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Abstract
The problem of similarity search in large time series databases has attracted much attention

recently. It is a non-trivial problem because of the inherent high dimensionality of the data. The
most promising solutions involve performing dimensionality reduction on the data, then indexing
the reduced data with a spatial access method. Three major dimensionality reduction techniques
have been proposed, Singular Value Decomposition (SVD), the Discrete Fourier transform
(DFT), and more recently the Discrete Wavelets Transform (DWT).  In this work we introduce a
new dimensionality reduction technique which we call PAA (Piecewise Aggregate
Approximation). We theoretically and empirically compare it to the other techniques and
demonstrate its superiority. In addition to being competitive with or faster than the other methods
our approach has numerous advantages. It is simple to understand and implement, allows more
flexible distance measures including weighted Euclidean queries and the index can be built in
linear time.
KEYWORDS: Time series, Indexing and Retrieval, Dimensionality Reduction, Data Mining.

1. Introduction

Recently there has been much interest in the problem of similarity search in time series
databases. This is hardly surprising given that time series account for much of the data stored in
business, medical and scientific databases. Similarity search is useful in its own right as a tool for
exploring time series databases, and it is also an important subroutine in many KDD applications
such as clustering [9], classification [18, 21] and mining of association rules [8].

Time series databases are often extremely large. Consider the MACHCO project. This
astronomical database contains a half terabyte of data and is updated at the rate of several
gigabytes a day [21, 32].  Given the magnitude of many time series databases, much research has
been devoted to speeding up the search process [1, 2, 3, 6, 11, 14, 17, 18, 19, 22, 23, 24, 30, 35].
The most promising methods are techniques that perform dimensionality reduction on the data,
then use spatial access methods to index the data in the transformed space. The technique was
introduced in [1] and extended in [11, 23, 24, 35]. The original work by Agrawal et al. utilizes the
Discrete Fourier Transform (DFT) to perform the dimensionality reduction, but other techniques
have been suggested, including Singular Value Decomposition (SVD) [34] and the Discrete
Wavelet Transform (DWT) [6].

In this paper we introduce a novel transform to achieve dimensionality reduction. The method
is motivated by the simple observation that for most time series datasets we can approximate the
data by segmenting the sequences into equi-length sections and recording the mean value of these
sections. These mean values can then be indexed efficiently in a lower dimensionality space. We
theoretically and empirically compare our approach to all the other techniques and demonstrate
its superiority.

In addition to being competitive with or faster than the other transforms. We demonstrate that
our approach has numerous other advantages. It is simple to understand and implement, it allows
more flexible distance measures including the weighted Euclidean distance measure, and the
index can be built in linear time. In addition our method also allows queries which are shorter



2 KAIS Long paper submitted 5/16/00

than length for which the index was built. This very desirable feature is impossible in DFT, SVD
and DWT due to translation invariance [29, 31].

The rest of the paper is organized as follows. In Section 2, we state the similarity search
problem more formally and review GEMINI, a generic framework that utilizes any
dimensionality reduction technique to index any kind of data [1, 8]. Establishing this generic
framework allows us to compare the four dimensionality reduction techniques independent of any
implementation decisions of the original authors. In Section 3, we introduce our method. In
Section 4 we review the three other techniques and consider related work. Section 5 contains
extensive empirical evaluation of all four methods. In Section 6, we demonstrate how our
technique allows more flexible distance measures, including the weighted Euclidean distance.
Section 7 offers concluding remarks and directions for future work.

2. Background

Given two sequences X = x1…xn and Y = y1…ym with n = m, their Euclidean distance is defined
as:
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There are essentially two ways the data might be organized [8]:
• Whole Matching. Here it assumed that all sequences to be compared are the same length.

• Subsequence Matching. Here we have a query sequence X, and a longer sequence Y. The task is
to find the subsequence in Y, beginning  at Yi, which best matches X, and report its offset
within Y.

Whole matching requires comparing the query
sequence to each candidate sequence by
evaluating the distance function and keeping
track of the sequence with the lowest distance.
Subsequence matching requires that the query X
be placed at every possible offset within the
longer sequence Y. Note it is possible to convert
subsequence matching to whole matching by
sliding a "window" of length n across Y, and
making copies of the m-n windows. Figure 1
illustrates the idea. Although this causes storage
redundancy it simplifies the notation and algorithms so we will adopt this policy for the rest of
this paper.

There are two important kinds of queries that we would like to support in time series database,
range queries (e.g., return all sequences within an epsilon of the query sequence) and nearest
neighbor (e.g., return the k closest sequences to the query sequence). The brute force approach to
answering these queries, sequential scanning, requires comparing every time series Y to X.
Clearly this approach is unrealistic for large datasets.

Any indexing scheme that does not examine the entire dataset could potentially suffer from two
problems, false alarms and false dismissals. False alarms occur when objects that appear to be
close in the index are actually distant. Because false alarms can be removed in a post-processing
stage (by confirming distance estimates on the original data), they can be tolerated so long as they
are relatively infrequent. In contrast, false dismissals, when qualifying objects are missed because
they appear distant in index space, are usually unacceptable. In this work we will focus on
admissible searching, indexing techniques that guarantee no false dismissals. Many inadmissible
schemes have been proposed for similarity search in time series databases [2, 14, 19, 22, 30]. As

 n datapoints

Y1

Y2

Yi

Figure 1: The subsequence matching problem can be
converted into the whole matching problem by sliding a
"window" of length n across the long sequence and
making copies of the data falling within the windows
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they focus on speeding up search by sacrificing the guarantee of no false dismissals we will not
consider them further.

As noted by Faloutsos et al. [11], there are several highly desirable properties for any indexing
scheme:

1) It should be much faster than sequential scanning.
2) The method should require little space overhead.
3) The method should be able to handle queries of various lengths.
4) The method should allow insertions and deletions without requiring the index to be

rebuilt.
5) It should be correct, i.e. there should be no false dismissals.

We believe there are two other desirable properties.
6) It should be possible to build the index in "reasonable time".
7) The index should be able to handle different distance measures, where appropriate.

The sixth requirement is introduced to exclude from consideration techniques like Approximate
Distance Maps [28]. This technique involves precomputing the distances between every pair of
objects in the database to build a distance matrix, which becomes the index. The triangular
inequality can then be used to prune most of the index during search. Modifications of the
approach allow the larger values in the distance matrix to be discarded, so by using a sparse
matrix representation requirement two is not violated. However the approach has a time
complexity which is quadratic in the number of items, which is simply intractable for even
moderately large datasets.

The seventh requirement is motivated by the observation that for some applications the
Euclidean distance measure can produce notions of similarity which are very unintuitive [18].
The best distance measure can depend on the dataset, task and user.  It is even possible that the
"best" distance measure to use could change as the user interactively explores a database [17].
Although the Euclidean distance is a good "gold standard" with which to compare different
approaches, support for more flexible distance measure is desirable.

In Sections 3 and 4 will evaluate the four dimensionality reduction techniques using these
seven criteria.

2.1 Using dimensionality reduction for indexing

A time series X can be considered as a point in n-dimensional space. This immediately suggests
that time series could be indexed by Spatial Access Methods (SAMs) such as the R-tree and its
many variants [12].  However most SAMs begin to degrade rapidly at dimensionalities greater
than 8-12 [5], and realistic queries typically contain 20 to 1,000 datapoints. In order to utilize
SAMs it is necessary to first perform dimensionality reduction. In [11] the authors introduced
GEneric Multimedia INdexIng method (GEMINI) which can exploit any dimensionality
reduction method to allow efficient indexing. The technique was originally introduced for time
series, but has been successfully extend to many other types of data [20].

 A crucial result in [11] is that the authors proved that in order to guarantee no false dismissals,
the distance measure in the index space must satisfy the following condition:

Dindex space(A,B)  ≤  Dtrue(A,B)  (2)
This theorem is known as the lower bounding lemma or the contractive property. Given the

lower bounding lemma, and the ready availability of off-the-shelf SAMs, GEMINI requires just
the following three steps.

• Establish a distance metric from a domain expert (in this case Euclidean distance).
• Produce a dimensionality reduction technique that reduces the dimensionality of the data

from n to N, where N can be efficiently handled by your favorite SAM.
• Produce a distance measure defined on the N dimensional representation of the data, and

prove that it obeys  Dindex space(A,B)  ≤  Dtrue(A,B).
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Table 1 contains an outline of the GEMINI indexing algorithm. All sequences in Y are
transformed by some dimensionality reduction technique and then indexed by the spatial access
method of choice. The indexing tree represents the transformed sequences as points in N
dimensional space. Each point contains a pointer to the corresponding original sequence on disk.

Algorithm Bui l dI ndex( Y, n) ;    / /  Y i s t he dat aset ,  n i s t he si ze of  t he wi ndow 
for i = 1 to K         / /  For  each sequence t o be i ndexed
  Yi   ← Yi  – Mean( Yi ) ;   / /  Opt i onal :  r emove t he mean of  Y

i

  
iY  ← SomeTr ansf or mat i on( Yi ) ;   / /  Any di mensi onal i t y r educt i on t echni que

  I nser t  
iY  i nt o t he Spat i al  Access Met hod wi t h a poi nt er  t o Yi  on di sk;

  end;
Table 1: An outline of the GEMINI indexing building algorithm.

Note that each sequence has its mean subtracted before indexing. This has the effect of shifting
the sequence in the y-axis such that its mean is zero, removing information about its offset. This
step is included because for most applications the offset is irrelevant when computing similarity.

Table 2 below contains an outline of the GEMINI range query algorithm.

Algorithm RangeQuer y( Q, ε)
  Pr oj ect  t he quer y Q i nt o t he same f eat ur e space as t he i ndex.
  Fi nd al l  candi dat e obj ect s i n t he i ndex wi t hi n ε of  t he quer y.
  Ret r i eve f r om di sk t he act ual  sequences poi nt ed t o by t he candi dat es.
  Comput e t he act ual  di s t ances,  and di scar d f al se al ar ms.

Table 2: The GEMINI range query algorithm.

The range query algorithm is called as a subroutine in the K Nearest Neighbor algorithm
outlined in Table 3.

 Algorithm K_Near est Nei ghbor ( Q, K)

  Pr oj ect  t he quer y Q i nt o t he same f eat ur e space as t he i ndex.
  Fi nd t he K near est  candi dat e obj ect s i n t he i ndex.
  Ret r i eve f r om di sk t he act ual  sequences poi nt ed t o by t he candi dat es.
  Comput e t he act ual  di s t ances and r ecor d t he maxi mum,  cal l  i t  εmax.
  I ssue t he r ange quer y,  RangeQuer y( Q, εmax) ;
  Comput e t he act ual  di s t ances,  and choose t he near est  K.

Table 3: The GEMINI nearest neighbor algorithm.

The efficiency of the GEMINI query algorithms depends only on the quality of the
transformation used to build the index. The tighter the bound on Dindex space(A,B)  ≤  Dtrue(A,B) the
better, ideally we would like Dindex space(A,B)  =  Dtrue(A,B). Time series are usually good
candidates for dimensionality reduction because they tend to contain highly correlated features. In
particular, datapoints tend to be correlated with their neighbors (a phenomenon known as
autocorrelation). This observation motivated the dimensionality reduction technique introduced in
this paper. Because datapoints are correlated with their neighbors, we can efficiently represent a
"neighborhood" of datapoints with their mean value. In the next section we formally introduce
and define this approach.
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3. Piecewise Aggregate Approximation

3.1 Dimensionality reduction

We denote a time series query as X = x1,…,xn, and the set of time series which constitute the
database as Y = { Y1,…YK} . Without loss of generality, we assume each sequence in Y is n units
long. Let N be the dimensionality of the transformed space we wish to index (1 ≤ N ≤ n). For
convenience, we assume that N is a factor of n. This is not a requirement of our approach,
however it does simplify notation.

A time series X of length n is represented in N space by a vector NxxX ,,1
�= . The i th element

of X is calculated by the following equation:
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 Simply stated, to reduce the data from n dimensions to N dimensions, the data is divided into N
equi-sized "frames". The mean value of the data falling within a frame is calculated and a vector
of these values becomes the data reduced representation. Figure 2 illustrates this notation. The
complicated subscripting in Eq. 3 is just to insure that the original sequence is divided into the
correct number and size of frames.

Figure 2: An illustration of the data reduction technique utilized in this paper. A time series consisting of
eight (n) points is projected into two (N) dimensions. The time series is divided into two (N) frames and the
mean of each frame is calculated. A vector of these means becomes the data reduced representation.

Two special cases worth noting are when
N = n the transformed representation is
identical to the original representation. When
N = 1 the transformed representation is
simply the mean of the original sequence.
More generally the transformation produces
a piecewise constant approximation of the
original sequence, we therefore call our
approach Piecewise Aggregate
Approximation (PAA).

In order to facilitate comparison of PAA
with the other dimensionality reduction
techniques it is useful to visualize it as
approximating a sequence with a linear
combination of "box" basis functions. Figure
3 illustrates this idea.

The time complexity for building the
index for the subsequence matching problem
appears to be O(nm), because for
approximately m "windows" we must
calculate Eq. 3 N times, and Eq. 3 has a
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X = (mean(-1,-2,-1,0), mean(2,1,1,0)  ) N = | X | = 2
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Figure 3: For comparison purposes it is convenient to regard
the PAA transformation X’, as approximating a sequence X
with a linear combination of "box" basis functions
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summation of length n/N. However we can reduce the complexity to O(Nm) based on the
following observation. Suppose we use Eq. 3 to calculate the features Ni xxx ,,,,1

�� for the first
sliding window. Rather than use Eq. 3 again for the subsequent windows we can simply adjust
the features by subtracting out the influence of the datapoint pushed out the left of the frame, and
factoring in the influence of the new datapoint arriveing at the right of the frame. More concretely
the ith feature in jth window can updated as follows:

( ) 11)1(1 ++−− +−= in
N

in
N

ijji
N
n

N
n xxxx (4)

Consider Figure 2 as an example. The first feature extracted had its value calculated by Eq. 3 as
–1 (the mean of –1, -2, -1 and 0). When we slide the window one unit to the right the four values
used to determine the features value are now -2, -1, 0 and 2. Rather than use Eq. 3 again we can
compensate for the –1 value lost and the 2 value gained by using Eq. 4 to calculate the new
feature as 4

1− =  –1 – 8
2 (-1) + 8

2 (2).

As mentioned in Section 2, in order to guarantee no false dismissals we must produce a
distance measure DR, defined in index space, which has the following property: DR( YX , ) ≤
D(X,Y) . The following distance measure has this property:
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The proof that DR( YX , ) ≤ D(X,Y)  is straightforward but long. We relegate it to Appendix A to
enhance the flow of the paper.

3.4 Handling queries of various lengths

In the previous section we showed how to handle queries of length n, the length for which the
index structure was built. However, it is possible that a user might wish to query the index with a
query that is longer or shorter that n. For example a user might normally be interested in monthly
patterns in the stock market, but occasionally wish to search for weekly patterns.  Naturally we
wish to avoid building an index for every possible length of query. In this section we will
demonstrate how we can execute queries of different lengths on a single fixed-length index. For
convenience we will denote queries longer than n as XL and queries shorter than n as XS, with
|XL| = nXL and |XS| = nXS.
3.4.1 Handling short queries

Queries shorter than n can be dealt with in two ways. If the SAM used supports dimension
weighting (for example the hybrid tree [5]) one can simply weigh all the dimensions from
ceiling(

n

nN XS ) to N as zero. Alternatively, the distance calculation in Eq. 5 can have the upper

bound of its summation modified to:

     ( )∑ =
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The modification does not affect the admissibility of the no false dismissal condition in Eq.2.
Because the distance measure is the same as Eq. 5 which we proved, except we are summing over
an extra 0 to 1−

N
n  nonnegative terms on the larger side of the inequality. Apart from making

either one of these changes, the search algorithms given in tables 2 and 3 can be used unmodified.
3.4.2 Handling longer queries

Handling long queries is a little more difficult than the short query case. Our index only
contains information about sequences of length n (projected into N dimensions) yet the query XL
is of length nXL with nXL > n. However we can regard the index as containing information about
the prefixes of potential matches to the longer sequence. In particular we note that the distance in
index space between the prefix of the query and the prefix of any potential match is always less
than or equal to the true Euclidean distance between the query and the corresponding original
sequence. Given this fact the search algorithms given in tables 2 and 3 can be used with two
minor modifications.
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1. In the first line of both algorithms, when the query is transformed into the representation
used in the index, we need to replace X with XL[1:n]. The remainder of the sequence,
XL[n+1:nXL], is ignored during this operation.

2. In the second line of both algorithms the original data sequence pointed most promising
object in the index is retrieved. For long queries, the original data sequence retrieved and
subsequently compared to XL must be of length nXL,not n.

Although these minor modifications allow us to make long queries, we should expect the
performance of the algorithm to degrade, because the tightness of the lower bound will decrease.

4. Alternative dimensionality reduction techniques and related work

There has been much work in dimensionality reduction for time series. This review is
necessarily brief. We refer the interested reader to the relevant papers for a more detailed
information.   
4.1 Spectral decomposition (Fourier Transform)

The first technique suggested for dimensionality reduction of time series was the Discrete
Fourier Transform (DFT) [1]. Since then there have been dozens of papers offering extensions
and modifications [11, 23, 24, 35]. The basic idea of spectral decomposition is that any signal, no
matter how complex, can be represented by the superposition of a finite number of sine (and/or
cosine) waves, where each wave represented by a single complex number known as a Fourier
coefficient [29]. A time series represented in this way is said to be in the frequency domain.
There are many advantages to representing a time series in the frequency domain, the most
important for our purposes is data compression. A signal of length n can be decomposed into n
sine/cosine waves that can be recombined into the original signal. However, many of the Fourier
coefficients have very low amplitude and thus contribute little to reconstructed signal. These low
amplitude coefficients can be discarded without much loss of information thereby producing
compression.

The key observation is that the Euclidean distance between two signals in the time domain is
preserved in the frequency domain. This result is an implication of a well-known result called
Parseval’s law [29]. Therefore if some coefficients are discarded then the estimate of the distance
between two signals is guaranteed to be an
underestimate (because some positive terms
are ignored) thus obeying the lower
bounding requirement in Eq. 2.

To perform the dimensionality reduction
of a time series X of length n into a reduced
feature space of dimensionality N, the
Discrete Fourier Transform of X is
calculated. The transformed vector of
coefficients is truncated at N/2. The reason
the truncation takes place at N/2 and not N is
because each coefficient is a complex
number, and therefore we need one
dimension each for the imaginary and real
parts of the coefficients. Figure 4 illustrates
this idea.

Given this technique to reduce the
dimensionality of data from n to N, and the
existence of lower bounding distance
measure, we can simply "slot" the DFT into
the GEMINI framework.

Figure 4: The first 4 Fourier bases can be combined in a
linear combination to produce X’, an approximation of the
sequence X. Note each basis wave requires two numbers
to represent it (phase and magnitude)
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The original work demonstrated a speedup of 3 to 100 over sequential scanning [1, 11].
However a very simple optimization first suggested in the context of images [34] and later
independently rediscovered in the context of time series [23], allows even greater speedup. The
optimization exploits a symmetric property of the DFT representation. In particular, the ith +1
coefficient is always the complex conjugate of the n-ith coefficient. So even though only N
dimensions are retained in the index, an extra N "pseudo" dimensions can be used to estimate the
distance between the query object and the candidates in the index, thus reducing the number of
disk accesses. This optimization produces at least a further factor of two speedup [23]. We will
denote this optimization as SDFT and utilize it for all experiments in this paper.

The time taken to build the entire index depends on the length of the sliding window. When the
length is an integral power of two an efficient O(mnlog2n) algorithm can be used. For other
lengths a slower O(mn2) algorithm must be employed.

There has been some work on more flexible distance measures in the frequency domain. Refiei
and Mendelzon demonstrate a framework for handling several kinds of transformations such as
moving average and time warping1 [24]. However, because each coefficient represents a sine
wave that is added along the entire length of the query it is not possible to use spectral methods
for queries with "don’t care" subsections [2] or the more general weighted Euclidean distance
[17].

4.2 Wavelet decomposition

Wavelets are mathematical functions that represent data or other functions in terms of the sum
and difference of a prototype function, called the analyzing or mother wavelet. In this sense the
are similar to DFT. They differ in several important respects, however. One important difference
is that wavelets are localized in time. This is to say that some of the wavelet coefficients represent
small, local subsections of the data being studied. This is in contrast to Fourier coefficients that
always represent global contributions to the data. This property is very useful for multiresolution
analysis of the data. The first few coefficients contain an overall, coarse approximation of the
data, addition coefficients can be imagined as "zooming-in" to areas of high detail. Figure 5
illustrates this. Recently they has been an explosion of interest in using wavelets for data
compression, filtering, analysis and other
areas where Fourier methods had previously
been used [4]. Not surprisingly, researchers
have begun to advocate wavelets for indexing
[20].

 Chan & Fu produced the breakthrough by
producing a distance measure defined on
wavelet coefficients which provably satisfies
the lower bounding requirement in Eq. 2 [6].
The work is based on a simple, but powerful
type of wavelet known as the Haar Wavelet.
The Discrete Haar Wavelet Transform
(DWT) can be calculated efficiently and an
entire dataset can be indexed in O(mn).

DWT does have some drawbacks however.
It is only defined for sequences whose length
is an integral power of two. Although there
has been a lot of work on more flexible
distance measures using Haar [15, 31], none
of these techniques are indexable.

                                                          
1 The transformation called "time warping" by Rafiei and Mendelzon is not the normal definition of the
phrase. They consider only global scaling of the time axis.

Figure 5: The first eight Haar wavelet bases can be
combined in a linear combination to produce X’, an
approximation of the sequence X
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The following result makes much of the discussion of the Haar wavelet irrelevant. The astute
reader will have noticed that the PAA reconstruction of the sample time series shown in Figure 3
is identical to the Haar reconstruction of the same time series shown in Figure 5. As we will see,
this is not a coincidence.
Theorem: If a set of time series are projected into a feature space with dimensionality that is a
power of two, the representation of the Haar Transform and the representation of PAA are
equivalent in the following ways.

1) The best possible reconstructions of the data using either approach are identical.
2) The estimated distances between any two objects in the feature space using either approach

are identical.
The first item implies the second, because the tightest distance estimate between two objects

should be the actual distance between the best reconstructions of the objects (by definition). The
second point requires a very long but straightforward algebraic proof. For brevity we will simply
sketch an outline proof.

Consider the simple case where a time series of length n is represented by two PAA
coefficients, P0, P1 or by two Haar coefficients, H0, H1. The two representations are related, H0 =
(P0+ P1)/2 and H1 = P1- P0. Using PAA, the best possible reconstruction of the first n/2 datapoints
of the original time series is P0 and the best possible reconstruction of the second n/2 datapoints is
P1. Using the Haar representation the best possible reconstruction of the two halves of the original
time series are H0 - ½ H1 and H0 + ½ H1 respectively. We can substitute the identities above to get
(P0+ P1)/2 - ½ (P1- P0) and (P0+ P1)/2 + ½ (P1- P0) which simplify to P0 and P1. Figure 6 illustrates
this notation. A more general proof can be obtained by exploiting the recursive nature of both
representations.

So PAA has all the pruning power of Haar, but
is also able to handle arbitrary length queries, is
much faster to compute and can support a more
general distance measures. Note that we are not
claiming that PAA is superior to Haar for all
applications. But for the task of indexing PAA
has all the advantages of Haar with none of the
drawbacks. For completeness we will still
consider DWT in our experimental section.

4.3 Singular Value decomposition

Although Singular Value Decomposition (SVD) has been successfully used for indexing
images and other multimedia objects [16, 34] and has been proposed for time series indexing [6],
our paper contains the first actual implementation that the authors are aware of.

Singular Value Decomposition differs from the three other proposed techniques in an important
respect. The other transforms are local, they examine one data one object at a time and apply a
transformation. These transformations are completely independent of the rest of the data. In
contrast SVD is a global transformation. The entire dataset is examined, and is then rotated such
that the first axes has the maximum possible variance, the second axes has the maximum possible
variance orthogonal to the first, the third axes has the maximum possible variance orthogonal to
the first two etc. The global nature of the transformation is both a weakness and a strength from
an indexing point of view.

SVD is the optimal transform is several senses, including the following. If we take the SVD of
some dataset, then attempt to reconstruct the data, SVD is the (linear) transform that minimizes
reconstruction error [25]. Given this we should expect SVD to perform very well for the indexing
task.

SVD however, has several drawbacks as an indexing scheme. The most important of these
relate to its complexity. The classic algorithms to compute SVD require O(mn2)  time and O(mn)
space. Although linear in the number of data objects the constants here are very high.

H0 = (P0 + P1)/2
average

difference

P0 P1

H1 = P1 – P0

↔

Figure 6: The PAA representation and the Haar
representation are related. In particular, when the
number of coefficients is a power of two it is always
possible to convert from one representation to another.
Here the two-coefficient case is illustrated
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Additionally, an insertion to the
database requires recomputing the entire
index.  Fortunately, there has been much
work recently on faster algorithms to
compute SVD. Because of space
limitations we will not discuss the rival
merits of the various approaches. We
will simply use the EM approach
suggested in [26]. This method has a
sound theoretical basis and requires only
O(mnN) time and more importantly for
us, only O(Nn + N2) space. The problem
of incremental updating has also
received attention from many
researchers. The fastest exact methods
are still linear in m. Much faster
approximate methods exist, but they
introduce the possibility of false
dismissals [7].

5. Experimental Results

5.1 Experimental methodology

We performed all tests over a range of dimensionalities and query lengths. We chose the range
of 8 to 20 dimensions because that is the useful range for most spatial index structures [5, 13].
Because we wished to include the DWT in our experiments, we are limited to query lengths that
are an integer power of two. We consider a length of 1024 to be the longest query likely to be
encountered (by analogy, one might query a text database with a word, a phrase or a complete
sentence, but the would be little utility in a paragraph-length text query. A time series query of
length 1024 corresponds with approximately with
sentence length text query).

To perform realistic testing we need queries that
do not have exact matches in the database but have
similar properties of shape, structure, spectral
signature, variance etc. To achieve this we used
cross validation. We remove 10% of the dataset (a
contiguous subsection), and build the index with the
remaining 90%. The queries are then randomly
taken from the withheld subsection. For each result
reported on a particular dataset, for a particular
dimensionality and query length, we averaged the
results of 100 experiments.

Note we only show results for nearest neighbor
queries. However in Table 2 we showed that the
nearest neighbor algorithm invokes the range query
algorithm as a subroutine, so we are also implicitly
testing the range query algorithm.

Figure 7: The first eight eigenwaves can be combined in a
linear combination to produce X’, an approximation of the
sequence X
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eigenwave 6

eigenwave 7

Random Walk

Shuttle
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Figure 8: Sample queries (bold lines) and a
section containing the corresponding best match
for the two experimental datasets
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We tested on two datasets with widely varying properties. Small, but typical subsections of
each dataset are shown in Figure 8.
• Random Walk: The sequence is a random walk xt = xt-1 + zt Where zt (t = 1,2,…) are

independent identically distributed (uniformly) random variables in the range (-500,500) [1].
• Space Shuttle: This dataset consists of 27 time series that describe the orientation of the Space

Shuttle during the first eight hours of mission STS-57 [14, 15]. (100,000 datapoints).

5.2 Experimental results: Building the index

We begin our experiments by measuring the time taken to build an index for each of the
suggested approaches. We did this for queries from length 32 to 1024 and database sizes of 40 to
640 kilobytes. The relatively small sizes of the databases were necessary to meaningfully include
SVD in the experiments.  Experimental runs that took more than 1,000 seconds were abandoned
and are indicated by the black-topped histogram bars in Figure 9.

We can see that SVD, using the classic algorithm, is simply intractable for even moderately
sized databases. However the EM approach to SVD scales about as well as DFT or the DWT. The
most obvious result from this experiment, however, is the celerity of PAA. For longer queries
PAA is many orders of magnitude faster than the other techniques.

5.3 Experimental results: Pruning power

When comparing completing techniques there exists a danger of implementation basis. That is,
consciously or unconsciously implementing the code such that some approach is favored. As
example of the potential for implementation bias in this work consider the following. At query
time the spectral approaches (DFT) must do a Fourier transform of the query. We could use the
naïve algorithm which is O(n2) or the faster radix-2 algorithm (padding the query with zeros for n
≠ 2integer [28]) which is O(nlogn). If we implemented the simple algorithm it would make the other
indexing methods perform better relative to DFT. While we do present detailed experimental
evaluation of implemented systems in the next section, we also present experiments in this
section which are free of the possibility of implementation basis. We achieve this by comparing
the pruning power of the various approaches.

To compare the pruning power of the four techniques under consideration we measure P, the
fraction of the database that must be examined before we can guarantee that we have found the
nearest match to a 1-nn query.

databaseinobjectsofNumber
inedexambemustthatobjectsofNumberP = (7)

 To calculate P we do the following. Random queries are generated (as described above).
Objects in the database are examined in order of increasing (feature space) distance from the
query until the distance in feature space of the next unexamined object is greater than minimum
actual distance of the best match so far. The number of objects examined at this point is the
absolute minimum in order to guarantee no false dismissals.
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Figure 9: The time taken (in seconds) to build an index using various transformations over a range of query
lengths and database sizes. The black topped histogram bars indicate that an experimental run was abandoned at
1,000 seconds
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Note the value of P for any transformation depends only on the data and is completely
independent of any implementation choices, including spatial access method, page size, computer
language or hardware. A similar idea for evaluating indexing schemes appears in [13].

Figure 10 shows the value of P over a range of query lengths and dimensionalities. The
experiment was conducted on 64 megabytes of the Random-walk dataset. Note that the results for
PAA and DWT are identical as predicted in Section 4.2. DFT does not differ significantly from
PAA for any combination of query length and dimensionality. For high dimensionalities/short
queries PAA is better than SVD. This might seem surprising given SVD’s stated optimality,
however it must be remembered that SVD’s optimality only applies to the within sample data, and
does not guarantee out of sample generalization optimality. However for more reasonable
combinations of query lengths and dimensionalities SVD is superior to PAA, but never by more
than a factor of 2.3.

We repeated the experiment with databases of different sizes. As the size of the database gets
larger, all techniques improve, that is to say, the value of P decreases. Figure 11 illustrates this.
The amount of improvement may difficult to discern from the graphs, however we note that all
methods improve by the approximately the same amount, and thus all methods can be said to
scale at the same rate.

It is worthwhile to explain why the pruning power improves as the size of the database
improves. Some researchers have observed this property and claimed it as a property of their
particular algorithm or representation. However we believe the following explanation to be more
credible.

The query algorithms terminate when the distance between the actual query and the best-
match-so-far is less than the estimated distance between the query and the next closest match in
the index. Therefore the efficiency of the querying algorithms depends greatly on the quality of
the eventual best match. A highly similar eventual best match allows the query algorithm to
terminate earlier. A highly dissimilar eventual best match forces a larger subset of the database to
be explored. In fact, the pathological case where the best match is an exact match to the query
results in a constant time algorithm. Because we are experimenting with randomly generated data,
the likelihood of a high quality match increases as a function of the database size, and thus we see
this scaling effect.

We also conducted similar experiments on the Shuttle dataset, the results are illustrated in
Figure 12. This dataset has much more structure for the dimensionality reduction techniques to
exploit, and all methods surpass their performance on the random-walk dataset (Note that the
scale of the Z-axis in Figure 12 is different than in Figures 10 and 11). Overall the relative

Figure 10: The fraction P, of a 64 megabyte Random-walk database that must be examined by the four
dimensionality reduction techniques being compared, over a range of query lengths (26 to 210) and
dimensionalities (8 to 20)
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Figure 11: The fraction P, of a 256 megabyte Random-walk database that must be examined by the four
dimensionality reduction techniques being compared, over a range of query lengths (26 to 210) and
dimensionalities (8 to 20)
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performance of the different approaches is same as the previous experiments, except the
differences between the various techniques is even smaller.

 5.4 Experimental results: Implemented system

Although the experiments in the previous section are powerful predictors of the (relative)
performance of indexing systems using the various dimensionality reduction schemes, we also
include a comparison of implemented systems for completeness.

All these experiments were conducted on a Sun Ultra Enterprise 3000 with 512 MB of physical
memory and several GB of secondary storage. The spatial access method used was the Hybrid
Tree [5].

To evaluate the performance of the four competing techniques we measured the normalized
CPU cost.
Definition: The Normalized CPU cost: the ratio of average CPU time to execute a query using
the index to the average CPU required to perform a linear (sequential) scan. The normalized cost
of a linear scan is 1.0.

Using the normalized cost instead of direct costs allows us to compare each of the techniques
against linear scan as the latter is widely recognized as a competitive search technique for high
dimensional search spaces [5].

The experiments were conducted over a range of possible query-lengths, dimensionalities and
database sizes. For brevity we present just one typical result. Figure 13 shows the results of an
experiment with a fixed query-length of 256 datapoints and a dimensionality of 16 with
increasing large datasets.

We can observes that all four techniques are orders of magnitude faster than sequential
scanning. There is the relatively little difference between the competing techniques, and that
difference decreases as the database grows larger. The overall conclusion of these experiments is
that the choice of technique use should not depend on speed-up, but instead it should depend on
other factors such as the seven points enumerated in Section 2. As an example, in the next section
we will show that PAA has an advantage over the other techniques in its ability to support more
flexible distance measures.

Figure 12: The fraction P, of the Shuttle database that must be examined by the four dimensionality
reduction techniques being compared, over a range of query lengths (26 to 210) and dimensionalities (8 to 20).
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Figure 13: Scalability to database size. The X-axis is the number of objects in the database, the Y-axis is
the normalized CPU cost.  A) The normalized cost of the four dimensionality techniques compared to
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6. Generalizing the Distance Measure

Although the Euclidean distance measure is optimal under several restrictive assumptions [1],
there are many situations where a more flexible distance measure is desired [17]. The ability to
use these different distance measures can be particularly useful for incorporating domain
knowledge into the search process.   One of the advantages of the indexing scheme proposed in
this paper is that it can handle many different distance measures, with a variety of useful
properties. In this section we will consider one very important example, weighted Euclidean
distance. To the author’s knowledge, this is the first time an indexing scheme for weighted
Euclidean distance has been proposed.

6.1 Weighted Euclidean distance

It is well known in the machine learning community that weighting of features can greatly
increase classification accuracy [32]. In [18] we demonstrated for the first time that weighing
features in time series queries can increase accuracy in time series classification problems. In
addition in [17], we demonstrated that weighting features (together with a method for combining
queries) allows relevance feedback in time series databases. Both [17, 18] illustrate the utility of
weighted Euclidean metrics, however no indexing scheme was suggested. We will now show that
PAA can be easily modified to support of weighted Euclidean distance.

In Section 3.2, we denoted a time series query as a vector X = x1,…,xn. More generally we can
denote a time series query as a tuple of equi-length vectors { X = x1,…,xn , W = w1,…,wn}  where X
contains information about the shape of the query and W contains the relative importance of the
different parts of the shape to the query. Using this definition the Euclidean distance metric in Eq.
1 can be extended to the weighted Euclidean distance metric DW:

( )∑ =
−=

n

i iii yxwYWXDW
1

2)],,([ (8)

We can perform weighted Euclidean queries on our index by making two simple modifications
to the algorithm outlined in Table 2. We replace the two distance measures D and DR with DW
and DRW respectively. DW is defined in Eq. 7 and DRW is defined as:

 ( ) ),,min( 11 iii
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Note that it is not possible to modify DFT, DWT or SVD in a similar manner, because each
coefficient represents a signal that is added along the entire length of the query.

6.2 Experiment validation of the weighted Euclidean distance measure

To evaluate the effectiveness of the Weighted-Euclidean distance measure, we generated a
synthetic database of two similar time series.  The database consists of 5,000 Class A and 5,000
Class B time series, which are defined as follows:

• Class A: tan(sin(x3)), plus Gaussian noise with σ = .2      -2 ≤ x ≤ 2  128 datapoints

• Class B: sin(x3), plus Gaussian noise with σ = .2       -2 ≤ x ≤ 2 128 datapoints

Figure 14 shows an example of each class. Note that they are superficially very similar,
although once it is observed that Class A has sharper peaks and valleys than Class B, humans can
comfortably distinguish between the classes with essentially perfect precision.

The task for this experiment is as follows. Using the "template" (i.e. the shape before the noise
is added) of a randomly chosen class as a query, retrieve the K most similar members of the same
class from the database. We will compare two distance measures:



15 KAIS Long paper submitted 5/16/00

1) WPAA: The Weighted-Euclidean distance version of PAA defined in Equation 9 with a
dimensionality of 16. We have the problem of how to set the weighs. Given that we know
the formula that produced the two classes and the fact that they are equiprobable, we could
easily calculate the optimal weights. However to make the experiment more realistic, we
set the weights by hand, simply assigning higher weighs to the sections of the two classes
that differ (i.e. the peaks and valleys) and lower values to the sections that are most similar
(i.e. the broad center section). As we mentioned earlier, it would also be possible to learn
the weights with relevance feedback, in a way that is totally hidden from the user [17].

2) EUCLID: We want to have the best possible strawman to represent the non-weighted
Euclidean distance metric. We considered using just the standard Euclidean metric defined
in Equation 1. Using this metric we are ceding an advantage because this measure uses 8
times as much information as we are allowing WPAA (128 datapoints instead of 16).
However it might be argued the inherent smoothing effect of dimensionality reduction
using DFT, DWT or SVD would help smooth out the noise and produce better results.
Therefore, we ran all four approaches for every experimental run, and always chose the
best one on that particular run. So we have EUCLID = bestof(Eq. 1, DFT, DWT, SVD).

We averaged the results of 100 experiments, building a new synthetic database for each run.
We evaluated the effectiveness of each approach by measuring the average precision at the 1% to
10% percent recall points. Precision (P) is defined as the proportion of the returned sequences
which are deemed relevant, and recall (R) is defined as the proportion of relevant items which are
retrieved from the database. Figure 15 illustrates the results. We can see that the weighed
Euclidean distance measure clearly outperforms the non-weighed Euclidean approach.

Class B, sin(x3) + noise

Class A, tan(sin(x3)) + noise

Template B sin(x3)

Template A  tan(sin(x3))

→

→

Figure 14: The synthetic data created for the for the Weighted Euclidean distance Vs
Non-weighted Euclidean distance experiment. The two classes appear superficially
similar, but are easily differentiated (by human visual inspection) after it is noted that
Class A has "sharper" peaks and valleys than Class B.
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Figure 15: The mean precision of the two
retrieval methods been compared, measured at
recall points from 1% to 10%
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7. Conclusions

The main contribution of this paper is to show that a surprisingly simple data transformation is
competitive with more sophisticated transformations for the task of time series indexing.
Additionally we have demonstrated the PAA transformation offers several advantages over
competing schemes, including the following:

1) Being much faster to compute.
2) Being defined for arbitrary length queries (unlike DWT).
3) Allowing constant time insertions and deletions (unlike SVD).
4) Being able to handle queries shorter than that for which the index was built.
5) Being able to handle the weighted Euclidean distance measure.

It is the last item that we feel is the most useful feature of the representation, because it supports
more sophisticated querying techniques like relevance feedback [17].

In future work we intend to further increase the speed up of our method by exploiting the
similarity of adjacent sequences (in a similar spirit to the "trail indexing" technique introduced in
[11]).
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Appendix A
In the paper we claimed that the distance measure in the reduced space is always less than or equal

to the Euclidean distance. We will now prove this. We present a proof for the case where there is a single
frame. The more general proof for the N frame case can be obtained by applying the proof to each of the N
frames.

As a preliminary we will define a vector of real numbers ∆w. If w is a vector of real numbers and
w  is the arithmetic mean of w, then ∆wi ≡ iww − . An important property of ∆w is that it sums to zero.

Lemma: Σ∆wi = 0. Both w and ∆w are of length p. Let Σ denote the sum from 1 to p.

Assume   Σ∆wi = 0
From the definition above            Σ iww − = 0

Associative Law                     Σ w - Σ wi = 0

w is a constant               p w - Σ wi = 0

Replace w with its definition   p p
1 Σ wi  - Σ wi = 0

Cancel p times its reciprocal                Σ wi  - Σ wi = 0
Which completes the proof            0 = 0

Note that the definition of ∆wi allows us to rewrite wi as iww ∆− , a fact which we will utilize below.

Proof: Let X and Y be two time series, with |X| = |Y| = n. Let x and y be the corresponding transformed

vectors as defined in eq. 3. We want to prove ( ) ∑∑ ==
−≥−
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considering just the single frame case, we can remove summation over N frames and rewrite the inequality
as:

Assume

Because (AB)x = AxBx

Because the terms under the radicals must be
nonnegative, we can square both sides

Substitute rearrangement of definition above

Rearrange terms

Binomial theorem

Distributive law

Summation properties

Associative law

Σ∆wi = 0, proved above

Subtract like term from both sides

The sum of squares must be nonnegative

This completes the proof.

( ) ( )2

1

2 yxnyx
n

i ii −≥−∑ =

( ) ( )2

1

2 yxnyx
n

i ii −≥−∑ =

( ) ( )2

1

2 yxnyx
n

i ii −≥−∑ =

( ) ( )2

1

2)()( yxnyyxx
n

i ii −≥∆−−∆−∑ =

( ) ( )2

1

2)()( yxnyxyx
n

i ii −≥∆−∆−−∑ =

( )22

1

2 )())((2)( yxnyxyxyxyx iiii

n

i
−≥∆−∆+∆−∆−−−∑ =

( )2

1

2

11

2 )())((2)( yxnyxyxyxyx
n

i ii

n

i ii

n

i
−≥∆−∆+∆−∆−−− ∑∑∑ ===

( )2

1

2

1

2 )()()(2)( yxnyxyxyxyxn
n

i ii

n

i ii −≥∆−∆+∆−∆−−− ∑∑ ==

( ) ( )2

1

2

1 1

2 )()(2)( yxnyxyxyxyxn
n

i ii

n

i

n

i ii −≥∆−∆+∆−∆−−− ∑∑ ∑ == =

( ) ( )2

1

22 )(00)(2)( yxnyxyxyxn
n

i ii −≥∆−∆+−−−− ∑ =

( )2

1

22 )()( yxnyxyxn
n

i ii −≥∆−∆+− ∑ =

0)(
1

2 ≥∆−∆∑ =

n

i ii yx


