the test

instruction length is not as trivial as, say, with a RISC

architecture.

The memory address of an operand is calculated from the 1

to 3 byte values of the MODRM-SIB-displacement fields.

Because the test must be actually executed in the hardware-

oracle environment, it is impossible to exercise all possible

combinations of the three fields. For instance, we cannot

modify the memory ranges for the code of the hardware-

oracle itself. As a compromise, we adopted the following

technique to test selected address ranges as follows. We

first select a memory address MA as the expected memory

location for an operand. Then test if the operation “[Base

 - 8 -

Register] + [Index Register] *[Scale*Register] +

displacement” (performed in the CPU emulator) does give

the value MA for a set of MODRM-SIB-displacement

values which are known to produce MA on the hardware-

oracle. The test is repeated for a few times to run through

different combinations of the three fields, but with the same

MA. As an illustration, in the first type of tests we can set

one of the three fields as zero, and let the two remain fields

added to the value of MA. In the second case, two of them

are zero, and one field is made equal to MA. Finally, none

of the three fields is zero, and their sum is made equal to

MA. In reality, there are cases where it is demonstrably

impossible to produce a given MA with a required set of

registers. Consider the case, for instance, where [Base

Register] and [Index Register] are the same. To cover these

cases we allow for backtracking, e.g. small adjustments

around the desired MA value. The problem is exacerbated

by implementation restrictions, such as maintaining a valid

stack pointer value in test cases that can generate a trap.

To compare memory related operations, we must use the

same addresses in both hardware-oracle and the CPU

emulator. We employ some simple strategies to generate

the same logical memory addresses for both. This is

relatively simple in the Windows XP environment, because

the malloc() starting addresses are fixed for all

instantiations of the hardware-oracle process. It is slightly

harder to do the same for Windows Vista, because of its

address randomization scheme, where the range of

randomization is the order of a few MB. As a result, we

malloc() sufficiently large address spaces for both CPU

emulator and the hardware-oracle, and then identify

sufficiently large, overlapped address subspace for both.

Brute force testing of a CPU emulator is an impractical idea.

For a single 32-bit operand one would need to enumerate 4

billion distinct values to scan through all possible values.

For two operands we need to test all 2
64

 combinations. An

x86 instruction can have up to 3 operands (2
96

), each of

which could additionally be a register or memory. Special

flags often affect the results of an operation, but we also

need to test that they do not. Full enumeration of the

operand values is clearly impractical for real world

applications. As an effective yet practical testing strategy,

we propose to use boundary cases to generate operand

values for their testing.

For all practical purposes of emulator testing, it is

unnecessary to enumerate all values. We use the following

two techniques to maximize the test coverage under the

constraint of testing time. Experiences suggest that errors

are always revealed by the boundary cases, and very rarely

by the “common” values. Random number generators are

not guaranteed to generate all boundary values, and they do

not support scanning of the entire set anyways. Instead, we

use a 32-bit generator for boundary cases that only uses

about a 100 distinct values, thereby reducing considerably

the number of tests generated. Similar considerations apply

to the other machine data types, pointers, and special fields.

The second consideration is that fetching of operands is

independent of computation on those operands. For

instance, the carry-chain adder circuit for the ADD

instruction (or its software counterpart) will operate

identically whether the operands come from the EAX, EDX

register pair or from any other pair of registers. Therefore

in testing we can separately test that
1- the ADD instruction correctly computes its result, and

2- the ADD instruction correctly fetches its source

operands and deposits the result to the correct

destination.

The two aforementioned techniques lead to a drastic

reduction in the number of tests. Consider the ADD

instruction, such as “ADD r32A,r32B”. The source operand

may be chosen from one of the 8 general purpose, 32-bit

registers. The destination is r32A and we ignore the flags

and anything else. A complete test generator would need to

generate 2
32

 x 2
32

 x 8 x 8 = 2
70

 distinct patterns, without

considering any operands in memory. Using the first

reduction technique alone, we need roughly 2
7
 x 2

7
 x 8 x 8

= 2
20

 test patterns. Using the second technique alone, we

need (2
32

 x 2
32

) + (8 x 8) ~= 2
64

 patterns. When the two

techniques are combined together, we get (2
7
 x 2

7
) + (8 x 8)

~= 2
14

patterns. The second technique is especially valuable

in a complex instruction set such as the x86, with so many

addressing modes, 725 different modes in all.

For the symbols with short bit counts, such as the one-bit

“w” field, we generate all the possible values. For the 8 bit

and 16 bit and 32 bit integer values, we use an algorithm to

generate boundary values for operands, which are

represented by symbols in the test vector, e.g., w, reg, mod,

etc, and their 8-, 16-, and 32-bit integer values. A total of

three different boundary value patterns are generated for

each N-bit operand. In the first type of patterns, we

interplay the 0x0 and 0xf every four bits for the operand. In

the second type of patterns, we shift a single bit of “1” from

the lowest significant bit (LSB) to the most significant bit

(MSB). In the third type of boundary value patterns, we

shift a single bit “0” from the LSB to the MSB.

It is relatively straightforward to run an instruction on the

CPU emulator, because the emulator has full control of the

execution flows and state changes. On the other hand, it is

necessary for the hardware-oracle to save the processor

state values before the instruction being tested can be

executed, and other additional routines for safe execution

of the hardware-oracle in the user mode. More details on

those house-keeping steps will be discussed shortly.

3.3 Test Run Control

Each generated test case is represented by a data structure

shown in simplified form in Figure 4. It includes the

instruction being tested, and input and output states for

registers and memories. The test execution engine

maintains a JTAG style pipe channel for communication

between the CPU emulator and the hardware-oracle. The

 - 9 -

test data is sent over the pipe, so that the emulator can

safely run test cases and compare their outcomes.

 typedef struct {

 GPREG i386_gpr[NREGS];

 FPREG i386_fpr[NREGS];

 UINT16 i386_fcr; // FPU control register

 UINT16 i386_fcs; // FPU status register

 UINT16 i386_ftag; // FPU tag register

 UINT64 i386_fip; // FPU instruction pointer (errors)

 UINT64 i386_dip; // FPU data pointer (errors)

 SREG i386_seg[6]; // segment registers

 SDESC i386_desc[6]; // cached segment descriptors

 SDESC i386_desc2[4]; // more segment descriptors

 UINT32 i386_flags; // EFLAGS

 UINT32 i386_spr[16]; // special purpose registers

 UINT32 i386_cia; // current instruction address

} REGSTATE, *PREGSTATE;

typedef struct {

 UINT32 base_address;

 UINT32 count;

 UINT32 values[NMEM];

} MEMSTATE, *PMEMSTATE;

typedef struct {

 UINT32 test_code;

 UINT8 instruction[IBYTES];

 REGSTATE input;

 REGSTATE results;

 MEMSTATE meminput[2];

 MEMSTATE memresults[2];

} TEST_ITEM, *PTEST_ITEM;

Figure 5: The data structure of a test case

Every test case generated by the test generator must be run

by the hardware-oracle and by the CPU emulator. When the

hardware- oracle works in user mode under the control of

the operating system, test cases are run by the test

execution engine, which maintains an execution

environment similar for both hardware- oracle and the CPU

emulator. The core code for the execution engine is shown

in Figure 5, it includes CPU state backup, instruction

execution, execution result preservation, CPU state restore.

The code is self-modified at run time to realize the

individual instruction, and to cope with execution-

dependent addresses for global variables.

CPU state backup uses PUSHAD and PUSFD for

preserving general and flag registers. Also, the stack

pointer (ESP) is saved into a global variable. Similar to this

aforementioned state preservation step, multiple stacks are

created by using global variables and changes of the stack

point register will preserve different system states

whenever necessary. A block of memory space at the array

testcode[], called NOP block, reserved for running the

instruction under test is otherwise filled with NOP

instructions by the test program. Next, the test program

loads registers and (affected) memories of the CPU

emulator and the hardware-oracle based on the test case.

Then, the instruction under test is placed at the beginning

of the NOP block. The execution EIP then transfers to the

address of testcode.

#define PROLOGUE 28

#define EPILOGUE 29

UINT8 testcode[PROLOGUE+IBYTES+EPILOGUE] = {

 0x9c, /* pushfd */

 0x60, /* pushad */

#define SAVED_ESP_OFF1 4

 0x89, 0x25, 1,2,3,4, /* mov dword ptr ds:[_saved_esp

04030201],esp */

#define EFLAGS_OFF1 (SAVED_ESP_OFF1+4 +2)

 0xFF, 0x35, 1,2,3,4, /* push dword ptr [_eflags] */

 0x9D, /* popfd */

#define TEST_ESP_OFF1 (EFLAGS_OFF1+4 +1 +2)

 0x8B, 0x25, 1,2,3,4, /* mov esp,dword ptr [_test_esp] */

 0x61, /* popad */

#define TEST_ESP_VALUE_OFF1 (TEST_ESP_OFF1+4

+1 +2)

 0x8B, 0x25, 1,2,3,4, /* mov esp,dword ptr

[_test_esp_value] */

 /* PROLOGUE ENDS HERE */

#define TEST_INST_OFFSET

(TEST_ESP_VALUE_OFF1+4)

 0x90, 0x90, 0x90, 0x90, /* IBYTES(5*4=20) NOPS */

 0x90, 0x90, 0x90, 0x90,

 0x90, 0x90, 0x90, 0x90,

 0x90, 0x90, 0x90, 0x90,

 0x90, 0x90, 0x90, 0x90,

 /* EPILOGUE STARTS HERE */

#define EPILOGUE_START (PROLOGUE+IBYTES)

#define TEST_ESP_OFF2 (EPILOGUE_START+2)

 0x89, 0x25, 1,2,3,4, /* mov dword ptr [_test_esp],esp */

#define RESULT_ESP_OFF1 (TEST_ESP_OFF2+4 +2)

 0x8B, 0x25, 1,2,3,4, /* mov esp,dword ptr [_result_esp]

*/

 0x60, /* pushad */

#define EFLAGS_PTR_OFF1 (RESULT_ESP_OFF1+4

+1 +2)

 0x8B, 0x25, 1,2,3,4, /* mov esp,dword ptr [_eflags_ptr]

*/

 0x9C, /* pushfd */

#define SAVED_ESP_OFF2 (EFLAGS_PTR_OFF1+4 +1

+2)

 0x8B,0x25, 1,2,3,4, /* mov esp,dword ptr ds:[_saved_esp

04030201] */

 0x61, /* popad */

 0x9d, /* popfd */

 0xc3 /* ret */

};

Figure 5: The core function in the hardware-oracle

execution engine.

 - 10 -

After the instruction is executed, the CPU will run a

variable number of NOP instructions. Next, we need to

preserve the resulting stack pointer, general registers, and

eflag register into some global variables. Finally, we need

to restore the CPU states and returns the execution control

back to the test execution engine. The remainder of the

engine code is written in C, and is responsible for setting up

the desired test memory state before testcode runs and for

recovering the modified memory state afterwards.

 The CPU emulator and the hardware-oracle communicate

with each other through a JTAG style pipe. The pipe

transfers a structure of a test case which includes the input

values for one instruction and the corresponding execution

results from the hardware-oracle to the CPU emulator for

comparison, after it executes the same instruction with the

same set of inputs. Although the CPU hardware may

contain some design or implementations which do not

conform to the published specifications, we still take the

hardware-oracle as the ground truth, because the CPU

emulator is meant to correctly reflect all behaviors of the

actual hardware device. The basic architecture for complete

testing of an instruction is shown in Figure 6.

Load Reg1

Load Reg2

Computer Reg1 + Reg2

(n1*n2*8*8)

Store Reg2

Different

Data(n1 =

2..)

Different

Register(8)

Different

Register(8)

Different

Data(n1 =

2..)

Figure 6: Brute force testing of an instruction

4 Routing-based Testing
Brute force, exhaustive testing of an instruction would

enumerate all possible encoding options and operand

values. For example, for a 32-bit register, we need to test

4,294,967,296 distinct values for a single register and

18,446,744,073,709,551,616 values for two registers. There

are very few cases where a complete enumeration is

required, for all other cases we propose the following

routing based test scheme: We split the instruction into two

stages -- input/output stage and instruction computation

stage. We presume the two stages independent and test

them separately.

Registers, Memory and I/O

devices

Computation

Collect inputs

Deposit results

Routing Emulation State

Ra,Rb

Rc

IMUL

C = A * B;

Figure 7: The routing test model.

With reference to Figure 7, the Routing stage is the I/O

stage that fetches the operands and deposits the results into

the Emulation State. The Computation stage performs the

instruction-specific computation. We can think of data

being circulated out of the Emulation State and back into it

by a software “routing” network. Testing simply tries to

find any errors in this routing network.

Using a routing based test scheme greatly reduced the

number of instructions we need to test, and by many orders

of magnitude. The routing test is based on the observation

that each instruction implementation (e.g. for code

coverage) can be split in three parts:

(1) collect inputs, either from a register R(r) of a

memory location M(m)

(2) compute the results

(3) send results to the destination, either R(s) or M(n)

The Routing stage is parts 1 and 3, Computation is 2, and

registers R() and memory M() live in Emulation State

(along with the I/O peripherals). All "Routing errors" will

happen in 1,3, for instance in selecting

(a) a register instead of memory, or vice versa

(b) R(x) instead of R(y),

(c) M(x) instead of M(y),

(d) the wrong size for R(r) or M(m),

(e) the wrong arithmetic sign,

(f) anything else that would get a value different from

the intended one.

Intuitively, (a) represents a misunderstanding of the

specifications which leads to using a register instead of

memory (say mod==3 vs. mod==0,1,2); (b) is the case of a

typo that picks the wrong register number (like swapping

r/m for reg); (c) is the case where, say, fetching the wrong

 - 11 -

immediate value produces the wrong effective address (d)

is a mis-declaration of a “UINT16 v0” instead of “UINT32

v0” that somehow escapes the compiler; (e) is a typo INT

versus UINT, or the following cut-and-paste error that lead

to the wrong sign-extension:

 UINT32 v = REG_EAX;

 if (v & 0x8000)

 REG_EDX = 0xffffffff; else REG_EDX = 0;

(f) is a catch-all category for any other coding mistake in 1

and 3.

The Computing part of an instruction is anything that does

not directly affect the Emulation State.

The pseudo-code in Figure 8 shows the brute force testing

strategy, exemplified here for testing the IMUL instruction.

In the algorithm, first we construct the instruction and

possible encoding formats. This is illustrated in the line

1,2,3 of Figure 8. Furthermore, we construct different

values of all the operands (lines 6 and 7).

 1 forall SRC1 do

 2 forall SRC2 do

 3 forall DEST do

 4 forall V32_A do

 5 forall V32_B do

 6 SRC1=V32_A

 7 SRC2=V32_B

 8 test IMUL DEST,SRC1,SRC2

Figure 8: Brute force testing strategy.

In the routing strategy, we split the testing of encoding for

the instruction and the computation for the instruction. As

shown in figure 9, we use fixed values for the operands

when we test the encoding of the instruction. In this case

“3”is a fixed number for both operands.

1 forall SRC1 do

2 forall SRC2 do

3 forall DEST do

4 SRC1=3

5 SRC2=3

6 test IMUL DEST,SRC1,SRC2

Figure 9: Encoding tests in the routing strategy.

To test the computation stage of an instruction we use the

pseudo-code shown in Figure 10. Here we use different

values but a fixed encoding -- “eax,ebx,ec” are the fixed

registers for all tests.

1 forall V32_A do

 2 forall V32_B do

 3 eax=V32_A

 4 ebx=V32_B

 5 test IMUL ecx,eax,ebx

Figure 10: Computation tests in the routing strategy.

The reduction in test case numbers stems from the

elimination of the inner loop in Figure 8. Now we run the

code in Figure 9 followed by the code in Figure 10. Rather

than generating a number of test cases equal to the product

MxN, we only generate the sum N+M.

5 EVALUATION AND DISCUSSION
We have applied the common code template technique in

the implementation of our x86 emulator, and applied the

hardware-oracle based testing strategy during debugging

and testing. In this section, we evaluate our technique by

showing some results and report some key observations.

Currently 16-bit mode is only tested using prefix overrides

and privileged instructions are not tested. Our algorithm

supports 8bit, 16bit and 32 bit instructions, and currently

does not support 64bit instructions. However, our algorithm

could be easily extended to 64bit. There are more than

1,000 instructions in the x86 instruction set. We only

implemented the Intel 486 instructions. Currently the MMX,

floating point and 64 bit instruction are not implemented.

Table 3. Some simple examples of discrepancies

between published specs and the actual CPU behavior

Instruction
 Published

Spec

Actual

behaviors

AAA

OF,SF,ZF

and PF flags

are undefined

OF,SF,ZF,PF

are affected

AAD

OF,AF and

CF are

undefined

OF,AF and CF

are affected

AAM

OF,AF and

CF are

undefined

OF,AF and CF

are affected

AAS

OF,SF,ZF

and PF are

undefined

OF,SF,ZF,PF

are affected

DAA
OF is

undefined
OF is affected

AAS
OF is

undefined
OF is affected

AND
AF is

undefined
AF is affected

TEST
AF is

undefined
AF is affected

OR
AF is

undefined
AF is affected

XOR
AF is

undefined
AF is affected

 - 12 -

It is impossible to quantify precisely the effectiveness of

the testing strategy without using a prohibitive, double-

blind development process. Using the automated tester we

have found at least one, and quite often more than one error

in the implementation of every single one of our emulated

instructions. Indeed, the debugging efficacy is so high that

the automated tester is now used concurrently with the

development process, not as a separate phase. We quickly

abandoned our initial testing strategy of booting a BIOS or

a 32-bit OS because too ineffective. Indeed, Windows CE

was running on the simulator when we were only about

40% code complete, and with many errors that were found

later.

5.1 When the Specs Are Wrong
Through the course of the design and testing of the CPU

emulator we observed gaps both in design and testing. By

design gap we mean that there is a difference between what

the Intel materials say the processor should do, and what

the hardware-oracle actually does. By test gap we mean

that there are some incomplete specifications that do affect

the processor behavior and are visible to software.

The test generation tool combined with the hardware-oracle

helped us identify many discrepancies between the CPU

manuals and the physical devices. They would be otherwise

very difficult to detect by traditional techniques. For

instance, when the document says a flag register is

undefined, it is natural to assume that the flag register is not

affected, but the assumption does not always hold. In

several experiments the adjust flag (AF) was actually set in

the CPU while it is stated as “undefined” in the manual for

several instructions. Table 3 lists the first few instruction,

in alphabetical order, where we found discrepancies. Notice

that any known and detectable discrepancy between

emulator and actual CPUs can be used to generate “red pill”

tests by malware to avoid detection. We tested the

instructions reported in Table 3 on the Bochs and QEMU

emulators. Bochs emulates only some of the undocumented

instructions correctly, and QEMU does not emulate any of

them.

We infer the correct behavior based on the execution

results of the hardware-oracle. Oftentimes an “undefined”

flag is simply set or cleared. However, sometime it is very

difficult to guess the correct behavior of an instruction. For

example, the computation of the parity flag in the AAA and

AAS instructions is quite mysterious. Usually, the “parity”

is computed on the low 8 bits of the result (the AL register),

such that the total number of bits set is odd. The AAA

instruction operates in this way too, except the parity is

computed before bits 4-7 of the result are masked. The

AAS instruction is even more strange, If the input is

untouched AAS computes parity as usual. Otherwise, it

uses a variation of the parity table as shown in Figure 11. In

figure 11, an asterisk denotes that this is an opposite value

to the usual parity value.

Figure 11: Parity Matrix used by the AAS instruction.

We also observed that the specifications we extracted from

the Intel manuals and that we used for generating

instruction were sometimes incorrect. We show some

examples of specifications which we found have errors in

Table 4. The three columns show the mnemonic of

instruction, the published specification in the Intel Manuals,

and the corrected specification. From Table 4, we observe

that usually this happens in the representation of MODRM

bytes. In other cases, an instruction encoding is over-

generalized and generates undefined instructions (e.g.

instructions that generate the #UD trap). We use the correct

version for generating test cases in our experiments.

Table 4. Some simple examples of discrepancies

between published specs and actual CPU encodings

Instruction

Mnemonics
 Published Spec Actual Spec

CMPXCHG8B

0000 1111 :

1100 0111 :

mod reg r/m

0000 1111 : 1100

0111 : mod 111 r/m

IMUL
1111 011w :

mod 101 reg

1111 011w : mod 101

r/m

MUL
1111 011w :

mod 100 reg

1111 011w : mod 100

r/m

CMOVcc

0000 1111: 0100

tttn : mod mem

r/m

0000 1111: 0100 tttn :

mod reg r/m

We also found a few repeated specifications. While

this might not be a problem for a human reader, for a test

generator that generates many billions of tests this is a total

waste of time. For instance, for the instruction “MOV-

Move to/from Debug registers”, there are six repeated

specifications, which could use just one specification.

Similarly for the “MOV – Move to/from Segment Register”

instructions.

 - 13 -

Despite their comprehensive details, some instructions

were left out entirely from the Intel manuals. For example,

we found that opcode x82 is missing in the instruction set

specification. The surrounding opcodes x80, x81, and x83

all realize the same group of arithmetic operations that

include ADD, OR, CMP, etc. We inferred that x82 would

operate similarly, and we estimated the functionality of the

entire group of opcodes with the following general

encoding specification:

1”000 00sw : mod 000 r/m : immediate data.

From this specification, the special case 0x82 means that “s”

is 1 and “w” is 0. Since “w” is 0, we could further infer that

operand size for this instruction is 8 bits. And since “s” is 1

we could infer that the 8-bit immediate data will sign-

extend to fill the 16bit or 32bit destination. The hardware-

oracle confirmed our guesswork.

Table 5. Code reduction due to Code Templates

template name instruction example

code

size

(LOC)

instruction

refer

number

original

code size

(LOC)

new

code

size

(LOC)

reduced

code

size

(LOC)

JustLikeOpcd0 ADD Eb,Gb 33 8 256 41 215

JustLikeOpcd1 ADD Ev,Gv 63 8 496 71 425

JustLikeOpcd2 ADD Gb,Eb 33 8 256 41 215

JustLikeOpcd3 ADD Gv,Ev 63 8 496 71 425

JustLikeOpcd4 ADD AL,Ib 10 8 72 18 54

JustLikeOpcd5 ADD rAX,Iz 24 8 184 32 152

JustLikeOpcd6 PUSH ES 43 6 252 49 203

JustLikeOpcd64 INC eAX 21 16 320 37 283

JustLikeOpcd112 JO rel8 15 16 224 31 193

JustLikeOpcd128 ADD r/m8, uimm8 27 8 208 35 173

JustLikeOpcd129 ADD r/m32, uimm32 61 8 480 69 411

JustLikeOpcd130 ADD r/m8, imm8 27 8 208 35 173

JustLikeOpcd131 ADD r/m32, imm8 61 8 480 69 411

JustLikeOpcd192 ROL 129 9 1152 138 1014

JustLikeOpcd196 LES Gz,Mp 40 5 195 45 150

JustLikeOpcd2_64 CMOVO Gv,Ev 48 16 752 64 688

JustLikeOpcd2_128 JO Jz 22 16 336 38 298

JustLikeOpcd2_144 SETO Eb 29 16 448 45 403

JustLikeOpcd2_163 BT Ev,Gv 64 4 252 68 184

TOTAL

813 184 7067 997 6070

5.2 Effect of Code Templates
To measure the effect of using code templates we report the

reduction in code size in Table 5. The first column shows

the template name. The second column shows an example

of instructions which uses this template. The third column

shows the code size of the template, in lines of code (LOC).

The fourth column shows the number of instructions that

reused the template. The fifth and sixth columns show the

LOC needed for instruction emulation, without and with

the template. The seventh column shows the LOC

reduction. We currently have 19 code templates, used by

195 instructions or about 80% of our currently supported

instructions. The total code reduction is 6,070 lines of code.

5.3 Comparing Testing Strategies
We performed some experiments to compare our routing

based testing strategy against the brute force strategy. To

keep things within a reasonable time limit, we used our

smart test value generators in both cases. We picked the

first 81 test vectors in our specs and measured the time and

number of test case generated. These test vectors include

the most commonly used instructions such as ADC, ADD,

AND, CMP, DEC, IMUL, INC, MOV, MUL, OR, PUSH,

POP, SBB, SUB, XCHG, XOR. The test time for the brute

force and routing test strategies are reported in Table 6. The

routing test strategy is, on average, more than 400 times

faster, reducing the overall testing time from over 3 hours

down to 25 seconds.

 - 14 -

Table 6. Test Strategy Comparison, Time

Test

vectors

Test time (milliseconds)

Speedup Brute force Routing

81 11,231,456 25,797 435

Some test cases generate exceptions, either in the oracle, in

the emulator, or both. Handling an exception is very

expensive time-wise, therefore it is important to evaluate

the number of test cases as well, since they do not all cost

the same. As shown in Table 7, the routing test strategy

only generates about 0.25% of the test case generated by

the brute force approach.

Table 7. Test Strategy Comparison, Test Counts

Test

vectors

Test cases

Reduction
Brute force Routing

81 1.966E+09 4.918E+06 99.75%

The test strategies do not make too much of a difference

when measuring the throughput, e.g. the number of tests

generated and executed (by both oracle and emulator) per

unit time. Routing generates and completes about 190 tests

per millisecond, while brute force generates and completes

about 175 tests per millisecond, with a difference of just

7.8%. We conclude that the speedup obtained from the

routing strategy derives overwhelmingly from the reduced

number of test cases.

The detailed data for the test time comparison is shown in

Figure 12. The speedup of the routing strategy versus brute

force is shown in Figure 13. There are some low points

both in Figure 12 and in Figure 13. This is because much

fewer test cases are generated when one operand is fixed

such as the AX register. Figure 14 and Figure 15 show the

detailed data for the test counts. Brute force generates far

more test cases, because its complexity is O(MxN) while

routing has complexity O(M+N). We also see some

common trends within a test vector family (same

instruction mnemonics). The test case count will increase

when the operands are a fixed operand, a register operand

or the operands include MODRM bytes.

Table 8 summarizes the results from testing, at the time of

this writing1. The first columns reports the total number of

test vectors generated from the specifications. A number of

these test vectors cannot run on the user mode oracle; the

second and third columns report the counts of runnable and

not runnable test vectors, respectively. Vectors are not run

because they are duplicated, or they only really work in

1 The emulator is in active development, these results are

only preliminary and change constantly.

privileged mode, or the oracle machine does not support the

instruction (like MOVBE), or we have not recreated

enough state on the target machine (like the full global

descriptor table), or they are too disruptive to the processor

state and generate non-recoverable exceptions (like loading

an invalid selector in the DS segment), or we simply have

not yet added the code to create a controllable execution

(like an arbitrary far CALL, for instance). The fifth column

reports the total number of test cases generated and run to

completion. The sixth column reports the count of tests that

generate exceptions, which we catch and then verify that

they are the same on both oracle and emulator. The seventh

and eight columns report the count of tests passing and

failing, respectively. There are a number of reasons for

these failures, some we can improve upon in the future and

others are more fundamental. The bit string instructions use

a pointer and a full 32-bit offset, in the boundary cases they

reach all over the oracle‟s process address space. POPFD

can set the trap bit, which takes effect immediately in the

next instruction. On the oracle, the OS clears the flag but

on the emulator we only execute one instruction and we see

the flag still set. The RDTSC instruction will never return

the same counter value on two separate machines.

RELATED WORK
The virtualizability of 250 instructions of the Intel Pentium

architecture was analyzed by Robin and Irvine [26].

Bochs[8] is a full system emulator using interpretation

techniques. Similar to Bochs, our emulator also uses

interpretation techniques; however, our simulator focuses

on the real-time simulation. Dynamic binary translation was

used in QEMU for CPU emulator [13]. Ptlsim is another

full system emulator [28]. Demand emulation was used to

track tainted data [31]. Time warped time was used for

network emulation [32]. Operating System level

virtualization trade both isolation and efficiency [29][30].

Xen [44] developed the hypervisor based virtual machine

based on hardware extensions.

Virtual machine emulators have become pervasively

utilized tools in computer security for malware analysis.

Many researchers built tools based on whole system

emulators. The analyzed applications can be isolated in the

emulated environment for observations. For example,

Bochs [14] was used to analyze packed malware [35] and

data lifetime [38]. Many researchers also developed

platforms [36][37][39][40][41][42] for analyzing binaries

based on the full system emulator QEMU. Some

researchers also developed malware analysis platform [45]

[46] based on the Xen hypervisor [44] .

Malware authors have developed techniques to find the

difference between emulated environment and the real

hardware environment. Then malware will behave

differently in the emulation environment. Rutkowska

proposes to use just one instruction to detect a virtual

machine[22]. Ormandy [19] presents server implementation

 - 15 -

defects in emulators. Quist et al. [20] propose to use local

data table to detect a virtual machine. Raffetseder et al.

proposed several attacks to detect emulators [21]. Also test

oracle was used to generate red-pill for detection of CPU

emulator [43] . The closest related work about emulator

testing is [17]. This paper proposes an automatic technique

to generate random instructions and uses real machine as

test oracle to find a large class of differences. Our method

share the same principal approach, but using a routing

based test generation, however, our methods systematically

generate the instructions according to the test vectors and

guarantee test coverage. Emulation technique is used to

repair the state difference between emulator and reference

system[47]. Routing test was used in hardware testing to

validate hardware architecture [27]. We use the idea of

routing test to quickly generate test cases and reduce the

complexity.

7. Conclusions
In this paper, we show that the hardware-oracle based

testing-debugging architecture is highly effective in

supporting the development of CPU emulators. The

hardware-oracle is lightweight and precise. It can run either

as a separate program, or directly embedded into the

emulator. We developed an automatic tester that extracts

the CPU specifications directly from the published CPU

datasheets, and automatically generates test cases with

complete test coverage. The number of required tests is

reduced by many orders of magnitude by the separation of

operand routing from computation. With the same test

coverage, our routing based test generation strategy is more

than 400 times faster than a brute force approach, reducing

the test time for a sample of test vectors from more than 3

hours to less than 25 seconds. Experimental results show

that our design significantly reduces the development time

over the post-implementation testing methodology. The

hardware-oracle detects and documents several

undocumented CPU behaviors which would be very hard to

detect by conventional testing methods. The proposed

design and testing process is versatile, and can be applied

to any CPU emulator.

We used a number of code patterns realized as macros in

the implementation. These patterns are useful to save code,

to fix many bugs with fewer code changes, and to better

understand and document the architecture. By reusing the

common patterns, the CPU emulator could conceivably be

translated into Verilog and implemented on an FPGA.

References
[1] A. Forin, B. Neekzad, and N. L. Lynch. Giano: The twoheaded

system simulator. Technical report vol. msr-tr-2006-130,

Microsoft Research, One Microsoft Way, Redmond,WA 98052,

2006.

[2] S.Mohan and J. Helander. Temporal analysis for adapting

concurrent applications to embedded systems. In ECRTS, 2008.

[3] Phoenix Compiler. http://research.microsoft.com/en-

us/collaboration/focus/cs/phoenix.aspx

[4] Lorenzo Martignoni, Roberto Paleari, Giampaolo Fresi Roglia,

Danilo Bruschi, Testing CPU emulators, Proceedings of the

eighteenth international symposium on Software testing and

analysis 2009

[5] S. Bhansali, W. Chen, S. De Jong, A. Edwards, andM. Drinic.

Framework for instruction-level tracingand analysis of

programs. In Second InternationalConference on Virtual

Execution Environments VEE,2006

[6] Patrice Godefroid, Michael Y. Levin, David Molnar, Automated

Whitebox Fuzz Testing, Proceedings of NDSS'2008.

[7] David A Molnar, David Wagner. "Catchconv: Symbolic

execution and run-time type inference for integer conversion

errors". Technical report, University of California Berkeley,

2007-23, February, 2007

[8] Kevin P. Lawton. Bochs: A Portable PC Emulator for Unix/X.

Linux Journal 1996

[9] Intel Corporation: Intel 64 and IA-32 Architectures Software

Developer‟s Manual Volume 1: Basic Architecture (2006)

[10] Intel Corporation: Intel 64 and IA-32 Architectures Software

Developer‟s Manual Volume 2B: Instruction Set Reference, N-Z

(2006)

[11] Intel Corporation: Intel 64 and IA-32 Architectures Software

Developer‟s Manual Volume 3B: System Programming Guide,

Part 2 (2006)

[12] Nicholas Nethercote, Julian Seward, Valgrind: A Program

Supervision Framework, Electronic Notes in Theoretical

Computer Science, Volume 89, Issue 2, October 2003

[13] F Bellard, QEMU, a fast and portable dynamic translator,

Proceedings of the USENIX Annual Technical Program 2005

[14] KP Lawton, Bochs: A portable pc emulator for unix/x, Linux

Journal, 1996

[15] CK Luk, R Cohn, R Muth, H Patil, A Klauser, Pin: Building

customized program analysis tools with dynamic instrumentation

, PLDI‟05

[16] 8086 Microprocessor Emulator, http://www.emu8086.com/

[17] L. Martingnoni, R. Paleari, G. Fresi Roglia, and D. Bruschi, D.,

“ Testing CPU emulators”, Proceedings of the 2009 International

Conference on Software Testing and Analysis (ISSTA), Chicago,

Illinois, U.S.A. (July 2009), ACM

[18] P. Ferrie, “Attacks on Virtual Machine Emulators”, Tech. report,

Symantec Advanced Threat Research, 2006

[19] T. Ormandy, “An Empirical Study into the Security Exposure to

Host of Hostile Virtualized Environments”, In Proc. of

CanSecWest Applied Security Conference, 2007

[20] D. Quist, and V. Smith, “Detecting the Presence of Virtual

Machines Using the Local Data Table”, http://www. offensive

computing.net/files/active/0/vm.pdf

[21] T. Raffetseder, C. Kruegel, and E. Kirda. “Detecting System

Emulators”, Proc. of Information Security Conference (ISC

2007). Springer-Verlag, 2007

[22] J. Rutkowska. “Red Pill. . . or how to detect VMM using (almost)

one CPU instruction”, http://invisiblethings.org/

papers/redpill.html

[23] http:// research.microsoft.com/en-us/projects/giano/ default.aspx.

[24] Burger, D., Austin, T. M. The SimpleScalar Tool Set, Version

2.0.Technical Report 1342, June 1997, University of Wisconsin-

Madison.

[25] M. Pezze and M. Young, Software Testing and Analysis:

Process,Principles and Techniques. Wiley, April 200.

[26] John Scott Robin , Cynthia E. Irvine, Analysis of the Intel

Pentium's ability to support a secure virtual machine monitor,

Proceedings of the 9th conference on USENIX Security

Symposium, p.10-10, August 14-17, 2000, Denver, Colorado

[27] Aktouf, C., Robach, C., and Marinescu, A. 1995. A Routing

Testing of a VLSI Massively Parallel Machine Based on IEEE

http://research.microsoft.com/en-us/collaboration/focus/cs/phoenix.aspx
http://research.microsoft.com/en-us/collaboration/focus/cs/phoenix.aspx
http://www.emu8086.com/

 - 16 -

1149.1. In Proceedings of the IEEE international Test

Conference on Driving Down the Cost of Test (October 21 - 25,

1995).

[28] M. Yourst, "PTLsim: A cycle accurate full system x86-64

microarchitectural simulator," in ISPASS '07, Apr. 2007.

[29] Stephen Soltesz, Herbert P?tzl, Marc E. Fiuczynski, Andy

Bavier,and Larry Peterson. Container-based operating system

virtualization: A scalable, high-performance alternative to

hypervisors. In Proceedings of the EuroSys conference, pages

275–287, 2007.

[30] Daniel Price and Andrew Tucker. Solaris zones: Operating

system support for consolidating commercial workloads. In

Proceedings of the USENIX Large Installation Systems

Administration Conference, 2004.

[31] Ho, A., Fetterman, M., Clark, C., Warfield, A., and Hand, S.

2006. Practical taint-based protection using demand emulation.

SIGOPS Oper. Syst. Rev. 40, 4 (Oct. 2006), 29-41.

[32] Gupta, D., Yocum, K., McNett, M., Snoeren, A. C., Vahdat, A.,

and Voelker, G. M. To infinity and beyond: time warped

network emulation. In SOSP '05: Proceedings of the twentieth

ACM symposium on Operating systems principles (2005).

[33] RUTKOWSKA, J. Red Pill. . . or how to detect VMM using

(almost) one CPU instruction.

http://invisiblethings.org/papers/redpill.html.

[34] Danny Quist and Val Smith "Detecting the Presence of Virtual

Machines Using the Local Data Table"

http://www.offensivecomputing.net/files/active/0/vm.pdf

[35] L. Böhne. Pandora‟s Bochs: Automatic unpacking of malware.

Diploma thesis, RWTH Aachen University, Jan.2008.

[36] D. Song, D. Brumley, H. Yin, J. Caballero, I. Jager, M. G. Kang,

Z. Liang, J. Newsome, P. Poosankam, and P. Saxena. BitBlaze:

A new approach to computer security via binary analysis. In

Proceedings of the 4th International Conference on Information

Systems Security, Hyderabad, India, Dec.2008.

[37] BitBlaze Online. https://aerie.cs.berkeley.edu/.

[38] J. Chow, B. Pfaff, T. Garfinkel, K. Christopher, and M.

Rosenblum. Understanding data lifetime via whole system

simulation. In 13th USENIX Security Symposium,San Diego,

CA, USA, Aug. 2004.

[39] U. Bayer, C. Kruegel, and E. Kirda. TTAnalyze: A tool for

analyzing malware. In 15th EICAR Conference, pages 180–192,

Hamburg, Germany, May 2006.

[40] L. Martignoni, M. Christodorescu, and S. Jha. OmniUnpack:

Fast, generic, and safe unpacking of malware. In 23rd Annual

Computer Security Applications Conference (ACSAC), pages

431–441, Miami Beach, FL, USA, Dec. 2007.

[41] H. Yin, D. Song, M. Egele, C. Kruegel, and E. Kirda. Panorama:

Capturing system-wide information flow for malware detection

and analysis. In ACM Conference on Computer and

Communication Security (CCS), Alexandria, VA, USA, Oct.

2007.

[42] M. G. Kang, P. Poosankam, and H. Yin. Renovo: A hidden code

extractor for packed executables. In 5th ACM Workshop on

Recurring Malcode (WORM), Oct. 2007.

[43] Roberto Paleari, Lorenzo Martignoni, Giampaolo Fresi Roglia

and Danilo Brusch, "A fistful of red-pills: How to automatically

generate procedures to detect CPU emulators", In the

Proceedings of the 3rd USENIX Workshop on Offensive

Technologies (WOOT), Montreal, Canada, August 10, 2009.

[44] Paul Barham , Boris Dragovic , Keir Fraser , Steven Hand , Tim

Harris , Alex Ho , Rolf Neugebauer , Ian Pratt , Andrew

Warfield, Xen and the art of virtualization, Proceedings of the

nineteenth ACM symposium on Operating systems principles,

October 19-22, 2003, Bolton Landing, NY, USA.

[45] Lionel Litty, H. Andrés Lagar-Cavilla and David Lie.

Hypervisor Support for Identifying Covertly Executing Binaries

In the 17th USENIX Security Symposium. Pages 243-258. July

2008.

[46] A. Dinaburg, P. Royal, M. Sharif, and W. Lee. Ether: malware

analysis via hardware virtualization extensions. In 15th ACM

Conference on Computer and Communications Security (CCS),

pages 51–62, Alexandria, VA, USA, Oct. 2008.

[47] Min Gyung Kang, Heng Yin, Steve Hanna, Steve McCamant,

and Dawn Song, "Emulating Emulation-Resistant Malware", In

Proceedings of the 2nd Workshop on Virtual Machine Security,

November 2009.

Figure 12: Completion time for selected Test Vectors

0

50000

100000

150000

200000

250000

300000

350000

A
D

C
 [

4
]

A
D

C
 [

7
]

A
D

C
 [

1
0

]

A
D

D
 [

1
3

]

A
D

D
 [

1
6

]

A
N

D
 [

1
9

]

A
N

D
 [

2
3

]

C
M

P
 [

6
4

]

C
M

P
 [

6
7

]

D
EC

 [
7

9
]

IM
U

L
[8

8
]

IM
U

L
[9

1
]

IN
C

 [
9

8
]

M
O

V
 [

1
4

0
]

M
O

V
 [

1
4

3
]

O
R

 [
1

7
7

]

O
R

 [
1

8
0

]

O
R

 [
1

8
3

]

P
U

SH
 [

1
9

5
]

SB
B

 [
2

5
1

]

SB
B

 [
2

5
4

]

SB
B

 [
2

5
7

]

SU
B

 [
2

9
5

]

SU
B

 [
2

9
8

]

X
C

H
G

 [
3

1
6

]

X
O

R
 [

3
2

0
]

X
O

R
 [

3
2

3
]

Te
st

 T
im

e
 (

m
ill

is
e

co
n

d
s)

Test Vectors for Instructions

usual test time
(millisec)

routing test time
(millisec)

http://invisiblethings.org/papers/redpill.html
http://www.offensivecomputing.net/files/active/0/vm.pdf
https://aerie.cs.berkeley.edu/

 - 17 -

Figure 13: Speedup in test time completion

Figure 14: Counts of generated tests of brute force test

Figure 14: Counts of generated tests of routing test

0
500

1000
1500
2000
2500
3000
3500

A
D

C
 [

4
]

A
D

C
 [

7
]

A
D

C
 [

1
0

]

A
D

D
 [

1
3

]

A
D

D
 [

1
6

]

A
N

D
 [

1
9

]

A
N

D
 [

2
3

]

C
M

P
 [

6
4

]

C
M

P
 [

6
7

]

D
EC

 [
7

9
]

IM
U

L
[8

8
]

IM
U

L
[9

1
]

IN
C

 [
9

8
]

M
O

V
 [

1
4

0
]

M
O

V
 [

1
4

3
]

O
R

 [
1

7
7

]

O
R

 [
1

8
0

]

O
R

 [
1

8
3

]

P
U

SH
 [

1
9

5
]

SB
B

 [
2

5
1

]

SB
B

 [
2

5
4

]

SB
B

 [
2

5
7

]

SU
B

 [
2

9
5

]

SU
B

 [
2

9
8

]

X
C

H
G

 [
3

1
6

]

X
O

R
 [

3
2

0
]

X
O

R
 [

3
2

3
]

Ti
m

e
 S

p
e

e
d

u
p

(u
su

al
 v

s
ro

u
ti

n
g)

Test Vectors of Instructions

0

10000

20000

30000

40000

50000

A
D

C
 [

4
]

A
D

C
 [

7
]

A
D

C
 [

1
0

]

A
D

D
 [

1
3

]

A
D

D
 [

1
6

]

A
N

D
 [

1
9

]

A
N

D
 [

2
3

]

C
M

P
 [

6
4

]

C
M

P
 [

6
7

]

D
EC

 [
7

9
]

IM
U

L
[8

8
]

IM
U

L
[9

1
]

IN
C

 [
9

8
]

M
O

V
 [

1
4

0
]

M
O

V
 [

1
4

3
]

O
R

 [
1

7
7

]

O
R

 [
1

8
0

]

O
R

 [
1

8
3

]

P
U

SH
 [

1
9

5
]

SB
B

 [
2

5
1

]

SB
B

 [
2

5
4

]

SB
B

 [
2

5
7

]

SU
B

 [
2

9
5

]

SU
B

 [
2

9
8

]

X
C

H
G

 [
3

1
6

]

X
O

R
 [

3
2

0
]

X
O

R
 [

3
2

3
] Te

st
 C

as
e

 N
u

m
b

e
r

(K
)

0
100,000
200,000
300,000
400,000
500,000
600,000
700,000

A
D

C
[4

]

A
D

C
[7

]

A
D

C
[1

0
]

A
D

D
[1

3
]

A
D

D
[1

6
]

A
N

D
[1

9
]

A
N

D
[2

3
]

C
M

P
[6

4
]

C
M

P
[6

7
]

D
EC

[7
9

]

IM
U

L[
8

8
]

IM
U

L[
9

1
]

IN
C

[9
8

]

M
O

V
[1

4
0

]

M
O

V
[1

4
3

]

O
R

[1
7

7
]

O
R

[1
8

0
]

O
R

[1
8

3
]

P
U

SH
[1

9
5

]

SB
B

[2
5

1
]

SB
B

[2
5

4
]

SB
B

[2
5

7
]

SU
B

[2
9

5
]

SU
B

[2
9

8
]

X
C

H
G

[3
1

6
]

X
O

R
[3

2
0

]

X
O

R
[3

2
3

]

Te
st

 C
as

e
 N

u
m

b
e

r

 - 18 -

Table 8 Test execution results

Vectors Runnable Not Run. %Run Tests Traps Pass Fail %Fail

328 269 59 82.01 24,669,044,880 97,832,937 24,649,159,730 19,885,150 0.0806

