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Abstract 

 

In this paper, we describe the design and testing 

process of an x86 CPU model for the Giano simulator. We 

used a hardware-oracle for test generation and as a 

reference behavioral specification. We developed an 

automatic tester that extracts the CPU specifications from 

the published CPU datasheets, and automatically generates 

test cases with complete test coverage. The number of 

required tests is reduced by many orders of magnitude by 

the separate testing of operand routing from computation. 

Debugging efficacy is such that the tester is now used 

concurrently with the development process, not afterwards. 

The hardware-oracle detects and documents several 

undocumented or erroneously-specified CPU behaviors 

which would be difficult to detect by conventional testing 

methods. 

 

1 INTRODUCTION 
The correct implementation of CPU emulators is critical for 

computer system design, and yet software errors in CPU 

simulators can remain undetected for years after the 

software is released. For example, implementation errors 

for the ADC and SBB instructions in the commercial 8086 

emulator [18] were not found until version 4.08. For 

variable length instruction sets, such as the x86 

instructions, the cascading effects of an error can lead to a 

total crash of the emulator. Bugs in Valgrind [17] could 

lead to errors in all subsequent instruction executions. 

Despite its importance, it is extremely costly and 

technically challenging to implement, debug and test CPU 

emulators as three separate steps, purely based on software 

methods. In addition to programming errors, the incomplete 

and often incorrect documentation of CPU instructions is 

also an important issue. Specifications are written with the 

programmer and compiler writer as targets, not for CPU 

implementation or simulation. Consequently, they do not 

cover some important details, and leave many behaviors as 

“undefined” or “implementation specific”. 

The laborious search and matching process of data sheets 

for testing and validation is error prone, and slow. When 

the hardware for the CPU is available, it is much more 

reliable and accurate to use the actual outputs of the 

hardware as the ground truth to test and verify the 

emulator. Using actual hardware as a reference is what we 

call a hardware-oracle. 

With the broad applications of CPU emulators for the 

design of virtual execution environments, a modular 

emulation architecture is highly desirable, so that 

instructions can be implemented and verified incrementally 

and comprehensively. We adopted the system emulator 

Giano [1] as the integration target for this work. Giano has 

been used in several product developments, and its source 

can be downloaded from the Microsoft web site [23] 

Positioned as a multi-platform system simulation 

framework, Giano already supports simulation of several 

instruction sets such as ARM, PowerPC, VAX, and MIPS. 

It provides real-time support, extensive I/O modules, and 

an interface to the Xilinx ModelSim hardware simulator. 

With this work we have now added support for the popular 

x86 instruction set. 

In this paper, we propose a hardware-oracle based 

implementation methodology for CPU emulators. We use a 

real processor to run each instruction being simulated and 

check its outputs against that of the simulator. When the 

hardware-oracle runs on a bare-bone machine, it can 

support testing of all instructions and operations. When the 

hardware oracle runs within an application program with 

user level privileges, some of the exception and interrupt 

related functions will be restricted.  

The hardware-oracle eliminates any guessing of the true 

behavior of a CPU, and it had already been found highly 

effective for the rapid and correct implementation of the 

ARM and MIPS modules in Giano. That earlier work was 

manual, undocumented, and ad hoc. In this paper we 
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present a complete, automatic testing strategy and tool that 

leverages the published specifications, in English, from the 

Intel PDF files. 

We design and test our concepts based on the 32-bit x86 

architecture. The printed x86 instruction specifications are 

only used as the starting point for implementation -- they 

are not needed for subsequent testing when the hardware-

oracle can deliver the required data.  Our experiments show 

that the new design methodology drastically improves the 

productivity in development, debugging, testing, and 

validation of the simulator. It also helped identifying 

several CPU behaviors which are not documented in the 

published CPU manuals.  

The rest of this paper is organized as follows. Section 2 

describes the overall structure of the emulator. Section 3 

described the automated testing framework we developed 

for testing the new emulator. Section 4 presents a technique 

for reducing considerably the number of tests needed for 

full coverage. Section 5 presents the results of our 

evaluation. Section 6 presents the related work and Section 

7 concludes. 

2 Emulator Design  
A conceptual illustration of an interpretive CPU emulator is 

shown in Figure 1. Each instruction is handled in its own 

separate function. The execution flow of our new x86 

emulator is also of the type shown in Figure 1. In the 

execution loop, it fetches an instruction from memory, then 

decodes and executes the instruction. Before fetching the 

next instruction, it first checks the trap queue for any 

outstanding trap or interrupt requests. We use a lookup 

table for opcode decoding so that the execution can directly 

jump to the simulation function. We also implemented an 

instruction cache and its prefetch controller to improve the 

performance of simulation.  

Handle Trap/Interrupt Request

Prefecth for Instruction Cache

Pre-Instrumentation

Decode & Execute Instruction

Post-Instrumentation

Generate Trace or Disassembly

 

Figure 1: The execution flow of the emulator. 

The emulator is realized as a dynamic loadable library 

(DLL) so that it can be readily embedded into a full system 

emulator, or a virtual execution environment. We used a 

parser to automatically extract all instruction types, formats, 

normal behaviors and their exceptions from the Intel 

manuals. The instruction specifications are also formalized 

for subsequent implementation and test case generation. 

Real-time support is important for system level simulation. 

Giano supports real-time execution on a general-purpose 

host OS. In this emulator, we provide a real-speed 

calibration module to adjust the running speed of the CPU 

emulator, in order to match the speeds of CPU, Memory 

and IO device modules with the expected clock speed. 

 

2.1 Common Macro Templates 
 

Generally speaking, an instruction set architecture consists 

of a few different types of operations, e.g., arithmetic, 

Boolean logic, jumps, etc. Within each category different 

instructions have very similar ways of handling their 

operands, yet cannot be easily or efficiently implemented 

as common functions. Using common macro templates 

takes advantage of this structural relationship between 

instructions and reduces the costs in software 

implementation, testing and validation.  

A macro template mimics, in a way, how the actual 

hardware is implemented by using common and replicated 

circuits as much as possible. In addition to the better code 

reuse in the implementation, macro templates also help 

with debugging and testing. Using the ground truths 

provided by the hardware-oracle, we can eliminate software 

bugs rapidly and efficiently, because finding a bug in a 

template will fix a number of bugs in the related 

instructions. Instructions which do not have specific 

structural patterns need to be implemented and tested 

individually. This technique is particularly useful in the 

implementation of complex address and operand classes in 

x86 instructions.  

We have created several macro templates. A first mining 

rule is to search for instructions that have different types of 

operands but the same computation logic. For example, the 

computation logic in the ADD instruction can be 

represented as DEST  DEST + SRC. Many other 

instructions have this same general structure. Different 

computations can reuse the same simulated logics for 

fetching operands and storing the result, only the operation 

itself needs to be replaced. A second mining rule is 

searching for operand types, and different instructions 

which have same type of operands. For example, using the 

Intel manual‟s symbolism [9,10,11] the instructions ADD 

Eb,Gb; ADC Eb,Gb; AND Eb,Gb; and XOR Eb,Gb have 

different operations but the same operands. A third mining 

rule is for instructions which similar operands, e.g., INC 

eAX; INC eCX; INC eDX; INC eBX. Many other rules can 
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be created to streamline the emulator design. We will 

discuss some of these rules in the rest of this section.  

The operands and addresses of x86 instructions can be 8bit 

(byte), 16 bit (word), 32 bit (double), or 64 bit wide. They 

are specified in the Operand Size, Address Size, and prefix 

fields. The first macro template is the vertical pattern, 

which refers to the set of instructions who have the same 

type of input and output operands, and only differ in the 

„core‟ operation. Instructions in this category include ADD, 

ADC, AND, OR, SUB, XOR, SBB, and CMP. Their 

operands are of identical types, e.g., ADD Eb,Gb, and their 

opcodes are 0x00, 0x10, 0x20, 0x30, 0x08, 0x18, 0x38. 

Here, Eb means that the operand can be a memory or 

register byte, and Gb means a general register byte. 

Within the vertical pattern, there are four different sub-

patterns to represent six types of operands for the 

instructions ADD, ADC, AND, OR, SUB, XOR, SBB, and 

CMP. These six types of operands include (Eb,Gb), 

(Gb,Eb), (Ev,Gv) (Gv,Ev), (AL,Ib), and (rAX,Iz). The 

symbols, Ev (Gv), represents the addressing method and 

the operand type. For example, E represent that the operand 

is a general register or a memory address specified by a 

following ModR/M byte. As such, the ADD instruction can 

be one of the six different variations: ADD Eb,Gb, ADD 

Gb,Eb, ADD Ev,Gv, ADD Gv,Ev, ADD AL,Ib, or ADD 

rAX,Iz. By making each of these four operand types into a 

macro, we can use just six operand templates under the 

vertical pattern to implement a total of 6x8=48 instructions. 

Furthermore, there are a total of four combinations for the 

six types of operands. By implementing and testing these 

types in groups, we save a significant amount of effort.  

A second macro template is called the horizontal pattern 

for opcodes whose numerical values increase linearly, and 

where the opcode value also implies the order of registers 

in the operand fields. For instance, the opcodes and 

registers of the instructions INC and PUSH are listed in 

Table 1.  

Using this ordering relationship to organize registers in an 

array, we can directly locate the register operand for each 

opcode. This pattern is used for implementation of the 

instructions PUSH, XCHG, MOV, DEC, and POP. 

 

Table 1: Opcodes of the INC and PUSH instructions. 

0x40 

INC 

eAX 

0x41 

INC 

eCX 

0x42 

INC 

eDX 

0x43 

INC 

eBX 

0x44 

INC 

eSP 

0x45 

INC 

eBP 

0x46 

INC 

eSI 

0x47 

INC 

eDI 

 

0x50 

PUSH 

rAX 

0x51 

PUSH 

rCX 

0x52 

PUSH 

rDX 

0x53 

PUSH 

rBX 

0x54 

PUSH 

rSP 

0x55 

PUSH 

rBP 

0x56 

PUSH 

rSI 

0x57 

PUSH 

rDI 

 

Some other one-byte opcode instructions that have been 

implemented using macro templates are listed in Table 2. 

The first column of the table is the template name, the 

second column is the instruction element that can be 

implemented using the macro template, and the third 

column is the total instruction counts for the macro 

template. As of the writing of this report, 84.8% (195/230) 

of the realized instructions have been implemented using 

macro templates. Other instructions not covered by the 

above discussions are implemented individually, although 

some of them still have un-exploited common patterns. For 

instance, the TEST instruction with immediate operands: 

TEST AL,Ib and TEST rAX,Iz. These and others will be 

consolidated in the follow up phase of the project.  

Table 2 Instructions that use code templates 

Template 

ID 
Instruction elements  

Instruct

ions 

1 ADD Eb,Gb 8 

2 ADD Ev,Gv 8 

3 ADD Gb,Eb 8 

4 ADD Gv,Ev 8 

5 ADD AL,Ib 8 

6 ADD rAX,Iz 8 

7   INC eAX 8 

8 DEC eAX 8 

9 PUSH rAX 8 

10 POP rAX 8 

11 JO Jb 16 

12 XCHG rCX,rAX 7 

13 MOV AL,Ib 8 

14 MOV rAX,Iv 8 

15 Group#1 Eb,Ib 8 

16 Groou#1 Ev,Iz 8 

17 Groou#1 Eb,Ib 8 

18 Gropu#1 Ev,Ib 8 

 

 

2.2 Minimal CRT for Stand-alone Execution 
When the emulator is used for architectural 

experimentation it is desirable to run simple programs with 

a minimal overhead. Simulators such as SimpleScalar [24] 

directly interpret the binary program as if it was a Unix 

program, and by realizing the Unix syscall interface they 

can provide services such as printf() and file I/O. To run the 

application, the simulator loads the code in simulated 

memory, allocates the memory space of a stack, and 

invokes the entry point specified in the executable image. If 

the image uses shared libraries, it is again the simulator that 
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loads them. In a hardware, full-system simulator such as 

Giano all we have are CPU, memory, busses, and I/O 

devices. How to directly run very simple applications on 

the CPU emulator is therefore a challenge. To achieve this 

goal, we designed a Minimal C Run Time Library (CRT) 

for the emulator to run a C program without providing any 

complicated system environment. 

The minimal CRT consists of two simple functions. The 

start() function initializes the stack pointer using a user-

provided memory array, invokes the program‟s main() 

function, and when this returns it terminates the program by 

executing a HLT instruction. Note that on a full-system 

implementation the HLT instruction does not terminate the 

CPU but transfers the execution control back to the 

emulator. The putchar() function actually is an empty 

function, but by using Giano‟s built-in tracing functionality 

every time execution reaches putchar() we can look at the 

EAX register and print it as a character on the screen. We 

make use of code injection techniques for building the 

minimal programs as memory dump images. The system is 

therefore unaware of executable file formats. A simple tool 

injects the executable binary with jump code at the 

beginning position to transfer control to the actual entry 

point of the program. The minimal CRT consists of 14 lines 

of C code that compile to 19 bytes of code. 

In a typical implement/debug/test setup, the minimal CRT 

would be used in the debugging and testing phases. Simple 

programs are generated and run by the test harness, and the 

outputs are verified. As we shall illustrate in the following 

sections, both debugging and testing can be made much 

more efficient using a hardware- oracle based approach. 

2.3 Real-time support 
Real-time support is important for real-time system 

simulation and research. It is also useful in the general case, 

as it provides a more faithful execution and interaction with 

external devices and other systems. In this emulator we 

provide a real-time module, which can calibrate the 

frequency of the CPU emulator. We found that the 

following simple scheme is efficient and sufficiently 

accurate: 

• Every M thousands of clock ticks spin idle for D 

microseconds; 

• Every N millions of clock ticks check the actual 

frequency against the target frequency and adjust 

the delay D. 

In this way, the effective delay on each clock period is 

D/M, which can be as small as a few picoseconds and 

therefore would be impossible to realize on a per-period 

basis. The inevitable control overhead is also spread over a 

larger number of cycles. Checking the actual frequency 

involves reading the current time, which on many 

Operating Systems is an expensive operation compared to 

incrementing a counter and performing an integer division.  

As can be seen in Figure 3, the adjustment of the delay 

value D is based on a first-order low-pass filter, which 

seems sufficient to provide quick convergence without 

excessive fluctuations. Again, the cost of this computation 

is amortized over N million cycles.  This feedback loop not 

only matches the target simulation clock speed to the host 

computer‟s clock speed, but it also takes care, at least in 

part, of the fluctuations in execution speed due to 

multiprogramming on a general-purpose and non-Real-

Time commodity Operating System. The result is that the 

CPU module executes at the target clock speed while the 

user can continue with other activities. 

 

Figure 3: Delay adaptation to match the actual clock 

speed of the simulator to the target clock speed. 
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3 Automatic Test Generation  

Two key issues in the automated test framework (test 

harness) are the automated test vector generation, and the 

automated test case generation based on the test vectors. A 

test vector of an instruction defines the different fields of 

the instruction, their ranges, lengths and other details, so 

that they can be used by the test case generator to generate 

a series of test cases. Each test case represents an 

instruction with one distinct combination of argument 

values. Each test case consists of a set of test runs to assess 

the correctness of the CPU emulator by operating the 

instruction on selected operand values. Because there is no 

simple expression which can describe the relationship 

between an opcode and its operands, the only available 

information is the published manuals of the CPU, and the 

physical device itself. As a result, we developed an 

automated test vector generator based on the parsing of the 

PDF files for the Intel manuals. The test vectors are used by 

a table-driven, automated test case generator to generate all 

testing cases for both the emulator and the hardware-oracle. 

Each automatically generated pair {instruction, input 

processor state} is run by the hardware-oracle, which 

generates the output processor state. The triple {instruction, 

input processor state, output processor state} is sent as a 

test case to the CPU emulator for execution, to test the 

correctness of the CPU emulator by comparing their 

outputs. Note that in addition to a pass/fail result, the 

emulator will provide the developer with its own output 

processor state. The quad {instruction, input processor state, 

output processor state, error processor state} provides the 

necessary information for efficiently pinpointing the error. 

In case of a poorly or erroneously documented instruction, 

the set of quads completely tabulate the required behavior. 

3.1 Test Vector Generation  

The Intel manuals define the instruction formats using such 

symbol as sign, word, mod, reg, r/m, sreg, etc., see Figure 4. 

Both the test vector and test cases of an instruction are 

generated in a deterministic fashion, following these 

formats. We designed a parser which takes operand tables 

in the instruction format and encodings part of the x86 

manual [10,11,12] as its input and generates test vectors for 

most instructions. For a small number of instructions, e.g., 

BOUND, CPUID etc, whose formats were not fully 

documented in the manual, it is necessary to manually 

locate their technical descriptions from other manual 

volumes to create their test vectors case by case. All test 

vectors are collected in a computer-readable file, which can 

then be edited as necessary to cope with errors and 

omissions in the specifications. 

 

Opcode ModR/M SIB Displacement ImmediatePrefix

 

Figure 4: Basic structure for an x86 instruction [11] 

A test vector for an instruction consists of several records. 

Consider the instruction ADC as an example.  The Intel 

manual[11] reports seven possible encodings, one of them 

is as follows: 

Register to memory       0001 000w: mod reg r/m 

The parser generates the test vector for this specific 

encoding as follows: 

 name ADC // instruction name (and optional reference index) 

 inst 2 16 0  // 2 bytes, opcode 0x16, 2nd byte initialized as 0x00 

 w 0 0       // both byte and word forms, per byte 0, bit 0 

 reg 1 3      // the reg-ister is encoded in first byte, from 3rd bit 

 md 1 6      // mod encoded starting at 6th bit of the first byte 

 rm 1 0      // register/memory at first byte, starting 0th bit 

 end           // end of instruction 

Each test vector represents the general format of an 

instruction, its initial values, and also fields whose values 

need to be enumerated for the complete testing of the 

instruction. Each unique combination of these field values 

represents one distinct mode of the instruction, or a test 

case. For example, we could generate an instruction “0x11 

0x90” by replacing the “w” bit with 1, “mod” bits with 

b“10”, “R/M” with “000”, and “reg” with b“010”. We will 

then have to provide specific values for the indicated 

registers or memory location. An overview of the 

automated design and testing system for CPU emulators is 

shown in Figure 2. 

3.2 Test Case Generation  

Test cases are executable instructions, instantiated from the 

abstract instruction specifications defined in the test vector. 

For each test case we also need to generate different 

operand values to evaluate the functional correctness of the 

CPU emulator under different numerical values. It is 

relatively easier to handle register based operands, but it is 

more complicated to deal with memory based operands. 

One major challenge is the correct handling of all the 

addressing modes defined in the MODRM byte, which may 

be further expanded to include two additional bytes: the 

SIB byte (0,1 byte length) and Displacement byte (0,1,2, 

byte length according to the operand size). Some 

instructions may also include immediate operand values of 

1, 2, or 4-byte long. Furthermore, the addressing modes are 

somewhat irregular, and include a number of special cases. 

Consequently, even the simple task of computing the test 

instruction length is not as trivial as, say, with a RISC 

architecture.  

The memory address of an operand is calculated from the 1 

to 3 byte values of the MODRM-SIB-displacement fields. 

Because the test must be actually executed in the hardware-

oracle environment, it is impossible to exercise all possible 

combinations of the three fields. For instance, we cannot 

modify the memory ranges for the code of the hardware-

oracle itself. As a compromise, we adopted the following 

technique to test selected address ranges as follows. We 

first select a memory address MA as the expected memory 

location for an operand. Then test if the operation “[Base 
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Register] + [Index Register] *[Scale*Register] + 

displacement” (performed in the CPU emulator) does give 

the value MA for a set of MODRM-SIB-displacement 

values which are known to produce MA on the hardware-

oracle. The test is repeated for a few times to run through 

different combinations of the three fields, but with the same 

MA. As an illustration, in the first type of tests we can set 

one of the three fields as zero, and let the two remain fields 

added to the value of MA. In the second case, two of them 

are zero, and one field is made equal to MA. Finally, none 

of the three fields is zero, and their sum is made equal to 

MA. In reality, there are cases where it is demonstrably 

impossible to produce a given MA with a required set of 

registers. Consider the case, for instance, where [Base 

Register] and [Index Register] are the same. To cover these 

cases we allow for backtracking, e.g. small adjustments 

around the desired MA value. The problem is exacerbated 

by implementation restrictions, such as maintaining a valid 

stack pointer value in test cases that can generate a trap.  

To compare memory related operations, we must use the 

same addresses in both hardware-oracle and the CPU 

emulator. We employ some simple strategies to generate 

the same logical memory addresses for both. This is 

relatively simple in the Windows XP environment, because 

the malloc() starting addresses are fixed for all 

instantiations of the hardware-oracle process. It is slightly 

harder to do the same for Windows Vista, because of its 

address randomization scheme, where the range of 

randomization is the order of a few MB. As a result, we 

malloc() sufficiently large address spaces for both CPU 

emulator and the hardware-oracle, and then identify 

sufficiently large, overlapped address subspace for both.  

Brute force testing of a CPU emulator is an impractical idea. 

For a single 32-bit operand one would need to enumerate 4 

billion distinct values to scan through all possible values. 

For two operands we need to test all 2
64

 combinations. An 

x86 instruction can have up to 3 operands (2
96

), each of 

which could additionally be a register or memory. Special 

flags often affect the results of an operation, but we also 

need to test that they do not. Full enumeration of the 

operand values is clearly impractical for real world 

applications. As an effective yet practical testing strategy, 

we propose to use boundary cases to generate operand 

values for their testing. 

For all practical purposes of emulator testing, it is 

unnecessary to enumerate all values. We use the following 

two techniques to maximize the test coverage under the 

constraint of testing time. Experiences suggest that errors 

are always revealed by the boundary cases, and very rarely 

by the “common” values. Random number generators are 

not guaranteed to generate all boundary values, and they do 

not support scanning of the entire set anyways. Instead, we 

use a 32-bit generator for boundary cases that only uses 

about a 100 distinct values, thereby reducing considerably 

the number of tests generated. Similar considerations apply 

to the other machine data types, pointers, and special fields.  

The second consideration is that fetching of operands is 

independent of computation on those operands. For 

instance, the carry-chain adder circuit for the ADD 

instruction (or its software counterpart) will operate 

identically whether the operands come from the EAX, EDX 

register pair or from any other pair of registers. Therefore 

in testing we can separately test that 
1- the ADD instruction correctly computes its result, and 

2- the ADD instruction correctly fetches its source 

operands and deposits the result to the correct 

destination. 

The two aforementioned techniques lead to a drastic 

reduction in the number of tests. Consider the ADD 

instruction, such as “ADD r32A,r32B”. The source operand 

may be chosen from one of the 8 general purpose, 32-bit 

registers. The destination is r32A and we ignore the flags 

and anything else. A complete test generator would need to 

generate 2
32

 x 2
32

 x 8 x 8 = 2
70

 distinct patterns, without 

considering any operands in memory. Using the first 

reduction technique alone, we need roughly 2
7
 x 2

7
 x 8 x 8 

= 2
20

 test patterns. Using the second technique alone, we 

need (2
32

 x 2
32

) + (8 x 8) ~= 2
64

 patterns. When the two 

techniques are combined together, we get (2
7
 x 2

7
) + (8 x 8) 

~= 2
14 

patterns. The second technique is especially valuable 

in a complex instruction set such as the x86, with so many 

addressing modes, 725 different modes in all. 

For the symbols with short bit counts, such as the one-bit 

“w” field, we generate all the possible values. For the 8 bit 

and 16 bit and 32 bit integer values, we use an algorithm to 

generate boundary values for operands, which are 

represented by symbols in the test vector, e.g., w, reg, mod, 

etc, and their 8-, 16-, and 32-bit integer values. A total of 

three different boundary value patterns are generated for 

each N-bit operand. In the first type of patterns, we 

interplay the 0x0 and 0xf every four bits for the operand. In 

the second type of patterns, we shift a single bit of “1” from 

the lowest significant bit (LSB) to the most significant bit 

(MSB). In the third type of boundary value patterns, we 

shift a single bit “0” from the LSB to the MSB.  

It is relatively straightforward to run an instruction on the 

CPU emulator, because the emulator has full control of the 

execution flows and state changes. On the other hand, it is 

necessary for the hardware-oracle to save the processor 

state values before the instruction being tested can be 

executed, and other additional routines for safe execution 

of the hardware-oracle in the user mode. More details on 

those house-keeping steps will be discussed shortly.  

3.3 Test Run Control 

Each generated test case is represented by a data structure 

shown in simplified form in Figure 4. It includes the 

instruction being tested, and input and output states for 

registers and memories. The test execution engine 

maintains a JTAG style pipe channel for communication 

between the CPU emulator and the hardware-oracle. The 
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test data is sent over the pipe, so that the emulator can 

safely run test cases and compare their outcomes.  

 

 typedef struct { 

 GPREG i386_gpr[NREGS]; 

 FPREG i386_fpr[NREGS];  

 UINT16 i386_fcr;   // FPU control register 

 UINT16 i386_fcs;   // FPU status register 

 UINT16 i386_ftag;   // FPU tag register 

 UINT64 i386_fip;   // FPU instruction pointer (errors) 

 UINT64 i386_dip;   // FPU data pointer (errors) 

 SREG i386_seg[6];  // segment registers 

 SDESC i386_desc[6];  // cached segment descriptors 

 SDESC i386_desc2[4]; // more segment descriptors 

 UINT32 i386_flags;  // EFLAGS  

 UINT32 i386_spr[16];  // special purpose registers 

 UINT32 i386_cia;   // current instruction address 

} REGSTATE, *PREGSTATE; 

 

typedef struct { 

 UINT32 base_address; 

 UINT32 count; 

 UINT32 values[NMEM]; 

} MEMSTATE, *PMEMSTATE; 

 

typedef struct { 

 UINT32 test_code; 

 UINT8 instruction[IBYTES]; 

 REGSTATE input; 

 REGSTATE results; 

 MEMSTATE meminput[2]; 

 MEMSTATE memresults[2]; 

} TEST_ITEM, *PTEST_ITEM; 

Figure 5: The data structure of a test case 

Every test case generated by the test generator must be run 

by the hardware-oracle and by the CPU emulator. When the 

hardware- oracle works in user mode under the control of 

the operating system, test cases are run by the test 

execution engine, which maintains an execution 

environment similar for both hardware- oracle and the CPU 

emulator. The core code for the execution engine is shown 

in Figure 5, it includes CPU state backup, instruction 

execution, execution result preservation, CPU state restore. 

The code is self-modified at run time to realize the 

individual instruction, and to cope with execution-

dependent addresses for global variables. 

CPU state backup uses PUSHAD and PUSFD for 

preserving general and flag registers. Also, the stack 

pointer (ESP) is saved into a global variable. Similar to this 

aforementioned state preservation step, multiple stacks are 

created by using global variables and changes of the stack 

point register will preserve different system states 

whenever necessary. A block of memory space at the array 

testcode[], called NOP block, reserved for running the 

instruction under test is otherwise filled with NOP 

instructions by the test program. Next, the test program 

loads registers and (affected) memories of the CPU 

emulator and the hardware-oracle based on the test case. 

Then, the instruction under test is placed at the beginning 

of the NOP block. The execution EIP then transfers to the 

address of testcode. 

#define PROLOGUE 28 

#define EPILOGUE 29 

UINT8 testcode[PROLOGUE+IBYTES+EPILOGUE] = { 

 0x9c,       /* pushfd */ 

 0x60,       /* pushad */ 

#define SAVED_ESP_OFF1 4 

 0x89, 0x25, 1,2,3,4,   /* mov dword ptr ds:[_saved_esp 

04030201],esp */ 

#define EFLAGS_OFF1   (SAVED_ESP_OFF1+4 +2) 

 0xFF, 0x35, 1,2,3,4,   /* push  dword ptr [_eflags] */ 

 0x9D,       /* popfd */ 

#define TEST_ESP_OFF1  (EFLAGS_OFF1+4 +1 +2) 

 0x8B, 0x25, 1,2,3,4,   /* mov  esp,dword ptr [_test_esp] */ 

 0x61,       /* popad */ 

#define TEST_ESP_VALUE_OFF1 (TEST_ESP_OFF1+4 

+1 +2) 

 0x8B, 0x25, 1,2,3,4,   /* mov  esp,dword ptr 

[_test_esp_value] */ 

 /* PROLOGUE ENDS HERE */ 

#define TEST_INST_OFFSET  

(TEST_ESP_VALUE_OFF1+4) 

 0x90, 0x90, 0x90, 0x90,  /* IBYTES(5*4=20) NOPS */ 

 0x90, 0x90, 0x90, 0x90, 

 0x90, 0x90, 0x90, 0x90, 

 0x90, 0x90, 0x90, 0x90, 

 0x90, 0x90, 0x90, 0x90, 

 /* EPILOGUE STARTS HERE */ 

#define EPILOGUE_START  (PROLOGUE+IBYTES) 

#define TEST_ESP_OFF2  (EPILOGUE_START+2) 

 0x89, 0x25, 1,2,3,4,   /* mov  dword ptr [_test_esp],esp */ 

#define RESULT_ESP_OFF1  (TEST_ESP_OFF2+4 +2) 

 0x8B, 0x25, 1,2,3,4,   /* mov  esp,dword ptr [_result_esp] 

*/ 

 0x60,       /* pushad */ 

#define EFLAGS_PTR_OFF1  (RESULT_ESP_OFF1+4 

+1 +2) 

 0x8B, 0x25, 1,2,3,4,   /* mov  esp,dword ptr [_eflags_ptr] 

*/ 

 0x9C,       /* pushfd */ 

#define SAVED_ESP_OFF2  (EFLAGS_PTR_OFF1+4 +1 

+2) 

 0x8B,0x25, 1,2,3,4,   /* mov esp,dword ptr ds:[_saved_esp 

04030201] */ 

 0x61,       /* popad */ 

 0x9d,       /* popfd */ 

 0xc3       /* ret */ 

}; 

Figure 5: The core function in the hardware-oracle 

execution engine. 



 

 - 10 -  

After the instruction is executed, the CPU will run a 

variable number of NOP instructions. Next, we need to 

preserve the resulting stack pointer, general registers, and 

eflag register into some global variables. Finally, we need 

to restore the CPU states and returns the execution control 

back to the test execution engine. The remainder of the 

engine code is written in C, and is responsible for setting up 

the desired test memory state before testcode runs and for 

recovering the modified memory state afterwards. 

 The CPU emulator and the hardware-oracle communicate 

with each other through a JTAG style pipe. The pipe 

transfers a structure of a test case which includes the input 

values for one instruction and the corresponding execution 

results from the hardware-oracle to the CPU emulator for 

comparison, after it executes the same instruction with the 

same set of inputs. Although the CPU hardware may 

contain some design or implementations which do not 

conform to the published specifications, we still take the 

hardware-oracle as the ground truth, because the CPU 

emulator is meant to correctly reflect all behaviors of the 

actual hardware device. The basic architecture for complete 

testing of an instruction is shown in Figure 6.  

Load Reg1

Load Reg2

Computer Reg1 + Reg2

(n1*n2*8*8)

Store Reg2

Different 

Data(n1 = 

2..)

Different 

Register(8)

Different 

Register(8)

Different 

Data(n1 = 

2..)

 

Figure 6: Brute force testing of an instruction 

4 Routing-based Testing 
Brute force, exhaustive testing of an instruction would 

enumerate all possible encoding options and operand 

values. For example, for a 32-bit register, we need to test 

4,294,967,296 distinct values for a single register and 

18,446,744,073,709,551,616 values for two registers. There 

are very few cases where a complete enumeration is 

required, for all other cases we propose the following 

routing based test scheme: We split the instruction into two 

stages -- input/output stage and instruction computation 

stage. We presume the two stages independent and test 

them separately. 

Registers, Memory and I/O 

devices

Computation

Collect inputs

Deposit results

Routing Emulation State

Ra,Rb

Rc

IMUL

C = A * B;

 

Figure 7: The routing test model. 

With reference to Figure 7, the Routing stage is the I/O 

stage that fetches the operands and deposits the results into 

the Emulation State. The Computation stage performs the 

instruction-specific computation. We can think of data 

being circulated out of the Emulation State and back into it 

by a software “routing” network. Testing simply tries to 

find any errors in this routing network. 

Using a routing based test scheme greatly reduced the 

number of instructions we need to test, and by many orders 

of magnitude. The routing test is based on the observation 

that each instruction implementation (e.g. for code 

coverage) can be split in three parts: 

 

(1) collect inputs, either from a register R(r) of a 

memory location M(m) 

(2) compute the results 

(3) send results to the destination, either R(s) or M(n) 

 

The Routing stage is parts 1 and 3, Computation is 2, and 

registers R() and memory M() live in Emulation State 

(along with the I/O peripherals). All "Routing errors" will 

happen in 1,3, for instance in selecting  

 

(a) a register instead of memory, or vice versa 

(b) R(x) instead of R(y),  

(c) M(x) instead of M(y), 

(d) the wrong size for R(r) or M(m), 

(e) the wrong arithmetic sign, 

(f) anything else that would get a value different from 

the intended one. 

Intuitively, (a) represents a misunderstanding of the 

specifications which leads to using a register instead of 

memory (say mod==3 vs. mod==0,1,2); (b) is the case of a 

typo that picks the wrong register number (like swapping 

r/m for reg); (c) is the case where, say, fetching the wrong 
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immediate value produces the wrong effective address (d) 

is a mis-declaration of a “UINT16 v0” instead of “UINT32 

v0” that somehow escapes the compiler; (e) is a typo INT 

versus UINT, or the following cut-and-paste error that lead 

to the wrong sign-extension: 

 

        UINT32 v = REG_EAX; 

        if (v & 0x8000)  

   REG_EDX = 0xffffffff; else REG_EDX = 0; 

 

(f) is a catch-all category for any other coding mistake in 1 

and 3.  

The Computing part of an instruction is anything that does 

not directly affect the Emulation State.  

The pseudo-code in Figure 8 shows the brute force testing 

strategy, exemplified here for testing the IMUL instruction. 

In the algorithm, first we construct the instruction and 

possible encoding formats. This is illustrated in the line 

1,2,3 of Figure 8. Furthermore, we construct different 

values of all the operands (lines 6 and 7). 

 

 1 forall SRC1 do 

 2   forall SRC2 do 

 3     forall DEST do 

 4       forall V32_A do 

 5         forall V32_B do 

 6           SRC1=V32_A 

 7           SRC2=V32_B 

 8           test IMUL DEST,SRC1,SRC2 

Figure 8: Brute force testing strategy. 

In the routing strategy, we split the testing of encoding for 

the instruction and the computation for the instruction. As 

shown in figure 9, we use fixed values for the operands 

when we test the encoding of the instruction. In this case 

“3”is a fixed number for both operands. 

 

1  forall SRC1 do 

2    forall SRC2 do 

3      forall DEST do 

4        SRC1=3 

5        SRC2=3 

6        test IMUL DEST,SRC1,SRC2 

Figure 9: Encoding tests in the routing strategy. 

To test the computation stage of an instruction we use the 

pseudo-code shown in Figure 10. Here we use different 

values but a fixed encoding -- “eax,ebx,ec” are the fixed 

registers for all tests. 

1  forall V32_A do 

 2    forall V32_B do 

 3      eax=V32_A 

 4      ebx=V32_B 

 5      test IMUL ecx,eax,ebx 

Figure 10: Computation tests in the routing strategy. 

The reduction in test case numbers stems from the 

elimination of the inner loop in Figure 8. Now we run the 

code in Figure 9 followed by the code in Figure 10. Rather 

than generating a number of test cases equal to the product 

MxN, we only generate the sum N+M. 

 

5 EVALUATION AND DISCUSSION 
We have applied the common code template technique in 

the implementation of our x86 emulator, and applied the 

hardware-oracle based testing strategy during debugging 

and testing. In this section, we evaluate our technique by 

showing some results and report some key observations. 

Currently 16-bit mode is only tested using prefix overrides 

and privileged instructions are not tested. Our algorithm 

supports 8bit, 16bit and 32 bit instructions, and currently 

does not support 64bit instructions. However, our algorithm 

could be easily extended to 64bit. There are more than 

1,000 instructions in the x86 instruction set. We only 

implemented the Intel 486 instructions. Currently the MMX, 

floating point and 64 bit instruction are not implemented. 

Table 3. Some simple examples of discrepancies 

between published specs and the actual CPU behavior 

Instruction 
 Published 

Spec 

Actual 

behaviors 

AAA 

OF,SF,ZF 

and PF flags 

are undefined 

OF,SF,ZF,PF 

are affected 

AAD 

OF,AF and 

CF are 

undefined 

OF,AF and CF 

are affected 

AAM 

OF,AF and 

CF are 

undefined 

OF,AF and CF 

are affected 

AAS 

OF,SF,ZF 

and PF are 

undefined 

OF,SF,ZF,PF 

are affected 

DAA 
OF is 

undefined 
OF is affected 

AAS 
OF is 

undefined 
OF is affected 

AND 
AF is 

undefined 
AF is affected 

TEST 
AF is 

undefined 
AF is affected 

OR 
AF is 

undefined 
AF is affected 

XOR 
AF is 

undefined 
AF is affected 
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It is impossible to quantify precisely the effectiveness of 

the testing strategy without using a prohibitive, double-

blind development process. Using the automated tester we 

have found at least one, and quite often more than one error 

in the implementation of every single one of our emulated 

instructions. Indeed, the debugging efficacy is so high that 

the automated tester is now used concurrently with the 

development process, not as a separate phase. We quickly 

abandoned our initial testing strategy of booting a BIOS or 

a 32-bit OS because too ineffective. Indeed, Windows CE 

was running on the simulator when we were only about 

40% code complete, and with many errors that were found 

later. 

 

5.1 When the Specs Are Wrong 
Through the course of the design and testing of the CPU 

emulator we observed gaps both in design and testing. By 

design gap we mean that there is a difference between what 

the Intel materials say the processor should do, and what 

the hardware-oracle actually does. By test gap we mean 

that there are some incomplete specifications that do affect 

the processor behavior and are visible to software.  

The test generation tool combined with the hardware-oracle 

helped us identify many discrepancies between the CPU 

manuals and the physical devices. They would be otherwise 

very difficult to detect by traditional techniques. For 

instance, when the document says a flag register is 

undefined, it is natural to assume that the flag register is not 

affected, but the assumption does not always hold. In 

several experiments the adjust flag (AF) was actually set in 

the CPU while it is stated as “undefined” in the manual for 

several instructions. Table 3 lists the first few instruction, 

in alphabetical order, where we found discrepancies. Notice 

that any known and detectable discrepancy between 

emulator and actual CPUs can be used to generate “red pill” 

tests by malware to avoid detection. We tested the 

instructions reported in Table 3 on the Bochs and QEMU 

emulators. Bochs emulates only some of the undocumented 

instructions correctly, and QEMU does not emulate any of 

them. 

We infer the correct behavior based on the execution 

results of the hardware-oracle. Oftentimes an “undefined” 

flag is simply set or cleared. However, sometime it is very 

difficult to guess the correct behavior of an instruction. For 

example, the computation of the parity flag in the AAA and 

AAS instructions is quite mysterious. Usually, the “parity” 

is computed on the low 8 bits of the result (the AL register), 

such that the total number of bits set is odd. The AAA 

instruction operates in this way too, except the parity is 

computed before bits 4-7 of the result are masked. The 

AAS instruction is even more strange, If the input is 

untouched AAS computes parity as usual. Otherwise, it 

uses a variation of the parity table as shown in Figure 11. In 

figure 11, an asterisk denotes that this is an opposite value 

to the usual parity value.  

 

Figure 11: Parity Matrix used by the AAS instruction. 

We also observed that the specifications we extracted from 

the Intel manuals and that we used for generating 

instruction were sometimes incorrect. We show some 

examples of specifications which we found have errors in 

Table 4. The three columns show the mnemonic of 

instruction, the published specification in the Intel Manuals, 

and the corrected specification. From Table 4, we observe 

that usually this happens in the representation of MODRM 

bytes. In other cases, an instruction encoding is over-

generalized and generates undefined instructions (e.g. 

instructions that generate the #UD trap). We use the correct 

version for generating test cases in our experiments. 

Table 4. Some simple examples of discrepancies 

between published specs and actual CPU encodings 

Instruction 

Mnemonics 
 Published Spec Actual Spec 

CMPXCHG8B 

0000 1111 : 

1100 0111 : 

mod reg r/m 

0000 1111 : 1100 

0111 : mod 111 r/m 

IMUL 
1111 011w : 

mod 101 reg 

1111 011w : mod 101 

r/m 

MUL 
1111 011w : 

mod 100 reg 

1111 011w : mod 100 

r/m 

CMOVcc 

0000 1111: 0100 

tttn : mod mem 

r/m 

0000 1111: 0100 tttn : 

mod reg r/m 

 

We also found a few repeated specifications. While 

this might not be a problem for a human reader, for a test 

generator that generates many billions of tests this is a total 

waste of time. For instance, for the instruction “MOV-

Move to/from Debug registers”, there are six repeated 

specifications, which could use just one specification. 

Similarly for the “MOV – Move to/from Segment Register” 

instructions. 
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Despite their comprehensive details, some instructions 

were left out entirely from the Intel manuals. For example, 

we found that opcode x82 is missing in the instruction set 

specification.  The surrounding opcodes x80, x81, and x83 

all realize the same group of arithmetic operations that 

include ADD, OR, CMP, etc. We inferred that x82 would 

operate similarly, and we estimated the functionality of the 

entire group of opcodes with the following general 

encoding specification:  

 

1”000 00sw : mod 000 r/m : immediate data.  

 

From this specification, the special case 0x82 means that “s” 

is 1 and “w” is 0. Since “w” is 0, we could further infer that 

operand size for this instruction is 8 bits. And since “s” is 1 

we could infer that the 8-bit immediate data will sign-

extend to fill the 16bit or 32bit destination. The hardware-

oracle confirmed our guesswork. 

 

 

Table 5. Code reduction due to Code Templates

 

template name instruction example 

code 

size  

(LOC) 

instruction  

refer  

number 

original 

code size 

(LOC) 

new 

code 

size 

(LOC) 

reduced 

code 

size 

(LOC) 

JustLikeOpcd0 ADD Eb,Gb 33 8 256 41 215 

JustLikeOpcd1 ADD Ev,Gv 63 8 496 71 425 

JustLikeOpcd2 ADD Gb,Eb 33 8 256 41 215 

JustLikeOpcd3 ADD Gv,Ev 63 8 496 71 425 

JustLikeOpcd4 ADD AL,Ib 10 8 72 18 54 

JustLikeOpcd5 ADD rAX,Iz 24 8 184 32 152 

JustLikeOpcd6 PUSH ES 43 6 252 49 203 

JustLikeOpcd64 INC eAX 21 16 320 37 283 

JustLikeOpcd112 JO rel8  15 16 224 31 193 

JustLikeOpcd128 ADD r/m8, uimm8 27 8 208 35 173 

JustLikeOpcd129 ADD r/m32, uimm32 61 8 480 69 411 

JustLikeOpcd130 ADD r/m8, imm8 27 8 208 35 173 

JustLikeOpcd131 ADD r/m32, imm8 61 8 480 69 411 

JustLikeOpcd192 ROL 129 9 1152 138 1014 

JustLikeOpcd196 LES Gz,Mp 40 5 195 45 150 

JustLikeOpcd2_64 CMOVO Gv,Ev 48 16 752 64 688 

JustLikeOpcd2_128 JO Jz 22 16 336 38 298 

JustLikeOpcd2_144 SETO Eb  29 16 448 45 403 

JustLikeOpcd2_163 BT Ev,Gv  64 4 252 68 184 

TOTAL 
 

813 184 7067 997 6070 

5.2 Effect of Code Templates 
To measure the effect of using code templates we report the 

reduction in code size in Table 5. The first column shows 

the template name. The second column shows an example 

of instructions which uses this template. The third column 

shows the code size of the template, in lines of code (LOC). 

The fourth column shows the number of instructions that 

reused the template. The fifth and sixth columns show the 

LOC needed for instruction emulation, without and with 

the template. The seventh column shows the LOC 

reduction. We currently have 19 code templates, used by 

195 instructions or about 80% of our currently supported 

instructions. The total code reduction is 6,070 lines of code. 

5.3 Comparing Testing Strategies 
We performed some experiments to compare our routing 

based testing strategy against the brute force strategy. To 

keep things within a reasonable time limit, we used our 

smart test value generators in both cases. We picked the 

first 81 test vectors in our specs and measured the time and 

number of test case generated. These test vectors include 

the most commonly used instructions such as ADC, ADD, 

AND, CMP, DEC, IMUL, INC, MOV, MUL, OR, PUSH, 

POP, SBB, SUB, XCHG, XOR. The test time for the brute 

force and routing test strategies are reported in Table 6. The 

routing test strategy is, on average, more than 400 times 

faster, reducing the overall testing time from over 3 hours 

down to 25 seconds. 
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Table 6. Test Strategy Comparison, Time 

Test  

vectors 

Test time (milliseconds) 
 

Speedup Brute force Routing  

81 11,231,456 25,797 435 

 

Some test cases generate exceptions, either in the oracle, in 

the emulator, or both. Handling an exception is very 

expensive time-wise, therefore it is important to evaluate 

the number of test cases as well, since they do not all cost 

the same. As shown in Table 7, the routing test strategy 

only generates about 0.25% of the test case generated by 

the brute force approach. 

Table 7. Test Strategy Comparison, Test Counts 

Test  

vectors 

Test cases 

Reduction 
Brute force Routing 

81 1.966E+09 4.918E+06 99.75% 

The test strategies do not make too much of a difference 

when measuring the throughput, e.g. the number of tests 

generated and executed (by both oracle and emulator) per 

unit time. Routing generates and completes about 190 tests 

per millisecond, while brute force generates and completes 

about 175 tests per millisecond, with a difference of just 

7.8%. We conclude that the speedup obtained from the 

routing strategy derives overwhelmingly from the reduced 

number of test cases. 

The detailed data for the test time comparison is shown in 

Figure 12. The speedup of the routing strategy versus brute 

force is shown in Figure 13. There are some low points 

both in Figure 12 and in Figure 13. This is because much 

fewer test cases are generated when one operand is fixed 

such as the AX register. Figure 14 and Figure 15 show the 

detailed data for the test counts. Brute force generates far 

more test cases, because its complexity is O(MxN) while 

routing has complexity O(M+N). We also see some 

common trends within a test vector family (same 

instruction mnemonics). The test case count will increase 

when the operands are a fixed operand, a register operand 

or the operands include MODRM bytes. 

Table 8 summarizes the results from testing, at the time of 

this writing1. The first columns reports the total number of 

test vectors generated from the specifications. A number of 

these test vectors cannot run on the user mode oracle; the 

second and third columns report the counts of runnable and 

not runnable test vectors, respectively. Vectors are not run 

because they are duplicated, or they only really work in 

                                                           
1 The emulator is in active development, these results are 

only preliminary and change constantly. 

privileged mode, or the oracle machine does not support the 

instruction (like MOVBE), or we have not recreated 

enough state on the target machine (like the full global 

descriptor table), or they are too disruptive to the processor 

state and generate non-recoverable exceptions (like loading 

an invalid selector in the DS segment), or we simply have 

not yet added the code to create a controllable execution 

(like an arbitrary far CALL, for instance).  The fifth column 

reports the total number of test cases generated and run to 

completion. The sixth column reports the count of tests that 

generate exceptions, which we catch and then verify that 

they are the same on both oracle and emulator. The seventh 

and eight columns report the count of tests passing and 

failing, respectively. There are a number of reasons for 

these failures, some we can improve upon in the future and 

others are more fundamental. The bit string instructions use 

a pointer and a full 32-bit offset, in the boundary cases they 

reach all over the oracle‟s process address space. POPFD 

can set the trap bit, which takes effect immediately in the 

next instruction. On the oracle, the OS clears the flag but 

on the emulator we only execute one instruction and we see 

the flag still set. The RDTSC instruction will never return 

the same counter value on two separate machines. 

RELATED WORK 
The virtualizability of 250 instructions of the Intel Pentium 

architecture was analyzed by Robin and Irvine [26]. 

Bochs[8] is a full system emulator using interpretation 

techniques. Similar to Bochs, our emulator also uses 

interpretation techniques; however, our simulator focuses 

on the real-time simulation. Dynamic binary translation was 

used in QEMU for CPU emulator [13]. Ptlsim is another 

full system emulator [28]. Demand emulation was used to 

track tainted data [31]. Time warped time was used for 

network emulation [32]. Operating System level 

virtualization trade both isolation and efficiency [29][30]. 

Xen [44] developed the hypervisor based virtual machine 

based on hardware extensions. 

Virtual machine emulators have become pervasively 

utilized tools in computer security for malware analysis. 

Many researchers built tools based on whole system 

emulators. The analyzed applications can be isolated in the 

emulated environment for observations. For example, 

Bochs [14] was used to analyze packed malware [35] and 

data lifetime [38]. Many researchers also developed 

platforms [36][37][39][40][41][42] for analyzing binaries 

based on the full system emulator QEMU. Some 

researchers also developed malware analysis platform [45] 

[46] based on the Xen hypervisor [44] . 

Malware authors have developed techniques to find the 

difference between emulated environment and the real 

hardware environment. Then malware will behave 

differently in the emulation environment. Rutkowska 

proposes to use just one instruction to detect a virtual 

machine[22]. Ormandy [19] presents server implementation 
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defects in emulators. Quist et al. [20] propose to use local 

data table to detect a virtual machine. Raffetseder et al. 

proposed several attacks to detect emulators [21]. Also test 

oracle was used to generate red-pill for detection of CPU 

emulator [43] . The closest related work about emulator 

testing is [17]. This paper proposes an automatic technique 

to generate random instructions and uses real machine as 

test oracle to find a large class of differences. Our method 

share the same principal approach, but using a  routing 

based test generation, however, our methods systematically 

generate the instructions according to the test vectors and 

guarantee test coverage. Emulation technique is used to 

repair the state difference between emulator and reference 

system[47]. Routing test was used in hardware testing to 

validate hardware architecture [27]. We use the idea of 

routing test to quickly generate test cases and reduce the 

complexity. 

7. Conclusions  
In this paper, we show that the hardware-oracle based 

testing-debugging architecture is highly effective in 

supporting the development of CPU emulators. The 

hardware-oracle is lightweight and precise. It can run either 

as a separate program, or directly embedded into the 

emulator. We developed an automatic tester that extracts 

the CPU specifications directly from the published CPU 

datasheets, and automatically generates test cases with 

complete test coverage. The number of required tests is 

reduced by many orders of magnitude by the separation of 

operand routing from computation. With the same test 

coverage, our routing based test generation strategy is more 

than 400 times faster than a brute force approach, reducing 

the test time for a sample of test vectors from more than 3 

hours to less than 25 seconds. Experimental results show 

that our design significantly reduces the development time 

over the post-implementation testing methodology.  The 

hardware-oracle detects and documents several 

undocumented CPU behaviors which would be very hard to 

detect by conventional testing methods. The proposed 

design and testing process is versatile, and can be applied 

to any CPU emulator. 

We used a number of code patterns realized as macros in 

the implementation. These patterns are useful to save code, 

to fix many bugs with fewer code changes, and to better 

understand and document the architecture. By reusing the 

common patterns, the CPU emulator could conceivably be 

translated into Verilog and implemented on an FPGA. 
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Figure 12: Completion time for selected Test Vectors 
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Figure 13: Speedup in test time completion 

 

Figure 14: Counts of generated tests of brute force test 

 

Figure 14: Counts of generated tests of routing test 
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Table 8 Test execution results 

Vectors Runnable Not Run. %Run Tests Traps Pass Fail %Fail 

328 269 59 82.01 24,669,044,880 97,832,937 24,649,159,730 19,885,150 0.0806 

 


