

Intelligent Camera Control
for

Graphical Environments

by
Steven Mark Drucker

S.M. Massachusetts Institute of Technology (1989)
ScB. Brown University (1984)

Submitted to the Program in Media Arts and Sciences,
School of Architecture and Planning,

in partial fulfullment of the requirements for the degree of
Doctor of Philosophy

at the
Massachusetts Institute of Technology

June 1994

 Massachusetts Institute of Technology, 1994. All rights reserved.

Author

Steven M. Drucker

Program in Media Arts and Sciences
April 29, 1994

Certified by

David Zeltzer

Principle Research Scientist
Research Laboratory for Electronics

Accepted by

__
Stephen A. Benton

Chairperson
Departmental Committee on Graduate Students

Program in Media Arts and Sciences

This document was created with FrameMaker 4.0.4

Intelligent Camera Control
for

Graphical Environments

by

Steven Mark Drucker

Submitted to the Program in Media Arts and Sciences,

School of Architecture and Planning,

on April 29, 1994

in partial fulfullment of the requirements for the degree of

Doctor of Philosophy

at the

Massachusetts Institute of Technology

Abstract

:

Too often in the field of computer graphics, practitioners have been more concerned with

the question of

how

 to move a camera rather than

why

 to move it. This thesis addresses the

core question of

why

 the camera is being placed and moved and uses answers to that ques-

tion to provide a more convenient, more intelligent method for controlling virtual cameras

in computer graphics. After discussing the general sorts of activities to be performed in

graphical environments, this thesis then contains a derivation of some camera primitives

that are required, and examines how they can be incorporated into different interfaces. A

single, consistent, underlying framework for camera control across many different

domains has been posited and formulated in terms of constrained optimization. Examples

from different application domains demonstrate a variety of interface styles that have all

been implemented on top of the underlying framework. Evaluations for each application

are also given.

Thesis Supervisor: Dr. David Zeltzer, Principle Research Scientist at the Research Laboratory in Electronics.

This work was supported in part by ARPA/Rome Laboratories, NHK (Japan Broadcasting Co.), the Office of Naval

Research, and equipment gifts from Apple Computer, Hewlett-Packard, and Silicon Graphics.

This document was created with FrameMaker 4.0.4

Thesis Committee

Chairperson__
David Zeltzer, Ph.D.

Principle Research Scientist
Research Laboratory for Electronics

Member___
Glorianna Davenport

Associate Professor of Media Technology
Program in Media Arts and Sciences

Member___
Pattie Maes, Ph.D

Assistant Professor of Media Technology
Program in Media Arts and Sciences

Member___
Alex Pentland, Ph.D

Associate Professor of Computers, Communication, and Design Technology
Program in Media Arts and Sciences

April, 1994

This document was created with FrameMaker 4.0.4

Acknowledgements 4

Intelligent Camera Control Steven M. Drucker

Acknowledgements

This work would not have been possible without the support and encouragement of a great

many people. I wish to thank all those who have influenced me both during and before my

graduate career. Some in particular deserve special mention.

First, my parents have been a source of strength for me in every shape and form. They

have always had a belief in my ability to succeed, even when I have had my own doubts.

Without their kindness, devotion, and unwaivering support, I never would have even been

able to start this long voyage to a PhD, much less have completed it.

My brother David and I have always shared a special bond as far back as I can remember.

Watching Star Trek and The Outer Limits together started my interest in those areas which

led me to MIT in the first place. My sister-in-law Pam has helped me through these long

years as a graduate student always with sound advice. A special thanks to my Godmother

Aunt Lee who is always wondering what kind of PhD degree am I getting anyway. My

longtime friend Danny Shevitz has grown with me. Years ago we built the game of Life

together one snow day, and we still manage to share our lives with each other even from

opposite sides of the country.

During my time at MIT, I have learned most from my fellow students both at the Media

Lab and at the AI Lab. Sundar Narasimhan has an amazing breadth of knowledge and he

has helped me on every topic imaginable. Without Eric Aboaf, my master’s thesis would

have never been possible. David Sturman took me under his wing and introduced me to

the graphics community. Steve Pieper and David Chen showed me what it means to create

a computer graphical system. With Mike McKenna, the whole ‘playpen’ crew has taught

me more about how things are really done than any class could ever teach. Paul Dworkin

has always been ready and willing to offer helpful advice and assistance, and Michael

Johnson has always been there with good suggestions. Margaret Minsky has been a con-

stant source of ideas and enthusiasm as has Steve Strassman. Peter Schröder shared with

Acknowledgements 5

Intelligent Camera Control Steven M. Drucker

me the joys of rendering and of a fine bottle of wine. I especially want to thank my friend

and co-director Tinsley Galyean, for his energy, enthusiasm, and drive. Without him, my

time at MIT would have been a much less fruitful experience. I also wish to recognize just

some of my friends and fellow students who have helped me throughout my studies: Karl

Sims, John Durand, Mark Itzler, Bern Haan, David Laidlaw and Barb Meier, Azita Ghahr-

amani, Stephanie Houde, Tim & Karen Catlin, Pattie Cohen, Irfan Essa, Mark Lucente,

Brian Eberman, Stan Sclaroff, John Underkoffler, Wendy Plesniak, Scott Higgins, Janet

Cahn, Joe Chung, Joe Rosen, Dave Small, and Bruce Blumberg. And in particular, fellow

stooges Mike Drumheller and Matt Fitzgibbon have shared many an entertaining evening

and have always been there when I needed them, both for advice, and ideas.

The administrative staff have helped minimize the unending paperwork that is the life of a

graduate student. Linda Peterson has always been the person to go to whenever there is a

problem and she’s always been able to fix it. Thanks for being there. I also want to thank

Lena Davis for bailing me out on many an emergency Federal Express Package and travel

report. I am obliged to thank my sponsors at the Media Lab, DARPA and NHK for provid-

ing me with an opportunity to do my graduate research.

My teachers and advisors have also been great sources of guidance. I wish to thank my

advisor and committee members for their effort and time in their hectic schedules. I don’t

think I have seen anyone work harder than an MIT Professor! David Zeltzer has always

protected me from the monetary worries of funding and I thank him for guiding me

through the difficult process of a Ph.D. thesis. Glorianna Davenport has helped me achieve

the combination of technique and aesthetics that I wanted to have in my thesis. Pattie Maes

has been a source of several inspirations throughout this thesis work. And Sandy Pentland

has always helped make sure that my technical details were grounded in reality. I also

want to thank my previous advisors and professors who helped lead me to where I am

now. Tomas Lozano-Pérez introduced me to the field of robotics and has always been

available to offer advice when I’ve needed it. Andy van Dam has been more than advisor. I

consider myself lucky to count him as a friend. John Hughes has also been a source of a

wealth of knowledge in the field of computer graphics. John Hollerbach, Chris Atkeson,

and Marc Raibert helped show me what it means to be an engineer, and Whitman Richards

Acknowledgements 6

Intelligent Camera Control Steven M. Drucker

showed me how to turn an Incomplete into a book chapter.

I wish to thank my domain experts Michael Sand, Eric Eisendratt, Glorianna Davenport,

and Tom Sheridan, who have provided inciteful commentary on the examples that I have

demonstrated.

Finally I want to thank Lourdes for her love and devotion through this all. She has put up

with my long hours and has always been there to help me. I just want to say to her, “Eu te

Amo”.

Table Of Contents 7

Intelligent Camera Control Steven M. Drucker

Table Of Contents

Acknowledgements ...4

Table Of Contents ...7

List of Figures ...11

List of Tables ...13

Chapter 1. Introduction ...14

1.1 Reader’s Guide ..16

Chapter 2. Intelligent Camera Control ..18

2.1 General Problem ..18

Virtual Environments ..24

User interface design ...24

Software agents ...25

2.2 Overview of the solution proposed ...27

Framework ..27

Generality ..27

Efficiency ..28

Robustness ...28

Chapter 3. Background and related work ...29

3.1 Computer Graphics ...29

Interpolation ..29

Physical Simulation ...30

Optimization ..30

Virtual Environments & Scientific Visualization32

Automatic Camera Control ...34

3.2 Robotics ...36

Pathplanning ..36

Sensor Positioning ...37

3.3 Teleoperation ...38

3.4 Human factors & Human Computer Interaction39

3.5 Human Perceptual Capabilities ...39

3.6 Cinematography ..41

Table Of Contents 8

Intelligent Camera Control Steven M. Drucker

Chapter 4. Taxonomy of Interactive Domains ...42

4.1 The Problem Domain ..42

4.2 Terminology ..43

4.3 Taxonomy ..43

Exploration ..44

Planning ...47

Rehearsal ...49

Control ...50

Development cycle ..51

4.4 Interaction ..53

Summary ...54

4.5 Tasks demonstrated in this thesis ..56

Virtual Museum ...56

Mission Planner ...56

Conversation ..56

Virtual Football Game ...56

Visibility assistant ...57

Chapter 5. Camera Primitives ..58

5.1 Procedural Representation ...58

Reusability of camera behaviors ...59

Problems with the procedural representation59

5.2 Deriving Primitives as Constraints ..60

5.3 Cinematic Constraints ...62

5.4 Task completion constraints ..71

Object Visibility ..71

Object manipulability ..71

5.5 Object appearance ...71

5.6 Physical Limitations ..72

5.7 Human Factors ..72

5.8 The Viewing Transformation ..73

Derivation of the standard Viewing Transformation73

Blinn’s Formulation: Where am I? What am I Looking At? [Blinn88] 78

5.9 Object and Camera State Functions ..79

5.10 Constrained Optimization Techniques ...81

Sequential Quadratic Programming ..82

Table Of Contents 9

Intelligent Camera Control Steven M. Drucker

Local Minima ..86

5.11 Camera Constraints Formalized ...87

Direct constraints on DOFs in relation to the environment:87

Direct constraints on DOFs in relation to a single object:88

Projective constraints based on projection of an object:89

Constraints based on entire environment: ...92

Constraints on derivatives of DOFs: ...95

Changing constraints: ..96

Constraints based on another camera: ...97

5.12 Blinn’s formulations revisited ..98

Chapter 6. From Task to Interface ...100

6.1 Example: The Virtual Museum ...100

Implementation ..103

Results ...108

6.2 Example: The Mission Planner ...110

Implementation ..112

Results ...113

6.3 Example: Filming a conversation ..114

Implementation ..115

Extensions to agents: ...122

Results ...123

6.4 Example: the Virtual Football Game ..123

Implementation ..125

Results ...129

6.5 Example: Visibility Assistant ..130

Implementation ..130

Results ...133

Chapter 7. Evaluations of Camera Control Interfaces ...134

7.1 Framework sufficiently representative: ...134

7.2 Types of assistance: ...135

Types of assistance in the Virtual Museum135

Types of assistance in the Mission Planner System138

Types of assistance for Conversation Agent139

Types of assistance for Virtual Football Game140

Types of assistance for Visibility Assistant142

Table Of Contents 10

Intelligent Camera Control Steven M. Drucker

7.3 Convenience of the framework ...143

7.4 How well do the camera primitives work? ..143

Local Minima ..143

Efficiency ..145

Stylistic Expressiveness ..145

Chapter 8. Conclusions and Future Work ...148

8.1 Conclusions ...148

8.2 Future Work ..149

8.3 Improving current work ..149

8.4 Extending the current work ...150

Appendix 1:Path Planning .. 151

A1.1 A* ...153

A1.2 Room to Room Planning ..154

A1.3 Travel within a Room ...157

A1.4 Tour Planning ..159

Appendix 2:Visibility Determination ... 161

Appendix 3:Graphical Environment Systems ... 164

A3.1 TK ..164

A3.2 Communication libraries ...165

A3.3 Head mounted display/dataglove ...165

A3.4 Radiosity/Raytracing/Visibility ...166

A3.5 Video Objects ...167

A3.6 Object Oriented Tcl [incr tcl] ...169

A3.7 General Optimization ...169

A3.8 Spline fitting and evaluation ...169

A3.9 Quaternions ..171

Appendix 4:Feasible Sequential Quadratic Programming 172

A4.1 The CFSQP algorithm ...173

A4.2 Detailed description to 3d fsqp interface.174

A4.3 Hardcoded FSQP Camera Primitives177

A4.4 TCL-Code to implement over the shoulder constraint178

A4.5 C-Code to implement over the shoulder constraint185

References ...194

List of Figures 11

Intelligent Camera Control Steven M. Drucker

List of Figures

The camera agent ..15

The Virtual Camera with its 7 degrees of freedom. ..20

Surgical Simulation Process Cycle ...53

Pseudocode for vertigo shot ..59

Extreme close up ... 63

Big close up... 64

Close up... 64

Medium close up ... 65

Med. close3/4 .. 65

Medium shot.. 66

Mediumlong shot... 66

Long shot... 67

Very long shot ... 67

Extreme long ... 68

Two shot.. 68

Over shoulder .. 69

Over shoulder2 .. 69

World Space ..74

Eye Space ..75

Normalized Coordinates after perspective transformation..75

Path planning with intersection inequality constraints..94

Sum of “repulsive” and “attractive” constraints for path planning optimization..............94

Visibility regions are the complement of shadows cast from a light.95

The Virtual Museum System...104

Generic Camera Module ...105

Wiring diagram between interface widgets and modules. ..106

Schematic view of the “path” camera module ..108

Overhead view of museum..109

List of Figures 12

Intelligent Camera Control Steven M. Drucker

4 shots of the museum along a computed path..109

Overview of the mission planner ..112

Overhead view of mission planning system..113

Over-the-shoulder shot in mission planning system ...113

Visibility evasion from threat in mission planning system...114

Filming a conversation [Katz88]...116

Overview of camera agent...118

Agent generated over-the-shoulder shot. ..123

Overview of virtual football game ..126

Visual Programming Environment for camera modules...127

Overhead view of the football game ...128

Playback Controller...129

View from “game camera” of virtual football game...129

Visibility Assistant Overview ...130

Visibility Assistant ..133

Room connectivity graph for the museum with a path found by A*154

Navigation function calculated with a Manhattan metric ...155

3 distance metrics and resulting paths...156

An eventual path through 4 rooms of the museum. ..157

Calculating a path potential function. ...159

Visibility problem: oblique view and camera view. ...161

Visibility map construction ...162

Visibility potential map...162

Visible position for camera. ..163

Video Objects..168

Simple bounds control window for fsqp. ..178

List of Tables 13

Intelligent Camera Control Steven M. Drucker

List of Tables

Common Cinematic Terms ... 21

Interactive Domains .. 44

Frequency of Interaction ... 54

Style of Interaction .. 54

Standard Functions of an Object ... 80

Standard Functions of Camera State ... 81

Examples of Direct Constraints relating to the environment: ... 88

Examples of Direct Constraints Relating to an Object: .. 89

Examples of Projection Constraints: ... 91

Examples of constraints on derivatives of DOFs .. 96

Examples of changing constraints:.. 97

Examples of constraints based on other cameras: ... 98

Visual Tasks in an exploratory domain... 102

Tasks in the Mission Planner .. 110

Tasks in Filming a Conversation... 115

Tasks from Virtual Football Game.. 125

Introduction 14

Intelligent Camera Control Steven M. Drucker

CHAPTER 1. INTRODUCTION

Too often in the field of computer graphics, practitioners have been more concerned with

the question of how to move a camera rather than why to move it. There is a great deal of

research devoted to proper representations for interpolating camera motion conveniently

or in what sequence transformations should be performed in order to provide efficient cull-

ing of objects outside of the field of view of the camera. However, very few researchers

have looked at the basic reasons for which cameras are used in computer graphics. This

thesis addresses the core question of why the camera is being placed and moved and uses

answers to that question to provide a more convenient, more intelligent method for con-

trolling virtual cameras in computer graphics.

Once we know why to change the camera’s view of the world, we can then start addressing

how to change it. In this thesis, I examine similarities across many different activities that

can be described in terms of camera primitives. These primitives can be conveniently and

powerfully described as constraints that must be satisfied to achieve the designated tasks.

A single, consistent, underlying framework for camera control across many different

domains has been posited and formulated in terms of constrained optimization. After dis-

cussing the general sorts of activities to be performed in graphical environments, this the-

sis then contains a derivation of some of the primitives that are required, and examines

how they can be incorporated into different interfaces.

The primitives can be viewed as behaviors for software agents of varying levels of sophis-

tication. The agents might simply provide specific interfaces to a variety of camera primi-

tives, or the agents might combine primitives, sequence them, connect the primitives to

devices, or use the primitives as behaviors for autonomous action.

Introduction 15

Intelligent Camera Control Steven M. Drucker

Figure 1: The camera agent

Figure 1 is a representation for the motivating concept of this thesis. The intelligent cam-

era agent positions the camera by finding the bottom of a complicated, multidimensional

terrain. That terrain is constantly changing, new mountains erupting, or new valleys and

ridges appearing. The terrain changes in order to follow our intentions, because of move-

ments of objects in the world, or because of some internal rule base for the agent. It is the

goal of this thesis to look at how our intentions, and how knowledge about the world, and

other rules, can help shape that terrain, and show how from this basis, we end with a pow-

erful, flexible, underlying framework for interfaces into new worlds of camera control.

The skeptical reader may wonder why we need this intermediate step between our inten-

tions and movements of the camera. There are several reasons that will be justified in this

thesis:

• There is often no convenient way to find out where to place the camera to sat-

Introduction 16

Intelligent Camera Control Steven M. Drucker

isfy our intentions, but there is often a convenient mapping between our inten-

tions and a “constraint” terrain.

• That mapping can be described in formal, mathematical terms that can be used

to generalize knowledge across many different domains, rather than only in

the domain for which an intention was originally derived.

• The terrain represents a convenient way of combining several intentions at the

same time.

• The terrain responds to an ever changing world, making the camera, which

follows that terrain, respond automatically to changes in the environment.

• The agent’s own internal knowledge can change the terrain, providing a means

of combining the autonomous action of the agent with the changing environ-

ment, and our own changing intentions.

The new and original knowledge that is contributed by this thesis is a more thorough

understanding of how and why humans control their view within computer graphic envi-

ronments. A single, unifying structure for controlling the camera is proposed and a variety

of camera primitives (or behaviors) are examined in several different application domains.

The utility of the underlying framework is shown by the wide-reaching application

domains for which the framework is applicable.

1.1 Reader’s Guide

In Chapter 2, I describe the graphical environment and the virtual camera and then set

forth the basic problem and the solution scheme proposed.

In Chapter 3, I discuss related areas of research in computer graphics, constrained optimi-

zation, robotics, user interface design, and film theory.

In Chapter 4, I set forth a taxonomy to describe the different kinds of graphical environ-

ments and the visual requirements necessary to achieve goals in each domain.

In Chapter 5, camera primitives and constraints are derived and discussed formally.

Introduction 17

Intelligent Camera Control Steven M. Drucker

In Chapter 6, I look at the different ways that interfaces can be built using the proposed

framework in five different applications; a mission planning system, a virtual museum,

filming a conversation, a virtual football game, and a visibility assistant.

Chapter 7 contains an evaluation of the applications described in the previous chapter.

Chapter 8 presents conclusions and future work.

Appendix 1 presents the details of the path planning algorithm that was developed for the

virtual museum.

Appendix 2 presents the details of the visibility algorithm that was developed for the cam-

era framework.

Appendix 3 discusses the graphical prototyping environment in which all the examples

have been implemented.

Appendix 4 discusses the optimization software that was used for solving the constrained

optimization problem at the core of the camera primitives. It also gives code examples of

how to combine a number of camera primitives.

Intelligent Camera Control 18

Intelligent Camera Control Steven M. Drucker

CHAPTER 2. INTELLIGENT CAMERA CONTROL

2.1 General Problem

Current interest in so-called immersive interfaces and large-scale virtual worlds serves to

highlight the difficulties of orientation and navigation in synthetic environments, including

abstract “data-spaces” and “hypermedia” as well as more familiar modeled exterior and

interior spaces. As Ware and Osborne [Ware90] point out, this is equivalent to manipulat-

ing a viewpoint – a synthetic camera – in and through the environment, and a number of

recent articles have discussed the camera control problem in detail.

Nearly all of this work, however, has focused on techniques for directly manipulating the

camera. In my view, this is the source of much of the difficulty. Direct control of several

degrees of freedom of the camera is often problematic and forces the human participant to

attend to the interfaces and its “control knobs” in addition to – or instead of – the goals and

constraints of the task at hand. If the intention of the user of the system is, for example, to

observe some object X, then allowing him or her to simply tell the system, “Show me

object X” is a more direct and productive interface. This thesis will explore ways in which

we can generalize instances of this form of “task level interaction” for synthetic cameras

across a wide variety of tasks.

Before the statement of the general problem, it is first necessary to define two essential

terms: Computer Mediated Graphical Environment (or just graphical environment), and

the synthetic or virtual camera. By graphical environment, I mean any interactive, graphi-

cally rendered computer display which is intimately associated with a geometric model.

Graphical environments are usually a spatial representation of an information space or a

Intelligent Camera Control 19

Intelligent Camera Control Steven M. Drucker

representation of an actual environment. Types of graphical environments, and the visual

tasks that are associated with them will be discussed in chapter 4.

By virtual camera, I mean the method of specifying the parameters which control the view

within the graphical environment. Virtual cameras are, by definition, a crucial part of any

graphical environment because the camera’s view is a primary means by which informa-

tion about the graphical environment is transferred to the user. Other interface modalities,

such as aural and haptic exist, but by and large, most of the information currently comes

through the visual system and this thesis is devoted to examining only the visual modality.

Without being able to control the virtual camera, the user is left with a single view of only

a small portion of a potentially infinite environment. It is important that the user be able to

affect what s/he is seeing either by changing parameters that control what is occurring in

the graphical envrironment directly, or by changing the view through manipulating param-

eters of the virtual camera within the graphical environment.

In general, I will consider seven degrees of freedom that must be controlled: three for the

cartesian position of the virtual camera in space, three for the orientation of the camera,

and a final one for controlling the field of view for the camera (see figure 2). There are sev-

eral other parameters of a camera that can be controlled but will not be considered in this

thesis. Some of those are: the aspect ratio of the resultant frame, the depth of field for the

camera, the “shutter speed”, and lighting of the environment. These additional parameters

are not considered because most computer graphic systems model an idealized “pin-hole”

camera where there can be infinite depth of field (everything is in view at once), infinitesi-

mal shutter speed (no motion blur), and direct control over the lighting within a GE. Con-

trolling these other parameters can often greatly enhance the look of the resulting image,

but these tend to be extremely subjective and stylistic changes [Potmesil81]. For the pur-

poses of this thesis, the idealized model for the virtual camera is used.

Intelligent Camera Control 20

Intelligent Camera Control Steven M. Drucker

Figure 2: The Virtual Camera with its 7 degrees of freedom.

It is important to examine some distinction between a virtual camera in a graphical envi-

ronment and a real camera in a real environment. Real environments offer many con-

straints and affordances which are not available in graphical environments. For instance,

in a real environment, the camera can not move through physical objects. There is no such

distinction for virtual cameras, however movement through objects can often be extremely

confusing to viewers. Also, different mountings can be used for the real camera that help

Intelligent Camera Control 21

Intelligent Camera Control Steven M. Drucker

control the way the camera can move. For instance, a fluid head may be used, which pro-

duces viscous damping which resists sudden changes of position for the camera head

(rotation and tilt). Also, it is inconvenient to rotate the camera about its direction of gaze

(roll) which is rarely done in filming real scenes. There are, however, some inherent

advantages that virtual cameras have over real cameras. Because there are no built in con-

straints on the virtual camera’s degrees of freedom, the virtual camera can move to any

place within the graphical environment, even if that would be physically unfeasible for a

real camera. This might mean flying along with a ball as it is thrown in midair, or moving

through a window without any means of support. Also, when controlling virtual cameras,

one does not need to worry about velocity limitations or torque constraints of motors that

might be needed to control real cameras. In addition, in graphical environments, the

assumption is made that the position of objects in the environment can be easly recovered,

something which is still in general an unsolved problem for real environments.

Table 1 represents the basic camera movements in more familiar cinematic terms to give

some notion of the effects of changing various camera parameters.

Table 1: Common Cinematic Terms

Cinematic Term Definition

pan Rotation of the camera about the vertical axis.

tilt Rotation of the camera about the lateral axis (axis
formed by the cross product of the view normal and
the view up)

roll Rotation of the camera about the view normal

dolly Translation of the viewpoint along the lateral axis.

truck Translation of the viewpoint along the view normal.

crane Translation of the viewpoint along the up vector.

zoom Changing field of view of the camera.

Intelligent Camera Control 22

Intelligent Camera Control Steven M. Drucker

Even though control of the view within graphical environments is crucial, to date only the

crudest methods for specifying the view have been included in most graphic systems. One

common method is to directly control the degrees of freedom of the camera through the

use of dials or sliders. This at least lets the user change the view but is rarely convenient

for achieving any tasks that needs to be performed in a graphical environment. It is espe-

cially difficult to produce any sort of satisfactory presentations because of the difficulty in

specifying a desired motion accurately and continuously.

Another method, perhaps the most common, is to somehow specify the position and orien-

tation of the camera at certain

key

 points in time. Motion between those key points is then

described by using an interpolating curve [Barsky83, Gomez84, Kochanek84,

Shoemake85, Stern83]. A variety of different interpolating curves have been used to pro-

duce different motions. Linear interpolation, with sharp first order discontinuities at the

key points tends to look unrealistic. Cubic spline interpolating functions permit the camera

to ease in and ease out of a motion. This kind of motion looks slightly better than linearly

interpolated motion, but is still too regular and contributes to the synthetic, unnatural look

often attributed to computer graphics. However when the key points are interpolated, there

still exists the problem of how the key points are specified in the first place. These methods

are sufficient for only the simplest of camera specifications and movements.

Other methods for moving the camera can include scripting or programming the camera,

for example, to maintain a certain distance from an object as it moves through a scene, or

to move along a complicated path while maintaining the center of interest at a certain

object. These methods can be powerful, but often require programming knowledge and

specific effort for any particular situation [Reynolds88, Drucker92].

Physically based methods try to generate motions for objects based on certain physical

parameters such as mass, inertia, and minimum control effort, and these methods can also

be applied to the camera [Armstrong86, Badler86, Brotman88, Bruderlin89, Girard87,

Isaacs87, Isaacs88, McKenna90, Raibert84, Sturman89, Schröder90, Wilhems87,

Witkin90]. Closely related to these methods are forward simulation systems which model

the effects of a user applied control force and frictional forces to derive the motion of the

Intelligent Camera Control 23

Intelligent Camera Control Steven M. Drucker

camera [Turner91]. This can achieve extremely realistic looking results in terms of what a

real physical camera might do but can be extremely difficult to control to obtain a desired

behavior.

This thesis addresses the creation of a single, common, framework in which to talk about

forms of virtual camera specification within graphical environments based on the task

level concerns of the user. Although I concentrate completely on purely computer medi-

ated environments, the general framework can be applicable to the control of real cameras,

either in motion control systems or for teleoperation systems.

There are a variety of basic reasons for camera movement and placement that will be elab-

orated in this thesis. One reason is for

exploration

; we might wish to discover what’s in a

space, or find out what objects might be nearby. Another reason might be to

perform

 some

activity in the space. A camera might show us what it looks like to do that action from

multiple points of view, or the camera can be situated in a way in order to best perform the

activity, or the camera might be able to provide useful, adjunct information. If we’re not

sure exactly what we want to do, another reason to move the camera might be to help

plan

our activity. Planning might involve specifying motion of the camera to present the envi-

ronment to a non-interacting observer or it might involve changing the environment itself.

Planning might necessitate more and different kinds of views of the environment. Finally,

before actually performing the activity, it might be necessary to

rehearse

 that activity,

again observing from different points of view in order to better familiarize ourselves with

the process.

The constraint framework that I envision can be embodied as the controlling behavior for a

software agent

 which is aware of the environment and the user’s intentions, and has inter-

nal knowledge applicable for controlling a camera. The agent makes decisions based on a

multidimensional terrain, where the goal of the agent at any time is to find the lowest point

of the terrain. If there are several low points on the terrain, techniques are suggested to

bring the system to the lowest point. Barriers exist in this terrain where the camera should

not go. “Mountains” are places where the camera may go, but it is “preferable” to be else-

where. This terrain is constantly evolving over time. The environment changes, thus

Intelligent Camera Control 24

Intelligent Camera Control Steven M. Drucker

changing the underlying terrain. Our goals change from time to time, which also changes

the terrain. The agent may have its own goals which also change the terrain. It is the object

of this thesis to discover how changes in our intentions, changes in the environment, and

external knowledge can be unified into a single underlying framework. In chapter 5 we

talk about a formal mathematical description of camera primitives which can be combined

to form the constraint terrain that determines the agent’s behavior.

The new and original knowledge that is contributed by this thesis is a more thorough

understanding of how humans can control their view

in

computer graphic environments. A

taxonomy of several different application domains is proposed and analyzed to extract

visual tasks to be performed in each domain. Camera primitives are described which can

assist in the performance of those tasks and a framework which allows for the combining

and reusing the camera primitives is presented. The framework is validated through exam-

ining a variety of example application domains.

This problem is of interest to an increasingly large audience since it touches on issues of

research in computer graphics, virtual environments, human machine interfaces, and soft-

ware agents.

2.1.1 Virtual Environments

As described above, graphical environments are essentially a superset of virtual environ-

ments. Virtual environments commonly refer to a graphical environment in which a user is

immersed in the environment, typically by tieing the control of the virtual camera to the

motions of the operator’s head and body through the use of a head mounted display. Navi-

gation through a virtual environment (or in another words, controlling the motion and

placement of the virtual camera) is still a very open issue [Brooks88]. Users often become

lost in virtual environments and may become disoriented or even ill if an interface is not

satisfactory. If virtual environments are to be used to represent or manipulate information,

there must be good ways in which to explore the information space, locate specific infor-

mation, present that information to others, and perform tasks within the environment.

2.1.2 User interface design

Intelligent Camera Control 25

Intelligent Camera Control Steven M. Drucker

User interface design has received a great deal of attention in the research community,

since it is clear that when interacting with a complicated system, a well-designed interface

can greatly affect the ease of use and the effectiveness of the system. In addition to design-

ing an appropriate interface for navigating and exploring a graphical environment, it is

often important to be able to present the information to a non-interactive observer. Inter-

faces, therefore, must be designed with this purpose in mind. This has typically been the

domain of special purpose computer animation systems, with notoriously difficult-to-use

interfaces. The methodology for doing interface design has heavily influenced the structur-

ing of this thesis. By breaking domains down into tasks, and analyzing those tasks, I have

attempted to show that the results in this thesis are generally applicable across a wide

range of domains.

2.1.3 Software agents

A software agent is a method of building an interface which can assist the user in perform-

ing tasks. The software agent may learn by observing a user’s actions, or may encapsulate

knowledge on how to perform a task conveniently. The general area of virtual camera con-

trol is a fine example of how software agents might be used to assist the user in interacting

with a complicated task. The agent can either act autonomously or closely assist a user in

achieving the desired task (these tasks will be defined in chapter 4 of this document). The

actions that a camera agent is capable of are clearly defined in the framework for camera

control.

Don Norman describes several ways in which human reasoning and planning can run into

problems [Norman93].

1. Lack of completeness: In most real tasks, it simply isn’t possible to know
everything that is relevant.

2. Lack of precision: There is no way that we can have precise accurate infor-
mation about every single relevant variable.

3. Inability to keep up with change: What holds at one moment may not apply at
another. The real world is dynamic, and even if precise, complete information
were available at one point in time, by the time the action is required, things
will have changed.

4. A heavy memory load: To know all that is relevant in a complex situation

Intelligent Camera Control 26

Intelligent Camera Control Steven M. Drucker

requires large amounts of information. Even if you could imagine learning
everything, imagine the difficulty you’d have finding the relevant material
just when it is needed. Timely access to the information becomes the bottle-
neck.

5. A heavy cognitive/computational load. Even if all the relevant variables were
known with adequate precision, the computational burden required to take
them all properly into account would be onerous.

The intelligent camera framework that I am describing in this thesis can assist in all of

these areas.

1. Lack of completeness: in an exploratory domain, the system can maintain
information about the position of all the objects of interest, obstacles, and
accessways. It can give assistance in a variety of forms, from giving a guide
in the form of a highlighted path, to moving the user along a path, to immedi-
ately transporting the user to the proper place within the database. The
museum application described in section 6.1 shows an example of this style
of assistance.

2. Lack of precision: the system can place the user at the exact point that meets
the conditions specified by the user. The visibility assistant described in sec-
tion 6.5 demonstrates an example of this style of assistance.

3. The assistant is ideal for dynamic environments. If the user can express inten-
tions (often best as constraints), the system can maintain those constraints as
the environment changes. The mission planner (section 6.2) and the football
game (section 6.4) are both examples of camera assistance for dynamic envi-
ronments.

4. Heavy memory load: The assistant can encode not only information about the
environment, but rules for presenting the environment. The conversation
filming agent, described in section 6.3, shows one way of encoding those
rules.

5. Heavy cognitive/computational load: Not only can the assistant perform diffi-
cult computation tasks to achieve the intentions of the user, but it can auto-
mate repetitive tasks, thus freeing the user to perform other actions. This is
demonstrated in nearly all the examples for chapter 6.

Intelligent Camera Control 27

Intelligent Camera Control Steven M. Drucker

2.2 Overview of the solution proposed

The general strategy taken in this thesis will be the following:

• A taxonomy of interactive graphical domains is presented and a list of the req-

uisite visual tasks associated with them.

• Camera primitives are derived to assist the user in performing the visual tasks

described in the previous step.

• A framework which can combine the camera primitives is presented and dis-

cussed. It is important to note that this framework is intended to be general and

extensible.

• Interfaces are built on top of the framework for a set of representative

domains. This will provide an opportunity to explore some extremely different

kinds of user interfaces that can be developed on top of the underlying frame-

work and demonstrate the general utility of the framework.

• Evaluations of the resultant applications will be discussed to indicate the

effectiveness of the proposed camera framework.

2.2.1 Framework

The essential idea is that the intentions of a human user with respect to a given task can be

formulated in terms of mathematical constraints. By providing a framework of constraints

for camera specification I have created a domain independent language for building visual

interfaces. It needs to be shown that this “language” is general, efficient, and robust.

2.2.2 Generality

Generality will be shown by looking at the virtual domains in which a camera needs to be

applied. We need to show that the domains we investigate are a sufficiently representa-

tional subset of all possible domains. Obviously there is no way of enumerating all possi-

ble domains, but at least a sufficiently large set can be spanned. Within each domain, a

number of representational tasks that would naturally be performed within the domain are

described. For each of those tasks, it is shown how they can be conveniently expressed in

the form of the constraint language that I am suggesting.

Intelligent Camera Control 28

Intelligent Camera Control Steven M. Drucker

2.2.3 Efficiency

Efficiency issues must be explored from two sides: implementation/algorithmic concerns

and appropriateness concerns. To address the algorithmic issues, it needs to be shown that

the kinds of constraints are algorithmically sound. Problems and methods of dealing with

local minima must be explored, computational efficiency and scalability must be dis-

cussed, and trade offs between expressing constraints in different ways should be identi-

fied. The appropriateness issue is more closely related to whether choosing constraints in

general (and the specific constraints that are chosen) can adequately express the kinds of

tasks that need to be performed. The classic example here is the Etch-a-Sketch problem. In

the toy Etch-A-Sketch, the knobs let you move horizontally and vertically which are all

right for certain tasks, but completely inappropriate for trying to draw a diagonal line. In

this instance, a better solution might be one that controls the angle of a line and one that

actually draws the line. How can we show that the constraints that we have picked are

appropriate for expressing the tasks that we need to do? That question is answered by

looking at the wide range of interfaces that has been generated and showing the different

styles of interaction that can be supported.

2.2.4 Robustness

From an algorithmic standpoint, we need to examine when the system breaks or produces

results that are not satisfactory. How much special purpose coding needs to be done in

order to achieve more correct results. How easy is it to produce conflicting constraints and

what can be done when this happens? These issues are examined in chapter 7.

The five applications that are examined in this thesis are the following: a virtual museum,

a mission planning system, a conversation filming agent, a visibility assistant, and a virtual

football game. These tasks represent a wide sampling of different styles of interaction

which have different visual task requirements. They are described in detail in chapter 6.

Background and related work 29

Intelligent Camera Control Steven M. Drucker

CHAPTER 3. BACKGROUND AND RELATED WORK

This chapter will discuss relevant background from the areas of computer graphics, con-

straint based systems, optimal control, robotics, teleoperation, human factors, user inter-

face design, human perceptual capabilities, and cinematic style . Some general references

that have been extremely useful are as follows: [Foley82, Foley90] for a general introduc-

tion to computer graphics; [Carroll91, Laurel90, Baecker87] for some essays in human

computer interaction; [Ellis91] for studies of camera control in virual environments and

teleoperator; [Fletcher80, Gill81, Press88, Rogers76] for numerical algorithms and opti-

mization techniques; [Arijon76, Katz88] for film directing techniques.

3.1 Computer Graphics

Camera movements have long been studied in many different contexts within the field of

computer graphics; for animation; for exploration/manipulation, or for presentation. I will

briefly discuss work in each area, and touch upon how this work contrasts to the existing

body of literature.

3.1.1 Interpolation

Early work in animation is devoted to making the movement of the camera continuous and

developing the proper representation for camera movements along a path [Barr92,

Barsky83, Bartels87, Gomez84, Kochanek84, Shoemake85, Stern83]. These works are all

devoted to giving the animator greater control in creating smooth movements and finding

ways to interpolate between user specified keyframes. Although generating spline curves

for camera movement can produce smooth paths, it can be difficult to relate the move-

ments of the camera to objects in the environment, or even to find appropriate keyframes

Background and related work 30

Intelligent Camera Control Steven M. Drucker

in the first place. Also, such kinematic specifications for paths tend to produce movements

that are physically impossible and unsettling to a viewer. It has also produced an unmistak-

able style for computer animations that is not necessarily attractive. In cinematography, a

much higher emphasis is given to the composition of a single frame rather than moving the

camera through the environment. Both [Barr92, Shoemake85] discuss the benefits of rep-

resenting object orientation (including cameras) as quaternions. Quaternions have the

advantage of having the same local topology and geometry as the set of rotations (untrue

for euler angles). They are a compact representation (only 4 numbers), and only have one

constraint (unit-length). There is the problem of dual-representation in that any rotation is

represented by two quaternions, one on either side of the hypersphere.

Brotman and Netravali [Brotman88] introduced a method for using optimal control to

interpolate between keyframes in a dynamically realizable method while trying to mini-

mize control effort. Their work produced subjectively more appealing interpolations. The

previously mentioned discussion in [Barr92] extends interpolation of orientations into

including velocity constraints through basic optimization methods. They advocate the use

of packaged optimization routines because of their robust stopping conditions on an opti-

mal solution.

3.1.2 Physical Simulation

Physical simulation can produce far more natural looking movements than keyframe spec-

ification. It has been used in a variety of systems for animating the motion of characters

[Armstrong86, Badler86, Bruderlin89, Girard87, Isaacs87, Isaacs88, McKenna90,

Raibert84, Sturman89, Schröder90, Wilhems87,Witkin90]. It has even been used for the

simulation of camera motion by using forward simulation of a camera with mass, friction,

and viscosity [Turner91]. One problem with all dynamic simulation systems is that it is

difficult to get the system to behave in a desired manner.

3.1.3 Optimization

One solution to such a problem is to use optimization techniques. There is a large history

of constraint techniques for computer graphics starting with diagramming and 2D simula-

tion systems. Sutherland’s pioneering Sketchpad paper [Sutherland63] allowed users to

Background and related work 32

Intelligent Camera Control Steven M. Drucker

to make physically realizable systems with constraints [Witkin87, Terzopoulos87, Platt88,

Kalra90, Pentland90].

Kass [Kass91, Kass92] proposes a general system for graphically combining functions in a

dataflow paradigm and then using interval arithmetic or optimization methods to come up

with a solution to the problem. Kass’s system includes a number of well thought out fea-

tures for dealing with this type of problem including computing the derivatives symboli-

cally and then compiling the derivatives for efficient evaluation during the optimization

process.The advantages of his system are that the system is extremely general and can be

applied to a wide variety of problems in graphical systems. His system does not perform

any global optimization (since it is nearly impossible to do so on general problems). He

shows one example with his system which derives the camera parameters based on the

known position of 4 projected points. His system is not designed to specifically deal with

camera placement problems though certain modules can be built based on combining the

functions he provides. Some work in this thesis has origins in the same notions as Kass’s

work. Convenient specification of an optimization problem in terms of a graphical pro-

gramming environment is shown in the section about the virtual football game (see section

6.4).

The system proposed in this thesis relies on constrained optimization techniques to

achieve the specified goals for a static position or for limited dynamic movement of the

camera. The optimization conditions can be defined as energy constraints, or as strict

boundary constraints. In general, however, the camera is not treated as a physical object

and not dynamically simulated, since a more general optimizer is being used.

3.1.4 Virtual Environments & Scientific Visualization

With the advent of virtual environments and related 3D interactive worlds [Adam93,

Bishop92, Blanchard90, Blau92, Earnshaw91, Earnshaw93, Esposito93, Fisher86,

Greeenberg74, Zyda92], a great deal of effort has been spent on presenting convenient

methods through which users can change their view of an object or the world. Metaphors,

as discussed in [Ware90] provide the user with a model that enables the prediction of sys-

tem behavior given different kinds of input actions. A good metaphor is both appropriate

Background and related work 33

Intelligent Camera Control Steven M. Drucker

and easy to learn. Some examples of metaphors are the “eyeball in hand” metaphor, the

“scene in hand” or “dollhouse” metaphor, and flying vehicle control.

In the “eyeball in hand” metaphor, the user can use a six DOF device to position and orient

a camera by directly translating and rotating the input device. Ware found this method

somewhat awkward to use but easy for users to learn. The “scene in hand” metaphor lets

the user rotate and translate the scene based on the position of the input device. This was

found to be very convenient for hand sized objects, but nearly impossible to use for navi-

gating inside closed spaces. Another scheme discussed by [Ware90] was to simulate con-

trol of a flying vehicle. The user’s position and orientation affected the velocity and

angular velocity of the camera viewpoint and direction of gaze. This metaphor was quite

appropriate for navigating through space, but difficult to examine all the sides of a single

object since it was difficult to maintain the gaze on a particular object while moving. 3D

input devices such as a Polhemus isotrack system or a spatial systems Spaceball enable the

user to specify 6 degrees of freedom simultaneously, and simulations of these devices can

be done using only 2D devices [Chen88, Evans81]. Some of the problems inherent in

using these devices are the noise which is inherent in user movements and the number of

degrees of freedom which must be simultaneously controlled.

Mackinlay et al [Mackinlay90] discuss the problem of scaling the camera movements

appropriately. They developed methods to include both the ability to select an object of

interest and to move exponentially towards or away from the object. By selecting ‘point of

interest’, the authors can reorient the camera to present a maximal view of the desired

object. In this way, the degrees of freedom are restricted and the user can concentrate more

on the task of navigating through the environment based on what is in the environment.

Brooks et al [Brooks86, Brooks88] and Airey [Airey90] develop several different methods

for moving around architectural simulations including steerable treadmills or shopping

carts with devices to measure the direction and speed of movement.

Blinn [Blin88] suggested alternate modes of camera specification for planetary flybys

based on four separate requirements. In general, the goal is to place an object in the fore-

Background and related work 34

Intelligent Camera Control Steven M. Drucker

ground (the spaceship) and an object in the background (the planet), and have the system

interpolate interesting views while the spaceship moves. One mode is the standard view

formulation achieved by specifying the view point of the camera, the view normal (gaze)

of the camera, and the view up vector. Another mode is to find a position based on the cur-

rent gaze (I’m looking here, where should I stand?). Another is to find a gaze based on the

current position, (I’m standing here, where should I look?). Finally, the last mode attempts

to find both the view position and the normal based on the task specification. The approach

that Blinn uses involves representing the unknown vectors in terms of vectors that are

known. The idea for Blinn’s work is in some ways a basis for this thesis since his concept

of camera placement is based on achieving a particular goal, however, his solution is

rather specific to the situations that he describes. His work can be expressed within the

framework of this thesis in a clear, succinct fashion (see chapter 5).

The above works all show that different interfaces are appropriate for different user

requirements. No one interface is ideally suited for all tasks, and a common underlying

structure on top of which several different metaphors can be implemented would give the

user a powerful tool to interact with 3D environments. Another important point empha-

sizes the ability to select object of interest within the environment. I have expanded on this

by allowing the user to specify constraints on the camera according to general properties

of the environment.This lets the user manipulate the camera motion based on the actions

within the environment, which is, after all, the goal in the first place.

Furthermore, while direct manipulation has certain advantages in interactive systems,

there are several deficiencies. It is not necessarily good for repetitive actions, and any

action that requires a great deal of accuracy, such as smooth movement for cameras, is not

necessarily suited to input using one of the metaphors suggested in the preceding para-

graphs. There obviously need to be ways to manipulate the environment that is uncoupled

with direct control of the degrees of freedom of the camera.

3.1.5 Automatic Camera Control

One method of automatically controlling the camera was suggested in [Philips92] for use

in manipulations in the Jack system. The camera was positioned at a visible location at an

Background and related work 35

Intelligent Camera Control Steven M. Drucker

appropriate angle for manipulation using specific kinds of controllers.

Karp and Feiner [Karp90] describe a system which automates the creation of presentation

based on a heuristic reasoning process. They use certain user specified goals along with a

rule base to decompose the problem first into a series of sequences, and then into a series

of shots. Finally, they compose each shot and then patch up the resultant sequence using

other rules. They do not specify how they deal with any camera specification at the shot

level other than fairly straightforward lookat types of constraints, or specific solutions to a

number of issues that they have enumerated. Their system could be used on top of a more

sophisticated shot creation mechanism such as the one described in this thesis. This thesis

uses a more straightforward user specified template approach with a sophisticated con-

straint mechanism to attempt to capture cinematic rules as opposed to a complicated rule

base. Each approach has distinct advantages, one being essentially top down, while the

other being bottom up. My focus (so to speak) is on the composition of the image rather

than an automatic composition of an entire narrative.This work expands on their notion of

incorporating cinematic rules for automatic presentation, but can be considered an under-

lying framework for a system such as theirs. Although I make extensive use of cinematic

rules for designing the constraints themselves, these rules are not used for any actual auto-

matic presentation. Automatic presentation in this thesis is limited to prototypes or tem-

plates that are designed by the user to accomplish certain tasks. The user of the system or

the system can autonomously use these prespecified templates for controlling the camera.

Seligman and Feiner [Seligman91] use visibility constraints not to control camera place-

ment, but to affect the rendering style (cut-aways, transparency) of the resultant image.

The CINEMA system [Drucker92] was an initial attempt at unifying these disparate

notions of camera control under one system. It was a method of procedurally specifying

the movement of a camera based on objects in the environment.It shared the notion of eas-

ily writing scripts for the control of animations with [Reynolds82]. Problems of the CIN-

EMA system are in part what drives the primary thrust of this thesis – the system was not

sufficiently reusable or generalizable. Also, there was too much of an emphasis on pro-

gramming the motion of the camera when it is clear that the average user does want to pro-

gram to interact with a graphical environment.

Background and related work 36

Intelligent Camera Control Steven M. Drucker

After experiencing some of the problems with camera control in the CINEMA system, it

was decided that a solution to all of the problems was to formulate camera control in terms

of constraint satisfaction. Gleicher and Witkin describe constraint satisfaction for camera

control in their paper Through the Lens Camera Control [Gleicher92]. However, they do

not attempt to generalize their work to any context outside of directly manipulating the

camera. In addition, their system has a number of limitations. Their system works purely

in a differential fashion for camera parameters which makes it only appropriate for local

movement. They state that they feel that local movement is appropriate for camera control

in a computer graphic system which may be true for certain manipulation examples but is

generally untrue in most cinematic operations. In fact, it has been stated, that nearly 70%

of all shots in most films involve no camera movement whatsoever. Their method, which

they call Through the Lens Camera Control (TTL camera control) is based on the notion

that the change in the projection of a world space point can be based on changes in the

camera parameters. Thus by calculating a Jacobian matrix which relates these two

changes, a desired local change in the projected point can be achieved. Care must be taken

when computing the pseudoinverse of the Jacobian to guarantee stable control of the cam-

era through singularities in the camera parameters (i.e. points where small changes in the

camera parameters will have an enormouse affect on the resultant change of the image

space position of a point).

3.2 Robotics

3.2.1 Pathplanning

A camera can be considered as a simple robot. Thus many techniques developed for the

robot motion planning field may be adapted for planning the movement of the camera.

Some basic differences include the nature of the camera gaze which can be considered as

an infinitely long upper manipulator. The motion planning problem can become arbitrarily

more difficult as true three dimensional path planning can be incorporated. This thesis

builds upon conventional robot path planning methodologies for the development of the

constrained optimization path planning algorithm [Arkin89, Asseo88, Barraquand89,

Braitenberg84, Brooks82, Hopcroft94. Kant86, Schwarz83, Thalmann88, Lozano-

Perez70]. An extensive discussion of robotic motion planning algorithms is available in

Background and related work 37

Intelligent Camera Control Steven M. Drucker

[Latombe90] and has been of great use in the algorithms used for this thesis. Some of this

work is discussed in greater detail in appendix 1.

3.2.2 Sensor Positioning

Robotics literature is also a source for approaches to camera positioning for robot vision

tasks. Tarabanis and Tsai [Tarabanis92] review several systems for sensor planning for

robotic vision. In general the requirements involve placing a camera and an illuminator in

order to recognize or detect features of an object. The systems they describe often need to

concern themselves with issues not present in the system presented in this thesis including

depth of field, resolution of image, and illuminator placement. They state that an automat-

ically planned system allows for the following: a robust solution satisfying the task

requirements even in the presence of uncertainty; parameters can optimize the sensor out-

put with respect to a given task criterion; and that a sensor-based system can become adap-

tive automatically reconfiguring itself to accommodate variations in the workspace. In

general, the types of constraints considered in these systems are visibility constraints, field

of view constraints (making sure the object is not clipped by the field of view of the cam-

era), depth of field constraints (object is in focus), and pixel resolution of the object. They

also look at radiometric constraints such as illuminability, dynamic range, and contrast.

Since one of the primary concerns of automatic vision systems is to recognize an object or

features of an object, a great deal of the work to date involves determining what are salient

features of an object, and what views are appropriate to highlight those features (make

sure they are illuminated properly or shown to the camera in silhouette). They describe 5

main systems: work done at SRI [Cowan87]; the VIO system [Niepold80]; the HEAVEN

system [Sakane81]; the ICE system [Yi84]; and the MVP system [Tarabanis85]. Some

methods use the calculus of variations to derive the camera position from images

[Horn86]. Other methods have been used to position objects themselves for display

[Kamada88]. In general, most of the systems formulate the problem in terms of constraints

that need to be satisfied and finding solutions which satisfy those constraints. Several of

the systems use a generate and test approach to the problem, while the MVP system using

a global optimization solution. In addition, when the constraints are expressed analytically,

a more efficient solution process can be used. The work presented here is on a similar level

to the system presented in this thesis, yet the types of constraints required are somewhat

Background and related work 38

Intelligent Camera Control Steven M. Drucker

different and more limited.

In addition, reactive planning in robotics as explored by [Brooks86], and [Maes90,

Maes91] can be exploited in complicated domains with moving objects where traditional

path planning methods are not applicable. Reactive agents were a motivating force behind

the development of the camera framework presented in this thesis. By allowing certain dif-

ficult parts of interaction to be supported by an agent style interface, the user is able to

concentrate more on the task at hand.

3.3 Teleoperation

Closely related to robotics is teleoperation and supervisory control [Sheridan87,

Sheridan88, Sheridan92]. Visual displays are of overriding importance in teleoperation

and supervisory control because, “A fundamental issue in the design of the man-machine

interface is the use of visual feedback. Visual feedback is normally the primary source of

feedback information” [McKinnon91].Das [Das89] systematically compared some auto-

matic view selection techniques in the context of a control a redundant telemanipulator.

Four different sets of trials were performed to assess user performance. In the first, the user

was allowed to select different views by flying the virtual camera around the workspace.

In the second set, the virtual camera was fixed to the based of the telemanipulator, some-

what like viewing out of the cockpit of a plane to which the manipulator was attached. A

third set fixed the virtual camera location to the side of the task. The fourth set of trials

automatically selected a “best” view that found a viewpoint for the camera that provided

an orthogonal projection of all the distances between the telemanipulator, two obstacles,

and a goal. The “best” view place the camera at a point which was the intersection of 3

planes, each of which was a bisector of the line connecting the end-effector of the manipu-

lator with the obstacles or the goal respectively. Performance was best when the user was

allow to select between multiple views. Next base was the automatically selected view.

The worst performance was using the out of the cockpit view. The best view algorithm can

be thought of in the context of this thesis as optimizing the camera position subject to three

constraints, maximize the angle of projection for each of the goal and obstacle objects. An

important lesson taken from Das however, is that users need to have some sort of control

over the selection of views to perform well.

Background and related work 39

Intelligent Camera Control Steven M. Drucker

3.4 Human factors & Human Computer Interaction

Extensive human factors testing has been done to determine the effects of different forms

of visual displays on human perception and task performance. The view that a systematic

approach begins with a task analysis [Brooks91, Berlyne67, Fleishman84, Miller63,

McCormick76, Newell78, Whiteside85] is supported in this thesis. In fact, Brooks goes so

far as to say the following:

...from the perspective taken here, developing good descriptions, particularly
good taxonomy that adequately differentiates artifacts, is important in its own
right because it is a useful, possibly necessary, precursor to appropriate formal-
ism and, in turn, to technical theory [Brooks91].

Chapter 4 details the tasks analysis that led to the basic structure of the thesis and chapter

6 describes the way we can go from a basic task analysis to a prototype of an interface.

Current theories in human computer interaction support the iterative nature of design for

interfaces. If the interfaces are built on top of a consistent cognitive structure, they can be

made to greatly enhance user understanding and facility [Bass92, Baeker87, Carroll87,

Carroll88, Cotterman89, Landauer87, Norman87, Norman88, Norman90, Norman93,

Schneiderman92, Zeltzer85, Zeltzer91, Zeltzer92]. In addition, with the benefit of a con-

sistent underlying framework, different styles of interaction can be designed and supported

including conversational interfaces [Bolt87, Foley87, Nickerson87, Negroponte89,

Schmandt83], theatrical interfaces [Laurel86], direct manipulation [Hutchins86, Boies89,

Schneiderman83], and visual programming languages [Cypher93, Haeberli88, Kass92].

This thesis has made use of many of the notions of these alternative interface styles,

including an immersive environment with voice and gestural recognition for the Mission

Planner and a visual programming environment for combining and sequencing camera

primitives.

3.5 Human Perceptual Capabilities

Human perceptual issues also must be examined in any system that needs to present infor-

mation effectively to an end-user. Cornsweet in particular provides an excellent introduc-

Background and related work 40

Intelligent Camera Control Steven M. Drucker

tion to human visual perception in [Cornsweet70]. Hochberg and Brooks present an

extensive examination of human perception of motion pictures in [Hochberg87] which has

been of particular use in this thesis.

Hochberg and Brooks identified three different theoretical mechanisms that might account

for the observer’s comprehension of change in camera position across temporal sequences

of film. The first mechanism is closely tied to the perception of apparent motion of objects.

This phenomena involves the discrete changes of the position of an object or objects

between frames. The perception of apparent motion breaks down based on limits for the

distance between the positions of the objects and the intertemporal spacing of the stimuli.

These limits have been identified experimentally and can be used in part as a basis for the

maximum camera movements per frame allowed in many of the demonstrated applica-

tions.

Another mechanism deals with overlapping cuts of a scene. This theory proposes that

viewers integrate the successive views by extracting a transformation between the changes

of position of familiar objects within the scene. This might explain one of the reasons that

people often become disoriented and lost in the sparsely populated virtual environments. If

no identifiable landmarks exist, then the perception of the direction of motion of the cam-

era reduces to chance. Attempts have been made in this thesis to enrich the environments

with identifiable objects.

The last mechanism for visual perception of camera position is based on the concept of a

cognitive map. Cognitive maps form the basis of a style of architectural design expounded

in [Lynch60] and [Passini92]. It is not immediately clear whether the cognitive map is

symbolically represented or spatially represented, but in either case, viewers are able to

build maps from successive views of an environment, and can use the map to stay oriented

within the environment. One way to utilize cognitive maps is to enable explicit maps for

the interfaces designed in this thesis. In addition, the maps can be dynamic maps which

adjust to the user’s position and orientation within the environment.

Background and related work 41

Intelligent Camera Control Steven M. Drucker

3.6 Cinematography

Art has often been an effective communication tool and can serve as a guideline to build-

ing effective interfaces. An extensive examination of the use of perspective in communica-

tion is discussed in [Kubovy88]. Even more appropriate to this thesis is presentation style

as it has developed in the field of cinematography. Several books have been extremely use-

ful for gaining an understanding of the film medium. Notably, Arijon [Arijon76] has a

straightforward, deconstructivist style, with descriptions on filming any of a large number

of situations. Some might consider his descriptions to be simplistic, but they are the per-

fect basis for deriving a large class of camera primitives. This class of primitives which I

call projection constraints involve the placement of the camera based on the projection of

an object onto the screen. These include issues of framing objects so that their relative

sizes are appropriate, placing the camera so that the projected motion of objects on the

frame is consistent across edits, and being able to control the projected gaze vectors of

characters in the environment based on the placement of the camera. These constraints are

described in greater detail in section 5.3. In addition to the work of Arijon, cogent explana-

tions of cinematic techniques and style given in [Katz88, Katz92, Kawin92]; for photogra-

phy [Cheshire94]; for editing [Reisz68, Thompson93]; and for cinematic theory

[Nilsen61, Isenhour75, Burch81] have all been useful.

There have been some previous limited attempts at incorporating cinematic style in com-

puter graphic systems including the excellent discussion concerning animation techniques

by Lasseter [Lasseter87]. Previous work also includes techniques for special effects

[Thalman86], the aforementioned automatic planning systems of [Karp90, Seligman91]

and analysis [Potel76].

Taxonomy of Interactive Domains 42

Intelligent Camera Control Steven M. Drucker

CHAPTER 4. TAXONOMY OF INTERACTIVE DOMAINS

4.1 The Problem Domain

The first requirement of the thesis is to generate a clear definition of what visual tasks a

user might try to perform in a graphical environment, and what characteristics need to be

associated with a camera to assist the user in accomplishing those tasks. I will enumerate a

list of prototypical tasks, that will help drive the definition of an intelligent camera. This

list is meant to be broadly representative of the kinds of visual tasks that users might wish

to perform in a graphical environment. This is by no means a complete list of tasks but

rather a list that will help generate ideas as to how an intelligent camera can aid a user.

Also, solutions will not be proposed for all tasks, but rather a categorization of the tasks is

attempted so that a systematic solution can be described. For each category, examples will

be given, and a list of of characteristics for the camera control will be enumerated.

Except where stated otherwise, the user will not be changing the environment, but only

acting as an observer. This restriction, while limiting, will help focus the analysis on the

manipulation of the user’s view and not on the means of interacting with objects in a envi-

ronment. An overriding consideration in all these task domains is that the environment is

perceived by the visual system of the operator and thus care must be taken so that the out-

put of the system is well within human psychophysical abilities and expectations

[Cornsweet70, Hochberg78].

This list in table 2 of interactive domains was arrived at through examining several papers

[Adam93, Bishop92, Blanchard90, Blau92, Earnshaw91, Earnshaw93, Esposito93,

Taxonomy of Interactive Domains 43

Intelligent Camera Control Steven M. Drucker

Fisher86, Greeenberg74, Zyda92, Bass92, Baeker87, Carroll87, Carroll88, Cotterman89,

Landauer87, Norman87, Norman88, Norman90, Norman93, Schneiderman92, Zeltzer85,

Zeltzer91, Zeltzer92, and others], and several brainstorming sessions with practitioners in

the field. Different graphical applications were classified into one of four domains. This

domains seem to encompass most of the different types of activities which people perform

in interactive graphical environments.

4.2 Terminology

Word usage tends to be confusing when trying to formulate a taxonomy. One would like to

use words that bring about instant understanding, but certain words are so overloaded that

they might be misinterpreted. I use several terms and provide definitions for each of them.

In general, I try to follow the formal dictionary definitions, but sometimes that is not possi-

ble since I could find no better word to describe what I mean. Briefly, here is a list of the

terms for the taxonomy: environment, domain, application, application task, generic task.

The highest level of the hierarchy is referred to as a

domain

. The

domain

 describes the

basic endeavor that is being attempted. Within each of the domains are

applications

, and

each of those

applications

 is composed of specific application

tasks

. There are several

generic

tasks

 that are pertinent to many

applications

 within many

domains

.

4.3 Taxonomy

To begin with, I broadly classify four primary domains in which most activities lie: explo-

ration, planning, rehearsal, and control.

Taxonomy of Interactive Domains 44

Intelligent Camera Control Steven M. Drucker

4.3.1 Exploration

Explore

, as defined in the American Heritage Dictionary, is to search into or range over for

the purpose of discovery. In this area, I include such tasks as scientific visualization, med-

ical visualization, and architectural visualization since they all involve examining some

sort of spatial database. Control of the virtual camera allows the user to experience differ-

ent parts of the spatial database. Exploration is not limited to visualization. Databases are

starting to be expressed in spatial terms and techniques for moving through spatial data-

bases are particularly important in this age of information overflow. Certain games (rang-

ing from flight simulators to multi-user dungeons) allow the user to move through some

alternate reality in an exploratory way.

Gregory Nielson, an extensive researcher in the field of scientific visualization, describes

interactive scientific visualization in the following way:

Table 2: Interactive Domains

Interactive Domains Examples

Exploration Scientific Visualization
Architectural Visualization
Database exploration
Flight Simulators, MUDs

Planning Mission Planning systems
Surgical Planning systems
Animation systems
Film Previsualization

Rehearsal Choreography tools
Flight simulators
Mission planning
Surgical Rehearsal systems

Control Teleoperation
Modeling
Surgery

Taxonomy of Interactive Domains 45

Intelligent Camera Control Steven M. Drucker

as related to those applications where the user interacts with the model and drives
the simulation in hopes of “gaining new insight” or “creating a new design.” The
primary interface for this interaction is the visual images viewed by the user and
the subsequent input based upon the user’s perception and interpretation of those
images. The emphasis here is on applications which involve physical models in
three dimensional space [Nielson91].

Thus scientific visualization involves the end user gaining an understanding of the impor-

tant information, events, and relationships implicit in high bandwidth, possibly multi-

dimensional datasets. In scientific visualization, as well as medical visualization, and

architectural visualization, the user must somehow achieve a correspondence between the

information presented to him through the interface, and an internal representation of the

spatial domain [Springmeyer92]. For some of these applications, there exist natural ana-

logs for the information that is presented. For others, however, the information itself must

be transformed and represented in a manner that can be understood by the user.

In medical visualization specifically, many feel that the imaging modalities of transmis-

sion and emission tomography, magnetic resonance imaging and ultrasound are revolu-

tionizing medicine. Pernkopf [Pernkopf87] feels that “improved 3D visualization

techniques are essential for the comprehension of complex spatial and, in some cases, tem-

poral relationships between anatomical features within and across these imaging modali-

ties.”

In general, for these applications, the operator should be able to quickly

orient

 himself in

the environment, and

navigate

 conveniently from one part of an environment to the other.

Sometimes, the operator may be explicitly looking for a certain aspect of the environment,

in which case the system is primarily used for

navigation

 through the environment from

one point to another. At other times, the user may be

wandering through

the environment

with no particular destination in mind. Finally, the operator sometimes wishes to

examine

a certain aspect of the environment.

Some specific examples of applications in the exploratory domain include the following:

Large data set exploration

: Many three-dimensional applications in scientific visualization

Taxonomy of Interactive Domains 46

Intelligent Camera Control Steven M. Drucker

consist of the study of multidimensional physical phenomena. The scientist is free to fly

within the simulation and therefore to focus interest on any part of the simulation, to study

it in detail, or to allocate supercomputer time for a more precise simulation.

Architectural walkthrough

: Systems such as these allow the user to explore buildings that

are designed but not yet constructed, or buildings that no longer exist. An object of such a

system is to visualize a building to permit the architect to prototype the building and to

discuss with his client on the detailed desiderata for it. Specific tasks within an architec-

tural walkthrough might be to examine the artificially constructed environment for emer-

gency exit routes for obstructions; or to examine visibility paths from one point to another;

or a human factors analysis of the environment could be performed.

Weather simulation

: A simulation of a hurricane or a tornado involves the flow of air in 4

dimensions (space as well as time). The task would be to understand what circumstances

lead to the formation of a hurricane by observing those air flows from different viewpoints

and with different tools that might help analyze how the air flows change.

Some other examples include

molecular analysis, medical imaging,

and

 exploration of

data received from satellite pictures.

In general, the visual requirements for performing exploratory tasks are related to moving

through the environment, and being able to retrieve the spatial position of the virtual cam-

era within the environment, and the relative positions between objects within the environ-

ment.

1. Change the viewpoint and direction of gaze in a fashion which makes sense
to the user and is not disorienting or distracting. To do this, the camera must
obey some restrictions discussed in section 3.5.

2. Allow the ability to specify separate points in the environment for convenient
navigation between them. By convenient, I mean to limit the amount of com-
putational or cognitive effort that the user needs to make.

3. Allow quick recovery of information about current position and orientation of
the user. This is particularly crucial because of the tendency for users to get
lost and disoriented in a virtual environment [McGovern91].

Taxonomy of Interactive Domains 47

Intelligent Camera Control Steven M. Drucker

4. Allow efficient recovery of information about the relative positions and orien-
tations of objects within the environment.

5. Constrain the movements of the user in a fashion that makes sense for the
given domain (don’t walk through walls in an architectural domain, keep cer-
tain objects in view in a scientific visualization domain). This is related to the
first item because movement through obstacles can be very confusing to an
observer. This involves collision detection and to a certain extent, the simula-
tion of a camera as a physical object.

For a detailed analysis of one specific application in the exploration domain, see the

description of the Virtual Museum in chapter 6.

4.3.2 Planning

“To plan” is defined as “to formulate a scheme or program for the accomplishment or

attainment of something.” In this area I include such diverse applications as surgical plan-

ning and simulation; mission planning & rehearsal; and film previsualization.

A planning task might consist of figuring out how to manipulate some objects within an

environment, or might consist of specifying the motion of the camera itself for presenting

the results to a non-interactive observer.

In describing one such task for orbital planning, Don Eyles of Draper Laboratories says

the following:

What is necessary is the ability to plan and then to monitor spatial operations
which may be hard to see and hard to visualize. For this case, the ability to
assume a God’s-eye view and follow the orbits leading to rendezvous, to fly
alongside in a phantom chase plane, to take the vantage point of an imaginary
window in your own spacecraft, or the viewpoint of another, perhaps unmanned
satellite, may prove to be useful. [Eyles91]

Example:

Animation system

: An animation system permits change of view both to assist in the

manipulation of objects and change of viewpoint for dramatic and narrative reasons. The

resultant motion of the camera must be continuous and certain stylistic conventions, pri-

Taxonomy of Interactive Domains 48

Intelligent Camera Control Steven M. Drucker

marily from cinematography, should be followed in order to make a comprehensible pre-

sentation.

Surgical planning system

: In plastic surgery, the surgeon might wish to see the results of

certain actions before performing them. The surgeon must be able to move the viewpoint

both to

perform

 the action and to

explore

 the results.

While this domain shares many of the visual requirements of the previous domain, there

are some differences. In the exploratory domain, it was assumed that the interactive user

was exploring the domain for his or her own enlightenment. In the planning domain, the

interactive user may be using the system to prepare a presentation for others. For this rea-

son, camera motion needs to be smooth and purposeful [Thompson94]. In addition, more

emphasis must be placed on the ability to position the camera based on the projected posi-

tions of objects onto the frame.

General visual requirements:

1. Change the viewpoint and direction of gaze in a fashion which makes sense
to the user. This is the same as item 1 from the exploratory domain.

2. Allow quick recovery of information about current position and orientation of
the user. This is the same as item 3 from the exploratory domain.

3. Allow efficient recovery of information about the relative positions and orien-
tations of objects within the environment. This is the same as item 4 from the
exploratory domain.

4. Constrain the movements of the virtual user in a fashion that makes sense for
the given domain. This might require that the virtual camera behaves as if it
has physical mass and moves dynamically, or it might involve collision
detection with objects in the graphical environment. This is the same as item
5 from the exploratory domain.

5. Constrain the position, and perhaps the motion of the screenspace projection
of an object or the relative projected distances between objects.

6. Allow a way of continuously specifying the motion of the camera between
certain task based constraints.

7. Be able to incorporate rules for comprehensible presentations (cinematic con-
ventions).

Taxonomy of Interactive Domains 49

Intelligent Camera Control Steven M. Drucker

4.3.3 Rehearsal

“To rehearse” is defined as to perfect or cause to be perfect by repetition. Although not

strictly considered rehearsal, I consider systems for instruction also in this area. As such,

the best example of this type of area is a flight simulator which let’s the user practice under

a wide variety of conditions.

The visual task here is to achieve a

situational awareness

of objects in a dynamic environ-

ment. This may or may not involve varying levels of interaction with the objects in the

environment. A good supervisory system would allow the operator to make predictions

and decisions about events and behaviors of objects within the environment, and perhaps

learn from the events that have already occurred.

Example:

Command and Control System (C&C)

: For instance, air traffic control. The operator

should be able to view the interactions of many objects at whatever viewpoint is appropri-

ate for the individual task. If it desired to detect and avoid collisions, attention can be

brought to areas where potential collisions will arise. If dangerous or desirable situations

arise within the domain, the system should indicate those situations to the user.

The general visual requirements of primitives are to assist the user in comprehending the

spatial aspects of a time varying environment. To do this, the user should be able specify

objects of interest and include them within the view, perhaps at certain locations in the

frame. The virtual camera should be able to depict the scene from the viewpoint of any

object in any direction.

General visual requirements:

1. Change the viewpoint and direction of gaze in a fashion which makes sense
to the user. This is the same as item 1 from the exploratory domain.

2. Allow quick recovery of information about current position and orientation of
the user. This is same as item 3 from the exploratory domain.

3. Allow efficient recovery of information about the relative positions and orien-

Taxonomy of Interactive Domains 50

Intelligent Camera Control Steven M. Drucker

tations of objects within the environment. This is the same as item 4 from the
exploratory domain.

4. Constrain the orientation of the world so that it makes appropriate sense
(absolute up vector, or an up-vector based on the position of an object in the
environment).

4.3.4 Control

By control, I mean to affect the movement or appearance of an object or group of objects.

In this area, I include teleoperation (manipulating something at a distance); surgical assis-

tance; CAD modelling, or animation production. I place animation in this area since the

figures and the environment must be modeled and manipulated. However I consider the

task of choreographing motion of the camera and objects in the environment to be a plan-

ning task.

Based on their experiences in the control of the Shuttle Remote Manipulator System,

McKinnon and Kruk [McKinnon91] examine multi-axis control of a telemanipulator.

They feel that,

A fundamental issue in the design of the man-machine interface is the use of
visual feedback. Visual feedback is normally the primary source of feedback
information. Ideally, an unobstructed direct view of the workspace should be pro-
vided, but even if this is available the question arises as to the ideal view point.

The requirements of the visual interface is to orient the viewpoint in the best way to

accomplish a given task. Some work in the field of telerobotics has already been per-

formed that examines this problem [Philips92, Bejczy81]. One of the basic notions for this

is for the operator to understand intuitively the correspondence between the axes of the

view and the axes of the controls [McKinnon91]. In addition, the proper choice of perspec-

tive parameters and viewing conditions can greatly affect the mean-completion-time of

pick and place experiments [Kim91].

Examples:

surgical simulation

. The task might be a simulation (or actual performance) of endoscopic

surgery where the surgeon controls the movements of an endoscope through a narrow inci-

Taxonomy of Interactive Domains 51

Intelligent Camera Control Steven M. Drucker

sion in the body. Here it is crucial that the surgeon has some idea of the position of the

instrument in the body.

telepresence/telerobotics

: Telepresence aims to simulate the presence of an operator in a

remote environment to supervise the functioning of the remote platform and perform tasks

controlling remote robots. In supervisory control modes, a VR interface provides the oper-

ator with multiple viewpoints on the remote task environment in a multi-modal display

format that can easily be reconfigured according to changing task priorities. To perform

remote operations that cannot be performed autonomously by robots, the operator can

switch to interactive control. In this telepresence mode, he is given sufficient quantity and

quality of sensory feedback to approximate actual presence at the remote site.

Animation system

. The view must be modified appropriately in order for an object to be

modeled, or for its motion through space to be manipulated efficiently.

In general, the visual requirements are concerned with maintaining the visibility of a

desired object to be manipulated and to making sure that the axes of control align with the

visual axes of the resultant frame. Additional information or views may also be useful to

helping the user accomplish the task.

1. Change the viewpoint and direction of gaze in a fashion which makes sense
to the user. This is the same as item 1 from the exploratory domain.

2. Track the motion of a specified object.
3. Make sure a target object is visible.
4. Provide the user with a correspondence between the view’s axes and the axes

of the controls of the manipulation device.
5. Provide supplementary information that can aid in task completion. This

starts to bridge the gap between a strictly graphic environment. Part specifica-
tions and status displays might be shown to the user while performing a task
or specific instructions may be pulled up step by step.

4.3.5 Development cycle

These areas all overlap; for instance a good remote surgical system might include facilities

Taxonomy of Interactive Domains 52

Intelligent Camera Control Steven M. Drucker

for exploring a medical database, planning a procedure, practicing the procedure and

finally for performing the procedure. One aspect that each of the areas necessarily must

deal with is presentation. The user must constantly be presented with intelligible informa-

tion from the system.

It is interesting to note that a typical development cycle for processes might move from

one area to the next area in a series of steps.The choice of camera control in each domain

might be different, but choices in one domain might affect controls in another domain. For

instance, it might be desirable to have some sort of correspondance between the method

used during rehearsal and control. I will again use computer assisted surgery as an exam-

ple (see figure 3). One of the first steps might be to take an extensive series of computer

tomography data and

explore

 this data to locate pertinent structures in the computer con-

structed model. If the general goal is the treatment of a cancerous tumor, this first step

might involve classification of what is part of the tumor, what is not, adjacent organs that

must be avoided, etc. After this first exploratory stage, the next stage would involve

plan-

ning

 a treatment. The treatment might be a procedure for the removal of the tumor or

radiotherapy which might involve orienting beams of radiation to intersect at the tumor. If

extensive manipulation is eventually required, the planning stage might move into a

rehearsal

 stage, where the surgeon could practice manipulation with devices that give a

variety of forms of feedback, perhaps including haptic and sound as well as visual feed-

back. After the rehearsal stage, the surgeon may then wish to actually perform the surgery,

perhaps using a computer assisted system, or perhaps manually. This is the

control

 stage.

Finally, the process can repeat itself when the surgeon tries to assess the success of the

operation (exploratory), make corrections to the procedure (planning) and perform the

revised procedure (control).

Taxonomy of Interactive Domains 53

Intelligent Camera Control Steven M. Drucker

Figure 3: Surgical Simulation Process Cycle

4.4 Interaction

One important aspect of graphical environments is the level of interaction that is being

supported. At one end of the spectrum is direct interaction in which the user continuously

controls some aspect of the camera. This might be as simple as using a button to control

the zoom of the camera, or it might mean tying the movements of the head and body of the

user to controlling the position and orientation of the virtual camera within the environ-

ment. When this is achieved with very little lag and a head mounted display is used, the

user may sometimes feel as if they were immersed inside the graphical environment. This

phenomenon is known to the popular press as

virtual reality

, though since some consider

the words virtual and reality an oxymoron, I will use the more rigorous term –

virtual envi-

ronment

. Virtual environments also include means for establishing other sensory cues

including binaural audio, and haptic feedback (force and tactile). If the environment that

the user is interfacing with is not a simulation, but rather a real environment at a remote

location, the term

telepresence

 is used.

At the other end of the spectrum in interaction is nearly no interaction at all or almost no

interaction. This could mean that the user of the system is viewing the environment in a

prespecified or automatically generated fashion, perhaps by guidelines specified by the

user or by another. If the behavior of the camera is not predetermined and is being changed

automatically by the computer, then the camera is said to be behaving autonomously. One

type of system that might contain autonomous camera control is an automatic presentation

exploration

planning rehearsal

controlexamine MRI

plan removal of
tumor

rehearse surgery

perform surgery

Taxonomy of Interactive Domains 54

Intelligent Camera Control Steven M. Drucker

system.

Yet another factor that is often considered in interactive environments is how the user is

interacting with a large number of degrees of freedom in the environment. For a single

camera in most graphical environments, there are seven degrees of freedom (three spatial,

three orientation, and one field of view). These can be controlled by directly specifying

one or them, or several of them might be derived from some user intention. If the user

issues a sufficiently high level command, all the degrees of freedom for the camera might

be determined.

4.4.1 Summary

The visual requirements for camera primitives is collected in the following list. Types of

camera primitives (discussed in section 5.11) which can be combined to implement these

Table 3: Frequency of Interaction

Frequency of
Interaction

Examples

Continuous head mount, joystick control

Intermittent Mission planner

Autonomous Automatic Filming Agent

Table 4: Style of Interaction

Style of Interaction Examples

Direct Control of
DOF’s

Head mount, joystick

Mapped Control Selecting with mouse

Symbolic high level
specification

Voice input, gesture

Taxonomy of Interactive Domains 55

Intelligent Camera Control Steven M. Drucker

visual requirements are given in parenthesis and itemized in the subsequent list.

1. Always make sure that changes in the view make sense to the user (a,b,g).
2. The user should, in general, recover information about his position within the

environment (f).
3. The user should be able to recover the relative positions of different objects

within the environment, and the camera should be placed in positions where
that information is presented (c).

4. Certain positions of the camera will allow completion of the task more con-
veniently (a,b,c,e).

5. In many domains, there are restricted positions where the camera should not
travel, whether movement through walls is prevented, or restrictions to within
a single room, or maintaining the visibility of certain objects (d).

6. For some domains, convenient movement through the environment is impor-
tant. By convenient, I mean with little cognitive or computational effort on
behalf of the user (d).

7. Certain rules and conventions should be followed when presenting the infor-
mation to external viewers (g)

8. Different styles of interaction must be supported, including continuous, inter-
mittent, and autonomous (or supervisory) control. (h).

9. Different levels of control should be provided with access down to individual
degrees of freedom, on up to high level interpretations of commands. (h).

Briefly, those constraints in parenthesis (which will be discussed more extensively in sec-

tion 5.11) are as follows:

a) Direct constraints on one or more DOFs of the camera.
b) Constraints on the derivatives of one or more DOFs of the camera.
c) Constraints on the screenspace projection of one or more objects from a

camera.
d) Constraints on movement through the environment.
e) Constraints based on the visibility of an object within the environment.
f) Constraints based on a view of another camera.
g) Constraints based on stylistic and cinematic rules.
h) The entire framework provides for the straightforward combination and

reusability of different constraints.

Taxonomy of Interactive Domains 56

Intelligent Camera Control Steven M. Drucker

4.5 Tasks demonstrated in this thesis

4.5.1 Virtual Museum

The Virtual Museum is a spatial database containing works of art, either sculptures or pic-

tures that are arranged in several rooms. It is an example of a task primarily in the

explor-

atory

 domain. Various different levels of interaction are shown in the virtual museum

including direct control of the camera parameters, constrained movement based on a sin-

gle object, and nearly autonomous movement based on a guided tour calculation.

4.5.2 Mission Planner

As an example for the

rehearsal

 domain, we show the mission planning system. This sys-

tem allows the user to experiment with different lines of sight in order to understand a plan

for flying a military mission. Again, various levels of control are shown. Simple, direct

interaction, constrained interaction in a very similar fashion to the football game, and

finally, limited autonomy.

4.5.3 Conversation

Filming a conversation via an autonomous agent is a simple demonstration of the ways in

which the primitives described in this thesis can be combined and formed into behaviors.

It is an example of task in the

planning

 domain.

4.5.4 Virtual Football Game

Another

planning

 task, with a somewhat different interface than the conversation is the

virtual football game. This environment differs significantly from the virtual museum in

that the museum was primarily a static environment that was large enough to require

exploration. The virtual football game is a dynamic environment where the user is trying

to watch the motion of several characters at once. In the virtual football game, we examine

direct control of the camera through several simple widgets. We examine limited auton-

omy in using the system as a director’s assistant. And finally we examine high level inter-

action in the form of the automatic generation of a sequence.

Taxonomy of Interactive Domains 57

Intelligent Camera Control Steven M. Drucker

4.5.5 Visibility assistant

Finally we look at a simple experiment in the control domain. The task in this example is

to perform some sort of manipulation on an object in the graphical environment. The visi-

bility assistant moves the viewpoint around occluding objects to make sure that the object

is always visible to the user.

Camera Primitives 58

Intelligent Camera Control Steven M. Drucker

CHAPTER 5. CAMERA PRIMITIVES

The following section addresses the central notion of camera control: that of camera prim-

itives. Camera primitives are selected based on task level goals in the different domains

discussed in the previous chapter. By specifying these goals in terms of constraints, the

primitives can be expressed in a domain independent manner allowing them to be com-

bined, reused, and sequenced as appropriate for the task at hand.

Camera primitives can be looked at both in terms of the task level goals they represent, and

the formal, mathematical machinery that is involved in their specification and satisfaction.

The first part of this chapter examines a variety of domains from which camera primitives

can be derived. In the second part of this chapter, I examine formally the mathematical

derivation of the constraint framework at the core of this thesis. I start with a discussion of

the view transformation since it is central to the way in which a virtual camera transforms

the environment into the image that the user sees, and then give specifications for con-

straints that can achieve the goals outlined in the first part. I also broadly classify the con-

straints into different types based on their mathematical structure.

This chapter does not discuss any interfaces for constructing or combining primitives. That

is discussed in chapter 6.

5.1 Procedural Representation

A slight digression is in order before a discussion of camera primitives as constraints can

take place. Initial attempts at specifying camera primitives began with the CINEMA sys-

tem [Drucker92]. In this system, camera commands were embedded in a procedural, inter-

preted language which had built in commands for mathematical functions, and database

Camera Primitives 59

Intelligent Camera Control Steven M. Drucker

inquiries for object positions, visibility, and events.

5.1.1 Reusability of camera behaviors

The CINEMA system allowed for powerful programmatic specification of camera move-

ments. High level commands from cinematography could be written in terms of lower

level controls on the degrees of freedom and if the commands were designed properly, they

could be reused. For example, the classic shot used by Alfred Hitchcock in the movie

Ver-

tigo

 could be encoded by specifying that the camera moved backwards as the camera

zoomed in, maintaining the same framing of the character. Given a simple procedural defi-

nition, called vertigo_shot(character), this procedure can be added to a number of other

behaviors which the director can call upon as needed. Other procedures were written that

could take advantage of 6 degree of freedom input devices to help position the camera rel-

ative to objects within the environment.

proc

vertigo_shot

(obj, rate, no_frames} {

// get the angle subtend by the object

angle :=

get_angle_height

(obj);

// get the camera’s field of view

fov :=

cam_fov

();

// compute the percentage of the fov

// which the object subtends

percent := angle/fov;

for (i=0;i<no_frames; i++) {

// truck in the specified direction

//at the specified rate

cam_truck

(rate);

// set the field of view so that the

// object subtends the same percentage

// as before

frame_it

(obj, percent);

render

();

}

}

Figure 4: Pseudocode for vertigo shot

5.1.2 Problems with the procedural representation

However, one problem with the CINEMA system was the difficulty in writing procedures

Camera Primitives 60

Intelligent Camera Control Steven M. Drucker

in a way that they could be combined with other procedures. This was a significant draw-

back since the entire purpose of the system was to provide the user with tools for simply

achieving desired camera movements and if the user needed to rewrite a special purpose

procedure each time a new movement was needed then the user had to be a skilled pro-

grammer in addition to a cinematic director. Related to this problem, was that it was diffi-

cult to write single procedures that were general enough. More often than not, constants

needed to be used in a procedure that were only appropriate for a certain character and

when applied to another character the procedure had to be rewritten. A wide enough base

of initial procedures did make it possible for convenient rewrites for new procedures, but

still, programming was required to use the system.

The successes and the problems of the CINEMA system led to the idea of controlling the

camera on the basis of constraint satisfaction. Constraints are essentially an encapsulation

of a user’s intentions. They can be combined and generalized more conveniently than pro-

cedural programming, and have desirable behavior even if all the constraints can’t be satis-

fied at the same time. The following section will describe how useful constraints were

derived from a variety of disciplines.

5.2 Deriving Primitives as Constraints

Camera primitives can be derived from a number of disciplines. These disciplines tend to

be distinct from the domains discussed in chapter 4 because they do not necessarily require

a computer graphical environment but rather involve communication of visual concepts or

useful algorithmic techniques from related fields. Some of the disciplines from which to

derive camera primitives are as follows:

• Cinematography

There are a wealth of conventions, rules, and suggestions for the placement of cameras for

filming various situations. These include framing conventions; editing rules; continuity

rules, etc. By formalizing the widely circumstantial body of literature these conventions

can be used in other domains. In general I call the types of primitives derived from cine-

matography

projective

 constraints since they involve projecting objects from world space

Camera Primitives 61

Intelligent Camera Control Steven M. Drucker

into a framed screen space. These projective constraints are extremely useful since they

find the position and orientation of the camera based on the desired position of objects

within the frame. Only two works in the computer graphics literature touch upon finding

camera parameters based on the screen space projections of objects. The first of these is

Blinn’s formulations [Blinn88] for creating planet fly-bys which are discussed in section

5.8.2. Blinn’s work is far less general and is primarily suited to the specific task of a fore-

ground and background object on the screen. The second work is by Gleicher and Witkin

[Gleicher92] discussed in section 5.11.3. This work does not find camera parameters, but

allows the system to update the camera based on screen space projections of objects once a

desired set of camera parameters has already been found. The work presented in this thesis

on projection constraints is general purpose and useful for finding camera parameters as

opposed to just maintaining them.

• Task performance concerns

Naturally, task performance is extremely situation dependent. In general, the ones I mean

in this category tend to be concerned with letting the user maintain the visibility of certain

items of interest; or letting the viewer maintain context based on the orientation of oneself

and the position of an object of interest in relation to other objects within the environ-

ment.These are constraints that let the user achieve a certain task which is often separate

from controlling the camera itself. In general, the primitives derived from this category are

visibility

 constraints, and constraints on the maximum change of any of the camera param-

eters.

• Physical limitations for cameras

These constraints are based on dynamic simulation for the camera and camera-related

machinery (dollies, cranes, arms, etc.). If one considers these, the system could be made

appropriate for preplanning the filming of actual situations or controlling real life robotic

cameras. These constraints also include issues such as collision detection between the

camera and objects in environment and collision-free

path planning

 through the environ-

ment.

Camera Primitives 62

Intelligent Camera Control Steven M. Drucker

• Human Factors

There are certain basic limits for the human system to be able to comprehend input from

the visual system. These limits tend to define preferred numbers of frames per second for

the graphical environment and maximum angular movement rates for the camera. Many

human factors problems in visual displays are due to equipment limitations, such as the

limited field of view of many head mounted displays (HMD) or slow tracking of head

movements in HMDs. However, care can be taken to constrain motions of the camera

within the graphical environment so as not to produce images which violate some basic

human factors measurements. The basic constraints derived from this domain are limits on

the maximum changes of any of the camera parameters, and agreement between motions

of the head and changes in the visual displays.

• Interface Design Principles

Since the framework that is described in this thesis is meant to serve as the underlying

mechanism on top of which a variety of different interfaces is placed, special effort is

made to make sure that effective interfaces can be built on top of the framework. However,

in depth user interface design/testing/verification will not be performed. (See chapter 7 for

a more thorough evaluation of the interfaces.)

5.3 Cinematic Constraints

One of the easiest sources of cinematic constraints are from a number of books intended

for beginning practitioners in the field of film-making. This thesis uses several of those

books as a reference for constructing cinematic primitives, notably

Grammar of the Edit

,

Grammar of the Film Language

, and

Shot by Shot

 [Arijon76, Katz88, Katz92].

Roy Thompson [Thompson94] proposes a simple categorization of camera shots based on

four elements which either may or may not change during the duration of the shot. These

elements are the lens (zooming), the camera (panning, tilting, rolling), the mounting,

(trucking, dollying, craning), and the subject. In his basic framework there are three types

Camera Primitives 63

Intelligent Camera Control Steven M. Drucker

of shots: simple shots, complex shots, and developing shots. A simple shot contains no

movements of lens, camera, or mount, but can contain simple movement of the subject.

For a single person there are only a few kinds of simple shots made up of the following:

extreme close-up, big close-up, close-up, medium close-up, medium long shot, long shot,

very long shot, and extreme long shot. Pictured below are these shots along with the con-

straints and minimization functions that can be used to achieve the primitive using the con-

strained optimization framework described in detail in section 5.3. Briefly, the functions

that are listed are the following: TC(obj) retrieves the world space coordinate of the top-

center of the structure; BC(obj) retrieves the world space coordinate of the bottom center

of the structure; Gaze(obj) returns a standard orientation vector for an object, Vec(a,b)

returns a vector between a and b; and P(a) returns the projection of the world space coordi-

nate onto a normalized screen space from {-1,1} in both the horizontal and the vertical

directions.The primitive constraints can be chosen from a palette and modified with a text

editor, encapsulated as the behaviors of an agent (section 6.3), or combined using a visual

programming “drag and drop” paradigm (section 6.4).

Figure 5: Extreme close up

Usually a detail of the face or

another object. Usually fills

most of the frame.

MINIMIZATION FUNC-

TIONS

P TC nose

()() 0 0.9,{ }–

P BC nose()() 0 0.9–,{ }–

Gaze joe() vn•() 1+() 2

Vec vp joe,() vn•() 0>

Camera Primitives 64

Intelligent Camera Control Steven M. Drucker

Figure 6: Big close up

Figure 7: Close up

Composed to show entire

face but does not include the

chin line or the top of the

head.

MINIMIZATION FUNC-

TIONS

P TC nose()() 0 0.3,{ }–

P BC nose()() 0 1.1–,{ }–

Gaze joe() vn•() 1+() 2

Vec vp joe,() vn•() 0>

Composed below the chin

and may include the shoul-

ders, but often not the top of

the head.

MINIMIZATION FUNC-

TIONS

P TC head()() 0 1.2,{ }–

P BC neck()() 0 0.8–,{ }–

Gaze joe() vn•() 1+() 2

Vec vp joe,() vn•() 0>

Camera Primitives 65

Intelligent Camera Control Steven M. Drucker

Figure 8: Medium close up

Figure 9: Med. close3/4

Composed with adequate

headroom and framed above

the elbow and below the

armpit.

MINIMIZATION FUNC-

TIONS

P TC head()() 0 0.7,{ }–

P BC armpits()() 0 0.9–,{ }–

Gaze joe() vn•() 1+() 2

Vec vp joe,() vn•() 0>

In the three-quarter profile

version, the eye which is fur-

thest from the camera should

be approximately at the verti-

cal center, allowing for “look-

ing room.”

MINIMIZATION FUNC-

TIONS

P TC Leye()() 0 0.3,{ }–

P BC armpits()() 0 0.9–,{ }–

Gaze joe() vn•() 1 3
2

-------–+
 2

Vec vp joe,() vn•() 0>

Camera Primitives 66

Intelligent Camera Control Steven M. Drucker

Figure 10: Medium shot

Figure 11: MediumLg shot

Shot composed from subject’s

waist upwards, never above

the waist because the edge of

frame might be at same level

as the elbow which would be

visually confusing.

MINIMIZATION FUNCTIONS

P TC head()() 0 0.7,{ }–

P BC waist()() 0 0.9–,{ }–

Gaze joe() vn•() 1+() 2

Vec vp joe,() vn•() 0>

Shot usually framed slightly

above or slightly below the

knee.

MINIMIZATION FUNC-

TIONS

P TC head()() 0 0.8,{ }–

P BC knees()() 0 0.9–,{ }–

Gaze joe() vn•() 1+() 2

Vec vp joe,() vn•() 0>

Camera Primitives 67

Intelligent Camera Control Steven M. Drucker

Figure 12: Long shot

Figure 13: Very long shot

Comprises the entire body

and is framed below the feet

and above the head with

considerable headroom.

Often used as an introduc-

tory shot since figures are

identifiable and so is a great

deal of of the scene.

MINIMIZATION FUNC-

TIONS

P TC head()() 0 0.8,{ }–

P BC feet()() 0 0.8–,{ }–

Gaze joe() vn•() 1+() 2

Vec vp joe,() vn•() 0>

Widest shot where figure is

still recognizable (this is not

determined automatically).

Care must be taken for fig-

ure position (frame right,

left, top, or bottom) for

matching across edits.

MINIMIZATION FUNC-

TIONS

P TC head()() 0 0.3,{ }–

P BC feet()() 0 0.3–,{ }–

Gaze joe() vn•() 1+() 2

Vec vp joe,() vn•() 0>

Camera Primitives 68

Intelligent Camera Control Steven M. Drucker

Figure 14: Extreme long

For two subjects there are commonly the following kinds of shots: the two shot, and over

the shoulder shots.

Figure 15: Two shot

Also known as wide angle or

wide shot. Figure is so small

as to be unrecognizable (not

determined automatically),

but gives idea of geography

and background.

MINIMIZATION FUNC-

TIONS

P TC head()() 0 0.2,{ }–

P BC feet()() 0 0.2–,{ }–

Gaze joe() vn•() 1+() 2

Vec vp joe,() vn•() 0>

This framing is a medium 2-

shot. Usually characters are

framed at the 1/3 and 2/3’s

lines on the screen.

MINIMIZATION FUNC-

TIONS

P TC head1()() 0.16 0.8,{ }–

P TC waist1()() 0.16 0.8–,{ }–

P TC head2()() 0.16– 0.8,{ }–

P TC waist2()() 0.16 0.8–,{ }–

Gaze joe() vn•() 2

Vec vp joe,() vn•() 0>

Camera Primitives 69

Intelligent Camera Control Steven M. Drucker

Figure 16: Over shoulder

Figure 17: Over shoulder2

In addition to simple shots, Thompson defines two other kinds of shots: complex shots and

developing shots. The complex shot may contain a lens movement, a camera movement, or

simple subject movement, but no mounting movement. The complex shot should have a

Framing is based on emphasiz-

ing the person facing the cam-

era. The person facing away

from the camera has only part

of his shoulder, neck, or head

shown.

MINIMIZATION FUNCTIONS

P TC head1()() 0.16 0.0,{ }–

P TC head2()() 0.16– 0.0,{ }–

Gaze dave() vn•() 1+() 2

Vec vp joe,() vn•() 0>

When filming a conversa-

tion, make sure that the posi-

tions of the characters stay

on the same sides of the

screens across cuts.

MINIMIZATION FUNC-

TIONS

P TC head1()() 0.16 0.0,{ }–

P TC head2()() 0.16– 0.0,{ }

–

Gaze joe() vn•() 1+

Vec vp joe,() vn•() 0>

Camera Primitives 70

Intelligent Camera Control Steven M. Drucker

static start and a static end and if the action or subject movement were frozen at any single

point, then the resulting picture (frame) would resemble a simple shot. This is equivalent

to specifying that a constraint is being satisfied throughout the duration of the complex

shot. The developing shot can include movement of any or all of the 4 elements (lens, cam-

era, mounting, and subject). Developing shots can be thought of as an interpolation

between several simple shots perhaps with some additional constraints such as obstacle

avoidance and visibility detection.

In addition to framing during a shot, editing between shots warrants some amount of dis-

cussion. According to Thompson, each edit should have a good reason for it based on

including as many elements from the following list as possible:

• motivation

• information

• sound

• composition

• camera angle

• continuity

Motivation and information are regarded to be “high-level” issues and are considered to be

out of the scope of this thesis. Sound during edits does not concern camera control. Single

frame composition was just discussed in the previous section, and some generic rules exist

for what kinds of framing can be combined via cuts while making sense to a viewer. For

instance, when filming a conversation between three people, it usually does not make

sense to have two people in the frame and cut to another frame with the other person in the

frame without having the first person in the frame also.

According to Thompson, the camera angle is one of the most important elements of an

edit. One principle is to make sure that each cut is from a different camera angle but never

from more than 180 degrees (often less than 45 degrees if the same subject is being shot on

both sides of the edit). Crossing the 180 degree line causes problems in continuity. Figures

on either side of the cut will seem to be instantly facing the opposite direction than they

were before. Figures that are in motion will suddenly change the direction of apparent

Camera Primitives 71

Intelligent Camera Control Steven M. Drucker

motion. Constraints can be used to require the projection of vectors of gaze or of motion to

be approximately matched from cut to cut.

5.4 Task completion constraints

The constraints described in this section deal with positioning the camera in order to aid in

task completion for object identification or manipulation. The constraints have been

derived from a number of fields of study including earlier work in computer graphics, tele-

operation and robotics. The primary examples are visibility constraints, alignment of

manipulator control axes with the visual display, and positioning the camera based on the

best view in order to identify an object.

5.4.1 Object Visibility

Several strategies can be devised to maintain the visibility of an object.The algorithms

developed for this thesis are compatible with the constrained optimization framework

allowing object visibility constraints to be combined with other constraints such as path

planning and projection constraints. This work is in part based on the strategies suggested

by [Philips92; Seligman91; Karp90].

5.4.2 Object manipulability

When manipulating objects with 2D manipulators, certain views are often better then oth-

ers. For instance, there is often no way of conveniently mapping the motion of a user’s

mouse presses on the screen with a translation of the object in the same direction as the

viewing normal. Also if motions of a manipulator move an object in a different direction

than the corresponding one depicted on the screen, users often can not perform tasks well.

These are constraints suggested by [Philips92] and [McCormick91].

5.5 Object appearance

A number of constraints can be formulated in terms of finding an ideal view for a particu-

lar object. This view usually implies that the object’s projection must fill a certain amount

of the viewport (a projective constraint). It also implies that the projection should provide

as much geometric information as possible about the object [Kamada88]. One way to do

Camera Primitives 72

Intelligent Camera Control Steven M. Drucker

this is to take the basic visibility constraints and maximize the visibility of a number of

preselected faces of an object. Attempts should also be made to minimize distortions of

extreme linear projections (the field of view should not become too large).

5.6 Physical Limitations

In general, physical limitations come about from trying to simulate the motions of a real

camera. One reason to do so, is to design a system to help previsualize the filming of a

movie. By providing the proper physical restrictions on a simulated camera, the system

can help design an appropriate environment for filming a scene. It can also help highlight

difficulties or timing issues during filming. Furthermore, complicated shots can be planned

and practiced before the expensive filming process.

Physical constraints also serve to help place natural constraints on camera movements. In

the real world, a camera can not pass through objects, which can easily occur in a graphi-

cal environment, which is often extremely disorienting. Different kinds of mountings pro-

duce different stylistic effects, such as a natural easing in and out of a motion with a fluid

head.

The constraints derived from the physical domain and demonstrated in this thesis are colli-

sion constraints; pathplanning constraints (where the camera can generate a collision free

path from one point in an environment to another); and velocity constraints on changes in

any of the degrees of freedom of the camera. These are described in more detail in sections

5.11.4 and 5.11.5.

5.7 Human Factors

Hochberg and Brooks [Hochberg86, Hochberg87] discuss a number of issues in the human

perception of motion pictures. Those issues with the most direct bearing on the derivation

of camera primitives are the ability of observers to comprehend changes in camera posi-

tion across temporal sequences of film. One mechanism suggests that if the rate of change

of any of the camera parameters from frame to frame is too large, then the observer may

have difficulties if care is not taken to supply perceptual clues to the other potential mech-

Camera Primitives 73

Intelligent Camera Control Steven M. Drucker

anisms. This suggests that at least one important camera primitive is the ability to specify a

maximum rate of change for any of the camera parameters. What that rate of change

should be however, is extremely dependent on the update rate of frames and the content of

the image. Another mechanism might be the ability of the observer to construct a transfor-

mation that relates objects in one image to objects in subsequent images. This construction

of this transformation may be related to research by Shephard on mental rotation of objects

[Shepard71]. To construct such a transformation though requires readily and uniquely

identifiable objects in the image. Instead of producing a restriction on camera control, this

mechanism might suggest a restriction on the content of the graphical environment. This

restriction may also be the basis for an architectural design technique called wayfinding

[Lynch60], where landmarks are placed in particular places to help keep people oriented.

The final mechanism posits the existance of some sort of cognitive map which may be

built up by the ability to locate and place familiar landmarks in a map in relation to each

other. It is still a debatable issue of whether cognitive maps are represented internally as

spatial maps or as symbolic maps. Evidence exists to support both hypotheses. This mech-

anism argues for a camera primitive that can be considered a meta-primitive. The user

should be able to quickly and conveniently track the position of the camera from some

external, map-like view. Many of the applications demonstrated in this thesis support this

style of interaction. The definition of a constraint to limit the speed of motion of a camera

is discussed in section 5.11.5 and that constraint is used in 6.2.

5.8 The Viewing Transformation

The following section presents the basic mathematical techniques which underlie the con-

straint framework.

5.8.1 Derivation of the standard Viewing Transformation

The fundamental operation of a virtual camera is to transform objects from a perspective

view in the world space of a graphical environment into a device’s display space. The fol-

lowing section describes the mathematical operations that occur to convert points from the

world space in which they are originally represented, into a coordinate system that can be

displayed on the screen. Much of this transformation can occur in the hardware of graphics

workstations so it can be performed very quickly. Many of the constraints described in the

Camera Primitives 74

Intelligent Camera Control Steven M. Drucker

following section are based either on the world space positions and orientations of objects,

or the transformed (projected) positions in terms of display space, so it is crucial to have a

clear understanding of the view transformation process. The following section is taken in

large part from a technical memo by Alvy Ray Smith [Smith84]. This description is sim-

plified so as not to treat clipping and we or skewed viewing windows. Similar derivations

can be found in several standard computer graphic references [Rogers76, Foley90]. For a

more complete treatment, see any of these references.

Figure 18: World Space

The term world-space refers to the mathematical representation of the 3D universe in

which the objects are embedded. Model space refers to a coordinate system embedded in

world space whose origin is attached to a particular object. Eye-space is a coordinate sys-

tem whose origin is attached at the eyepoint from which a view is desired.

vp

vn

vu

Camera Primitives 75

Intelligent Camera Control Steven M. Drucker

Figure 19: Eye Space

In general, the process begins by transforming all objects in the scene into a set of normal-

ized viewing coordinates for which clipping is easy. Clipping of objects outside of the

“view frustrum” (pictured in figure 19) is then performed. The transformation of the

remaining points including a perspective projection is then performed.

Figure 20: Normalized Coordinates after perspective transformation

Smith describes one conventional view specification which is a convenient way to under-

stand and specify the parameters for the virtual camera. First, the location of the

viewp oint

(or eyepoint) is specified in world coordinates. The component of a

view up

 vector which

is perpendicular to a

view normal

 vector gives the “up” direction. Next, the position of the

view plane is specified by the

viewd istance

 (which is along the viewnormal vector from

view

far

near

(-1,1,1)

(1,-1,1)

Y

Z

X

projection

(-1,1,1)

(1,-1,1)

Y

Z

X

Camera Primitives 76

Intelligent Camera Control Steven M. Drucker

the viewpoint). The projection of objects onto this view plane is what will be mapped into

a display. Lastly, the portion of the infinite view plane that is to be mapped onto the display

is specified by a rectangular window relative to the point where the view normal intersects

the view plane. For our purposes, we will assume that this rectangle is centered about the

origin and is of fixed length and width. The viewing frustrum is then the portion of the

viewing volume between the near and far clipping plane. (See figure 19). Typically, the

first step of the viewing pipeline is transformation of the viewing frustrum into a

normal-

ized frustrum

 as pictured in figure 20.

This view specification is used in the following manner:

First, the normalizing transformation is calculated which converts points from world space

into normalized view space (for convenient clipping). This is accomplished as follows:

1) Translate the viewpoint to the origin of the world system: (vp is the viewpoint)

1

2) Transform the world system to “eye-space”. This involves choosing a new basis for the

space where one axis is the view-normal, another axis is the component of the view up

vector perpendicular to the view normal, and the last component is the vector perpendicu-

lar to these two vectors. To calculate the component of the up-vector perpendicular to the

view normal, the following equation can be used (where UP is the up-vector, and n is the

view normal).

2

Then the u vector is calculated form the view normal and this new v vector.

3

And finally the matrix to transform into eyespace is the following:

1 0 0 0

0 1 0 0

0 0 1 0

vpx– vpy– vpz– 1

v UP UP n

⋅()

n

–
UP UP n⋅() n–

---=

u n v

×

=

Camera Primitives 77

Intelligent Camera Control Steven M. Drucker

4

3) Add a matrix to scale the far face of the view volume to a unit square so that it lies at Z

= 1 (where d is the view distance, f is the distance to the far face, and su,sv represent the

half length and half width of the viewing window on the view plane):

5

Internally this can be represented in collapsed form as follows:

 6

4) A perspective transformation needs to be applied to spread the view volume into a rect-

angular prism (where n is the near distance and f is the far distance). For a derivation of

this matrix see [Smith84] or [Foley91]:

u v n
0

0

0

0 0 0 1

d
su f
-------- 0 0 0

0
d

sv f
-------- 0 0

0 0
1
f
--- 0

0 0 0 1

N NLNR
u

T
v

T
n

T
0

T

u vp

⋅()– v vp⋅()– n vp⋅()– 1

d
su f
-------- 0 0 0

0
d

sv f
-------- 0 0

0 0
d

sv f
-------- 0

0 0 0 1

= =

Camera Primitives 78

Intelligent Camera Control Steven M. Drucker

7

By concatenating the matrices (NL) (NR) (P) we have transformed the canonical viewing

frustrum into a rectangular prism of width 2, height 2 and depth 1 centered on the z-axis;

this coordinate system is commonly known as Normalized Device Coordinates (NDC).

5) If desired, the transformation can be taken one step further into real screen coordinates

(where Xmin, Xmax, Ymin, Ymax define the portion of the display screen in image coor-

dinates). The z coordinate can also be mapped into a desired range which is useful for

depth cueing in certain calligraphic style displays. Commonly after this step, values need

to be turned into pixel values by truncating the floating point values into integers:

8

5.8.2 Blinn’s Formulation: Where am I? What am I Looking At? [Blinn88]

Blinn discusses alternate methods of deriving the view transformation matrix. This work is

of special note because of the task level nature of his formulations. In particular, he dis-

cusses four different modes which specify different behaviors:

1. Specify the viewing position and the viewing direction. This is the standard
view transform described in the former section.

2. Specify the screen location onto which a foreground object should be pro-
jected and specify a looking direction. Find the location in space that makes

P

1 0 0 0

0 1 0 0

0 0
f

f n–
------------ 1

0 0 n
f n–
------------– 0

=

D

Xmax Xmin–
2

 0 0 0

0
Ymax Ymin–

2

 0 0

0 0 Zmax Zmin– 0

Xmax Xmin+
2

----------------------------------- Ymax Ymin+
2

---------------------------------- Zmin 1

=

Camera Primitives 79

Intelligent Camera Control Steven M. Drucker

this situation true.
3. Specify the location and space and a screen location for a background object

to be projected onto. Find the view direction that makes this situation true.
4. Specify the screen location of a foreground location and specify the screen

location of a background object and calculate both the viewing position and
the viewing direction that makes the situation true.

Blinn provides an algebraic derivation for each of the modes and discusses how to interpo-

late between the results of different mode specifications in order to create continuous cam-

era movements. His formulation is useful, but relatively simplistic. In each of the modes,

the field of view may not be altered in order to achieve the desired situation. Each mode

must be special cased (there is a different procedure to use to calculate the necessary vec-

tors for each mode). There is no way to find the “best” solution if certain conditions can

not be achieved, or to be able to lock some of the camera parameters to a certain value.

Blinn’s formulations lead naturally to a scheme based on constrained optimization, where

each mode is essentially specifying different constraints that must be satisfied. By refor-

mulating the problem in terms of constrained optimization, the solution process is easier

and has the advantages of addressing all of these problems. There are however some disad-

vantages to an optimization approach which are discussed in section 5.10.

5.9 Object and Camera State Functions

In the following section, let

q

represent the camera parameters where the 7 mem-

bers of

q

 are defined as follows (x,y,z, azimuth, pitch, roll, fov). Fov is defined between 0

and 180 degrees exclusively.

We can easily define a number of functions based on some object O. or some camera state

vector q. Some example functions are listed in tables 5 and 6. After a description of some

constrained optimization techniques, we will derive some basic camera primitives in terms

q

ℜ

7

∈

Camera Primitives 80

Intelligent Camera Control Steven M. Drucker

of these functions..

Table 5: Standard Functions of an Object

Function Definition (in world coordinates)

points(O) returns a list of vertices (or control points) for object O

bbox(O) bounding box: (xmin, ymin, zmin, xmax, ymax, zmax)

centr(O) centroid:((xmin+xmax)/2, (ymin+ymax)/2, (zmin+zmax)/2)

topcentr(O) or TC(O) ((xmin+xmax)/2, (ymin+ymax)/2, zmax)

botcentr(O) or BC(O) ((xmin+xmax)/2, (ymin+ymax)/2, zmin)

centr(O1,O2,...,On) returns average of centroids of all objects

gaze(O) returns standard orientation vector for object O

up(O) returns the standard up vector for object O

Camera Primitives 81

Intelligent Camera Control Steven M. Drucker

5.10 Constrained Optimization Techniques

General non-linear constrained optimization remains an unsolved problem [Fletcher80,

Gill74, Press86]. Some describe the selection of procedures, initial conditions, and param-

eters to be used in an optimization as an “art” [Cohen92].

Several methods for solving constrained optimization problems have been discussed in the

computer graphics literature. This thesis has explored using several of them for solving

camera primitives. In general, an optimization problem can be viewed as a search over

some manifold for a local minimum value. The usual approach for solving an optimization

problem is to select a starting point and then find a direction to move in, and an amount to

move by and iterate until a move in any direction would cause the objective function (the

function being minimized) to increase. Constraints can be incorporated into the optimiza-

Table 6: Standard Functions of Camera State

Function Definition

vp(q) view point (q

x

, q

y

, q

z

)

vn(q) view normal
(sin(q

azimuth

)cos(q

pitch

), cos(q

azimuth

)cos (q

pitch

), sin(q

pitch

))

vu(q) view up vector
(-cos(q

azimuth

)sin(q

roll

) - sin(q

azimuth

)sin(q

pitch

)cos((q

roll

),
sin(q

azimuth

)sin(q

roll

) - cos(q

azimuth

)sin(q

pitch

)cos((q

roll

),
cos (q

pitch

)cos (q

roll

))

proj(q,wsp) or

P

(wsp) Project the worldspace point wsp given camera parameters q
Construct the matrix N (equation 6) from vp(q), vn(q),
vu(q), and matrix P from q

fov

. Calculate screenspace (x,y) :

 (transforming the world space

point with a homogenous divide - the z coordinate should
end up between 0 and 1 for unclipped points).

x y z 1 NP

wspx

wspy

wspz

1

=

Camera Primitives 82

Intelligent Camera Control Steven M. Drucker

tion problem in several different ways. One way is to express the constraints as penalty

functions and add them to the original objective to create a new unconstrained objective

function to be solved. If there is no optimization to be performed, satisfying the constraints

themselves becomes the optimization problem. By expressing only a certain kind of objec-

tive functions as energy values and the constraints can as forces. The search for a local

minimum effectively becomes a forward simulation of a physical system can be used to

bring the system to a minimum energy value subject to constraints. This is the technique

used by [Barzel88, Pentland90].

Another method, which is particularly useful when the system is already at or near the

minimum and the desire is to maintain certain constraints, is to solve a system in equations

in terms of the derivatives of the parameters to be solved and find the velocities which

force the state to stay in the Null-space of the solution, that is, to make sure that the con-

straints are always satisfied. This has the advantage of being a linear system in the deriva-

tives of the camera parameters and can be solved efficiently. This is essentially the method

used for the so-called through-the-lens camera control discussed in section 5.11.3.

Yet another technique is based on the idea that the gradient of the object function must be

equal to some linear combination of the constraint gradiants for the solution to represent a

constrained minimum. This leads to the use of Lagrange multipliers which multiply the

constraints and add the resultant function to the objective function. Again, this turns the

constrained problem into an unconstrained problem in the resulting objecting function.

The Langrange multipliers correspond roughly to influences of the constraints on the

objective function.

5.10.1 Sequential Quadratic Programming

The method used in this thesis is based on the technique of sequential quadratic program-

ming.The following section is based in part on the extremely clear discussion presented in

[Cohen92]. By combining Lagrange’s methods with a Newton style search for a solution,

the problem can be formulated as a sequence of quadratic subproblems that lead to a solu-

tion of the constrained problem. The gradient of the Lagrangian at a local optimum

 must be equal to 0.S* λ

*,()

Camera Primitives 83

Intelligent Camera Control Steven M. Drucker

9

We start at an initial guess for the optimum state, S, and the multipliers , of .

Expanding the (k+1)

st

 iteration into a first order Taylor series around the k

th

 iteration and

set it equal to 0 we get:

10

11

where:

12

and R and C are the original objective and constraint functions respectively.

Using Newton’s method, construct a linearized system around the current guess and equate

the Hessian of the Lagrangian times a step , with the gradiant of the

Lagrangian.

13

or

14

Since , one can solve for changes in the state S and directly for the next

set of Lagrange multipliers, :

15

This defines a sequence of quadratic subproblems, thus the name Sequential Quadratic

L S* λ

*,()∇

0=

λ S0 λ

0,()

L Sk 1+ λk 1+,()∇

T
L Sk S∂+ λk λ∂+,()∇ T

≈

Lk
T

L S∂ λ∂,()∇ 2+
T

∇

0=

L∇

2
∇ SS

2
L ∇ λS

2
L

∇ Sλ
2

L ∇ λλ
2

L

∇ 2
R λT ∇ 2

C+ ∇ 2
C

T

∇ C 0
= =

Sk∂ λ

k∂,()

Lk

Sk∂

λk∂
∇

2 Lk
T

∇=

∇ 2
Rk λk

T ∇ 2
Ck+ ∇ 2

Ck
T

∇ Ck 0

Sk∂

λk∂
∇ Rk

T
– ∇ Ck

Tλk–

Ck–
=

λ

k∂ λ

k 1+ λ

k

–=

λ

k 1+

∇ 2
Rk λk

T ∇ 2
Ck+ ∇ 2

Ck
T

∇ Ck 0

Sk∂

λk 1+∂
∇ Rk

T
–

Ck–
=

Camera Primitives 84

Intelligent Camera Control Steven M. Drucker

Programming. Each step performs a minimization of the Lagrangian subject to a linearized

set of constraints.

This procedure can be modified to first move into a region where the constraints are ini-

tially satisfied (the feasible region) and then to guarantee that all movements toward the

optimum solution remain in this region. Again, local minima can be a serious problem,

especially if the region where the constraints are satisfied is discontinuous. If this is the

case, the solution process might first bring the state into a region where the global mini-

mum is not reachable.

In many of these methods, constraints can be considered to be either hard or soft, meaning

that either the solution is invalid if the constraint is violated (hard), or the constraint can be

violated in order to account for other optimization conditions (soft). In general, if the con-

straint is to be a soft constraint, it should be included as part of the objective function in the

minimization through an energy based penalty term. If the constraint is to be a hard con-

straint, it can be incorporated into the solution in the following way:

1) It may be fixed at a certain value (if it is an equality constraint) and elimi-
nated from the minimization,

2) It may be incorporated as a boundary value for one of the parameters (if it
is directly one of the state variables), or

3) It may be a incorporated into a constraint equation that must be satisfied
during the course of optimization.

For a more complete analysis of constrained optimization techniques, several good refer-

ences are available [Fletcher80, Gill81, Press88].

The method used in this thesis is to formulate the problem in terms of constraints and min-

imizations on the state variables of the virtual camera directly and hand off the problem to

the appropriate constraint solver. An implementation of Sequential Quadratic Program-

ming, CFSQP [Lawrence94], described in appendix 4, was used as one of the primary

methods of performing constrained optimization for the camera primitives. For soft con-

straints, the camera functions were specified as energy terms and incorporated into the

Camera Primitives 85

Intelligent Camera Control Steven M. Drucker

objective functions. Hard constraints were incoroporated into the quadratic programming

problem through lagrange multipliers. Inequality constraints were incorporated by finding

the set of inequality constraints that were active at any time (the active set) and combining

these with the objective functions with non-zero The minimization algorithm CFSQP was

chosen primarily for several reasons:

1) It is a general purpose constrained optimizer with a robust solving algo-
rithm, and can identify halting conditions on the solution.

2) It can handle both equality and inequality constraints.
3) It can handle a wide range of constraint and objective functions, including

both linear and nonlinear objective functions and linear and non-linear
equality and inequality constraints.

4) The system can calculate derivatives of both the objective functions and
constraint functions by finite differences if the derivative functions are not
given. Obviously, the system can perform significantly better (both faster
and more robustly) if explicit derivatives are given, but the system does
manage to solve a wide variety of conditions.

A number of the constraints described in sections 5.11.1 - 5.11.7 are specified in the way

that they have been formulated for input into the CFSQP constraint solver.

In general, input to the CFSQP is structured in the following way:

1) N scalar objective functions may be specified. The maximum valued objec-
tive function at any iteration is minimized for that iteration. This allows
convenient user controlled weighting of the objective functions at any time
during the optimization process.

2) Upper and lower bounds for the state variables can be chosen. The current
iteration state is immediately moved to the nearest boundary value. This
allows for extremely convenient specification of hard constraints for any of
the state variables for the camera.

3) NINEQ inequality constraints both non-linear and linear may be specified.
4) NEQ equality constraints both non-linear and linear may be specified.
5) If the constraints can not be satisfied, the system will report which con-

straints were violated, though the system is currently not built to detect

Camera Primitives 86

Intelligent Camera Control Steven M. Drucker

why the constraints might fail (for instance if two contradictory constraints
are combined). The system will also report failure to produce a minimum
value in a specified number of iterations.

Interfaces for creating and combining constraints and objective functions are described in

chapter 6. In general constraints and objective functions can be created in the following

ways:

1) A text editor may be used to construct routines which can be loaded into
the extended 3d interpreter at runtime. This has the advantage of being
extremely flexible, but the disadvantage of being hindered by the run-time
performance of the interpreter. A faster interpreter or a compiler would be
desirable. An example is shown in appendix section 4.4.

2) The routines may be coded in C and compiled into the system. This has the
advantage of evaluating extremely rapidly (often at over 15 Hz on an IRIS
Indigo workstation), but the disadvantage of requiring compiling and link-
ing for new combinations of constraints. An example is shown in appendix
section 4.5.

3) Certain primitive constraints and objective functions (along with initial
conditions) may be combined using a visible programming language which
is described in section 6.4. These combinations may then be sequenced into
automatic routines to film specific situations.

4) Constraints and objective may be embedded as the behaviors for a reactive
agent. This is described in detail in section 6.3.

5.10.2 Local Minima

Constrained optimization problems can have a number of problems, including computa-

tional complexity and local minima. Since, in general, we only have 7 camera variables to

optimize, computational complexity issues are usually not overriding though a multi-reso-

lution approach might be appropriate for complicated higher dimensional searches. In fact,

because of the solution method chosen, the greater the number of constraints, the faster the

solution usually is. The local minima problem is however much more vexing. Our

approach to avoiding local minima involves 5 prongs of attack:

1) Try to formulate the problem in such a way that there is guaranteed to be

Camera Primitives 87

Intelligent Camera Control Steven M. Drucker

no local minima. This is not always possible, but it is the basis for the tech-
niques used for path planning and visibility calculation discussed in appen-
dices 1 and 2.

2) Discretize space and use a depth first approach to searching the solution
space.

3) Find an initial condition based on heuristic or geometric reasoning that
might be close to a final solution.

4) Allow user assistance in the constraint solving process.
5) Restart the constrained minimization from a large number of initial condi-

tions and find the lowest local minimum.

5.11 Camera Constraints Formalized

5.11.1 Direct constraints on DOFs in relation to the environment:

, where .

Implementation

:

These constraints can be accomplished in one of two fashions, either as strict constraints,

where the solution is not appropriate without the constraints being satisfied, or as “soft”

constraints, where the solution should try to achieve the constraints, balanced with other

constraints.

In the system that we have chosen to use, boundary values can be chosen as a special effi-

cient form of a constraint. Thus the lower or upper bounds of any of the degrees of free-

dom can be chosen for the VC. Alternatively, if any state variable is to be fixed directly,

they can be fixed and removed from the minimization function. Since it is especially easy

to bound values of the state variables, the parametrization chosen in which to formulate the

camera control does affect the convenience in the formulation of the camera control prob-

lem. This is counter to the statement of Gleicher & Witkin [Gleicher92] that the camera

formulation is not important. It is my belief that the camera parameterization chosen can

affect the ease in which certain camera primitives are specified. One example is based on

the desire to constrain the roll vector of the camera to 0. By explicitly including a state

variable for roll, it is particularly easy to constrain the variable. At other times, other

parametrization are convenient.

k

1 q k2

≤ ≤ k1 k2{ , }

ℜ

7

∈

Camera Primitives 89

Intelligent Camera Control Steven M. Drucker

5.11.3 Projective constraints based on projection of an object:

P

(q,F(O)) =

sp

where

P

 is the projection operator described in table 6, F(O) is a function of the object

position described in table 5 and

sp

 is the screenspace position of the projection, .

These constraints are really a subset of the previous section, but since it is such a funda-

mental constraint in describing the composition of a frame, it deserves its own section.

Implementation:

In TTL control, described by [Gleicher92], the solution strategy is simple. Assume that the

Table 8: Examples of Direct Constraints Relating to an Object:

Constraint Purpose

x,y,z = centr(O) Place viewpoint at the center of an
object (to look from one object to
another).

azimuth, pitch = gaze(O) Set the camera to be the same
direction as a character is looking.
(If the two constraints are com-
bined then the camera would view
the environment from the charac-
ter’s point of view).

roll = up(O) Set orientation of camera based on
characters. Follow the roll of a
plane, or align visual axes with a
manipulator’s axes.

azim, pitch = vec(O1, O2) Set the camera’s view normal to
look in the direction of O2, from
O1. Thus if the character is at O1,
then O2 would be centered in the
display for the camera. This is bet-
ter described in terms of a projec-
tion constraint (see next section).

sp

ℜ

2

∈

Camera Primitives 90

Intelligent Camera Control Steven M. Drucker

camera parameters are either appropriate for the constraint or nearly so. Changes in the

camera parameters will have corresponding changes on the position of the projection of an

object. If the projection of an object is described as , where and

 is and h maps from , where

V

 is the viewing function and

h

 is a projec-

tion operator, then

 16

where

17

or where

J

 is the Jacobian of the projection and view operators. Since this is a linear

equation, we can solve for the change in camera parameters by inverting the Jacobian.

The Jacobian is not necessarily a square or full rank matrix so the pseudo inverse is used.

When the pseudo inverse of J is multiplied by the desired we can find the desired .

By integrating this and adding it to the initial

q

 we can find the final camera parameters

that will bring about a desired projection

p

of the worldspace point

 x

. The advantage to

this approach is that it is extremely fast since the matrix is fairly small and fairly easy to

invert.

There are however some disadvantages. The initial starting point needs to be close to the

final position or this approach will not work. Although we can attempt to find a trajectory

in screen space for the desired point to be projected onto, this has problems if the solution

passes through a singularity (a point at which a small change in the view parameters brings

about an enormous change in the resulting projected point). Care must also be taken to

weight the contributions from the different parameters appropriately, or else the least

squares solution inherent in the pseudo-inverse will preferentially treat some parameters

more than others on the basis of the units that might have been used for measuring them.

p h V q x

,()()= p

ℜ

2

∈

x

ℜ

3

∈ ℜ

3 ℜ

2

→

ṗ h' V q x,()()
q∂

∂ V q x,()

 q̇=

h' x()

1
x4
----- 0

0
1
x4

0 0

x1

x4
2

-----–
x2

x4
2

=

p

˙ Jq

˙

=

q

˙

p

˙ q

˙

q

˙

Camera Primitives 91

Intelligent Camera Control Steven M. Drucker

This approach is best suited to maintaining constraints, especially when trying to manipu-

late the camera or objects directly subject to those constraints.

An alternate approach to formulating the problem as a minimization of the distance

between the screen-space projection of a point and the desired screen-space location. This

has the advantage that the solution does not tend to go unstable (as the other approach can

do for large initial distances from the target location). Care however, must be taken in this

approach that the desired solution is one that is appropriate, for instance even if the camera

is facing directly away from the object, the projection operator would still produce a

screen space projection at the desired position (though nothing would be seen because it is

clipped from the view frustrum).

Table 9: Examples of Projection Constraints:

Constraint Purpose

Proj(centr(O)) - (x,y) Constrain the projection of the
center of an object to lie at an
exact screen space position.

(0,0) < Proj(centr(O)) < (1,1) Constrain the center of an object
to be projected somewhere on the
screen.

(xmin, ymin) < Proj(centr(0)) <
(xmax, ymax)

Constrain the center of an object
to lie in some region on the
screen.

Proj(centr(O)) < (xmin, ymin) ||
Proj(centr(O))>(xmax,ymax)

Make sure that the center of an
object does not appear on the
screen..

(xmin, ymin) < Proj(points(O)) <
(xmax, ymax)

Make sure that all points of an
object lie in some region on the
screen.

Camera Primitives 92

Intelligent Camera Control Steven M. Drucker

5.11.4 Constraints based on entire environment:

There are two broad classes of constraints that I classify in this area: visibility related con-

straints, and path planning constraints. They turn out to be intimately related.

Pathplanning

In path planning, the goal is to reach a certain desired position while preventing movement

Proj(pt1(O)) = sp1, &
Proj(pt2(O)) =sp2

Constrain a vector in world space
to lie on a vector in screen space
(so that a gaze might be posi-
tioned in a certain direction on
the screen).
Also can be used to constrain the
size of an object by specifying
the top and bottom positions for
the object. These were the types
of constraints used in the section
describing simple cinematic
shots.

Proj(pt1(O)) = sp1, &
Proj(pt2(O)) = sp2 &&
fov

By combining the previous con-
straint with minimizing the fov,
the camera will zoom as much as
possible while still keeping the
two characters in view at the
same time.

ycoord(Proj(pt1(O))) - yco-
ord(Proj(pt2(O))) = k

Constrain the height of the pro-
jected region to be a certain
amount, independent of screen
position. Thus if pt1 represents
the type of a character’s face, and
pt2 represents the bottom, then
this constraint can be used to
make sure that the character’s
face takes up half the screen.

Table 9: Examples of Projection Constraints:

Constraint Purpose

Camera Primitives 93

Intelligent Camera Control Steven M. Drucker

through obstacles. This can be viewed as an optimization condition based on the current

state’s distance from the desired location with constraints that strictly prevent movement

through the obstacles. One way of formulating this problem is to first polygonalize the

environment, and then decompose all concave polygons into convex polygons, these con-

straints can be expressed as the intersection of multiple linear inequality constraints. Addi-

tional optimization conditions can be added so that the solution does not pass too closely

to the object boundaries. Figure 21 shows the combination of these constraints. An addi-

tional constraint is added so that during any time step, the goal position for each iteration

must be within a fixed distance of the starting state. This fixed distance increases with each

iteration of the optimization. This prevents the state from changing to the optimal position

immediately and creates a series of positions for the camera to travel along for an unoc-

cluded path.

Because the path planning algorithm when formulated in this fashion is both numerically

inefficient and prone to local minima, separate algorithmic approaches have been taken to

solve the path planning problem specifically. These algorithms are discussed in appendix

A1. Figure 22 represents one way of generating the constraint surface based on the sum of

repulsive and attractive potentials which is useful in constructing a potential function

which can then be minimized for camera position. The bumps in the potential function rep-

resent obstacles and the low point represents a desired goal position. This method has

problems with local minima and methods to avoid local minima and alternate methods of

forming the potential surface are discussed in appendix 1. The camera position is consid-

ered to be seperable from the camera orientation which is not always strictly true.

Camera Primitives 94

Intelligent Camera Control Steven M. Drucker

Figure 21: Path planning with intersection inequality constraints

Figure 22: Sum of “repulsive” and “attractive” constraints for path planning optimization

Visibility

Constraints for visibility are quite similar to path planning constraints. In general an allow-

able region is found, and a path to that allowable region is found through minimization.

Specifically, visible regions to a certain point are first calculated and a function is

expressed as the nearest distance to a visible region. This optimization function can now

be added to any other optimizing functions in order to keep a certain object visible as it

moves. One way of picturing the visibility constraint is from figure 23. The algorithm used

in the visibility assistant for this thesis was slightly different and is described in appendix

2. It is based on a potential function for camera position based on the azimuth and pitch

from the point of view of the target object. This restricts the camera to move along a hemi-

Camera Primitives 95

Intelligent Camera Control Steven M. Drucker

sphere of constant distance away from the target object and will not find visible positions

that are nearer to the target object then the current camera position.

Figure 23: Visibility regions are the complement of shadows cast from a light.

5.11.5 Constraints on derivatives of DOFs:

, where .

Implementation:

One method of incorporating derivative constraints is to solve for the rest of the constraints

first and then use the derivative constraints as boundary values for the camera parameters.

If a single maximum velocity is used for the entire duration of the camera movement, a

“bang-bang” movement results where the speed of movement is either the maximum or

nothing. Velocity profiles can be used to help ease into and out of camera movements.

Another method of implementing this constraint, especially useful when they involve

derivatives of functions of the camera parameters rather than parameters directly, is to cal-

culate a new set of the pertinent camera values directly and tightly constrain the derived

parameters while optimizing on the other parameters.

k

1 q̇ k2

≤ ≤ k1 k2{ , }

ℜ

7

∈

Camera Primitives 96

Intelligent Camera Control Steven M. Drucker

5.11.6 Changing constraints:

F(q1,t1) = k2; F(q2,t2) = k2

Constraint at time t1 differs from constraint at time t2.

Implementation:

Camera parameters can be found for constraints at time t1 and at time t2 and the values

interpolated over time, or the constraints themselves can interpolate over time. For exam-

ple, to pan from object A to object B, one might vary the projection of a virtual object

which occupies a position interpolated between object A and object B’s position at the

beginning and end of the time period.

Table 10: Examples of constraints on derivatives of DOFs

Example Purpose

d(pan)/dt < theta_max Don’t pan too quickly. This
can be used to help maintain
context and user orientation.

d(zoom)/dt < zoom_max Limit the speed of zooming
in or out.

d(right(q))/dt = speed dolly to the right at a given
speed. If a projection con-
straint is in operation at the
same time, this has the effect
of circling about an object at
a given rate.

Camera Primitives 97

Intelligent Camera Control Steven M. Drucker

5.11.7 Constraints based on another camera:

In a system with multiple viewports, one camera can be treated as any other object in the

environment from another camera’s view. All the constraints described in the previous sec-

tion relating a camera’s positions based on an object can be used.

Table 11: Examples of changing constraints:

Example Purpose

Proj(centr(O1)) = sp1, at time 1
&&
Proj(centr(O2)) = sp2 at time 2

Pan from object O1 to object O2
at a rate such that at time 1 the
camera starts with object O1 pro-
jected to screen space position
sp1, and at time 2, object O2 is
projected to screen space position
sp2.

Proj(centr(O1)) = sp1, at time 1
while tightly constraining position
&&
Proj(centr(O1)) = sp1 at time 2
while tightly constraining viewing
angle

Pan to follow object until time 2
and then move with the object to
keep it in view.

Camera Primitives 98

Intelligent Camera Control Steven M. Drucker

5.12 Blinn’s formulations revisited

Using the constraints described in sections 5.11.1 and 5.11.3, it is trivial to reformulate the

solutions to Blinn’s modes of camera control discussed in section 5.8.2. All that needs to

be done is combine a direct constraint on the camera parameters, and a projected con-

straint on an object position.

1. Specify the viewing position and the viewing direction. This is the standard
view transform described in the former section.

Constrain the view position and view orientation values tightly with boundary values, or if

it is intended to combine with other constraints, use the form of soft constraint described in

5.11.1.

2. Specify the screen location that a foreground object should be projected and
specify a looking direction. Find the location in space that makes this situa-
tion true.

Table 12: Examples of constraints based on other cameras:

Purpose

Track a camera or stay at a fixed location relative to the cam-

era.

Produce alternate views that stay oriented with each other.

For example, if one camera is showing a frontal view, then the

other camera might always produce a view which is 90

degrees away from the other view.

If one camera is seeing this, then another camera might be

constrained to do something related but in a completely dif-

ferent region of the graphical environment.

Camera Primitives 99

Intelligent Camera Control Steven M. Drucker

Constrain the view orientation values tightly with narrow boundary values. Minimize the

function

 ||proj(q,x)

-

(xd, yd)||.

 In other words, minimize the distance between the desired

projection of the object

(xd, yd)

 and the actual projection of the object

proj(q,x)

, where

x

represents the world space centroid of the object (centr(obj)), and

q

 represents the camera

parameters. Care must be taken that the derived camera position does not project behind

the viewer. Another constraint can be added so that the vector between the view position

and the object is facing the same direction as the view normal (

vn

 • (

vp

-

x

) > 0), where

vn

represents the view normal component of the camera parameters and

vp

 represents the

view position component of the camera parameters.

3. Specify the location and space and a screen location for a background object
to be projected onto. Find the view direction that makes this situation true.

Constrain the view position values tightly with narrow boundary values. As in mode 2,

minimize the function

||proj(q,x)

-

(xd, yd)||

. The same constraint needs to be added to

make sure that the derived camera position is pointing towards the viewer as opposed to

away from the viewer.

4. Specify the screen location of a foreground location and specify the screen
location of a background object and calculate both the viewing position and
the viewing direction that makes the situation true.

Minimize two functions of the form

 ||proj(q,x)

-

(xd, yd)||

 where there is a different world

point

x

 for each object and a different desired screen position

(xd,yd)

 for each object. One

additional advantage of specifying these modes in the form of constrained minimization is

that we can also choose to set a certain camera parameter and have the solution achieve the

best camera position possible. For example, we can choose to place object1 at

(x1,y1)

 and

object2 at

(x2,y2)

 subject to the constraint that the camera does not roll at all.

From Task to Interface 100

Intelligent Camera Control Steven M. Drucker

CHAPTER 6. FROM TASK TO INTERFACE

Previous chapters discussed a taxonomy of domains, several styles of interaction in each

domain were examined, and camera primitives were formally expressed in a constrained

optimization framework. This section is devoted to an analysis of five specific applications

and the development of interfaces for controlling the camera to accomplish tasks in each.

The applications were chosen to illustrate a wide variety of types of interfaces that can be

built on top of the constraint framework, and to demonstrate the fact that the framework’s

utility can span a sufficiently representative sampling of application domains.

The applications discussed here are a

Virtual Museum, a Mission Planning System, a Vir-

tual Conversation Assistant, a Virtual Football Game, and a Visibility Assistant. The Virtual

Museum was used to examine an example in an exploratory domain. The Mission Planner

is an instance of a task from the rehearsal domain. The Virtual Conversation Assistant and

the Virtual Football Game are both tasks primarily from the planning domain, and the Vis-

ibility Assistant is a prototypical control domain task. Styles of interaction range from

extremely tight coupling between the user and the degrees of freedom of the camera via a

head mounted display or joystick control, to semi-autonomous path finding through a

space, to a reactive camera agent which senses and responds to changes in the environ-

ment. A visual programming interface is also discussed to combine and sequence camera

behaviors by dragging initial conditions, constraints, and controllers into camera agents.

6.1 Example: The Virtual Museum

Our first domain is the Virtual Museum [Drucker94]. A museum was chosen since it is a

visually rich, spatially organized, information space [Miller92]. It is important to note that

the museum represents any spatially organized database, and some tasks that might seem

From Task to Interface 101

Intelligent Camera Control Steven M. Drucker

nonsensical in the museum domain do make sense in an alternate, but similar domain. One

alternate domain might be the exploration of data about a human body compiled from a

variety of medical scans. This domain emphasizes the importance of the spatial organiza-

tion of data. A well designed museum uses this spatial organization to make effective state-

ments on the content [Sand94].

We divide the kinds of tasks that we wish to perform in the spatial database into two essen-

tial categories: exploring and navigating. By exploring, I mean a general search for infor-

mation but not necessarily specific information. By navigating, I mean moving to a

specific location within the environment. Orienting oneself is an important component for

both of these categories.

Examples of the basic tasks that comprise the museum are shown in the following table.

Equivalent tasks for medical exploration are also shown. This medical exploration might

be either an examination of pre-gathered medical data, or perhaps on-line control of an

arthroscope. The latter might be more suitably described as a control-oriented task, but

since the primary goal here is to gather information, I will consider it in this section.

From Task to Interface 102

Intelligent Camera Control Steven M. Drucker

Naturally, one of the first things that one wishes to be able to do in a museum is to see the

artwork. One does not need to have a museum to see the artwork (especially a virtual

museum) since one can be shown representations of the artwork in any form, such as a pic-

ture book. The virtual museum has one advantage over a picture book, of being able to

place the user within the environment and show the relative scale of the works of art. In

addition, there does not need to be any spatial organization of the material if one’s only

goal is to see specific pieces of art. However most museums are designed with some orga-

Table 13: Visual Tasks in an exploratory domain

Virtual Museum Medical Exploration

View a painting or sculpture View a structure in the body.

View several artworks
sequentially.

Show several different struc-
tures.

View several artworks in an
organized fashion.Use data-
base capabilities to organize
the information cognitively.

See an entire system of the
body.

Browse through the museum
based on spatial location.

Move through a human body,
viewing structures.

Locate one’s position within
the museum.

Find the position of the cam-
era (could be a tracked arthro-
scope).

Travel to a specific artwork
seeing other artworks along
the way. Don’t confuse the
user by moving through
obstacles.

Move from the current loca-
tion to a specifically identified
structure, making sure that
proper constraints are main-
tained (don’t move in such a
way as to damage the body).

Guided tour of the museum
based on specific requests, or
instructions of a third party.

Instructional tour of systems
of the body.

From Task to Interface 103

Intelligent Camera Control Steven M. Drucker

nizing principles, and the virtual museum allows the spatial organization to be perceived

directly. The equivalent task in the medical domain is to look at a particular organ that has

been already isolated.Ssince it might be difficult to isolate a structure, spatially moving

through the body might be the best way to see that structure.

Another purpose of examining the museum might be to become familiar with the spatial

layout as a prelude to visiting a real museum. In this case, a means of browsing through the

space of the museum is necessary. However, if the controls for browsing the space are too

obtrusive, the system forces the user to pay more attention to the controls than to browsing

the space itself. For example, often, one does not get to see a new city if one has to drive

through the city and pay more attention to the traffic and the street signs in order to get to a

particular destination. One can sit on a tour bus and have a better view of the surroundings.

Alternately, many people complain that if they don’t do the controlling, they never are able

to find their way through the environment without assistance later. No one solution to all

tasks is appropriate, so an interface must support a wide range of different styles of inter-

action.

It is interesting to note that the spatial layout of space can be used as an organizing princi-

ple for human memory [Miller72]. Associating objects with positions along a path through

a museum can aid in their recall. This same spatial organizing principle can serve to help

enhance the experience of viewing the artwork.

Finally, the user might wish to be taken on a guided tour through the museum seeing dif-

ferent artwork in sequence. Again, this could be done through a picture book, but by being

able to compare sizes of work in context can enhance the experience.

6.1.1 Implementation

The museum was designed in such a way that task assistants can be added as individual

camera modules

. A camera module is an encapsulation of the camera primitives along

with some other interface components including initial conditions, controllers, and local

state. As can be clearly seen from the description above, no one interface is best suited to

performing all tasks. By expressing the task assistants in terms of combinable primitives,

From Task to Interface 104

Intelligent Camera Control Steven M. Drucker

not only can the primitives be reused for other domains, but new tasks can be built by com-

bining existing primitives with new, specifically programmed ones.

Figure 24 describes the way in which the museum has been implemented.

Figure 24: The Virtual Museum System

The Virtual Museum system is structured this way to emphasize the division between the

virtual environment database, the camera framework, and the interface that is placed on

top. Figure 24 is comprised of the following parts:

• The

extended 3D system

 which is the core part of the system and is
described in appendix 3.

• An

object database

 for the virtual museum environment. The virtual
museum has precalculated colors based on radiosity computations which
the extended 3D system supports. The database also contains information
about the placement and descriptions of all artwork within the museum.

• Camera modules

: These will be described in detail in the following sub-
section. Essentially, they encapsulate the behavior of the camera for differ-
ent styles of interaction. They are prespecified by the user and hooked to

W3D system

Renderer

Object
Database

Camera
Modules

Interpreter

Interface Widgets

Map View

View Saver

Time
Controller

Painting
List

Tour List

Camera
Controller

Virtual
Joystick

Camera

State

From Task to Interface 105

Intelligent Camera Control Steven M. Drucker

various different interface widgets (several widgets can be connected to
several camera modules). The currently active camera module handles all
user inputs and attempts to satisfy all the constraints contained within the
module to come up with camera parameters that are then used by the ren-
derer in creating the final image. Currently, only one camera module is
active at any one time, though if there were multiple viewports, their could
be one camera module active per viewport.

• Interface widgets

: The diagram also shows that there are 7 different types
of interface widgets that can be used to control the camera within the
museum. These different widgets illustrate different styles of interaction
based on the task level goals of the user.

Figure 25: Generic Camera Module

Camera Modules: As shown in figure 25, the generic module contains the following:

• the local state: must always contain the camera position, camera view nor-
mal, camera "up" vector, and field of view. State can also contain values
for the camera parameter derivatives, a value for time, or other local infor-
mation specific to the operation of that module. While the module is acti-
vated, the state's camera parameters are output to the renderer.

• initializer: this is a routine that is run upon activation of a module, typical
initial conditions are to set up the state based on a previous module's state.

• controller: translates user inputs either directly into the camera state or into
constraints, there can be at most one controller per module.

• constraints: (camera primitives) to be satisfied during the time period that
the module is active. Some examples of constraints are as follows:

Controller

Initiallizer State

Constraint List

Generic Camera Module

From Task to Interface 106

Intelligent Camera Control Steven M. Drucker

• maintain the camera's up vector so it is aligned with a world up
• maintain the position of the camera at a certain height relative the

floor
• maintain the camera's gaze toward a specified object
• keep the camera's position along a collision free path through the

environment

In this system, the camera primitive can be viewed simply as a black box that produces

values for some degrees of freedom (DOF) of the camera based on the methods described

in chapter 5. The constraint solver combines these constraints to come up with the final

camera parameters for a particular module.

Figure 26: Wiring diagram between interface widgets and modules.

Interface WidgetsCamera Modules

Map View

View Saver

Time
Controller

Painting
List

Tour List

Camera
Controller

Virtual
Joystick

Map

View

Path

sends mouse x,y, button

sends mouse x,y, button

sends save/restore view#

sends time info

change plan constraint

sets destination info

sets destination infosets destination infoPainting

DOF

Joystick

sends DOF command

From Task to Interface 108

Intelligent Camera Control Steven M. Drucker

Figure 27: Schematic view of the “path” camera module

The path camera module is the most complicated module (see figure 27). It contains a

primitive that calculates a path from a start position to a destination position (set when

clicking on the painting list). It uses the local state's time (modified by the time widget) to

indicate the current position of the camera in the (x,y) plane. The time widget can either

set a particular time, or continuously update time in order to move forwards or backwards

along the path. The path camera module uses several additional constraints in calculating

the final camera parameters. The height is constrained to be a desired height off the

ground (which is adjustable through the height constraint). The camera's up vector is con-

strained to always point in the same direction as the world up vector. The gaze direction is

adjusted to look at the destination object when it is visible, or to look straight ahead (based

on the current derivatives of the camera parameters) when the destination object is not vis-

ible. Furthermore, the gaze direction is constrained to change at a rate no greater than a

specified maximum pan velocity. If instead of a single painting, multiple paintings have

been selected, the path module's path planning constraint generates a guided tour through

all the selected paintings. The immediate destination is kept track of by the controller and

placed in the local state's destination slot. All the other constraints act in the same manner

as before.

6.1.2 Results

An evaluation of the virtual museum is discussed in section 7.2.1.

Schematic view of Path Module

path
plan

constraint

state
destination time

lookat view up height

camera parameters

pan
velocity

constraint list

Initializer

Controller

time widget paint list widget

destination
time

From Task to Interface 109

Intelligent Camera Control Steven M. Drucker

Figure 28: Overhead view of museum

Figure 29: 4 shots of the museum along a computed path

From Task to Interface 110

Intelligent Camera Control Steven M. Drucker

6.2 Example: The Mission Planner

The mission planning system was designed to aid user’s in enhancing situational aware-

ness for pre-mission rehearsals and briefings. The system can use a conventional CRT dis-

play or a fully immersive head tracking display and a force feedback device. For input, a

conventional mouse/window system is provided or more sophisticated voice and gesture

recognition can be used.

The interface for the mission planning system was designed after a discussion with current

experts in the field and references [Bate88, Chamberlain88, Penn89]. The system provides

computational models of many of the elements of a mission, including g-load require-

ments for modifiable flight paths, and visibility detection for threats. The reader is referred

to [Zeltzer92] for a more complete description of the mission planning system.

Basic visual tasks in the mission planner are shown in table 14.

Table 14: Tasks in the Mission Planner

Mission Planner

Give the user the view from
any object in the environment.

See one object in relation to
another object.

Give a reference view of the
mission environment.

Track the movements of an
object in the environment.

Allow changes of view that
are not confusing.

Allow easy determination of
lines of sight between objects,
targets, and threats.

From Task to Interface 111

Intelligent Camera Control Steven M. Drucker

The camera control that is implemented in the mission planning system has two main

requirements: 1) easy and convenient symbolic specification for the camera, and 2) main-

tain the user’s awareness of the current context. One important aspect of the interface for

the mission planner was the use of a head mounted display to provide immersion within

the environment. Because of the immersion, the best way to operate the controls was via

voice commands, since the hands were no longer able to operate a mouse/menu system.

Using the voice necessitated mapping user’s requests into a small set of concise commands

which can be issued over the voice recognition system. The following commands are sup-

ported: saving and restoring views, panning, zooming, trucking, dollying, craning, tilting,

rolling, look at an object, look from an object, “over-the-shoulder” from object 1 to object

2.

The look at object constrains the projection of the object to appear at the same position on

the screen either as the viewpoint moves (if the user’s view is already attached to an

object) or as the object of interest moves. The look from an object constrains the virtual

camera to be at a certain point within the cockpit of an airplane (or within a tank). If the

user is not already looking at another object, the view vector is constrained to be along the

direction of flight of the plane while constraining the view up vector to be aligned with the

up vector of the plane (which banks for turns). The “over-the-shoulder” shots can be

implemented with the same constraints that are used in an over-the-shoulder shot in a con-

versation (see section 5.3).

The second requirement prevents the system from changing the view too rapidly which

might make it difficult to maintain context in the system. An additional constraint is added

which specifies a maximum change of any of the camera parameters from one frame to

another. The camera state will change this maximum amount and converge to the desired

value over several frames. This permits panning from one object of interest to another

object of interest, or moving the viewpoint from one point to another without losing con-

text.

Lastly, a rudimentary visibility constraint has been added to the system which tests

From Task to Interface 112

Intelligent Camera Control Steven M. Drucker

whether an object is visible to a certain designated “threat” object. The version of the visi-

bility constraint does not move the camera to a visible position (as described in section

5.11.4), but only indicates a boolean condition of whether an object is visible or not.

6.2.1 Implementation

The implementation of the mission planner is similar to that of the virtual museum.

Figure 30: Overview of the mission planner

The mission planner system is implemented in W3D and interfaces with a headmounted

display (VPL EyePhone), a voice recognition system (Articulate Systems Voice Navigator

running on a Macintosh and connected to W3D via a serial connection), a force feedback

device [Russo90, Minsky90], and an aircraft simulation running on a separate workstation.

A typical camera module contains constraints for the projected position of an object, con-

straints on the maximum change of any camera parameters, constraints on the camera

viewpoint, and the local state of the system.

W3D system

Renderer

Object
Database

Camera
Modules

Interpreter

Cam
er

a

Stat
e

HEAD MOUNTED
DISPLAY

VOICE
 RECOGNIZER

AIRCRAFT
SIMULATION

Mouse/
Windows

FORCE
FEEDBACK
JOYSTICK

From Task to Interface 113

Intelligent Camera Control Steven M. Drucker

6.2.2 Results

An evaluation of the Mission Planner System is presented in section 7.2.2.

Figure 31: Overhead view of mission planning system

Figure 32: Over-the-shoulder shot in mission planning system

From Task to Interface 114

Intelligent Camera Control Steven M. Drucker

Figure 33: Visibility evasion from threat in mission planning system

6.3 Example: Filming a conversation

Filming a conversation is a good example of simple camera primitives that have been

derived from a cinematic domain. It is a task primarily in the planning domain. The inter-

face for the conversation filming example is based on the construction of an software

agent, which perceives changes in limited aspects of the environments and uses a number

of primitives to implement agent behaviors. The sensors detect movements of objects

within the environment and can perceive which character is designated to be talking at any

moment.

The following table shows the primary visual tasks that need to be accomplished in the

conversation application.

From Task to Interface 115

Intelligent Camera Control Steven M. Drucker

In general, the position of the camera should be based on conventional ways that have been

established in filming a conversation. Several books have dissected a conversation and

come up with simplified rules for an effective presentation [Arijon76, Katz88]. The con-

versation filmer encapsulates these rules into a software agent and can be used either as an

automatic generation of film sequences, or as an assistant to a director or planner for a

filming a sequence.

6.3.1 Implementation

The placement of the camera based on the position of the two people having the conversa-

tion (see figure 34). However, more important than placing the camera in the approximate

geometric relationship shown in figure 34 is the positioning of the camera based on what is

being framed within the image.

Table 15: Tasks in Filming a Conversation

Filming a conversation

Move into the environment
and focus on a particular char-
acter.

Find over the shoulder shots
from each character to the
other.

Generate close ups and
medium shots of the charac-
ters.

Cut between primitive com-
ponent shots following
proper rules of editing.

Visualize camera location
along with actors positions.

From Task to Interface 116

Intelligent Camera Control Steven M. Drucker

Figure 34: Filming a conversation [Katz88].

Constraints for an over the shoulder shot:

• The height of the character facing the view should be approximately 1/2 the
size of the frame.

• The person facing the view should be at about the 2/3 line on the screen.
• The person facing away should be at about the 1/3 line on the screen.
• The camera should be aligned with the world up.
• The field of view should be between 20 and 60 degrees.
• The camera view should be as close to facing directly on to the character

facing the viewer as possible.

Constraints for a corresponding over the shoulder shot:

• The same constraints as described above but the people should not switch
sides of the screen; therefore the person facing towards the screen should
be placed at the 1/3 line and the person facing away should be placed at the
2/3 line.

From Task to Interface 117

Intelligent Camera Control Steven M. Drucker

The diagram can be used to find the initial positions of the cameras if necessary, but the

constraint solver should make sure that the composition of the screen is as desired.

The Conversation Software Agent

This is a prototypical agent with fairly little intelligence, but kept simple to illustrate the

design decisions. The agent contains a rudiementary reactive planner which pairs camera

behaviors (combination of camera primitives) in response to sensed data. The agent will

have two camera behaviors: one for when character 1 (Steven) is speaking; and one for

when character 2 (David) is speaking. The agent needs to have sensors which can “detect”

who is speaking and direct the corresponding camera behavior to occur. The agent can also

sense the position of any of the characters in the environment.

From Task to Interface 118

Intelligent Camera Control Steven M. Drucker

Figure 35: Overview of camera agent

The agent has a sensor_list, paired with an action_list. Each sensor in the sensor_list pro-

duces a boolean value upon evaluation; they can be considered high-level sensors with

lower level analog sensors feeding values into them to decide whether they are satisfied.

When a sensor is satisfied, the corresponding action is fired. Sensing and acting is assumed

to occur quickly, significantly faster than the frame rate of the environment, so at any one

instant the modeled world is assumed to not change state.

The agent is called upon to evaluate all its sensors for every frame. More than one sensor

Sensor List Action List

Camera Primitives

Camera Primitives

Camera Agent

Local State

Camera Behaviors

From Task to Interface 119

Intelligent Camera Control Steven M. Drucker

can evaluate to TRUE for any time step, and thus more than one action can occur at the

time step. Currently, the corresponding action occurs immediately upon the sensor return-

ing a TRUE value and the sensors are evaluated serially in the order they were placed onto

the sensor list. Care must be taken in the construction of the actions so that conflicting

behavior will not result.

Actions do not directly move the camera, they can be used to change state either in the

agent itself, or set up conditions for the camera behaviors. For instance, one sensor can be

constructed that detects if any character in the environment has changed position signifi-

cantly. If so, then a message is sent to all camera behaviors indicating that when they

become active, they must reevaluate their state. Otherwise, when they become active, no

calculations need occur and they can simply move the camera to their previously calcu-

lated state. This is useful for decreasing the computational load of the camera behaviors

and allows some measure of precalculation to occur.

The most significant part of the agent are the camera behaviors which are constructed from

the primitives discussed in section 5.11.3. This agent has two camera behaviors: over the

shoulder of character 2 looking at character 1; and over the shoulder of character 1 looking

at character 2 The behaviors are achieved by combining the primitives of section 5.11.3 as

follows:

BEHAVIOR 1

: Over the shoulder of character 2 towards character 1:

• PRIMITIVE: character 2’s center is constrained to appear on the right third,

middle of the screen.

• PRIMITIVE: character 1’s center is constrained to appear on the left third

middle of the screen.

• PRIMITIVE: the camera’s gaze is adjusted to be as close to the opposite of the

gaze between character 1 and character 2 as possible while satisfying the 2

above conditions.

• PRIMITIVE: the up vector is locked into place.

• PRIMITIVE: the field of view is locked between 45 and 60 degrees.

• PRIMITIVE: no part of character 2 can cross the 1/3 line right of the screen.

From Task to Interface 120

Intelligent Camera Control Steven M. Drucker

• PRIMITIVE: no part of character 1 can cross the 1/3 line right of the screen

from the other side.

• PRIMITIVE: the camera is pointed in the general direction towards character

1 as opposed to away from character 1.

• PRIMITIVE: the camera is pointed in the general direction towards character

2 as opposed to away from character 2.

BEHAVIOR 2

: Over the shoulder of character 1 towards character 2. This is the exact

opposite of the behavior 1, but with the projected positions of the objects remaining on the

same sides of the screen. This prevents passing over the 180 degree line from shot to shot.

• PRIMITIVE: character2’s center is constrained to appear on the right third,

middle of the screen. (same as in behavior 1)

• PRIMITIVE: character1’s center is constrained to appear on the left third mid-

dle of the screen. (same as in behavior 1)

• PRIMITIVE: the camera’s gaze is adjusted to be as close to the opposite of the

gaze between character 2 and character 1 as possible while satisfying the 2

above conditions. (This is the opposite of behavior 1)

• PRIMITIVE: the up vector is locked into place. (same)

• PRIMITIVE: the field of view is locked between 45 and 60 degrees. (same)

• PRIMITIVE: no part of character 2 can cross the 1/3 line left of the screen

(opposite side of screen)

• PRIMITIVE: no part of character 1 can cross the 1/3 line left of the screen

from the other side.(opposite side of screen)

• PRIMITIVE: the camera is pointed in the general direction towards character

1 as opposed to away from character 1.

• PRIMITIVE: the camera is pointed in the general direction towards character

2 as opposed to away from character 2.

An additional behavior can be added that might be used as an establishing shot, or a shot

when neither of the two people are talking. This would be a two shot of the two characters

facing each other.

From Task to Interface 121

Intelligent Camera Control Steven M. Drucker

BEHAVIOR 3

: Side view of characters:

• PRIMITIVE: character 2’s center is constrained to appear on the right third,

middle of the screen. (same)

• PRIMITIVE: character 1’s center is constrained to appear on the left third

middle of the screen.(same)

• PRIMITIVE: the camera’s gaze is adjusted to be as close to perpendicular to

the gaze between character 2 and character 1 as possible while satisfying the 2

above conditions. (This is different from behaviors 1 and 2)

• PRIMITiVE: the up vector is locked into place (same)

• PRIMITIVE: the field of view is locked between 45 and 60 degrees. (same)

• PRIMITIVE: no part of character 2 can cross the center line right of the screen

(center of screen)

• PRIMITIVE: no part of character 1 can cross the center line right of the screen

from the other side.(center of screen)

• PRIMITIVE: the camera is pointed in the general direction towards character

1 as opposed to away from character 1.

• PRIMITIVE: the camera is pointed in the general direction towards character

2 as opposed to away from character 2.

A deeper analysis of the way that the primitives are combined is in order. From behavior 1,

we can classify the different kinds of primitives into 2 different categories: soft constraints

(those constraints that do not need to be met exactly), only the best solution need be found

among conflicting constraints; and hard constraints (those constraints that need to be satis-

fied exactly).

First, for the “soft” constraints that don’t need to be satisfied at the same time, the solution

will try to minimize the maximum of these constraints at any one time. In this behavior, it

is not possible to place the center of object 1 at a certain place, AND the center of object 2

at a certain place while making the camera gaze along the vector between object 1 and

object 2 (the only way for this last condition to be true is if the center of object 1 and the

center for object 2 were projected to the SAME point on the screen). Thus these three

From Task to Interface 122

Intelligent Camera Control Steven M. Drucker

primitives are formulated into an optimization problem where the system tries to minimize

the maximum of any violations of these constraints.

The next category of primitives are those for which the solution would be INCORRECT if

the constraint is violated (hard constraints). The broad category is further subdivided into

several types. There are bounds on the individual degrees of freedom for the camera: make

the roll angle equal to 0 (equality); keep the field of view between 45 and 60 degrees (ine-

quality). There are constraints on multiple degrees of freedom of the camera: look towards

the object as opposed to away (this constraint is necessary due to the fact that it is mathe-

matically equivalent for a projection of an object to be from behind the camera as it is to be

in front of the camera). There are also inequality constraints based on the projection of an

object: make sure that no part of the object 1 appears on the left hand side of the screen and

no part of object 2 appears on the right hand side of the screen.

The advantage of designing the camera agent in the fashion described above is that the

camera agent is reactive. By reactive, I mean that the agent can be set into any environment

in which its sensors can work and it can locate the positions of the characters and it will

film the actions in the manner specified. If the characters change positions, it will still

manage to frame the characters in an acceptable fashion or inform the user when the con-

straints can not be satisfied. Thus, this agent is reusable across a wide range of environ-

ments, containing no special parameters that would make it only appropriate for a single

particular environment. The behaviors encapsulate reasonably accepted cinematic rules,

and the process of sensing and acting makes the agent automatically construct a sequence

of shots in the style specified in figure 34.

6.3.2 Extensions to agents:

Care was taken in constructing the behaviors so that implicitly no cinematic rules were

violated. Sensor action pairings can be made more sophisticated so that sensors can check

the existing camera state so that no action which will violate a cinematic rule will be sub-

sequently fired.

All the actions described above dealt with discontinuously changing the camera parame-

From Task to Interface 123

Intelligent Camera Control Steven M. Drucker

ters (in other words, cuts). Camera movements can also be supported in several fashions.

Once final satisfactory conditions have been calculated, the camera can move from its cur-

rent state to the final state by a certain velocity profile (ease in, ease out, with a maximum

change in any of the camera parameters). Another way to account for camera movement is

to include it as part of the optimization problem. Change in the camera state can be penal-

ized along with the goals of the camera, so that any changed in camera state is balanced

with maintaining the last specified state.

6.3.3 Results

The following figure shows an over the shoulder shot automatically generated by the con-

versation filming agent.

Figure 36: Agent generated over-the-shoulder shot.

6.4 Example: the Virtual Football Game

The virtual football game represents a task chosen from the planning domain where the

environment is extremely dynamic (as opposed to the relatively static environments of the

museum and the conversation). A football game was chosen because there already exists a

methodology for filming football games that can be called upon as a reference for compar-

From Task to Interface 124

Intelligent Camera Control Steven M. Drucker

ing the controls and resultant output of the virtual football game. Also, the temporal flow

of the football game is convenient since it contains starting and stopping points, specific

kinds of choreographed movements, and easily identifiable participants. In addition, a

visual programming language for combining camera primitives into camera behaviors was

explored. Finally, an interface, on top of the visual programming language, based directly

on the way that a conventional football game is filmed was developed.

It is important to note that there are significant differences between the virtual football

game and filming a real football game. Although attempts were made to make the virtual

football game realistic; three-dimensional video images of players were incorporated and

football plays were based on real plays [Korch90], this virtual football game is intended as

a testbed for intelligent camera control and not a real football game. In the first case, we

are not currently concerned with controlling robotic cameras, since there are a host of

other constraints that would need to be implemented to deal with speed and configura-

tional limitations that we can ignore. In the virtual game, the system has complete knowl-

edge about the entire environment, both in terms of where all the objects are in the present

and where they will be in the future, it knows when the ball will be thrown, and when it

will be caught. The user has complete control over the passage of time in the virtual foot-

ball game, being able to stop it, reverse it, speed up or slow down. The virtual cameras for

visualizing the football game can move to anywhere, including within another object or

flying along side it. The system can ignore any of this information, or constrain the abili-

ties of the virtual cameras, as appropriate to the test that is being performed.

The basic visual tasks in the virtual football game are as follows:

From Task to Interface 125

Intelligent Camera Control Steven M. Drucker

This information is based on a discussion with a sports director from WBZ-TV news in

Boston, MA. The first five tasks are typical commands that the director indicates to the

cameramen.The last three tasks can not be done in a real football game since it would

involve both moving the camera onto the field, and a camera that could fly through the air

with the ball. These were visual tasks were added to demonstrate the power of the camera

framework.

6.4.1 Implementation

The overall structure for the football game is extremely similar to that of the virtual

museum and mission planner systems. It is shown in figure 37.

Table 16: Tasks from Virtual Football Game

Football Game

Set up cameras in certain prescribed positions.

Track the ball from any camera.

Isolate a player (meaning, show just the player
and one or two nearby players).

Show the view from a prescribed camera, and
show replays from other prescribed cameras.

Keep two players in view at the same time.

Position the camera in an over-the-shoulder
shot from the quarterback to another player.

Show the field from the point of view of any
player or the ball itself.

Move with the ball during a play.

From Task to Interface 126

Intelligent Camera Control Steven M. Drucker

Figure 37: Overview of virtual football game

Figure 38 shows the visual programming environment for the camera modules. The cur-

rently active camera module’s camera state is used to render the view of the graphical

environment. Modules can be connected together by drawing a line from one module to

the next. A boolean expression can then be added to the connector to indicate when control

should be shifted from one module to the connected module. It is possible to set up multi-

ple branches from a single module. At each frame, the branching conditions are evaluated

and control is passed to the first module whose branching condition evaluates to TRUE.

Constraints can be instanced from existing constraints, or new ones can be created and the

constraint functions can be enterred via a text edittor. Information for individual con-

straints can be entered via the keyboard or mouse clicks on the screen. When constraints

are dragged into a module, all the constraints in the module are included during optimiza-

tion. Constraints can be indicated to be hard or soft constraints in which case they are

incorporated in different ways into optimization problem (see section 5.10). Constraints

W3D system

Renderer

Object
Database

Camera
Modules

Interpreter

Cam
er

a

Stat
e

Visual
Programming
Environment

End User Inteface

playback controls

player positions

camera positions

From Task to Interface 127

Intelligent Camera Control Steven M. Drucker

may also be grouped so that slightly higher level behaviors composed of a group of low

level primitives may be dragged directly into a camera module.

Initial conditions can be dragged into the modules to force the minimization to start from

those conditions. Initial conditions can be retrieved at any time from the current state of

the camera. Camera modules can also be indicated to use the current state to begin optimi-

zation when control is passed to them from other modules.

Controllers can also be instance from a pallette of existing controllers, or new ones created

and their functions entered via a text editor. If a controller is dragged into the module, it

will translate the actions of the user subject to the constraints within the module. For

instance, a controller that will orbit about an object may be added to a module which con-

strains the camera’s up vector to align with the world up vector.

Figure 38: Visual Programming Environment for camera modules

The end user does not necessarily wish to be concerned with the visual programming lan-

Camera Module 1
(kick off)

orbit
pan

dollhouse
flying vehicle

wide angle
game camera

quarterback vp

field goal cam

track ball

lock roll

align gaze track qb
track receiver

track receiver
track receiver

track receiver

lock fov

over the shoulder

Camera Module 2
(kickoff return)track receiver

Replay 1 Replay 2

From Task to Interface 128

Intelligent Camera Control Steven M. Drucker

guage for camera control. An interface that can be connected to the representation used for

the visual programming language is shown in Figure 39.The interface provides a mecha-

nism for setting the positions and movements of the players within the environment, as

well as a way to control the virtual cameras. Players can be selected and new paths drawn

for them at any time. The players will move along their paths in response to clicking on the

appropriate buttons of the football play controller (shown in figure 40). Passes can be indi-

cated by selecting the appropriate players at the appropriate time step and pressing the pass

button on the play controller.

Figure 39: Overhead view of the football game

X0
X1

X2 X3
X4

X5 X6

X7
X8

X9
X10

O0 O1O2 O3

O4
O5O6 O7

O8

O9 O10

B

From Task to Interface 129

Intelligent Camera Control Steven M. Drucker

Figure 40: Playback Controller

The user can also select or move any of the camera icons the viewpoint is immediately

shifted to that of the camera. Essentially, pressing one of the camera icons activates a cam-

era module that has already been set up with initial conditions and constraints for that

camera. Cameras can be made to track individual characters or the ball by selecting the

players with the middle mouse button. This automatically adds a tracking constraint to the

currently active module. If multiple players are selected, then the camera attempts to keep

both players within the frame at the same time by adding multiple tracking constraints.

The image can currently be fine-tuned by adjusting the constraints within the visual pro-

gramming environment. A more complete interface would provide more bridges between

the actions of the user on the end-user interface and the visual programming language.

6.4.2 Results

An evaluation of the virtual football game is given in section 7.2.4.

Figure 41: View from “game camera” of virtual football game.

From Task to Interface 130

Intelligent Camera Control Steven M. Drucker

6.5 Example: Visibility Assistant

The last example is a prototype visual task from the control domain. It illustrates the abil-

ity of an intelligent camera to assist the user in performing manipulation style tasks by

maintaining a viewpoint where a certain goal object is visible. The camera primitives dem-

onstrated in this example could be combined with other camera primitives that would align

the control axes with the visual axes.

Because this is simply a demonstration of a visibility assistant, the only visual task for this

application is to keep a single goal object in view.

6.5.1 Implementation

Figure 42 represents an overview of the visibility assistant. In general, the visibility assis-

tant monitors the positions of all the objects in the environment and automatically adjusts

the camera modules to present an unobstructed view of an object. The user can interact

directly with the visibility assistant by telling it to only update the view on demand. The

camera primitive for visibility is discussed in detail in appendix 2.

Figure 42: Visibility Assistant Overview

W3D system

Renderer

Object
Database

Camera
Module

Interpreter

Cam
er

a

Stat
e

Visibility
Assistant

User
Controls

From Task to Interface 131

Intelligent Camera Control Steven M. Drucker

The following code fragment illustrates how the visibility assistant is called from a rou-

tine.

proc doit {} {

 # grab the current view

 set q1 [grabview]

 # find a view where we can see the goal location

 set q2 [findvis [vp] [centroid goal]]

 # move to that view slowly

 loop i 1 20 {interp_views $q1 $q2 [div $i 20]; render}

}

proc findvis {vfrom vto} {

 global vals

 savestate

 # make background white

 bg 1 1 1

 # look from goal object towards orignal location

 vp $vto

 vn [minus $vfrom $vto]

 # make far clipping distance same as length between goal

 # and camera location

 vdepth 0.1 [enorm [minus $vfrom $vto]]

 # use software rendering

 hardware 0

 screensize 0 0 127 127

 render2file /tmp/vis {} {}

 # render an image

 render

 hardware 1

From Task to Interface 132

Intelligent Camera Control Steven M. Drucker

 # ask other program to find visible position for camera

 send tkvismap {after 1 {ckvis [winfo name .] /tmp/vis}}

 # wait until other program responds - it will set the variable

 # vals when it is finished. It is done this way because it can

 # take as long as 30 seconds and the send statement would time out

 # with no response if we used set vals [send tkvismap {ckvis /tmp/vis}]

 # ckvis first generates a potential surface from the visibility map

 # and then follows it down to the nearest visible region

 tkwait variable vals

 # convert from map to pan and tilt values

 set vals [frommap [lindex $vals 0] [lindex $vals 1]]

 # pan first, then tilt

 cam_pan [mult -1 [lindex $vals 1]]

 cam_tilt [mult -1 [lindex $vals 0]]

 # find new location for camera

 set dist [enorm [minus $vfrom $vto]]

 set newvp [plus $vto [mult $dist [vn]]]

 vp $newvp

 # make new camera look directly at goal object

 lookat $vto 0

 # find camera state to return

 set q [grabview]

 restorestate

 return $q

}

proc savestate {} {

 global savebg savescreen savedepth

 # save view parameters, background and clipping planes

 vpush

 set savebg [bg]

From Task to Interface 133

Intelligent Camera Control Steven M. Drucker

 set savescreen [screensize]

 set savedepth [vdepth]

}

proc restorestate {} {

 global savebg savescreen savedepth

 # restore view parameters, background and clipping planes

 bg $savebg

 screensize $savescreen

 vpop

}

6.5.2 Results

An evaluation of the visibility assistant is given in section 7.2.5.

Figure 43: Visibility Assistant

Evaluations of Camera Control Interfaces 134

Intelligent Camera Control Steven M. Drucker

CHAPTER 7. EVALUATIONS OF CAMERA CONTROL INTERFACES

This chapter evaluates the effectiveness of the camera framework at several different lev-

els:

• Is the framework proposed useful across a sufficiently representative sam-
pling of domains? Do the camera primitives assist the user in completing
tasks in the examples?

• How convenient is it to place new interfaces on top of the framework?
• How well do the camera primitives work? This can be looked at from a

computational point of view and a stylistic point of view.

7.1 Framework sufficiently representative:

The prototype applications that have been chosen have been selected to be from each of

the domains described in chapter 4. The virtual museum is an application primarily in the

exploratory domain and several different styles of interaction have been demonstrated for

different tasks. The conversation and virtual football game both represent tasks from the

planning domain. The primary difference between these two is based on the kind of inter-

face that has been constructed. In the conversation, a well defined, encapsulated agent with

different behaviors in response to different events has been constructed. In the football

game, a visual interface for combining and sequencing camera primitives has been demon-

strated, and a special purpose interface based on the requirements of real football directors

has been built. The mission planning system represents a task primarily from the rehearsal

domain. Different requirements, such as hands free operation, has necessitated another,

significantly different interface. Finally, the visibility demonstration represents one aspect

of the requirements of a control task.

In the following section each of the examples is examined in terms of the kind of assis-

Evaluations of Camera Control Interfaces 135

Intelligent Camera Control Steven M. Drucker

tance it has provided. Help for determining the quality of this assistance has been from

domain experts including Michael Sand (a museum designer), Eric Eisendratt (a sports

director for WBZ-TV), Glorianna Davenport (in her capacity as a documentary film

maker), and Professor Tom Sheridan (an expert in teleoperation and supervisory control).

Quotes have been included from these domain experts when appropriate.

7.2 Types of assistance:

In the introduction, a number of ways in which human reasoning and planning can run into

problems were described. This analysis will in part be devoted to seeing how those prob-

lems have been alleviated by the camera primitives that have been provided.To review,

that list is as follows (for a more complete description, see section 2.1.3 or [Norman92]):

1. Lack of completeness.
2. Lack of precision.
3. Inability to keep up with change.
4. A heavy memory load.
5. A heavy cognitive/computational load.

7.2.1 Types of assistance in the Virtual Museum

Lack of completeness

.

In any database related application, the system can contain knowledge represented in a

variety of formats which the user does not have access to. In its first and simplest form, the

Virtual Museum contains knowledge of all the pieces of art within the museum, where

they are located, and their ideal viewing position. Through a simple user request (currently

a listbox with a mouse selection though alternate means such as voice recognition might

be more appropriate in a totally immersive environment) the virtual camera can be trans-

ported instantly to a location and angle to view the selected artwork.

Associated operations can be performed on the basis of specific domain knowledge that

the computer contains for the museum.

Let me give you a rational of why I think your project is good. A very typical

Evaluations of Camera Control Interfaces 136

Intelligent Camera Control Steven M. Drucker

problem in a museum is for a visitor to come to a problem that they’re not con-
versant with and understand what choices they have at this point; the menu prob-
lem. Are there any specials today? What time of day is it? How long will this
take? A series of contextual things that the computer can be aware of but the user
might not be. If you could go to a lobby kiosk and describe yourself to the com-
puter and say that I have a 5-year old with me and I also have my mother in law
with me who has trouble walking and who doesn’t want to see breasts (she get’s
upset by nude paintings), and it’s my 3rd visit here and I haven’t been here in 8
months, the computer can automatically regurgitate to you, using your rule set, an
optimal path since we’re only open for another hour and a half today; etc. The
rule set could construct a tryptic for the visitor and a print out which gives you a
timed intervalometer, saying spend 10 minutes here, 15 minutes here, and your 5
year old will love this, and it has a set of decisions that the curators and you have
conspired on. For instance if you haven’t been here for 8 months, you must see
this new exhibit because everybody enjoys that. So you’ve immediately given
someone a personalized tour that’s unique to them for the moment. It can gener-
ate informed decisions based on your input, and even give you choices once it’s
come up with options too, secondary and third level decisions [Sand94].

Lack of precision.

The virtual museum allows automatic placement at precisely the best point for viewing

certain objects in the museum (based on preselected opinions of the designer).

That would be useful in some of the walkthroughs that I’ve built for demonstra-
tions to clients. You can click on a particular object, or set up a prefixed view that
is appropriate for that object. Kodak has this “stand here - use f-12 and take a pic-
ture” located at all sorts of famous sights which allows tourist to create the per-
fect take home shot [Sand94].

A heavy memory load.

The system can use internal memory to recall specific views that the user has saved or

even show different portions of the environment that have already been explored. Orienta-

tion, seems to be intimately related to memory, since remembering the movements made

before can sometimes be the only method of locating oneself in an environment. In the

Virtual Museum, orientation within the environment is provided for via a map-view which

contains the user’s location and direction of gaze within the museum.

Evaluations of Camera Control Interfaces 137

Intelligent Camera Control Steven M. Drucker

Giving you several ways to look at something is very important. Different people
have different predilections. Some people will love the plan view that you’ve got
there. Other’s would find it very confusing, others might want an orthographic
projection, other people would just like the point of view. Other people might
want an iconic view, like an MBTA map compared to a road map. You don’t have
to presume that one size fits all. The great thing about the computer is that you
can provide any one that the person wants. If the person wants words and a list,
that’s fine [Sand94].

Inability to keep up with change.

The Virtual Museum is primarily a static domain so this is not a consideration in this appli-

cation.

A heavy computational/cognitive load.

In this case, overly repetitive situations, or situations where there are too many variables to

control can be greatly eased by the museum interface. When moving the virtual camera

through the museum, the user must constantly be specifying the desired position, orienta-

tion, and direction of movement within the museum. The interface provides a number of

ways to ease the repetitive, complex nature of the task. First, the motions of the user’s

mouse presses can be mapped in such a way to minimize the number of degrees of free-

dom being controlled. In this case, forwards or backwards on a virtual joystick constrains

the speed of the virtaul camera’s movement through the environment, right to left con-

strains the direction the view is turning (center implies no turn). The height of the virtual

camera is constrained to be the same height throughout control. While this limits the

degrees of freedom that are controlled to a manageable number, the user must still provide

continuous input. Alternate modes of control let the system take over movement of the

viewpoint to a calculated path to a specified goal location. The user can control the view

direction alone if desired or have the view direction point either straight ahead or at objects

of interest along the way. In addition, the system can make more use of internal knowledge

and calculate the best path from a particular location to another particular location, avoid-

ing obstacles within the environment and taking user requirements into account (for

instance, the user might want to avoid passage through certain areas - such as non-handi-

cap accessways). The virtual museum can assist in several other ways to shift the compu-

tational burden from the user to the computer. The system constrains the movements of the

Evaluations of Camera Control Interfaces 138

Intelligent Camera Control Steven M. Drucker

virtual camera from passing through walls. This prevents rapid changes in the image

which can be confusing to a user.

Does it find it’s own trajectory? You have some sort of rule set? That’s terrific!
That would be very useful. Did you ever read the writings of Kevin Lynch. He
has some good ideas about this in his “A View from the Road” book. He wrote
one talking about the experience of driving. As you’re driving, you’re cognizant
of the things that are going by, and we really take our sense of place from the con-
glomeration, this gestalt of experiences and not just from the destination and he
and I discussed ways in which you could come up with a new iconography that
would be a new type of road sign, that would have to do with signs and combina-
tions that were happening [Sand94].

7.2.2 Types of assistance in the Mission Planner System

Lack of completeness.

The mission planner contains physically based simulations of the behaviors of the aircraft

in the environment. The user does not need to be familiar with calculating the g-forces

based on banking the plane since the simulation can perform those actions for the user.

Lack of precision.

The mission planner can constrain the view exactly aligned with the axes of the plane

which may vary due to banking and other movements. The system can be used to look

from any object in the environment to any other object, and lines of sight can be easily and

precisely determined.

Inability to keep up with change.

Since the mission planner represents a dynamic environment, it is important that it assist

the user in tracking moving objects, or placing the viewpoint along moving objects look-

ing towards other objects. The user does not need to make any active effort to observe

changes in the environment.

A heavy memory load.

Sharp discontinuities between views make it difficult to understand the relationships

between objects within the environment. By constraining the pan rate of the virtual cam-

Evaluations of Camera Control Interfaces 139

Intelligent Camera Control Steven M. Drucker

era, the system can be used to help create and maintain a cognitive map of the mission

planning environment.

A heavy computational/cognitive load.

The system can map simple, high level voice commands from the user into actions for the

virtual camera in the environment. The user does not need to control individual degrees of

freedom of the camera at any time but can easily constrain the camera to move with or to

follow objects in the environment.

7.2.3 Types of assistance for Conversation Agent

The conversation agent shows potential in many areas. It is a first stab at encoding cine-

matic rules into a high level language that can be used in a variety of different situations. It

is a reactive system which can change its response based on changes within the environ-

ment. It can also relieve the user from the burden of low level control of the camera.

Lack of completeness.

One of the most interesting possibilities enabled by camera primitives is the ability to cre-

ate a high level language which incorporates cinematic rules. The rudiments of this lan-

guage have been demonstrated by being able to perform a medium shot, or an over-the-

shoulder shot, but much more work can be done. The system can aid those that know at a

high level what they want, but don’t want to know the details of controlling a virtual cam-

era in a graphical environment. Or the system can offer a first pass suggestion to how a

shot should be framed. The user can then choose this shot or alternate shots to help previ-

sualize how a sequence should be shot.

Lack of precision.

The ability of the system to find the camera position based on framing specifications is

particularly exciting. This was one of the biggest problems with previous systems that

have been used including the CINEMA system. It was always difficult to find an appropri-

ate position for the camera. It’s also exciting that there’s a precise level of control related

to what’s in the frame as opposed to just where the camera is in space. That’s much more

accessable to an actual moviemaker.

Evaluations of Camera Control Interfaces 140

Intelligent Camera Control Steven M. Drucker

Inability to keep up with change.

Another exciting potential of the system is its ability to respond to a changing environ-

ment. As the characters are moving about the system might eventually be able to make

choices on how to film the situation based on stylistic rules and higher level knowledge of

the narrative structure in the situation. For instance, if one character stands up in a scene, it

may be appropriate to follow him by panning and tilting, or it could be qualitatively differ-

ent to follow him by moving the entire base of the camera around. A complete system

must incorporate both audio and plot elements in order to continue research on a flexible,

reactive agent.

A heavy memory load.

The system can help maintain continuity from shot to shot. It can automatically ensure that

certain objects are in view across cuts and it can maintain framing conventions across edit

boundaries. Even more significantly, once a higher level language is developed which

includes cinematic style, continuity of style throughout entire sequences could be main-

tained.

A heavy cognitive/computational load.

The system can first ease the cognitive load of understanding the environment by allowing

the user to recover the positions of objects and the camera in relation to each other. It can

also, as previously discussed, take the high level framing specification and find a position

for the camera that satisfies the diretor’s goals. When a director is not satisfied with a shot,

the system might be able to offer alternate possibilities placing different emphasis on the

director’s goals.

7.2.4 Types of assistance for Virtual Football Game

The virtual football game system can assist in the following ways.

Lack of completeness.

By providing the system with the knowledge of what type of play might be transpiring, the

system can choose a style of viewing that might be most appropriate. The system can act

Evaluations of Camera Control Interfaces 141

Intelligent Camera Control Steven M. Drucker

as a kind of expert system for filming football games.

When we’re out there filming a game, the director quickly gives rough instruc-
tions to all the cameramen and they know just what to do. They can tell in the first
moments of the play whether it will be a passing play or a running play and they
know how to cover each play [Eisendratt94].

Lack of precision.

In shooting a real football game, one of the biggest problems is for the camera man to

respond quickly enough to movements of the ball in order to track it accurately. Given

absolute knowledge about the position of the ball, the virtual football game can always

track the ball precisely.

When a play is taking place, we never cut from one camera’s view to another
because it might be confusing and because we might miss some action. The cam-
eramen are doing their best to keep the ball in view at any moment and they often
don’t have much time for anything else than that. It would be great if we could
automate some of that in filming a real football game like you’ve done in the vir-
tual football game. It really might bring about whole new possibilities for cover-
ing a game [Eisendratt94].

Inability to keep up with change.

The user can specify certain objects that are to be tracked and let the system perform the

rest. Furthermore, certain conditions can be specified, for instance, keep two certain char-

acters in view at the same time and the system will maintain those conditions.

This goes back to the lack of precision issue. If we can automatically follow any
player and the ball in real life, that would help our jobs a great deal. The only
thing is then is that you’d want to have more cameras to cover more possibilities.
I’d like a camera to catch the reaction shot of the coach while a play is happening
and not have to sacrifice any of the cameras that I’m using to cover the play. In
really high-budget games like a SuperBowl, you’ve got all the cameras you need,
but in other games you’ve only got the 5 or 6 cameras set up in the way you have
it set up in the virtual football game [Eisendratt94].

Heavy cognitive/computational load:

Many situations in filming the a football game repeat over and over. By encapsulating a set

of rules into a camera module, the modules can be used over and over with small varia-

tions due to stylistic preferences. Also, currently, filming a football game usually takes at

Evaluations of Camera Control Interfaces 142

Intelligent Camera Control Steven M. Drucker

least one director, and at least 6 camera people each who has a specific job during filming

the play. By being able to automate both the choice of jobs and the actual filming itself, the

system could greatly ease the computational load for a director, and the director could con-

centrate more on the style of the presentations.

It does start to get to be a kind of repetitive task filming a game. But the interest-
ing stuff is when things go wrong with a play, or catching the reactions of players
when special things happen. I don’t think you could automate that, though you
certainly could automate some of the rest like following the play as you’ve done
and catch some of the other things by hand [Eisendratt94].

7.2.5 Types of assistance for Visibility Assistant

Lack of completeness.

The visibility assistant can keep track of the positions of all the objects in the environment

and even if the user does not know a particular position of an object, the assistant can be

used to find a view where that object is visible.

I think it would be interesting if you used the system to help keep track of views
of people besides just views of objects. This could be related to some work that is
being done in Computer Supported Cooperative Work. People could direct the
camera by “pulling” the camera to face them, or show other people views of
things by “pushing” the camera to a certain point of view. It would be especially
interesting if you could somehow find the camera constraints that might support
this kind of behavior.[Sheridan94].

Lack of precision.

The change of view can be made so that the camera moves the minimum amount in order

to place the object in view.

Inability to keep up with change.

The system can automatically keep track of the movements of all objects in the environ-

ment including both occluding objects and the goal visible object. The viewpoint can be

changed constantly to keep the object in view or only on user request (since constant

changes of the view might be disorienting for the viewer).

A heavy cognitive/computational load.

Evaluations of Camera Control Interfaces 143

Intelligent Camera Control Steven M. Drucker

The computational burden of tracking an object and making sure it is visible has been

removed from the user and transferred to the intelligent camera interface.

It’s very important that the user has some level of choice when the system
chooses views. Motion parallax is an extremely useful set of depth cues and we
found that in experiments, users really needed that to perform better. In addition
to a visibility constraint, Harry Das did some experiments for automatic view
selection for controlling a telemanipulator. He tried a view that tried to maximize
the angle between the camera and the lines which connected the end-effector and
the goal and obstacle objects. It seems that you could do that fairly easily in the
context of your framework[Sheridan94].

7.3 Convenience of the framework

The convenience of the framework still remains to be proven. Although the framework has

been used in a number of diverse applications, I have been the only programmer to use it

so far. Several projects where others will incorporate the framework for controlling the

camera. One researcher will use the framework to design a cinematic previsualization sys-

tem. Another researcher will use the framework as the basis to control the camera in an

interactive, immersive, narrative environment.

7.4 How well do the camera primitives work?

This question can be addressed in three different ways. First, do the primitives achieve the

desired goals of the user. Second, how efficient is the framework for achieving those goals.

And third, does the output of the primitives look right stylistically to the user, and is the

output sufficiently customizable to give the user of the system sufficient stylistic control

over the final output.

One of the problems of trying to thoroughly examine the effectiveness of the primitives

are that they can be combined in an infinite number of ways. It is impossible to check to

see if all the combinations do eventually converge to the desired results. One basic prob-

lem in all systems based on constrained optimization is how the system deals with local

minima.

7.4.1 Local Minima

Evaluations of Camera Control Interfaces 144

Intelligent Camera Control Steven M. Drucker

Several methods have been developed to alleviate the problem of the camera settling into a

locally optimal solution which is not necessarily an appropriate solution. Sometimes this

situation is not a problem at all but a desired result since local optimums may be sufficient.

The first method of dealing with local minima is to explicitly design the algorithm to gen-

erate a constraint surface that does not contain any local minima. This is the method used

for one type of path planning and the visibility algorithm. In both these methods, a dis-

tance function from a goal location was generated by propagating a wave away from the

goal. The wave moves around all the obstacles in the environment and thus guarantees that

the goal location will be the only minimum in the system. However if more than one con-

straint is combined, this condition can no longer be guaranteed.

Another method of escaping from local minima was explored in the context of path plan-

ning by discretizing the space and using a breadth first search of the gradient of the sur-

face. Thus the system is guided by optimization but if it settles in a local minimum that is

known not to be the goal, the system can search further and further away from the local

minimum, until a new minimum direction is found.

Yet another method of overcoming local minima is to use external knowledge to guide the

initial location for starting the minimization. This was used for some of the simple projec-

tive camera constraints such as the over the shoulder shot. If the user starts the minimiza-

tion with the camera located somewhere on the line (but not between) that connects the

two objects that are the goals of the primitive, the system usually does not get trapped in

local minima.

Finally, a last method that can be used is to restart the minimization process from a variety

of locations in the environment and to eventually use the lowest minimum. This is similar

to the method of simulated annealing and has been extremely successful at solving a num-

ber of nearly intractable problems. On a sufficiently fast system, perhaps a massively par-

allel one, this might be an extremely robust way of dealing with local minima.

Somewhat surprisingly, in the five systems demonstrated, local minima were rarely a prob-

Evaluations of Camera Control Interfaces 145

Intelligent Camera Control Steven M. Drucker

lem for the constraint solver. Local path planning (appendix 1.3 – non-wave propagation)

was the constraint most prone to local minima. Occasionally, some projective constraints

would also be trapped in local minima when the solution was started at a completely arbi-

trary position. A “nudge” from the user usally alleviated the problem. Sometimes, it was

better to formulate the problem for certain constraints as “hard” constraints, and then later

relax the requirement and incorporate them as “soft” constraints once a better initial condi-

tion was found for the optimization.

7.4.2 Efficiency

The efficiency of the constraint framework does of course depend upon the number and

type of constraints and optimization functions being attempted. Currently, the system can

usually solve a problem containing 3 non-linear optimization functions and 9 nonlinear

inequality constraints in approximately one tenth of a second on an IRIS Indigo system.

The algorithms for path planning and visibility determination involve extensive calcula-

tions for determining the constraint surface before optimization. However, once these sur-

faces are calculated, the solution is extremely rapid. The visibility calculation for a typical

scene takes less than 4 seconds on an IRIS Indigo system. Currently, the system is using

the built in software rendering to generate the visibility map and the speed of this part of

the algorithm could be sped up considerably by using the hardware renderer of the work-

station. However, the most time consuming part of the algorithm is propagating the dis-

tance wave from the visible regions. This algorithm is readily amenable to parallelization

which could bring about significant speed enhancements. In the path planning algorithm,

most of the constraint surfaces can be precalculated so that the paths can be found in milli-

seconds on an IRIS Indigo system. The precalculation can take up to thirty seconds

depending upon the number of nearest neighbors used for expanding the wavefront.

A thorough algorithmic analysis for the CFSQP is provided in [Lawrence94] and is not

discussed in this thesis.

7.4.3 Stylistic Expressiveness

This is the most difficult quality to assess, but many attempts have been made to make

Evaluations of Camera Control Interfaces 146

Intelligent Camera Control Steven M. Drucker

some of the primitives both stylistically flexible and for their output to look correct. To a

certain extent, this is discussed in section 7.2.3.

In the pathplanning primitive, there are a number of parameters that can be controlled

including the closest distance that the camera may be to an object as it passes. Also, the

number of directions that the camera can move from any discretized location on the con-

straint surface has been examined along with the affects on the resultant paths. One key

point of the path planning primitive is that it treats the position of the camera separately

from its orientation. While this makes the computation and search of the potential function

possible, it may lead to the somewhat inhuman behavior of the planned path. By using

multi-resolution optimization methods, it might be possible to plan a path that also con-

tains optimization conditions on the orientation of the camera during planning. Another

noticeable problem with the path planning constraint is the way in which it travels through

doorways. Since the distances function that is propagated out from the doorway moves

equally in all directions, the camera will often approach the doorway at an oblique angle

which is extremely disconcerting. This can be overcome by changing the way the distance

function propagates from the doorway, or by adding constraints to the interpolating spline.

Finally, the path planning does not constrain the velocity of the camera at all, so that the

speed of movement along the spline is now determined completely independently. Further

constraints might be appropriate to allow easing in and out of movement or slower move-

ments at points of interest.

The visibility constraint currently moves to the nearest visible area, but that area might be

extremely small. A way of balancing the nearest area with the largest area might be useful

stylistically.

Some of the other camera primitives might be used as a basis for forming a high level lan-

guage for stylistic expression. This could enforce stylistic consistency across sequences.

For instance, if a situation is tense, a constraint could be added that prevents the camera

from ever being more than a certain distance from an object or that the projection of all

objects of interest be a certain size or greater. Or if low angles are preferable for a situa-

tion, then the camera’s position can be constrained to always be from below a certain level.

Evaluations of Camera Control Interfaces 147

Intelligent Camera Control Steven M. Drucker

There is no inherent style in these primitives themselves, but only in the ways that they can

be combined.

Conclusions and Future Work 148

Intelligent Camera Control Steven M. Drucker

CHAPTER 8. CONCLUSIONS AND FUTURE WORK

8.1 Conclusions

This thesis has taken a systematic approach to the problem of controlling a virtual camera

within a graphical environment. The first step involved generating a classification of dif-

ferent interactive graphical domains. This taxonomy has been used to derive the visual

tasks that are required in each domain. The taxonomy may be useful for deriving other,

non-visual tasks, for instance if someone wishes to explore mechanisms for end-user pro-

gramming in interactive graphical environments, it would be necessary to provide meth-

ods for each of the domains described in the taxonomy.

In addition to the taxonomy, pertinent methods and techniques have been examined from

the areas of cinematography, human factors, teleoperation, and robotics to help define

camera primitives for accomplishing visual tasks. Particularly novel are

projection camera

primitves that help define the position of the camera based on a desired configuration of

the resulting image (see section 5.11.3).

A framework based on constrained optimization for combining and reusing camera primi-

tives has been proposed and constructed. Primitives can be encoded as constraints and can

be combined in a number of different fashions ranging from hard constraints, where a

solution is incorrect if the constraint is not met, to soft constraints where the system tries to

balance among a number of conflicting constraints.

On top of the framework a number of different example applications have been built. The

examples demonstrate not only many different styles of interfaces, but were selected as a

Conclusions and Future Work 149

Intelligent Camera Control Steven M. Drucker

representative sampling of the domains described in the taxonomy.

The virtual museum represents the exploratory domain. The virtual museum tied widgets

and mouse clicks to the activation of different modules constructed from the camera prim-

itives. The mission planner is an example from the rehearsal domain. The mission planner

uses an immersive environment and high level commands with a voice recognition sys-

tem. The conversation filming agent represents an application in the planning domain.

Camera primitives are encapsulated into the behaviors of a reactive agent which can auto-

matically incorporate rules for presenting the scene to an external observer. The virtual

football game is also an application in the planning domain. A visual programming lan-

guage has been developed to easily combine and sequence camera primitives. The visibil-

ity assistant is an example of an application in the control domain. The camera responds to

changes in the environment to keep an object constantly in view allowing the user to per-

form a task effectively. The examples were evaluated by consulting domain experts in

each of the areas and by identifying the ways in which the camera could assist the user in

perfoming tasks within each application.

8.2 Future Work

A good thesis is not an end but a beginning. There are many things that can be done to

extend this work, both to improve it and to push it in new directions.

8.3 Improving current work

Using TCL as a prototyping language for the development and testing of new camera

primitives made it possible to try out many different ways of encoding and combining

primitives. However when the same routines were re-coded in C, the performance was

more than two orders of magnitude faster. An automatic way to compile TCL-code, or a

more efficient interpreter such as an embeddable Scheme would be a welcome addition to

the the extended 3d system.

Nearly all the camera primitives have relied on the constraint solver’s built in ability to

find gradiants through forward differencing. By including a method to evaluate derivatives

Conclusions and Future Work 150

Intelligent Camera Control Steven M. Drucker

symbolically such as those suggested in [Gleicher92], [Cohen92], or [Kass92], the system

could be made more robust and more efficient.

Higher dimensional manifolds would be interesting to explore, especially for the path

planning and visibility constraints. For more dimensions than three, multi-resolution opti-

mization techniques would probably be needed. The path planning and visibility con-

straints lend themselves to parallel computation and this would be an interesting avenue of

research. Path planning through a dynamic environment is still a very difficult problem

and research in that direction would be also be interesting.

8.4 Extending the current work

This thesis has shown that camera primitives can form the basis for the behaviors of soft-

ware agents. More sophisticated agents that can actively decide among a number of built

in behaviors, or perhaps to combine primitives into new behaviors on the fly present excit-

ing possibilities. The software agents can be designed to automatically present information

in a coherent fashion or be used within interactive environments to guide the way the

scene is depicted. Multiple agents with different goals and perceptions can each show a

different representation of the graphical environment to different observers.

Whether the camera primitives are embedded in software agents, or combined and

sequenced explicitly, a higher level, cinematic language needs to be developed. The proper

language could permit an ease of interaction with graphical environments that does not

exist today. Stylistic expression in cinematography has just been touched on in this thesis.

It would be interesting to attempt to quantify an analysis of cinematic style and attempt to

incorporate that analysis into a software agent. The camera primitives discussed in this

thesis are a basis for the actions of the agent, but not for the reasoning.

The convenience of the framework is still somewhat unproven. It needs to be used as the

basis for many different user interfaces. The process of building an interface takes several

iterations of design and user testing. It would be desirable to build a number of interfaces

for tasks ranging from cinematic pre-visualization to automatic filming for interactive nar-

rative environments.

Path Planning 151

Intelligent Camera Control Steven M. Drucker

APPENDIX 1: PATH PLANNING

The following chapter describes the algorithms for pathplanning used in this thesis.

The problem of finding a collision free path through a complicated environment has been

examined a great deal in the context of robot motion planning. There have been several

attempts at incorporating pathplanning systems into a graphical environment, or using the

special capabilities of graphics hardware to assist in path planning [Lengyel91]. In gen-

eral, the problem can be thought of as either vector-based approaches or bitmap

approaches, somewhat akin to hidden surface removal in computer graphics. The vector

based approaches involve decomposing the problem into an equivalent graph searching

problem by constructing visibility graphs or connected regions [Lozano-Perez80,

Brooks83]. The bitmap approaches involve discretizing space into regular occupied or free

cells and traveling through bitmap from one adjacent cell to the next [Lengyel91,

Barraquand89, Latombe91].

Schröder and Zeltzer implemented an algorithm introduced by Lozano-Perez [Lozano-

Perez80] in a virtual environment system called BOLIO [Schröder88, Zeltzer89]. A visi-

bility graph was constructed based on the projection of all the objects in the environment

onto the floor plane. The actor’s position and the destination position were then connected

to the visibility graph and the A* algorithm was run to search the visibility graph. The

entire algorithm needed to be rerun whenever an object was moved. The visibility graph

method tends to produce paths that graze objects as closely as possible as well as paths

with straight lines connected to other straight lines which may be an unnatural way to

move a camera. The algorithm also does not take advantage of the graphics hardware

capabilities present in a graphics workstation. The path planning scheme described in this

Path Planning 152

Intelligent Camera Control Steven M. Drucker

paper uses a room-to-room visibility graph to first determine the overall path for the cam-

era, but then uses other more appropriate techniques for negotiating each room.

The local path planning technique used here is somewhat based on [Latombe90] in which

the scene is rendered from an overhead view and a bitmap is constructed with each pixel

representing either free space or an obstacle. This bitmap was then turned into a configura-

tion space by growing each obstacle region by the size of the moving object for several

different orientations. In our system, we assume a spherical size for the camera so the con-

figuration space does not need to be concerned with rotation. A numerical function was

propagated through the bitmap from a destination location to the current location and an

appropriate path through the configuration space was found by following the downward

gradient of the numerical function. Their goal was not for camera motion planning or even

for graphics animations, but to use a graphic workstation to assist in robot motion plan-

ning. Their paths were not necessarily suitable for camera movements due to the distance

metric which they chose to propagate through the configurations space. They propagated

the numerical function only until it reached a given starting point. In contrast, our algo-

rithm is designed to be used in a building environment, precomputing as much as possible,

and is specifically tailored to controlling a camera in a natural fashion.

The pathplanning process is decomposed into several sub-algorithms, many of which can

be precomputed in order to speed calculation as much as possible. First, a general descrip-

tion of the overall process is given, then more detailed descriptions of each sub-algorithm

follow.

The problem of traveling from one point in the museum to another point is first decom-

posed into finding which doors to travel through. A node to node connectivity graph is pre-

computed based on the accessibility between adjacent rooms in the environment. Accessi-

bility can either be indicated by hand, or by an automatic process which uses a rendered

image of the building floor, clipped at door level, and a simple visibility test between

points on either side of a door. This visibility graph can be updated based on special acces-

sibility requirements (such as handicapped access between rooms).

Path Planning 153

Intelligent Camera Control Steven M. Drucker

Traversing the graph is done by a well known graph searching technique called A*

[Hart68]. The A* process, discussed in section 1.1, produces a list of “straight-line” node-

node paths. Paths then need to be computed between each node to avoid obstacles within

each room.

The process of finding the path from a doorway to any point within a room, or finding the

path from any point in the room to the doorway is discussed in section 1.2. This algorithm

is optimized for finding paths that originate or terminate at a doorway, so another algo-

rithm must be used to navigate from one point to another point within a room. This second

algorithm, described in section 1.3, can also deal with a partially dynamic environment as

opposed to the strictly static environment discussed in the first algorithm. Finally, a

method for generating a guided tour through the environment is discussed in the last part

of section 1.4.

A1.1 A*

The A* algorithm is based on [Hart68]. It is guaranteed to return a path of minimum cost

whenever that path exists and to indicate failure when that path does not exist.

As discussed in Robot Motion Planning [Latombe91], the A* algorithm iteratively

explores the node-graph by following paths that originate at a particular node. At the

beginning of each iteration, there are some nodes that have already been visited, and some

that are as yet unvisited. For each node that has already been visited, only the path with

minimum cost to that node is memorized. Eventually the destination node is reached (if

that node is reachable), and the minimum cost path can be reconstructed. Since the A* is

such a common algorithm, readers are referred either to [Hart68] or [Latombe91] for a

description of the implementation.

Path Planning 154

Intelligent Camera Control Steven M. Drucker

Figure 44: Room connectivity graph for the museum with a path found by A*

A1.2 Room to Room Planning

Once the A* algorithm has produced a list of node to node connectivities, each of the

rooms must be negotiated from one doorway to the next in turn. The method we use is

somewhat similar to that of [Barraquand89] except for the following: we use a different

distant metric more suited to natural motion, we pre-compute and store a navigation func-

tion from each door for a room, and we fit the results using a spline for a final representa-

tion of the path.

To avoid obstacles within the room, we plan a path based on a two dimensional projection

of the obstacles in the room onto the plane of the floor. Much of the following work can be

done in a preprocessing stage so that the actual computation of a path through a room is

extremely rapid. The 2D projection of the room can be rendered using the hardware ren-

dering of a graphic workstation at whatever resolution is appropriate for the path planning.

Subsequently a global numerical navigation function [Barraquand89] is calculated in a

wavefront expansion from each of the doorways. A separate navigation map is stored for

Path Planning 155

Intelligent Camera Control Steven M. Drucker

each doorway into a room. To demonstrate, a Manhattan (L1) distance metric is used for

the following example, the Manhattan distance metric implies that only the 4 cells sur-

rounding a cell to the N, S, E and W are considered neighbors.

Figure 45: Navigation function calculated with a Manhattan metric

Once the navigation function is computed for a room, it is possible to travel to anywhere

within the room by simply following the gradient of the distance function from the goal

point back to the origin of the navigation function. There are a few problems that exist in

using the algorithm as is:

• the paths generated by the algorithm tend to graze objects as closely as possi-

ble which is unacceptable for camera motion. To fix this, the objects are

increased in size by a fixed amount in all directions. This prevents the naviga-

tion function from passing too close to any object in the environment.

• the paths generated from using a Manhattan metric produce paths that are

unacceptably aligned to the major axes. By using a different distance metric,

we were able to generate paths that made movement along more axes possible.

See figure 46.

7

6

5

4

3

2

1

6

5

4

3

2

1

0

7

6

5

4

3

2

1

8

7

6

5

4

3

2

9

8

0

0

0

0

0

10

9

10

11

12

13

14

11

10

11

12

13

14

15

7

6

5

4

3

2

1

6

5

4

3

2

1

0

7

6

5

4

3

2

1

8

7

6

5

4

3

2

9

8

0

0

0

0

0

10

9

10

11

12

13

14

11

10

11

12

13

14

15

Path Planning 156

Intelligent Camera Control Steven M. Drucker

Figure 46: 3 distance metrics and resulting paths.

L1 is shown on the left, L2 in the middle, and L3 on the right of the figure. L1 allows 4 distinct directions of movement.
L2 allows 8, L3 allows 16. We used L4 (not pictured) which allows 32 directions
.

• the paths produced are discretized into the space of the rendered image and

must be converted into continuous paths in the space of the room. We can

transform the points into the proper space using an affine transformation, and

then fit a spline curve to the points using a least squares curve fitting method to

find the best path. The control points are chosen to be as evenly spaced as pos-

sible while minimizing the difference between the spline and the sample

points. We can also apply additional tangency constraints at the starting and

ending points to make sure that the path goes through doorways in a perpen-

dicular fashion.

Path Planning 157

Intelligent Camera Control Steven M. Drucker

Figure 47: An eventual path through 4 rooms of the museum.

Figure 47 shows an eventual path through the museum. The navigation function that was

used for each room is pictured. Usually the navigation chosen for a room is the one gener-

ated that leads to the exit door of that room. In the final room, the algorithm is run back-

wards and calculates a path from the destination location to the entry room. The resultant

path is reversed and combined with the other paths.

A1.3 Travel within a Room

Path planning using the global navigation function as described in section 5.2 is extremely

convenient because all the computation intensive work can be performed in a preprocess-

Path Planning 158

Intelligent Camera Control Steven M. Drucker

ing stage (all the renderings of the scene, and the propagation of the distance function

along the image, for each doorway). The final path planning process is extremely rapid on

a typical workstation (less than .5 seconds on an R3000 SGI). There are, however, 2 draw-

backs to this algorithm:

• it does not deal with planning a path from one point within a room to another

point within the room. Because the navigation function is calculated from the

doorways of a room, we can conveniently find a path from any point in the

room to a doorway, or from a doorway to any point in the room. But we can

not easily find a path between two points in a room except via a doorway

• it does not deal with dynamically changing environments. The entire, compu-

tation intensive parts of the algorithm must be rerun whenever an obstacle in

the environment moves.

To address the problems described above, an alternate path planning algorithm loosely

based on [Barraquand91] can be used. More computation needs to be done for this algo-

rithm so it is only used when necessary.

Again, as much preprocessing as possible is performed to make the algorithm as interac-

tive as possible. As before, the static part of a scene is projected onto a 2D plane by graph-

ics hardware. Wavefront expansion is used to propagate a penalty distance function

outwards from each object. The wavefront expansion is stopped as soon as the wave meets

another wave coming from some other object (or from another place on the same object).

We can use a Manhattan (L1) distance metric, but we keep track of the origin pixel of each

wavefront. For each pixel, we can then calculate the Euclidean distance to the nearest

object. This preprocess generates a distance map which can be turned into a repulsive gra-

dient field by using a function like a/dn where d is the distance, a and n are constants that

can be chosen for the task. An absolute cutoff value beyond which repulsion effects are

ignored can be used if desired.

At run-time, an attractive potential is created to the goal destination (using a function of

the form c*dn where d is the distance and c and n are chosen for the task) and this is

Path Planning 159

Intelligent Camera Control Steven M. Drucker

summed with the repulsive potential. Any moving obstacles can also generate a repulsive

potential. The sum of the potentials produces the overall gradient.

Figure 48: Calculating a path potential function.

A precalculated repulsive potential is added to a run-time attractive potential to produce

the final navigation function on the right. This is used to guide a breadth first search

through potential space to find the resultant path.

Simple gradient following tends to get trapped into local minima. Instead of always fol-

lowing the gradient, the gradient information in the discrete grid is used as a breadth first

guide in a search of the entire grid space. When the algorithm heads into a local minima,

the algorithm essentially backs out of the minima on its way to finding the appropriate

path to the goal. Again, the algorithm produces discretized paths which must then be fit by

splines to produce a continuous path.

A1.4 Tour Planning

Finally, we developed an algorithm to generate the shortest path that will view all the art-

work that is specified by the user. In a similar fashion to the point to point navigation, the

tour planner divides the problem up in several stages. First, the algorithm locates all the

rooms that are slated to be visited. Then, an exhaustive search is made of all the paths that

connect each room. This is an exponential time algorithm, but since there is a relatively

low branching factor for each room (as well as a fairly small number of rooms), the algo-

rithm is still rapid enough to be used interactively. After the rooms have been ordered, the

paintings within each room need to be ordered based on the entry and exit doors (visit the

Path Planning 160

Intelligent Camera Control Steven M. Drucker

painting first which is closest to the door from which the room is entered, and visit the

painting last next to the exit door). At this point we have a list of paintings that will be vis-

ited in the order specified. The algorithms discussed in the previous three sections can be

used to plan paths between each of the paintings and the results can be combined into the

global tour.

Visibility Determination 161

Intelligent Camera Control Steven M. Drucker

APPENDIX 2: VISIBILITY DETERMINATION

One method of determining visibility is quite similar to the method used for planning

paths through an environment. The path planning constraint produces a 3 dimensional sur-

face based on the x and y position of the camera, and a distance from a single known goal

location. This algorithm can be easily extended to another dimension by propagating the

wavefront through a volume rather than a flat surface. The visibility algorithm produces a

3 dimensional surface based on the azimuth and pitch from the viewpoint of an object and

a distance from the nearest visible point. This algorithm can also be easily extended by

taking volumes into account.

Figure 49 shows an example of the visibility problem from both an oblique view and the

camera’s view.

Figure 49: Visibility problem: oblique view and camera view.

The goal for the camera is to find a view where the small object at the bottom of the figure

is visibility.

The first step is to create a shadow volume from the viewpoint of the goal object. This can

be done in object space efficiently with BSP trees (see Chin89). Instead of a shadow vol-

Visibility Determination 162

Intelligent Camera Control Steven M. Drucker

ume, this version creates a 2 dimensional rendering from the viewpoint of the goal object

looking towards the initial location of the camera. This rendering is then used to guide in

the construction of a potential field. All the points that are visible from the object are given

an initial value of 0. All obscured points which neighbor visible points then receive a value

of 1. The wave front propagates into the obscured region with all points in the obscured

region receiving the lowest value of the wave front that reaches them. The rendering and

the visibility potential map is shown in figure 51.

Figure 50: Visibility map construction

This map is really a potential field based with axes for the azimuth and pitch from the

viewpoint of the object, and height of distance from a visible region. See figure 52.

Figure 51: Visibility potential map

This potential map is then followed from the initial location down to the nearest location

Visibility Determination 163

Intelligent Camera Control Steven M. Drucker

in the visible region. The camera is then placed along the line connecting the goal object’s

position with the new location on the map. The distance between the camera and the object

is currently constrained to remain the same. The final position of the camera, and it’s view

are shown in figure 52.

Figure 52: Visible position for camera.

One disadvantage of the method is that it works best for closed environments. However

two ways of overcoming this limitation is to either set the z clipping plans so that no object

further than the current position of the camera is rendered into the visibility map. An alter-

nate method is to use the z-buffer values instead of the image to calculate the visibility

map.

Another problem is that the visibility map must be recomputed whenever anything in the

environment moves. Fortunately, with graphics hardware, this can be accomplished rap-

idly. Visibility map calculation takes on the order of 2 seconds on an IRIS Indigo worksta-

tion.

Graphical Environment Systems 164

Intelligent Camera Control Steven M. Drucker

APPENDIX 3: GRAPHICAL ENVIRONMENT SYSTEMS

The following section describes the extended 3d graphic system.

Extensions to the 3d environment which was originally described in [Chen92] include the

following: TK (a toolkit for X-window widgets); [incr tcl] (an object oriented extension to

tcl); a port to the Silicon Graphics Graphics Library (GL); support for a head mounted dis-

play; better communication support; visibility calculation; radiosity; raytracing; video

objects; spline fitting and generation; quaternions; and a general constrained optimizer.

This adds to an existing base of tools for dynamic simulation, extensive math and linear

algebra libraries; Denavit-Hartenberg notation; finite element analysis; a general purpose

embeddable interpreter; and multiplatform hardware and software rendering support.

The extended 3d system has been crucial as a prototyping tool for the creation of several

graphical environments including all the environments described in this thesis: mission

planner; CINEMA system; virtual museum; conversation; virtual football game; and sev-

eral others: pumping it up (by David Chen the author of the original system); and an ani-

mation (S.I. with Tinsley Galyean).

Converters have been written which translate a variety of different file formats into files

readable by the extended 3d system including subsets of RIB files (those produced by

Swivel 3D); objects produced by Wavefront; files produced by the Vertigo system; and a

subset of DXF files.

A3.1 TK

TK is an object oriented toolkit built to provide X widget functionality from tcl. It pro-

vides rapid prototyping of widgets and convenient generation of interfaces for various

Graphical Environment Systems 165

Intelligent Camera Control Steven M. Drucker

graphical environments. Extensive use of the canvas widget (a structured graphics editor)

was used for the map-view in the museum; the action view of the football game; and the

interactive graphical programming of camera modules.

A3.2 Communication libraries

Through the addition of TK, interprocess communication is possible between any pro-

cesses running within TK through TK’s send function. This has greatly facilitated indepen-

dent development of algorithms without having to incorporate the algorithms within the

extended 3d system.

An alternate, more special purpose, yet faster method of communication is through the use

of unix pipes. Processes can be spawned by 3d which can then communicate with the sub-

processes through pipes. One advantage of this is that a special protocol can be used to

send binary data back and forth. In addition, the overhead for communicating over the

pipes is less than the more general and flexible interprocess communication provided by

the send function.

A3.3 Head mounted display/dataglove

Support for multiple viewports and hardware tracking was added to extended 3d. It has

currently been used with VPL eyephones. Tracking devices have included the polhemus

isotrack and the Ascension Bird. Tracking information is incorporated into 3d either

through the send mechanism or through pipes to specifically spawned processes which

access the serial ports.

An application which also uses the dataglove was implemented using pipes to a serial pro-

cess which reads the position of the polhemus attached to the dataglove and also returns

the flex values for each of the finger sensors. These flex values were then used to adjust the

Denavit Hartenberg parameters of a simulated robot hand which handled all forward kine-

matics for the model.

Graphical Environment Systems 166

Intelligent Camera Control Steven M. Drucker

A3.4 Radiosity/Raytracing/Visibility

Radiosity is a graphical rendering technique which allows extensive precomputation based

on an energy balance occasion for light propagating through the environment. Calculating

the global illumination of an environment with radiosity greatly enhances the realism of

the perceived space. Of particular importance are shadows and other natural environment

cues which help the user orient themselves within the space. It is because of this enhanced

perception of the environment, and because it incurs no loss of display speed, that radios-

ity has been included in the extended 3d system.

To add radiosity functionality to the 3d system the object database is converted into a for-

mat acceptable by the public domain raytracer known as RayShade [available via ftp at

weedeater.yale.edu]. The visibility calculation libraries from this raytracer have been

incorporated into extended 3d. Once in this form visibility testing between any point in the

environment and any other point in the environment can be performed. Additional struc-

tures are added that store the amount of radiosity gathered at each vertex and thus at each

patch within the graphical database. Adaptive subdivision is also supported. Finally, after

extensive adaptive subdivision methods of converting the resultant complex mesh into a

texture map (for significant increase in the speed of rendering). The database can be stored

along with either the resulting vertex colors or texture maps and reloaded so that radiosity

calculations can be done in advance of interaction.

The visibility database can be a greatly simplified version of the actual database, since it

simply acts as a mask to prevent light from traveling through objects. This visibility data-

base enables arbitrary visibility testing in the environment.

rad_load_database filename

rad_checkvis

rad_shoot [sub]

rad_subdivide

rad_update [gamma]

Rad_checkvis checks the visibility between two world space points based on the radiosity

database.

Rad_shoot computes one round of shooting from the patch with the maximum amount of

unemitted radiosity. If the sub flag is included, then adaptive subdivision of the database

Graphical Environment Systems 167

Intelligent Camera Control Steven M. Drucker

occurs based on the conditions set in the rad_subdiv call.

Rad_subdiv sets subdivision conditions and limits.

Rad_update updates the vertex colors of the database based on the radiosity values stored

at each vertex. If gamma is specified then the color values are scaled by e^gamma.

A3.5 Video Objects

Video objects were created because of the current ability of graphic workstations to dis-

play texture maps using hardware capabilities. Textures can add a great deal of realism to

the image without incurring any loss in performance. This is particularly important in cre-

ating environments which have human beings in them. It is especially important when

specifying camera positions and movements to be able to see a detailed representation of

the human including gaze direction and expression on the face. Modelling humans geo-

metrically is still a current research direction in Computer Graphics and sufficiently realis-

tic models tend to be made of an extremely large number of polygons, or surface patches

(on the order of 10,000+).

The basic strategy for the creation of a video object is to digitize an object from a number

of multiple viewpoints (typically 8 or 16 views from angles around the object). Once these

views have been digitized, and an appropriate alpha channel is created for the background,

the textures are loaded into the machine. The video object is then represented geometri-

cally as a single square polygon scaled to the correct size for the object in relation to other

objects in the environment. When viewing the scene, the polygon representing the video

object is first oriented to face the viewer. Then, the appropriate texture map is selected and

mapped onto the video object based on the angle that the object is meant to be facing (a

normal vector is stored with the video object and can be changed so the object faces differ-

ent directions). See figure 53.

Graphical Environment Systems 168

Intelligent Camera Control Steven M. Drucker

Figure 53: Video Objects

This creates the illusion of a three dimensional object through the use of many two dimen-

sional textures. Additionally, we can digitize movements of the objects from multiple

angles and choose the image not only based on the appropriate angle, but also based on the

appropriate image within a sequence of images. Because of the capacity of hardware tex-

ture memory, we can only use a limited number of video objects, and especially moving

video objects. Currently, images are digitized to a resolution of 128x128 bits, which is

quite high enough for a good resolution image. At this resolution, each “view-frame” of a

video object takes 65536 bytes. Typical static objects need to have either 8 or 16 views for

a true sense of 3-dimensionality thus requiring 524,288 (or 1,048,566) bytes for storage of

the texture map. Thus with no loss of speed due to swapping of texture memory, 9 video

objects (or 9 animation steps for a single video object) with 16 views each, can be used on

a SGI reality engine with 9 megabytes of texture memory with no performance degrada-

tion due to swapping memory.

ivido texture_map_root numimages object_name

vidimage object_name

six digitized
views of object

0° 60° 120° 180° 240° 300°

From this view, the angle between the
viewer and the object angle is computed.
The resultant image (120°)is selected and
oriented to face the viewer.

object angleview angle

Graphical Environment Systems 169

Intelligent Camera Control Steven M. Drucker

Ivido creates a video object and loads the specified texture maps into the directory /

vid_textures. If the textures already exist there, then only the object is created and no more

textures are loaded. The number of images can either be 1,8, or 16. The proper angle num-

ber is automatically appended to the name of the texture map. Texture maps be stored in

the form map_name.rgba.angle.

Vidimage calculates the angle that the object should be rotated in order to face the viewer,

and then calculates and maps the image on the object based on the angle between the

object’s internal normal and the viewer to object direction.

A3.6 Object Oriented Tcl [incr tcl]

[incr tcl] was designed by [McClelland92] to be used as an objected oriented extension to

tcl in a similar fashion that C++ is an object oriented extension to C. It provides for object

encapsulation of methods and variables and multiple inheritance. It was used extensively

in the implementation of camera modules and camera agents and made programming in

the 3d environment a joy.

A3.7 General Optimization

A general purpose optimization procedure was embedded in the extended 3d environment.

The system used was a “Feasible Sequential Quadratic Programming ” (FSQP) written by

[Lawrence94]. The procedure was embedded in such a way to allow for tcl routines to act

as the objective function, the gradient of the objective function, constraint functions, and

their gradients. If no derivative is specified, the optimization can calculate the derivatives

by finite differences.

The details of the operation of the fsqp solver and the 3d interface are described in appen-

dix 4.

A3.8 Spline fitting and evaluation

Support for general purpose spline creation, fitting, and interpolation is now incorporated

Graphical Environment Systems 170

Intelligent Camera Control Steven M. Drucker

into the extended 3d system. Fitting is accomplished through a least square adjustment of

control points which have been distributed equally along the arc length of the points to be

fitted. For more information on the technique used see [Barsky83]. Splines can be turned

into polylines that are displayed in 3d and can be incrementally updated. Positions along

the splines can be calculated to provide for a means of smooth keyframed movement for

objects and cameras.

m2splinefit inputm2 numcontrol controlm2

m2spline controlm2 interpolation outputm2

m2splineval controlm2 time

m2obj matrix obj

m2cat mat1 [mat2 ... matn] matoutput

m2hermite controlm2 steps outputm2 [tension]

m2hermiteval controlm2 time outputm2 [tension]

M2splinefit calculates the control points of a B-spline with the specified number of control

points which best fits the input points. This allows convenient smoothing of noisy data.

M2splineval and M2spline use the control points calculated from m2splinefit to generate

either a single 3 dimensional output or a 3xn matrix of outputs where n equals the number

of control points times the number of steps specified.

M2obj turns any matrix into a polyline to be displayed in the system. This permits conve-

nient displays of object or camera paths.

M2cat concatenates any number of m2’s into one large resultant m2s. The matrices need

not have the same number of columns, but the result has the same number of columns as

the maximum input matrix and has number of rows equal to the sum of the number of

rows in each of the input matrices. Extra columns are filled with 0’s.

M2hermite constructs a Kochanack style tension/bias hermite spline through the specified

points. Input can be n-dimensional and output will be mxn based on the number of input

elements specified and the step size.

Graphical Environment Systems 171

Intelligent Camera Control Steven M. Drucker

M2hermiteval returns one point on a Kochanack style tension/bias hermite spline through

the specified points. Input can be n-dimensional while output is 1xn.

A3.9 Quaternions

A quaternion based representation has been incorporated along with utility routines to

translate between a rotation matrix based and quaternion based representations. Quater-

nions enable convenient interpolation of key framed matrices both for the general objects

in the system and for the camera. For more details on quaternions, see [Shoemake87].

quattom2 quat m2

mtoquatn m2 quat

viewtoquatn quat

Quattom2 converts the specified quaternion into the 4 x 4 rotation matrix m2.

Mtoquatn converts the rotation portion of a 4x4 matrix into a normalized quaternion.

Viewtoquat converts the view matrix into a quaternion.

Feasible Sequential Quadratic Programming 172

Intelligent Camera Control Steven M. Drucker

APPENDIX 4: FEASIBLE SEQUENTIAL QUADRATIC PROGRAMMING

The method for solving constraints described in this thesis is implemented using the

CFSQP Package provided by Craig Lawrence, Jian L. Zhou, André L. Tits of the Electrical

Engineering Department at the University of Maryland. The author is reachable via phone:

301-405-3669 or email: andre@eng.umd.edu. The CFSQP Package is c-code for solving

large scale constrained non-linear (minimax) optimization problems, generating iterates

satisfying all inequality constraints. Much of this section is taken from the User’s Guide

for the package.

CFSQP provides functions for the minimization of the maximum of a set of smooth objec-

tive function subject to general smooth constraints based on a modified version of sequen-

tial quadratic programming. If the initial guess is infeasible for some of the constraints, the

algorithm first attempts to generate an initial starting point that is feasible to all boundary

conditions and constraints. Subsequent iterates for minimizing the objective functions all

satisfy these constraints. The user provides functions which calculate the objective func-

tions and constraint functions. The user can either provide functions that calculate the

respective gradients or have the algorithm do so by finite differences.

Formally, the problem is of the form:

(P) 18

where and X is the set of point satisfying the following:

minimize

f i x

(){ }
i I

f∈
max s.t. x X

∈

I
f

1 … n f, ,{ }

= x R
n

∈

Feasible Sequential Quadratic Programming 173

Intelligent Camera Control Steven M. Drucker

19

where with representing the lower bounds for

x

, and

, representing the upper bounds for

x.

The functions represent inequality

constraints, the first n

i

being nonlinear and the next being linear, where

, , . And the functions represent equal-

ity constraints, the first n

e

 being nonlinear, and the next being linear, ,

.

A4.1 The CFSQP algorithm

The algorithm proceeds as follows:

1) If the initial guess does not satisfy the linear constraints, CFSQP generates a point satis-

fying these constraints by solving a strictly convex quadratic program (QP).

2) Next, if the initial guess (or the generated initial point) does not satisfy the nonlinear

inequality constraints, CFSQP attempts to generate a point

x

0

by iterating on the problem

of minimizing the maximum of the nonlinear inequality constraints.

3) Nonlinear equality constraints are turned into inequality constraints using a scheme

from Mayne and Polak [??ref].

20

4) The original objective function is replaced by the modified objective

function:

21

bl x bu< <

g j x() 0 j,≤ 1 … ni, ,=

g j x() c j ni– x,〈 〉 d j ni–– 0 j,≤≡ ni 1 … t

i

, ,+=

h j x() 0 j, 1 … ne, ,= =

h j x() a j ne– x,〈 〉 b j ne––≡

f i : ℜ
n ℜ i,→ 1 … n f

, ,= bl

R
n

∈
bu

R
n

∈ g

j x()
ti

ni

–

g

i : ℜ
n ℜ i,→ 1 … n f

, ,= c j

R
n

∈ d

j

R
n

∈ h

j

x

()
te

ne

– a

j

R
n

∈
b

j

R
n

∈

h

j x()

0 j,≤

1 …

ne

, ,

=

f i x(){ }

i I

f∈
max

f m x p,() f i x(){ }
i I

f∈
max p jh j x()

j 1=

ne

∑–=

Feasible Sequential Quadratic Programming 174

Intelligent Camera Control Steven M. Drucker

where are positive penalty parameters that are iteratively adjusted.

5) The resulting optimization problem only involves linear constraints and nonlinear ine-

quality constraints, which are all satisfied at successive iterates.

6) The basic SQP direction d

0

 is first computed by solving a standard quadratic program

using a positive definite estimate H of the Hessian of the Lagrangian. d

0

 is a direction of

descent for the objective function.

7) The direction is further modified to ensure that the resultant point lies within the feasi-

ble region for nonlinear inequality constraints.

Further details on the search used to solve the SQP are found in the user’s manual or

[Lawrence94].

A general interface to CFSQP has been incorporated into the 3d program allowing call-

back functions for the objective functions, the constraint functions, and their derivatives to

be written in TCL. This allows convenient experimentation with different minimization

functions and constraints, however does tend to run fairly slowly (30 seconds is needed for

a typical camera constraint to be run). Once proper results have been achieved for a give

constraint, the constraint functions an be manually translated into C and the resulting min-

imization usually will run at frame rates (15 Hz). Currently, most of the functions that have

been tried have not specified gradient functions but have relied upon the CFSQP to calcu-

late the gradients by finite differences. Specifying gradient functions would improve the

performance even more and a scheme such as described in [Gleicher91] would be useful

for efficient computation of the gradients.

A4.2 Detailed description to 3d fsqp interface.

fsqp nparam nineqn nineq neqn neq [-gradobj func] [-grad-

const constraintfunc] [-print] [-nf numfuncs] [-mode mode]

p j j,

1 …

ne

, ,

=

Feasible Sequential Quadratic Programming 175

Intelligent Camera Control Steven M. Drucker

[-miter maxiters] [-eps epsilon].

Nparam: number of variables in the state vector.

Nineqn: number of nonlinear inequality constraints.

Nineq: total number of nonlinear inequality constraints. (Nineq-Nineqn = number of linear

inequality constraints)

Neqn: number of nonlinear equality constraints.

Neq: total number of equality constraints. (Neq-Neqn = number of linear equality con-

straints)

-gradobj: (optional) for specifying the name of the function that calculates the gradient of

the objective functions, if it is not specified CFSQP calculates the gradient internally by

finite differences.

-gradconst: (optional) argument for specifying the name of the function that calculates the

gradient of the constraint functions, if it is not specified CFSQP calculates the gradient

internally by finite differences.

-print: (optional) flag to print detailed information during the minimization process

-mode: (optional) tells CFSQP to use alternate scheme for solving the minimization pro-

cess. This alternate scheme does not require improvement on each successive iterate but

requires improvement in at most 4 iterations. The scheme requires slightly fewer evalua-

tions of the objective functions.

-miter: (optional) specifies a maximum number of iterations to try before the optimizer

gives up. Defaults at 200 iterations, but solution is usually found before then.

-eps: (optional) specifies an epsilon for which a new iterate is considered to be the same as

the previous iterate, defaults at 1e-5.

When the procedure is called for the first time, the following vectors are set up:

fsqp_state: state vector of specified number of parameters

fsqp_bl: lower bounds on the state vector

fsqp_bu: upper bounds on the state vector

fsqp_display: state information at each iteration to be

displayed by the fsqp_display routine, if display is

turned on (fsqp_display 1).

Feasible Sequential Quadratic Programming 176

Intelligent Camera Control Steven M. Drucker

Initial guesses should be placed in the fsqp_state vector and the resultant minimization

will be returned in the state vector.

The procedure will call the following tcl functions for the objective and constraint func-

tions:

proc fsqp_obj_tcl {{n 0}} {

switch $n {

{1} { calculate value for objective function

1}

{2} {calculate value for object function 2}

{etc}

}

return $val

}

proc fsqp_cnstr_tcl {{n 0}} {

switch {n} {

{1...nineqn} {first nineqn nonlinear inequal-

ity constraints calculated}

{nineqn...nineq} {next nineq-nineqn linear

inequality constraints}

{nineq...nineq+neqn} {next neqn nonlinear

equality constraints}

{nineq+neqn...nineq+neq} {next neq-neqn lin-

ear equality constraints}

}

return $val

}

proc fsqp_obj_grad {{n 0}} {

optional routine to compute the gradient of the

objective functions

}

proc fsqp_cnstr_grad {{n 0}} {

optional routine to compute the gradiant of the

constraint functions

}

proc fsqp_display {iter} {

optional routine to display the results during

iterations of the constraint solver

}

Feasible Sequential Quadratic Programming 177

Intelligent Camera Control Steven M. Drucker

A4.3 Hardcoded FSQP Camera Primitives

Several hardcoded versions of camera constraints are provided in the functions

fsqp_display [0|1] turn on or off iteration display

fsqp_put wsp1 sp1

fsqp_put2 wsp1 wsp2 sp1 sp2

fsqp_over wsp1 wsp2 sp1 sp2 flag [w1 w2 w3]

fsqp_both wsp1 wsp2

Fsqp_put causes the world space point wsp1 {x y z} to be projected onto the screen space

position {x y} subject to boundary conditions.

Fsqp_put2 cause the world space point wsp1 {x1 y1 z1} to be projected onto the screen

space position {spx1 spy1} and the world space point {x2 y2 z2} to be projected onto the

screen space position {spx2 spy2} subject to boundary conditions.

Fsqp_over performs an over the shoulder shot attempting to project world space point

wsp1 {x1 y1 z1} onto the screen space position {sx1 sy1} and the world space point wsp2

{x2 y2 z2} onto the screen space position {sx2 sy2}. The flag indicates whether the vector

from obj1 to obj2 should be reasonably aligned with the camera’s view normal or the vec-

tor from obj2 to obj1. Finally, the terms w1, w2, and w3 provided added control by

weighting the three objective functions (the first projection wsp1->sp1, the second projec-

tion wsp2->sp2, or the gaze direction).

Fsqp_both minimizes the field of view while including the projections of both of the wold-

space positions in the frame.

A sample tk widget is provided which sets or releases bounding conditions on any of the

parameters is shown in figure 54.

Feasible Sequential Quadratic Programming 178

Intelligent Camera Control Steven M. Drucker

Figure 54: Simple bounds control window for fsqp.

A4.4 TCL-Code to implement over the shoulder constraint

The following section shows the code that can be used to implement an over-the-shoulder

shot discussed in section 6.3. First the purely TCL version of the code is presented, and

then a translation of the same code into C is given. This demonstrates not only how con-

straints can be prototyped within the interpreted environment, but also how to translate the

prototypes into code that can be used interactively. This code would be far more efficient

in either case if gradiants were computed as opposed to just allowing the system to com-

pute the gradiants through forward differences.

##

overtheshoulder.tcl

#

Steven M. Drucker 4/29/94

#

example code to demonstrate over-the-shoulder constraint

called from tcl in extended 3d

#

#

source overtheshoulder.tcl

setup

doit

#

##

##

#

Feasible Sequential Quadratic Programming 179

Intelligent Camera Control Steven M. Drucker

routine to set up initial conditions

#

##

proc setup {} {

 global iteration

 global obj1 obj2

 global w1 w2 w3

 # load and set up target objects

 io cutcube.asc cu

 io cutcube.asc cu2

 so .25 .25 .25 cu

 so .25 .25 .25 cu2

 co 1 0 0 cu2

 to -1 0 0 cu2

 to 1 0 0 cu

 # set relative weights for the different constraints

 set w1 1

 set w2 1

 set w3 1

 # set the target objects for the minimization

 set obj1 cu

 set obj2 cu2

 # initialize the feasible sequential quadratic minimizer with

 # 7 state variables

 fsqp_init 7

 # set lower and upper bounds on roll (in radians)

 m2ele 5 -.01 fsqp_bl

 m2ele 5 .01 fsqp_bu

 # set lower and upper bounds on zoom between 45 and 50 degrees

 m2ele 6 [D2R 45] fsqp_bl

 m2ele 6 [D2R 50] fsqp_bu

 # load in an initial position

 m2load {-3 4 4 2.44 -0.68 0 0.7854} fsqp_state

Feasible Sequential Quadratic Programming 180

Intelligent Camera Control Steven M. Drucker

 # turn on display at each iteration

 fsqp_display 1

 set iteration 0

 set q [m2dump fsqp_state]

 visualize $q

 render

}

##

#

routine to call to perform minimization

#

##

proc doit {} {

 # call fsqp with 7 parameters in state,

 # 2 nonlinear inequality constraint

 # 0 nonlinear equality constraints

 # 0 linear inequality constraints

 # 0 linear equality constraints

 # 3 functions to minimize

 fsqp 7 2 2 0 0 -nf 3

 # dump out the end state

 set q [m2dump fsqp_state]

 # set view parameters based on state

 visualize $q

 # render the scene

 render

}

##

#

routine called at each iteration of minimization

this version increments an iteration counter and

displays the results

#

##

Feasible Sequential Quadratic Programming 181

Intelligent Camera Control Steven M. Drucker

proc fsqp_display_tcl {{val 0}} {

 global iteration

 echo iteration: $iteration

 incr iteration

render the state at each iteration

 visualize [m2dump fsqp_display]

 render

}

##

#

object function(s) for minimization

#

##

proc fsqp_obj_tcl {{func -1}} {

 global obj1 obj2

 global w1 w2 w3

 set val {}

 set q [m2dump fsqp_state]

 switch $func {

{1} {

 # project object1 to left third line of screen

 set p1 [compute_px $q [centroid $obj1]]

 set desp1 {-.33 0}

 set val [mult $w1 [sc_dist $p1 $desp1]]

}

{2} {

 # project object2 to right third line of screen

 set p2 [compute_px $q [centroid $obj2]]

 set desp2 {.33 0}

 set val [mult $w2 [sc_dist $p2 $desp2]]

}

{3} {

 # try to look into gaze vector of obj1 as much

 # as possible. Assume that obj1 is looking at obj2

 set gaze [minus [centroid $obj2] [centroid $obj1]]

Feasible Sequential Quadratic Programming 182

Intelligent Camera Control Steven M. Drucker

 set gaze [div $gaze [enorm $gaze]]

 set cosP [cos [R2D [pitch $q]]]

 set sinP [sin [R2D [pitch $q]]]

 set cosA [cos [R2D [azimuth $q]]]

 set sinA [sin [R2D [azimuth $q]]]

 set vn [list [mult $sinA $cosP] [mult $cosA $cosP] $sinP]

 set sval [plus [dot $vn $gaze] 1]

 set val [mult $w3 [mult $sval $sval]]

}

 }

 return $val

}

##

#

constraint function(s) for minimization

#

##

proc fsqp_cntr_tcl {{n 0}} {

 global obj1 obj2

 set q [m2dump fsqp_state]

 set val 0

 switch $n {

{1} {

 #

 # constraint to make sure that viewnormal is not

 # pointed AWAY from object1 -- object is projected correctly, but

 # behind the viewer

 set cosP [cos [R2D [pitch $q]]]

 set sinP [sin [R2D [pitch $q]]]

 set cosA [cos [R2D [azimuth $q]]]

 set sinA [sin [R2D [azimuth $q]]]

 set vn [list [mult $sinA $cosP] [mult $cosA $cosP] $sinP]

 set vp [list [tx $q] [ty $q] [tz $q]]

 set ovp [minus [centroid $obj1] $vp]

 set val [mult -1 [dot $ovp $vn]]

}

{2} {

 #

Feasible Sequential Quadratic Programming 183

Intelligent Camera Control Steven M. Drucker

 # constraint to make sure that viewnormal is not

 # pointed AWAY from object2 -- object is projected correctly, but

 # behind the viewer

 set cosP [cos [R2D [pitch $q]]]

 set sinP [sin [R2D [pitch $q]]]

 set cosA [cos [R2D [azimuth $q]]]

 set sinA [sin [R2D [azimuth $q]]]

 set vn [list [mult $sinA $cosP] [mult $cosA $cosP] $sinP]

 set vp [list [tx $q] [ty $q] [tz $q]]

 set ovp [minus [centroid $obj2] $vp]

 set val [mult -1 [dot $ovp $vn]]

}

 }

 return $val

}

##

#

routine to convert state vector into the current view

#

##

proc visualize {q} {

#

tx,ty,tz, azimuth, pitch, roll, and acfov retrieve the

1st through 7th elements of the vector respectively

#

 set camx [tx $q]

 set camy [ty $q]

 set camz [tz $q]

 set cama [R2D [azimuth $q]]

 set camp [R2D [pitch $q]]

 set camr [R2D [roll $q]]

 set camfov [R2D [acfov $q]]

set the view based on the state vector

 fullview $camx $camy $camz $cama $camp $camr

set the field of view based on the state vector

 fov $camfov

}

Feasible Sequential Quadratic Programming 184

Intelligent Camera Control Steven M. Drucker

##

#

routine to calculate the screen space distance between

two points

#

##

proc sc_dist {x1 x2} {

 set diff [minus $x1 $x2]

make sure just use the x and y coordinates (ignore z)

 set proj [lrange $diff 0 1]

use euclidean norm

 return [enorm $proj]

}

##

#

routine to calculate the screen space projection based

on the camera parameters of q

a c version of this function exists and is called

project q wsp

#

##

proc compute_px {q x} {

 vsave

 fullview [tx $q] [ty $q] [tz $q] \

[R2D [azimuth $q]] [R2D [pitch $q]] [R2D [roll $q]]

 set savefov [fov]

 fov [R2D [acfov $q]]

 Mident

 persp_M

 view_M

 vrestore

 fov $savefov

 set val [Mxform $x]

 return $val

}

Feasible Sequential Quadratic Programming 185

Intelligent Camera Control Steven M. Drucker

A4.5 C-Code to implement over the shoulder constraint

/***/

/* fsqp_over.c */

/* c-code example for implementing over the shoulder shot */

/* */

/* this assumes that the following has been done from the “tcl side” */

/* */

/* fsqp_init 7 */

/* # values loaded into vectors fsqp_bl, and fsqp_bu */

/* # and initial state */

/* m2load {-1E+10 -1E+10 -1E+10 -1E+10 -1E+10 -0.01 0.785} fsqp_bl */

/* m2load {1E+10 1E+10 1E+10 1E+10 1E+10 0.01 0.872} fsqp_bu */

/* m2load {-3.24 4.58 4.16 2.44 -0.68 0.00 0.7854} fsqp_state */

/* # and routine is called as: */

/* fsqp_over [centroid obj1] [centroid obj2] {-.3 0} {.3 0} 1 */

/* */

/* Steven M. Drucker 4/29/94 */

/***/

#include <stdio.h>

#include <math.h>

#include <local/3d.h>

#include <local/matrix2.h>

#include <local/command.h>

#include <local/commandtypes.h>

#include <tcl.h>

#define TRUE 1

#define FALSE 0

#define ERROR \

return((sprintf(interp->result, “%s”, ((Command_3d *)(clientData))->help), \

TCL_ERROR))

static float wsp1[3], wsp2[3], sp1[3], sp2[3], flag;

static double init_val[7];

/* relative weights for objective functions */

static float w1 = 1.0;

static float w2 = 1.0;

Feasible Sequential Quadratic Programming 186

Intelligent Camera Control Steven M. Drucker

static float w3 = 1.0;

extern double objeps;

extern double epsneq;

extern double udelta;

void over_obj();

void over_cntr();

extern void grobfd(int,int,double *,double *,void (*)(int,int,

 double *,double *));

extern void grcnfd(int,int,double *,double *,void (*)(int,int,

 double *,double *));

VectorN_D *open_sl_as_vn();

fsqp_over(clientData, interp, argc, argv)

char *clientData;

Tcl_Interp *interp;

int argc;

char **argv;

{

 /* takes wsp1, wsp2, screenpos1, screenpos2, and */

 /* flag (direction of normal) 1, 0, or -1 */

 /* assumes dividing line at 0 right now */

 void (*gradfcn)(); /* gradiant of objective function */

 void (*gradcnt)(); /* gradiant of constraint function */

 char *q, *objfunction, *constrfunction, *gradobj, *gradconstr;

 int i,nparam,nf,nineq,neq,mode,iprint,miter,neqn,nineqn,inform,r;

 int ncsipl,ncsipn,nfsip,mesh_pts[1];

 char buf[1024];

 double bigbnd,eps,epsneq,udelta;

 double *x,*bl,*bu,*f,*g,*lambda;

 VectorN_D *vnd;

 if (argc < 6) ERROR;

 if (sscanf(argv[1], “%f %f %f”, &wsp1[0], &wsp1[1], &wsp1[2]) != 3)

 ERROR;

 if (sscanf(argv[2], “%f %f %f”, &wsp2[0], &wsp2[1], &wsp2[2]) != 3)

 ERROR;

 sp1[2] = sp2[2] = 0.0;

 if (sscanf(argv[3], “%f %f”, &sp1[0], &sp1[1]) != 2)

 ERROR;

 if (sscanf(argv[4], “%f %f”, &sp2[0], &sp2[1]) != 2)

Feasible Sequential Quadratic Programming 187

Intelligent Camera Control Steven M. Drucker

 ERROR;

 flag = atof(argv[5]);

 if (argc == 9) {

 w1 = atof(argv[6]);

 w2 = atof(argv[7]);

 w3 = atof(argv[8]);

 }

 /* see the fsqp handbook for a thorough explanation of these parameters */

 mode = 100;

 miter = 200;

 bigbnd=1.e10;

 eps = 1.e-5;

 objeps = 1.e-5;

 epsneq=1.e-5;

 udelta=1.e-5;

 gradobj = 0;

 gradconstr = 0;

 iprint = 0;

 nparam = 7;

 nf = 3;

 nineqn = 2;

 nineq = 2;

 neq = 0;

 neqn = 0;

 gradfcn = grobfd;

 gradcnt = grcnfd;

 bl=(double *)calloc(nparam,sizeof(double));

 bu=(double *)calloc(nparam,sizeof(double));

 x=(double *)calloc(nparam,sizeof(double));

 f=(double *)calloc(nf+1,sizeof(double));

 g=(double *)calloc(nineq+neq+1,sizeof(double));

 lambda=(double *)calloc(nineq+neq+nf+nparam,sizeof(double));

 /* set up bl and bu based on fsqp_bl and fsqp_bu */

 /* set up bl */

 strcpy(buf, “fsqp_bl”);

 if ((vnd = open_sl_as_vn(buf, argv[0], interp)) != NULL) {

 } else ERROR;

Feasible Sequential Quadratic Programming 188

Intelligent Camera Control Steven M. Drucker

 r = vnd_get_n(vnd);

 if (r != nparam) {

 sprintf(interp->result, “fsqp: lower bounds is not equal to number of params”);

 return(TCL_ERROR);

 }

 for (i=0; i < nparam; i++) {

 bl[i] = vnd_get(vnd, i);

 }

 /* set up bu */

 strcpy(buf, “fsqp_bu”);

 if ((vnd = open_sl_as_vn(buf, argv[0], interp)) != NULL) {

 } else ERROR;

 r = vnd_get_n(vnd);

 if (r != nparam) {

 sprintf(interp->result, “fsqp: upper bounds is not equal to number of params”);

 return(TCL_ERROR);

 }

 for (i=0; i < nparam; i++) {

 bu[i] = vnd_get(vnd, i);

 }

 /* set up state */

 strcpy(buf, “fsqp_state”);

 if ((vnd = open_sl_as_vn(buf, argv[0], interp)) != NULL) {

 } else ERROR;

 r = vnd_get_n(vnd);

 if (r != nparam) {

 sprintf(interp->result, “fsqp: state has wrong number of params”);

 return(TCL_ERROR);

 }

 for (i=0; i < nparam; i++) {

 x[i] = vnd_get(vnd, i);

 }

 ncsipl=ncsipn=nfsip=mesh_pts[0]=0;

 cfsqp(nparam,nf,nfsip,nineqn,nineq,neqn,neq,ncsipl,ncsipn,mesh_pts,

mode,iprint,miter,&inform,bigbnd,eps,epsneq,udelta,bl,bu,x,f,g, lambda,

Feasible Sequential Quadratic Programming 189

Intelligent Camera Control Steven M. Drucker

over_obj,over_cntr,gradfcn,gradcnt);

 strcpy(buf, “fsqp_state”);

 if ((vnd = open_sl_as_vn(buf, “obj_tcl”, interp)) != NULL) {

 } else {

 sprintf(interp->result,”state not found from objtcl”);

 return;

 }

 r = vnd_get_n(vnd);

 if (r != nparam) {

 sprintf(interp->result, “fsqp: state has wrong number of params”);

 return;

 }

 for (i=0; i < nparam; i++) {

 vnd_set(vnd, i, x[i]);

 }

 free(bl);

 free(bu);

 free(x);

 free(f);

 free(g);

 free(lambda);

 return(TCL_OK);

}

/***/

/* objective function for over the shoulder shot */

/***/

void

over_obj(nparam, j,x,fj)

int nparam, j;

double *x, *fj;

{

 Vector p1,p2;

 Vector dist;

 Vector gaze, vn;

 float len;

 float cosP, sinP, cosA, sinA, sval;

Feasible Sequential Quadratic Programming 190

Intelligent Camera Control Steven M. Drucker

 double val;

 switch(j) {

 case 1:

 compute_px(x,wsp1,p1);

 p1[2] = 0;

 VVminus(p1, sp1, dist);

 len = VVlength(dist);

 val = (double) (w1 * len);

 break;

 case 2:

 compute_px(x,wsp2,p2);

 p2[2] = 0;

 VVminus(p2, sp2, dist);

 len = VVlength(dist);

 val = (double)(w2 * len);

 break;

 case 3:

 VVminus(wsp2, wsp1, gaze);

 VVAnormalize(gaze);

 cosP = cos(x[4]);

 sinP = sin(x[4]);

 cosA = cos(x[3]);

 sinA = sin(x[3]);

 vn[0] = sinA * cosP; vn[1] = cosA * cosP; vn[2] = sinP;

 sval = flag * (VVdot(vn, gaze) + 1.0);

 val = (double) (w3 * (sval * sval));

 }

 *fj = val;

}

/**/

/* constraint function for over the shoulder shot */

/&***/

void

over_cntr(nparam,j,x,gj)

int nparam,j;

double *x,*gj;

{

 float cosp, sinp, cosa, sina, val;

 Vector vn, vp;

Feasible Sequential Quadratic Programming 191

Intelligent Camera Control Steven M. Drucker

 Vector ovp;

 switch(j) {

 /* make sure that object 1 is not projected behind view */

 case 1:

 cosp = (float)cos(x[4]);

 sinp = (float)sin(x[4]);

 cosa = (float)cos(x[3]);

 sina = (float)sin(x[3]);

 vn[0] = sina*cosp; vn[1] = cosa*cosp; vn[2] = sinp;

 vp[0] = (float)x[0]; vp[1] = (float)x[1]; vp[2] = (float)x[2];

 VVminus(wsp1, vp, ovp);

 val = -1 * VVdot(vn, ovp);

 *gj = (double)val;

 break;

 case 2:

 /* make sure that object 2 is not projected behind view */

 cosp = (float)cos(x[4]);

 sinp = (float)sin(x[4]);

 cosa = (float)cos(x[3]);

 sina = (float)sin(x[3]);

 vn[0] = sina*cosp; vn[1] = cosa*cosp; vn[2] = sinp;

 vp[0] = (float)x[0]; vp[1] = (float)x[1]; vp[2] = (float)x[2];

 VVminus(wsp2, vp, ovp);

 val = -1 * VVdot(vn, ovp);

 *gj = (double)val;

 break;

 }

}

compute_px(x,wsp,sp)

double x[7];

Vector wsp;

Vector sp;

{

 float fov;

 Matrix perspM, viewM, finalM;

 ViewSave();

 GetFieldOfView(&fov);

 FullView((float)x[0], (float)x[1], (float)x[2], RtoD * (float)x[3], RtoD *

Feasible Sequential Quadratic Programming 192

Intelligent Camera Control Steven M. Drucker

(float)x[4], RtoD * (float)x[5]);

 SetFieldOfView(RtoD * x[6]);

 GetPerspXformMatrix(perspM);

 GetViewMatrix(viewM);

 Mmult(viewM, perspM, finalM);

 VVtransform(wsp, finalM, 1, sp);

 ViewRestore();

 SetFieldOfView(fov);

}

project(clientData, interp, argc, argv)

char *clientData;

Tcl_Interp *interp;

int argc;

char **argv;

{

 double x[7];

 Vector wsp, sp;

 if (argc != 3) ERROR;

 if (sscanf(argv[1], “%lf %lf %lf %lf %lf %lf %lf”,

 &x[0], &x[1], &x[2], &x[3], &x[4], &x[5],&x[6]) != 7) ERROR;

 if (sscanf(argv[2], “%f %f %f”, &wsp[0], &wsp[1], &wsp[2]) != 3) ERROR;

 compute_px(x,wsp,sp);

 sprintf(interp->result,”%f %f %f”,sp[0],sp[1],sp[2]);

 return(TCL_OK);

}

static Command_3d fsqphard_cmds[] =

{

{ “_COM3D_”, NULL, 0, 0, ““ },

{ “_COM3D_”, NULL, 0, 0, “#” },

{ “_COM3D_”, NULL, 0, 0, “# 3d fsqphard Commands” },

{ “_COM3D_”, NULL, 0, 0, “#” },

{ “fsqp_over”, fsqp_over, 8, 8,

 “fsqp_over wsp1 wsp2 sp1 sp2 flag [w1 w2 w3] (over the shoulder shot)”

},

{ “project”, project, 8, 8,

 “project q wsp1 (calculate screenspace projection of wsp1)”

Feasible Sequential Quadratic Programming 193

Intelligent Camera Control Steven M. Drucker

},

{ NULL }

};

CommandList_3d_Add_fsqphard(command_root)

CommandList_3d *command_root;

{

if (!CommandList_3d_Add_Commands(command_root, fsqphard_cmds))

{fprintf(stderr, “CommandList_3d_Add_fsqp: failed\n”);

return(FALSE);

}

return(TRUE);

}

References 194

Intelligent Camera Control Steven M. Drucker

References

Adam, J. A. (October 1993). “Virtual Reality is for Real.” IEEE Spectrum 30(10): 22-29.

Airey, J. M., J. H. Rohlf, et al. (March 25-28, 1990). Towards Image Realism with Interactive Update Rates

in Complex Virtual Building Environments. Proc. 1990 Symposium on Interactive 3D Graphics.

Arijon, D. (1976). Grammar of the Film Language. Hollywood, CA., Silman-James Press.

Appino, P. A., J. B. Lewis, et al. (March 1992). “An Architecture for Virtual Worlds.” Presence: Teleopera-

tors and Virtual Environments 1(1): 1-17.

Arkin, R. C. (August 1989). “Motor Schema-Based Mobile Robot Navigation.” International Journal of

Robotics Research 8(4): 92-112.

Armstrong, W. W., M. Green, et al. (June 1987). “Near-Real-Time Control of Human Figure Models.” IEEE

Computer Grahics and Applications 7(6): 52-61.

Asseo, S. J. (May 23-27, 1988). Terrain Following/Terrain Avoidance Path Optimization Using the Method

of Steepest Descent. Proc. IEEE 1988 National Aerospace and Electronics Conf., Dayton OH.

Badler, N. I., K. H. Manoochehri, et al. (October 23-24, 1986). Multi-Dimensional Input Techniques and

Articulated Figure Positioning by Multiple Constraints. Proc. 1986 ACM Workshop on Interactive Graphics.

Baecker, R. M. and W. A. S. Buxton, Ed. (1987). Readings in Human-Computer Interaction. Los Altos CA,

Morgan Kaufmann.

Baecker, R. (1987). Towards an Effective Characterization of Graphical Interaction. Readings in Human-

Computer Interaction. Los Altos CA, Morgan Kaufmann. 471-481.

Balaguer, F. and A. Mangili (1991). Virtual Environments. New Trends in Animation and Visualization.

Chichester, England, John Wiley & Sons. 91-105.

Barr, A. H., B. Currin, et al. (1992). “Smooth interpolation of orientations with angular velocity constraints

using quaternions.” Computer Graphics 26(2): 313-320.

References 195

Intelligent Camera Control Steven M. Drucker

Barraquand, J., B. Langlois, et al. (1989). Numerical Potential Field Techniques for Robot Path Planning.

Stanford University.

Barsky, B. (July 1983). “Local Control of Bias and Tension in Beta-splines.” Computer Graphics 17(3): 193-

218.

Bartels, R., J. Beatty, et al. (1987). An Introduction to Splines for Use in Computer Graphics and Geometric

Modeling. Los Angeles, CA., Morgan Kaufmann.

Barzel, R. and A. H. Barr (August 1988). Controlling Rigid Bodies with Dynamic Constraints. SIGGRAPH

88 Course Notes, Developments in Physically-Based Modeling, Atlanta GA,

Barzel, R. and A. H. Barr (August 1988). “A Modeling System Based on Dynamic Constraints.” Computer

Graphics 22(4): 179-188.

Bass, L. and J. Coutax (1992). Developing Software for the User Interface. Reading MA, Addison-Wesley.

Bate, S. and K. Stanley (May 23-27, 1988). Heuristic Route Planning: An Application to Fighter Aircraft.

Proc. IEEE 1988 National Aerospace and Electronics Conf., Dayton OH.

Bejczy, A. K. and M. Handlykon (1981). Experimental results with a six degree of freedom force reflecting

hand controller. Seventeenth annual conference on manual control., Los Angeles, CA..

Berlyne, D. Structure and Direction in Human Thinking, (John Wiley, New York, 1967).

Bier, E. (March 25-28, 1990). Snap-Dragging in Three Dimensions. Proc. 1990 Symposium on Interactive

3D Graphics.

Bishop, G., W. Bricken, et al. (August 1992). “Research Direction in Virtual Environments.” Computer

Graphics 26(3): 153-177.

Blanchard, C., S. Burgess, et al. (March 25-28, 1990). Reality Built for Two: A Virtual Reality Tool. Proc.

1990 Symposium on Interactive 3D Graphics.

Blau, B., C. E. Hughes, et al. (March 29-April 1, 1992). Networked Virtual Environments. Proc. 1992 Sym-

posium on Interactive 3D Graphics, Cambridge MA: ACM Press.

Blinn, J. (July 1988). “Where am I? What am I looking at?” IEEE Computer Graphics and Applications : 76-

References 196

Intelligent Camera Control Steven M. Drucker

81.

Boies, S., M. Green, et al. (Nov. 13-15, 1989). Panel: Direct Manipulation or Programming: How Should We

Design User Interfaces? Proc. ACM SIGGRAPH Symposium on User Interface Software and Technolgy.

Bolt, R. A., The integrated multi-modal interface. Transaction of the Institute of Electronics, Information,

and Communication Engineers (Japan), Vol. 70-D, 2017-2025 (1987).

Borning, A. (July 1979). Thinglab -- A Constraint-Oriented Simulation Laboratory. Palo Alto CA, Xerox

PARC.

Braitenberg, V. (1984). Vehicles: Experiments in Synthetic Psychology. Cambridge MA, MIT Press.

Brooks, R. A. (1982). Solving the Find-Path Problem by Good Representation of Free Space. Proc. National

Conf. on Artificial Intelligence, AAAI.

Brooks, F. P., Jr. (May 15-19, 1988). Grasping Reality Through Illusion -- Interactive Graphics Serving Sci-

ence. Proc. CHI '88.

Brooks, F. P., Jr. (October 23-24, 1986). Walkthrough -- A Dynamic Graphics System for Simulating Virtual

Buildings. Proc. 1986 ACM Workshop on Interactive 3D Graphics.

Brooks, R. A. (1986). Achieving Artificial Intelligence through Building Insects. MIT.

Brooks, R. (1991). Comparative Task Analysis: An Alternative Direction for Human-Computer Interaction

Science. Designing Interaction: Psychology at the Human-Computer Interface. Cambridge, England, Cam-

bridge University Press. 50-59.

Brotman, L. S. and A. Netravali (August 1988). “Motion Interpolation by Optimal Control.” Computer

Graphics 22(4): 309-315.

Bruderlin, A. and T. W. Calvert (1989). Goal-Directed, Dynamic Animation of Human Walking. Proc. ACM

SIGGRAPH 89, Boston MA.

Burch, Noel. (1981). Theory of Film Practice. University Press. New York.

J. M. Carroll and M.B. Rosson, "Paradox of the Active User" in Interfacing Thought .J. M. Carroll, Ed. (MIT

Press, Cambridge, MA, 1987).

References 197

Intelligent Camera Control Steven M. Drucker

J. M. Carroll and R.L. Campbell, "Artifacts as Psychological Theories: The case of human-computer interac-

tion." (IBM Research Division:T.J. Watson Research Center, 1988).

Carroll, J. M., Ed. (1991). Designing Interaction: Psychology at the Human-Computer Interface. Cam-

bridge, England, Cambridge University Press.

Chamberlain, D. B. and C. R. Kirklen (May 23-27, 1988). Advanced Mission Planning System (AMPS)

Employing Terrain and Intelligence Database Support. Proc. IEEE 1988 National Aerospace and Electronics

Conf., Dayton OH.

Chen, D. T. (December 1991). Pump It Up: Computer Animation of a Biomechanically Based Model of

Muscle Using the Finite Element Method. Cambridge MA, Massachusetts Institute of Technology.

Chen, D. T. and D. Zeltzer (August 1992). The 3d Virtual Environment and Dynamic Simulation System.

Cambridge MA, MIT Media Lab.

Chen, M., S.J. Mountford, A. Sellen. (1988). A Study of Interactive 3D Rotation Using 2D Control Devices.

Proceedings of SIGGRAPH ‘88 (Atlanta, Georgia). In Computer Graphics 22(4):121-129.

Cheshire, David. (1974). The Book of Movie Photography. Alfred A. Knopf: New York.

Chin, N. and S. Feiner (1989). “Near Real-Time Shadow Generation using BSP Trees.” Computer Graphics

23(3): 99-106.

Cohen, M. (1992). “Interactive Spacetime Control of Animation.” Computer Graphics 26(2): 293-302.

Cornsweet, T. N. (1970). Visual Perception. San Diego, Harcourt Brace Jovanovich.

Cotterman, W. W. and K. Kumar (1989). “User Cube: A Taxonomy of End Users.” Communications of the

ACM 32(11): 1313-1320.

Cowan, C. P. Kovesi. (1987) Automatic sensor placement from vision task requirements. Technical Report.

SRI. Menlo Park. CA. June.

Cypher, A., Ed. (1993). Watch What I Do: Programming by Demonstration. Cambridge MA, MIT Press.

Das, H. (1989). Kinematic Control and Visual Display of Redundant Telemanipulators. PhD Thesis. MIT.

References 198

Intelligent Camera Control Steven M. Drucker

Drucker, S. M. and D. Zeltzer (1994). Intelligent Camera Control for Virtual Environments. Graphics Inter-

face '94.

Drucker, S., T. Galyean, et al. (March 29-April 1, 1992). CINEMA: A System for Procedural Camera Move-

ments. Proc. 1992 Symposium on Interactive 3D Graphics, Cambridge MA: ACM Press.

Earnshaw, R. A. (1991). Tools and Techniques for Scientific Visualization. New Trands in Animation and

Visualization. Chichester, England, John Wiley & Sons. 107-114.

Earnshaw, R. A., M. A. Gigante, et al., Ed. (1993). Virtual Reality Systems. London, Academic Press.

Eisendratt, E. (1994). Sports Director for WBZ-TV news in Boston, MA. Personal communication.

Ellis, S. R., Ed. (1991). Pictorial Communication in Virtual and Real Environments. London, Taylor & Fran-

cis Ltd.

Esakov, Jeffrey, Badler, N. Jung, M. (1989). An investigation of language input and performance timing for

task animation. In Proc. Graphics Interface 89. London, Ontario. June. 19-23.

Esakov, J. and N. I. Badler (1991). An Architecture for High-Level Human Task Animation Control. Knowl-

edge-Based Simulation. New York, Springer-Verlag. 162-199.

Esposito, C. (1993). Virtual Reality: Perspectives, Applications and Architecture. User Interface Software.

Chichester, England, John Wiley & Sons. 103-127.

Evans, K. B., P. P. Tanner, et al. (1981). “Human Spatial Orientation. Tablet based valuators that provide one,

two, or three degrees of freedom.” Computer Graphics 15(3): 91-97.

Eyles, D. E. (1991). A computer graphics system for visualizing spacecraft in orbit. Pictorial communication

in virtual and real environments. London, Taylor & Francis. 196-231.

Fisher, S. S., M. McGreevy, et al. (October 23-24, 1986). Virtual Environment Display System. Proc. 1986

ACM Workshop on Interactive Graphics.

Fleishman, E. A. and M. K. Quaintance (1984). Taxonomies of Human Performance. Orlando FL, Academic

Press.

References 199

Intelligent Camera Control Steven M. Drucker

Foley, J. D. (October 1987). “Interfaces for Advanced Computing.” Scientific American 257(4): 126-135.

Foley, J. D. and A. V. Dam (1982). Fundamentals of Interactive Computer Graphics. Addison-Wesley.

Foley, J. D., A. v. Dam, S. Feiner, J. Hughes (1990). Computer Graphics: Principles and Practice. Addison-

Wesley.

Gill, P. E., W. Murray, et al. (1981). Practical Optimization. San Diego, CA., Academic Press.

Girard, M. (June 1987). “Interactive Design of 3D Computer-Animated Legged Animal Motion.” IEEE

Computer Graphics and Applications 7(6): 39-51.

Gleicher, M. (1992). Briar - a constraint based drawing program. SIGCHI '92.

Gleicher, M. and A. Witkin (1992). “Through-the-Lens Camera Control.” Computer Graphics 26(2): 331-

340.

Gomez, J. E. (September 1984). Twixt: A 3-D Animation System. Proc. Eurographics '84, North-Holland.

Greenberg, D. P. (May 1974). “Computer Graphics in Architecture.” Scientific American 230(5): 98-106.

Haeberli, P. E. (August 1988). “ConMan: A Visual Programming Language for Interactive Graphics.” Com-

puter Graphics 22(4): 103-111.

Hagen, Margeret. H. Elliot. (1976). An investigation of the relationship between viewing condition and pref-

erence for true and modified linear perspective with adults. Journal of Experimental Psychology: Human

Perception and Performance. 2(4):479-490.

Hart, P. E., N. J. Nilsson, et al. (1968). “A Formal Basis for the Heuristic Determination of Minimum Cost

Paths.” IEEE Transactions on Systems Science and Cybernetics 4(2): 100-107.

Hochberg, J. (1986). Representation of Motion and Space in Video and Cinematic Displays. Handbook of

Perception and Human Performance. New York, Wiley. 22-1 - 22-64.

Hochberg, J. (1990). Combining Views. Human Performance Models for Computer-Aided Engineering.

Boston MA, Academic Press. 159-165.

Hochberg, J. and V. Brooks (1978). The Perception of Motion Pictures. Handbook of Perception. New York,

References 200

Intelligent Camera Control Steven M. Drucker

Academic Press. 259-304.

Hopcroft, J. E., J. T. Schwartz, et al. (Winter 1984). “On the Complexity of Motion Planning for Multiple

Independent Objects; PSPACE-Hardness of the "Warehousman's Problem".” International Journal of Robot-

ics Research 3(4): 76-88.

Horn, B. (1986). Robot Vision. Cambridge, MA., MIT Press.

Hutchins, E. L., J. D. Hollans, et al. (1986). Direct Manipulation Interfaces. User Centered System Design:

New Perspectives on Human-Computer Interaction. Hillsdale, NJ., Lawrence Erlbaum Associates. 87-124.

Isaacs, P. M. and M. F. Cohen (December 1988). “Mixed Methods for complex Kinematic Constraints in

Dynamic Figure Animation.” The Visual Computer 4(6): 296-305.

Isaacs, P. M. and M. F. Cohen (July 1987). Controlling Dynamic Simulation with Kinematic Constraints,

Behavior Functions and Inverse Dynamics. Proc. ACM SIGGRAPH 87, Anaheim CA.

Isenhour, J. P. (1975). “The Effects of Context and Order in Film Editing.” AV Communication Review

23(1): 69-80.

Kalra, D. and A. Barr (1990). A Constaint-Based Figure-Maker. Eurographics '90.

Kamada, Tomihisa. and Kawai. S.(1988). A simple method for computing general position in displaying

three-dimensional objects. Computer Vision, Graphics, and Image Processing, 41(1):43-56, January.

Kant, K. and S. W. Zucker (1986). “Planning Collision-Free Trajectories in Time-Varying Environments.”

The Visual Computer 2: 304-313.

Karp, P., S.Feiner. (1990). Issues in the Automated Generation of Animated Presentations. Graphics Inter-

face '90 (Halifax, Nova Scotia). 39-48.

Kass, M. (1991). GO: A Graphical Optimizer. ACM SIGGRAPH 91 Course Notes, Introduction to Physi-

cally Based Modeling, Las Vegas NM.

Kass, M. (1992). “CONDOR: Contraint-Based Dataflow.” Computer Graphics 26(2): 321-330.

Katz, S. D. (1988). Film Directing Shot by Shot. Studio City, CA., Michael Wiese Productions.

References 201

Intelligent Camera Control Steven M. Drucker

Katz, S. D. (1992). Film Directing Cinematic Motion. Studio City, CA., Michael Wiese Productions.

Kawin, B. F. (1992). How Movies Work. Berkeley, University of California Press.

Kim, W. S., F. Tendick, et al. (1991). Visual enhancements in pick-and-place tasks: human operators control-

ling a simulated cylindrical manipulator. Pictorial communication in virtual and real environments. London,

Taylor & Francis. 265-282.

Kochanek, D. H. U. and R. H. Bartels (July 1984). “Interpolating Splines with Local Tension, Continuity,

and Bias Control.” Computer Graphics 18(3): 33-41.

Korch, R. (1990). The Official Pro Football Hall of Fame. New York, Simon & Schuster, Inc.

Kubovy, Michael. (1988). The Psychology of Perspective and Renaiisance Art. Cambridge University Press,

New York.

Landauer, T.K., (1987)."Relations between Cognitive Psychology and Computer System Design." in Inter-

facing Thought ,T. M. Carroll, Ed. MIT Press, Cambridge, MA.

Lasseter, J. (July 1987). “Principles of Traditional Animation Applied to 3D Computer Animation.” Com-

puter Graphics 21(4): 35-44.

Lathrop, R. H. (1986). “Constrained (Closed-Loop) Robot Simulation by Local Constraint Propagation.”

Proc. IEEE Conf. on Robotics and Automation 2: 689-694.

Latombe, J.-C. (1991). Robot Motion Planning. Kluwer Academic Publishers.

Laurel, B., (1986). "Interface as Mimesis." in User Centered System Design: New Perspectives on Human

Computer Interaction D. A. Norman and S.W. Draper, Eds. (Lawrence Erlbaum Associates, Hillsdale, N.J.),

pp. 67-85.

Laurel, B., Ed. (1990). The Art of Human-Computer Interface Design. Reading MA, Addison-Wesley.

Lawrence, C., J. L. Zhou, et al. (1994). User's Guide for CFSQP Version 2.0: A C Code for Solving (Large

Scale) Constrained Nonlinear (Minimax) Optimization Problems, Generating Iterates Satisfying all Inequal-

ity Constraints. Instititue for Systems Research, University of Maryland.

Lengyel, J., M. Reichert, et al. (August 6-10, 1990). Real-Time Robot Motion Planning Using Rasterizing

References 202

Intelligent Camera Control Steven M. Drucker

Computer Graphics Hardware. Proc. ACM SIGGRAPH 90, Dallas TX, ACM Press.

Lozano-Perez, T. and M. A. Wesley (October 1980). “An Algorithm for Planning Collision-Free Paths

among Polyhedral Obstacles.” Communications of the ACM 22(10): 560-570.

Lynch, K. (1960). The Image of the City. Cambridge, MA, MIT Press.

Mackinlay, J. S., S. Card, et al. (1990). “Rapid Controlled Movement Througha Virtual 3d Workspace.”

Computer Graphics 24(4): 171-176.

Maes, P. How To Do the Right Thing. Cambridge MA, Massachusetts Institute of Technology.

Maes, P. (1990). “Situated Agents Can Have Goals.” Journal of Robotics and Autonomous Systems 6(1&2):

49-70.

McCormick, E. J. (1976). Job and Task Analysis. Handbook of Industrial and Organizational Psychology.

Chicago IL, Rand McNally College Publishing Co. 651-696.

McLennan, M. J. (1992). [incr Tcl] - Object-Oriented Programming in Tcl.

McGovern, D. E. (1991). Experience and Results in Teleoperation of Land Vehicles. Pictorial Communica-

tion in Virtual and Real Environments. London, Taylor & Francis. 182-195.

McKenna, M., S. Pieper, et al. (March 25-28, 1990). Control of a Virtual Actor: The Roach. Proc. 1990 Sym-

posium on Interactive 3D Graphics.

McKinnon, G. M. and R. V. Kruk (1991). Multi-axis control in telemanipulation and vehicle guidance. Picto-

rial Communication in virtual and real environments. London, Taylor & Francis. 247-264.

Miller,G.A. (1963). "The magical number seven plus or minus two: Some limits on our capacity for process-

ing information. "Psychological Review, pp. 81-97.

Miller, G., E. Hoffert, et al. (1992). “The Virtual Museum: Interactive 3D Navigation of a Multimedia Data-

base.” The Journal of Visualization and Computer Animation 3: 183-197.

Minsky, M., M. Ohu-young, et al. (March 25-28, 1990). Feeling and Seeing: Issues in Force Display. Proc.

1990 Symposium on Interactive 3D Graphics.

References 203

Intelligent Camera Control Steven M. Drucker

Negroponte, N. Beyond the Desktop Interface. Keynote Address. SIGGRAPH, 1989, Boston.

Nelson, G. (1985). “Juno, a constraint based graphical system.” Computer Graphics 19(3).

Newell, A. and S.K. Card. The prospects for psychological science in human-computer interaction. Human-

Computer Interaction, I, pp. 209-242.

Nickerson, R.S., (1987), "On conversational interaction with computers." in Readings in human-computer

interaction R. Baeker and W. Buxton, Eds. (Morgan Kaufmann Publishers, Inc., Los Altos, California), pp.

681-693.

Nielson, G. M. (1991). On the Topic of Interactive Scientific Visualization. New Trends in Animation and

Visualization. Chichester, England, John Wiley & Sons. 135-151.

Nilsen, V. (1961). The Cinema as a Graphic Art (On a theory of representation in the cinema). Hill and

Wang, NY.

Norman, D. A. (1987). Design Principles for Human-Computer Interfaces. Readings in Human-Computer

Interaction. Los Altos CA, Morgan Kaufmann. 492-501.

Norman, D. A. (1988). The Psychology of Everyday Things. New York, Basic Books.

Norman, D. A. (1990). Why Interfaces Don't Work. The Art of Human-Computer Interface Design. Reading

MA, Addison-Wesley. 209-219.

Norman, D. A. (1993). Things That Make Us Smart. New York, Addison-Wesley.

Ousterhout, J. K. (1990). Tcl: An Embeddable Command Language. Proc. 1990 Winter USENIX Confer-

ence.

Passini, R. (1992). Wayfinding in Architecture. New York, NY, Van Nostrand Reinhold.

Penn, B. S. (May 22-26, 1989). Goal Based Mission Planning for Remotely Piloted Air Vehicles (RPAVs).

Proc. IEEE 1989 National Aerospace and Electronics Conf., Dayton OH.

Pentland, A. (March 25-28, 1990). Computational Complexity Versus Virtual Worlds. Proc. 1990 Sympo-

sium on Interactive 3D Graphics.

References 204

Intelligent Camera Control Steven M. Drucker

Pernkopf (1987). “Visualization in scientific computing.” Computer Graphics 21(6).

Phillips, C. B., N. I. Badler, et al. (March 29 - April 1, 1992). Automatic Viewing Control for 3D Direct

Manipulation. Proc. 1992 Symposium on Interactive 3D Graphics, Cambridge MA: ACM Press.

Platt, J. C. and A. H. Barr (August 1988). “Constraint Methods for Flexible Models.” Computer Graphics

22(4): 279-288.

Potel, M. J. and R. E. Sayre (Summer 1976). “Interacting with the Galatea Film Analysis System.” Computer

Graphics 10(2).

Potmesil, M. and I. Chakravarty (1981). “A Lens and Aperture Camera Model for Synthetic Image Genera-

tion.” Computer Graphics 15(3): 297-305.

Press, W. H., S. A. Teukolsky, et al. (1988). Numerical Recipes in C. Cambridge, England, Cambridge Uni-

versity Press.

Raibert, M. H., J. H.B. Brown, et al. (Summer 1984). “Experiments in Balance with a 3D One-Legged Hop-

ping Machine.” Robotics Research 3(2): 75-92.

Reisz, Karel, Gavin Millar, (1968). The Technique of Film Editing. Focal Press. London.

Reynolds, C. W. (July 1982). “Computer Animation with Scripts and Actors.” Computer Graphics 16(3):

289-296.

Ridsdale, Gary. (1987) The Director’s Apprentice: Animating Figures in a Constrained Enviroment, PhD

thesis, School of Computing Science. Fraser University, Burnaby, BC.

Rogers, D. F. and J. A. Adams (1976). Mathematical Elements for Computer Graphics. New York, McGraw-

Hill.

Russo, M. A. (May 1990). The Design and Implementation of a Three Degree of Freedom Force Output Joy-

stick. Massachusetts Institute of Technology.

Sand, M (1994). Museum Designer. Personal Communication.

Schmandt, C. (July 1983). “Spatial Input/Display Correspondence in a Stereoscopic Computer Graphic

Workstation.” Computer Graphics 17(3): 253-259.

References 205

Intelligent Camera Control Steven M. Drucker

Schröder, P. and D. Zeltzer (August 2, 1988). Path Planning in BOLIO. Course Notes, Synthetic Actors: The

Impact of Artificial Intelligence and Robotics on Animation, Atlanta GA.

Schröder, P. and D. Zeltzer (March 25-28, 1990). The Virtual Erector Set: Dynamic Simulation with Linear

Recursive Constraint Propagation. Proc. 1990 Symposium on Interactive 3D Graphics.

Schwartz, J. T. and M. Sharir (Fall 1983). “On the Piano Movers' Problem: III. Coordinating the Motion of

Several Independent Bodies.” International Journal of Robotics Research 2(3): 46-75.

Seligmann, D. D. and S. Feiner (1991). “Automated Generation of Intent-Based 3D Illustrations.” Computer

Graphics 25(4): 123-132.

Shelley, K. L. and D. P. Greenberg (July 1982). “Path Specification and Path Coherence.” Computer Graph-

ics 16(3): 157-166.

Shepard, R. N. and J. Metzler (1971). “Mental rotation of three-dimensional objects.” Science 171: 701-703.

Sheridan, T. (1987). Supervisory Control. Handbook of Human Factors. New York, Wiley. 1243-1268.

Sheriden, T.B. (1988). Task allocation and supervisory control. In Helander, M. (editor), Handbook of

Human-Computer Interaction, Elsevier Science Publishers, Amsterdam, The Netherlands, 159-173.

Sheridan, T. B. (1992). Telerobotics, Automation, and Human Supervisory Control. Cambridge MA, MIT

Press.

Sheridan, T. (1994). Personal communication.

Shinagawa, Y., T. L. Kunii, et al. (1990). Automating View Function Generation for Walk-through Anima-

tion Using a Reeb Graph. Computer Animation ‘90. Tokyo, Springer-Verlag. 227-237.

Shneiderman, B. (1992). Designing the User Interface: Strategies for Effective Human-Computer Interac-

tion. Reading, MA, Addison-Wesley.

Shneiderman, B. (August 1983). “Direct Manipulation: A Step Beyond Programming Languages.” IEEE

Computer 16(8): 57-69.

Shoemake, K. (1985). Animation Rotation with Quaternion Curves. Proceedings of SIGGRAPH ‘85 (San

References 206

Intelligent Camera Control Steven M. Drucker

Francisco, CA). In Computer Graphics 19(3):245-254.

Smith, A. R. (May 4, 1984). The Viewing Transformation Technical Memo No. 84. San Rafael CA, Com-

puter Division, Lucasfilm, Ltd.

Springmeyer, R. R., M. M. Blattner, et al. (October 19-23, 1992). A Characterization of the Scientific Data

Analysis Process. Proc. IEEE Visualization '92, Boston MA.

Stern, G. (December 1983). BBOP - A Program for 3-Dimensional Animation. Proc. Nicograph 83.

Sturman, D., D. Zeltzer, et al. (July 31, 1989). The Use of Constraints in the bolio System. ACM SIG-

GRAPH 89 Course Notes, Implementing and Interacting with Realtime Microworlds, Boston MA.

Sturman, D. (1989). Motion Picture Cameras and Computer Graphics. Unpublished paper. MIT Media Lab.

Tarlton, M. A. and P. N. Tarlton (March 29-April 1, 1992). A Framework for Dynamic Visual Applications.

Proc. 1992 Symposium on Interactive 3D Graphics, Cambridge MA: ACM Press.

Thalman, M and D. Thalman, Trajectory palnning and obstacle avoidance for synthetic actors. SIGGRAPH

88 Course Notes.

Magnenat-Thalmann N., D. Thalmann. (1986) Special Cinematographic Effects Using Multiple Virtual

Movie Cameras. IEEE Computer Graphics & Applications. 6(4):43-50.

Thompson, R. (1993). Grammar of the Edit. Oxford, Focal Press.

Turner, Russell, F.Balaguer, E.Gobbetti, & D. Thalmann. (1991). Physically-Based Interactive Camera

Motion Control Using 3D Input Devices. Computer Graphics International.pp. 135-145.

Tarabanis, K. and R. Tsai (1992). Sensor Planning for Robotic Vision: A Review. The Robotics Review 2.

Cambridge, MA, MIT Press.

Ware, C. and S. Osborn (1990). Exploration and Virtual Camera Control in Virtual Three Dimensional Envi-

ronments. Proc. 1990 Symposium on Interactive 3D Graphics, Snowbird, Utah, ACM Press.

Watchman, J. (1989). Synthetic Cameras/ Real motion camera dynamics in a simulated world. Unpublished

paper. MIT Media Lab.

References 207

Intelligent Camera Control Steven M. Drucker

Whiteside and D. Wixon, "Developmental theory as a framework for studying human computer interaction."

in Advances in Human Computer Interaction H. R. Hartson, Ed. (Ablex, Norwood NJ, 1985).

Witkin, A., K. Fleischer, et al. (July 1987). “Energy Constraints on Parameterized Models.” Computer

Graphics 21(4): 225-229.

Witkin, A. and M. Kass (August 1988). Spacetime Constraints. Proc. ACM SIGGRAPH 88.

Witkin, A., M. Gleicher, et al. (March 25-28, 1990). Interactive Dynamics. Proc. 1990 Symposium on Inter-

active 3D Graphics.

Wilhelms, Jane. (1987). Towards automatic motion control. IEEE Computer Graphics and Animation.

7(4):11-22, April.

Zeltzer, D. (1991). Task Level Graphical Simulation: Abstraction, Representation and Control. Making

Them Move: Mechanics, Control and Animation of Articulated Figures. San Mateo CA, Morgan Kaufmann.

3-33.

Zeltzer, D. (December 1985). “Towards an Integrated View of 3-D Computer Animation.” The Visual Com-

puter 1(4): 249-259.

Zeltzer, D. (March 1992). “Autonomy, Interaction and Presence.” Presence: Teleoperators and Virtual Envi-

ronments 1(1): 127-132.

Zeltzer, D. and S. Drucker (July 14-17, 1992). A Virtual Environment System for Mission Planning. Proc.

1992 IMAGE VI Conference, Phoenix AZ.

Zyda, M. J., D. R. Pratt, et al. (March 29-April 1, 1992). NPSNET: Constructing a 3D Virtual World. Proc.

1992 Symposium on Interactive 3D Graphics, Cambridge MA: ACM Press.

	Intelligent Camera Control
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	Chapter 1. Introduction
	Chapter 2: Intelligent Camera Control
	Chapter 3: Background and Related Work
	Chapter 4: Taxonomy of Interactive Domains
	Chapter 5: Camera Primitves
	Chapter 6: From Task to Interface
	Chapter 7: Evaluations of Camera Control Interfaces
	Chapter 8: Conclusions and Future Work
	Appendix 1: Path Planning
	Appendix 2: Visibility Determination
	Appendix 3: Graphical Environment Systems
	Appendix 4: Feasible Sequential Quadratic Programming
	References

