
Boolean and Cartesian Abstraction for

Model Checking C Programs

Thomas Ball Andreas Podelski Sriram K. Rajamani
Microsoft Research Max Plank Institute Microsoft Research
Microsoft Corp. Saarbr�ucken, Germany Microsoft Corp.

tball@microsoft.com podelski@mpi-sb.mpg.de sriram@microsoft.com

December 5, 2000

Technical Report
MSR-TR-2000-115

Microsoft Research
Microsoft Corporation
One Microsoft Way
Redmond, WA 98052

This page intentionally left blank.

Boolean and Cartesian Abstraction for
Model Checking C Programs

Thomas Ball Andreas Podelski1 Sriram K. Rajamani
Microsoft Research Max Plank Institute Microsoft Research
Microsoft Corp. Saarbr�ucken, Germany Microsoft Corp.

tball@microsoft.com podelski@mpi-sb.mpg.de sriram@microsoft.com

Abstract. The problem of model checking a speci�cation in form of a C program with recursive
procedures and many thousands of lines of code has not been addressed before. In this paper,
we show how we attack this problem using an abstraction that is formalized with the Cartesian
abstraction. It is implemented through a source-to-source transformation into a `Boolean' C pro-
gram; we give an algorithm to compute the transformation with a cost that is exponential in its
theoretical worst-case complexity but feasible in practice.

1 Introduction

Abstraction is a key issue in model checking. Much attention has been given to Boolean ab-

straction (a.k.a. existential abstraction or predicate abstraction); see e.g. [5, 12, 19, 8, 20, 17, 13].
The idea of Boolean abstraction is to map `concrete' states to `abstract' states according their
evaluation under a �nite set of predicates (\Boolean expressions"). The predicates induce an
`abstract' system with a transition relation over the abstract states. An approximation of the
set of reachable concrete states (in fact, an invariant) is obtained through a �xpoint of the
`abstract' post operator.

We build upon the work in Boolean abstraction (in particular on the work of Graf and
Saidi [17]) and propose a new abstraction function (\�b�c"). The new abstraction is also in-
duced by predicates over states but it cannot be de�ned by a mapping over states. We use the
framework of abstract interpretation [10] to formally specify our abstraction compositionally, by
juxtaposing the Boolean abstraction with the Cartesian abstraction. The Cartesian abstraction
formalizes the idea of ignoring dependencies between components of tuples. That is, it is used to
approximate a set of tuples by the smallest Cartesian product containing this set. For example,
the Cartesian abstraction of the set of tuples fh0; 1i; h1; 0ig is h�; �i, which represents the set
fh0; 0i; h0; 1i; h1; 0i; h1; 1ig (� is the \don't care" value). The Cartesian abstraction underlies the
attribute independence in certain kinds of program analysis [11].

The speci�cation of the new abstraction through a Galois connection (obtained by compos-
ing the `Boolean' and `Cartesian' Galois connections), de�nes an `ideal' abstract post operator

(\post#
b�c"). We present a new algorithm for computing post

#
b�c, prove it correct and compare its

performance with another algorithm that can be inferred directly from the work of [17]. We in-

troduce three re�nements of post#
b�c (`control points', `disjunctive completion' and `focus'). This

opens a space of design choices for abstract post operators that are de�ned and implemented
using post

#
b�c. We have an implementation of two tools c2bp and bebop in which we combine

all three re�nements.

1 This work performed while on leave at Microsoft Research.

The use of Cartesian abstraction allows us to represent the abstract post operator of a C
program in form of a Boolean program. A Boolean program is a C program in which all variables
have `Boolean' type; more precisely, they can take the values 1 or 0 or the \don't care" value �.
Boolean programs may have procedures with call-by-value parameter passing, local variables,
and recursion { we therefore say that they have in�nite control.

The SLAM Project. We next explain the speci�c context of our work. The SLAM project at
Microsoft Research is an e�ort to build processes and tools for checking temporal properties of
system software (such as device drivers and operating system components) written in common
programming languages (such as C). We focus on invariant checking, to which model checking
of safety properties can be reduced.

Although model checking has been e�ective in the domains of hardware circuits and network
protocols, model checking of software introduces some new challenges. Even for sequential
programs, the existence of both in�nite control and in�nite data makes model checking of
software diÆcult. In�nite control comes from procedural abstraction and recursion. In�nite
data comes from the existence of unbounded data types such as integers and pointer-based
data structures. Model checking in�nite control (in the form of pushdown automata) has been
extensively studied (see [27, 3, 15, 14]). Model checking unbounded arithmetic data has been
studied in model checking for protocols, parameterized systems or timed and hybrid systems [18,
1]. However, the combination of unbounded stack-based control and unbounded data has not
been handled before. 2 We believe that this is a fundamental problem in model checking of
programs written in C or other general-purpose programming languages.

The SLAM project addresses this fundamental problem through a separation of concerns
that �rsts abstracts in�nite data domains through Cartesian and Boolean abstractions, and then
uses well-known techniques to analyze the resultant Boolean program model, which has in�nite
control (but `�nite data'). That is, the data abstraction is induced by a set P of predicates that
are evaluated according to the data values of the program variables, e.g. p1 de�ned by (x > 5)
and p2 de�ned by (x == �p) where x and p are program variables.

Our working hypothesis is that for many interesting temporal properties of real-life system
software, we can �nd suitable predicates such that the Boolean program model arising from
the predicate abstraction is precise enough to prove the desired invariant. Further, abstractions
induced by predicates seem attractive since re�nement is done in a mechanical way when new
predicates are added.

Given an invariant Inv to check on a C program, the SLAM process has three phases, starting
with an initial set of predicates P (e.g. for expressing only the value of the program counter)
and repeating the phases iteratively, halting if the invariant Inv is either proved or disproved
(but possibly non-terminating):

1. construct an abstract post operator under the abstraction induced by P;

2. model check the Boolean program that represents the abstract post operator;

3. discover new predicates and add them to the set P in order to re�ne the abstraction.

2 There are other promising attempts at model checking for software, of course, such as the Bandera project,
for example, where non-recursive procedures are handled through inlining [9].

In this paper, we address the issue of abstraction in Phase (1). In principle, Phases (2) and (3)
will follow the lines of other work on interprocedural program analysis [25, 22], and abstraction
re�nement [4, 19]). For more detail on Phase (2), see [2].

In summary, the speci�c context of the SLAM project has the following consequences for
the abstraction of the post operator and its computation in Phase (1):

{ It is important to give a concise de�nition of the abstract post operator, not only to guide
its implementation but also to guide the re�nement process (i.e. to help identify the cause
of imprecision in a given abstraction).

{ Because of our separation of concerns, the abstract post operator must be computed for its
entire domain. That is, it cannot be restricted a priori to a subset of its domain. At the
moment when the abstract post operator for a statement within a procedure is computed,
it is generally impossible to foresee which values the statement will be applied to.

Related Work. The work of Graf and Saidi [17] is very close to ours and in part inspired
it. Their abstraction scheme (Section 2.2 in [17]) does not use the Cartesian abstraction to
the domain of trivectors. Instead, they de�ne an abstraction �0 as an approximation of the
Boolean abstraction (on the same domain); the abstraction function �0 in [17] does not form a
Galois connection with the meaning function. Since that setting accounts for the same degree
of approximation (loss of precision) as our setting, their procedure for computing the abstract
post operator can be carried over to our setting, in principle. Our speci�c context (see above)
prevents this practically.

The procedure of [17] goes through all elements in a subset of the domain of the abstract
post operator and explicitly computes each image. This is feasible only if the subset is small.
In the context of [17] (which does not address the issue of recursive procedures), the subset can
be chosen as the set of all reachable `abstract states' (bitvectors, essentially).

As explained above, the restriction of the abstract post operator to a subdomain is not
possible in our interprocedural setting. Thus, the procedure of [17] would require a �xed number
2n � 2 � n of calls to a theorem prover (n is the number of predicates inducing the abstraction;
in our example application, n = 35). This means that the procedure of [17] is practically not
applicable in our context. In this paper, we give a procedure with O(2n) � 2 � n calls, i.e. where
the �xed (or best-case) factor 2n is replaced by a worst-case factor O(2n), which makes all the
di�erence for practical concerns (in our setting).

Outline. Section 2 explains the SLAM tools c2bp and bebop using a simple example. Section 3
�xes the notation. Sections 4 and 5 introduce Boolean and Cartesian abstractions, and Sec-
tion 6 de�nes the abstract post operator post#

b�c. Section 7 contains the algorithm implemented

by the tool c2bp, and shows that the abstract post operator computed by c2bp is indeed post
#
b�c.

Section 8 studies loss of precision under Cartesian abstraction, and Section 9 discusses re�ne-
ments to minimize this loss. Particular implementation choices of these re�nements leads to the
abstract operator post#

slam
implemented by bebop. Section 10 gives the current implementation

status of the SLAM tools and concludes the paper.

int x, y, z, w;

void foo()

{

[1] do {

[2] z = 0;

[3] x = y;

[4] if (w){

[5] x++;

[6] z = 1;

}

[7] } while(x!=y)

[8] if(z){

[9] assert(0);

}

}

decl b1, b2;

/* b1 stands for predicate (z=0) and

b2 stands for predicate (x=y) */

void foo()

begin

[1] do

[2] b1 := 1;

[3] b2 := 1;

[4] if (*)

begin

[5] b2 := H(0,b2);

[6] b1 := 0;

end

[7] while(b2)

[8] if (!b1)

[9] assert(0);

end

boolean H(e1,e2)

begin

[10] if (e1) then

[11] return(1);

[12] elsif (e2) then

[13] return(0);

[14] else

[15] return(*);

fi

end

Fig. 1. An example C program, and the Boolean program produced by c2bp using predicates (z=0) and (x=y)

2 Example C Program

In this paper, we are concerned with the SLAM tools: (1) c2bp, which takes a C program and
a set of predicates, and produces an abstract post operator represented by a Boolean program,
and (2) bebop, a model checker for Boolean programs. We illustrate c2bp and bebop using a
simple C program P shown in the left-hand-side of Figure 1. The property we want to check
is that the assertion in line 9 is never reached, regardless of the context in which foo is called.
The right-hand-side of Figure 1 shows the Boolean program B that c2bp produces from P ,
given the set of predicates f (z=0) , (x=y) g. The Boolean variables b1 and b2 represent the
predicates (z=0) and (x=y), respectively. Each statement of the C program is translated into
a corresponding statement of the Boolean program. For example, the statement, z=0 in line 2
is translated to b1 := 1. The translation of the statement x++ in line 5 states that if b2 is 1
before the statement, then it guaranteed to be 0 after the statement, otherwise the value of b2
after the statement is unknown, represented by * in line 15. The Boolean program B can be
now fed to bebop, with the question: \is line 9 reachable in B?", and bebop answers \no". We
thus conclude that line 9 is not reachable in the C program P as well.

3 Correctness

We �x a program (e.g. a C program) generating a transition system with a set States of
states s1; s2; : : : and a transition relation s �! s0. The operator post on sets of states is de�ned
as usual.

post(S) = fs0 j exists s 2 S : s �! s0g

In Section 7 we will use the `weakest precondition' operator fpre on sets of states.

fpre(S0) = fs j for all s0 such that s �! s0 : s0 2 S0g

In order to de�ne correctness, we �x a subset init of initial states and a subset unsafe of unsafe
states (its complement safe = States � unsafe is the set of safe states). The set of reachable
states (reachable from an initial state) is the least �xpoint of post that contains init, also called
the closure of init under post,

post?(init) = init [post(init) [: : : :

The given program is correct if no unsafe state is reachable; i.e., if post?(init) � safe. A safe

invariant is a set of states S that contains the set of initial states, is a closure under the
operator post and is contained in the set of all safe states, formally: S � safe, S � post(S),
and S � init.

Correctness is established by computing a safe invariant. One way to do so is to �nd an
'abstraction' post# of the operator post and compute the closure of post# on init (and check
that it is a subset of safe). In the next section, we will make the idea of abstraction formally
precise.

4 Boolean Abstraction

For the purpose of this section, we �x a �nite set P of state predicates (\Boolean expressions"),

P = fp1; : : : ; png:

A predicate pi denotes the subset of states that satisfy the predicate, fs 2 States j s j= pig.

The set P of state predicates directly de�nes (1) an `abstract transition system' and (2) an
abstraction of the operator post. The respective conservative approximations of the set of reach-
able states coincide in the two cases. We briey explain (1) for intuition; we need to build up
on (2) in the next sections.

Abstract Transition System. The set P introduces: an equivalence relation over states, a par-
tition of the state space, a homomorphism and a new `abstract' transition system that is the
quotient of the `concrete' transition system (all these objects can be de�ned in terms of each
other). More precisely, two states in States are equivalent if they satisfy the same set of predicates
in P. The equivalence classes form a partitioning of the state space; each class is characterized
by which of the n predicates hold and which don't. An equivalence class may therefore be rep-
resented by a bitvector (of length n). One might call this bitvector an abstract state. We can

de�ne a homomorphism that maps every state s to the bitvector vs for its equivalence class;
each transition s �! s0 in the concrete transition system is `homomorphically' mapped to the
transition vs �! vs0 in the abstract transition system. The \meaning" of that transition is
the set of transitions between all pairs of states in the corresponding equivalence classes; i.e.,
the approximation consists of adding all those transitions to the original transition system.
The abstract transition system simulates (but in general does not bisimulate) the concrete one.
Issues like preservance of bisimulation or temporal properties under the Boolean abstraction
have been studied thoroughly; see e.g. [5, 12, 8, 20].

Abstract post operator. Since we are interested in invariant checking (and not at more general
temporal properties), we are concerned with the abstraction of the post operator (and not with
the construction of an abstract transition system as the target of a model checking procedure).
The framework of abstract interpretation [10] yields the systematic construction of an abstract
post operator.

We distinguish the terms approximation and abstraction. The set P of state predicates de-
�nes the Boolean approximation of a set of states S as Boolean(S), the smallest set containing S
that can be denoted by a Boolean expression over predicates in P (formed as usual with the
Boolean operators ^;_;:); this set is sometimes referred as the Boolean covering of the set.
This approximation can be formalized through an abstract domain and the meaning bool and
abstraction �bool, two functions that we de�ne below; namely, the Boolean approximation of a
set of states S is the set of states Boolean(S) = bool(�bool(S)). The two functions are used to

directly de�ne the operator post
#
bool

on the abstract domain as an abstraction of the �xpoint
operator post over sets of states. This again de�nes a speci�c approximation of the set of all
reachable states, namely bool applied to the �xpoint closure of post#

bool
on init.

Given P, the abstract domain AbsDombool is the set of all sets V of bitvectors v of length n
(one bit per predicate pi 2 P, for i = 1; : : : ; n),

AbsDombool = 2f0;1g
n

together with subset inclusion as the partial ordering. The abstraction function is the mapping
from the concrete domain 2States, the set of sets of states (again with subset inclusion as the
partial ordering), to the abstract domain, assigning a set of states S the set of bitvectors
representing the Boolean covering of S,

�bool : 2
States ! AbsDombool

S 7! fhv1; : : : ; vni j S \ fs j s j= v1 � p1 ^ : : : ^ vn � png 6= ;g

where 0 � pi = :pi and 1 � pi = pi. The meaning function is the mapping

bool : AbsDom! 2States;

V 7! fs j exists hv1; : : : ; vni 2 V : s j= v1 � p1 ^ : : : ^ vn � png:

Given AbsDombool and the function �bool (which forms a Galois connection together with the

function bool), the `best' abstraction of the operator post is the operator post
#
bool

on sets of
bitvectors de�ned by

post
#
bool

= �bool Æ post Æ bool

where the functional composition f Æ g of two functions f and g is de�ned from right to left;
i.e., f Æ g(x) = f(g(x)).

The least �xpoint of post#
bool

that contains the abstraction of the set of initial states, which

we can also write as post#
bool

?
(�bool(init)), is exactly the set of reachable states of the abstract

transition system de�ned above. Its meaning, i.e. the set of states bool(post
#
bool

?
(�bool(init))) is

an invariant of the (concrete) program.

5 Cartesian Abstraction

Given the vector domain D1 � : : : �Dn, the Cartesian approximation Cartesian(V) of a set of
vectors V is the smallest Cartesian product of subsets of D1, . . . , Dn that contains the set. It
can be de�ned by the Cartesian product of the projections �i(V),

Cartesian(V) = �1(V)� : : :��n(V)

where �1(V) = fv1 j hv1; : : : ; vni 2 V g etc.. In order formalize the Cartesian approximation
of a �xpoint operator, one uses the abstraction function from the concrete domain of sets of
tuples to the abstract domain of tuples of sets (with pointwise subset inclusion as the partial
ordering),

�cartesian : 2
D1�:::�Dn ! 2D1 � : : :� 2Dn

V 7! h�1(V); : : : ;�n(V)i

and the meaning function cartesian mapping a tuple of sets hM1; : : : ;Mni to their Cartesian
product M1 � : : :�Mn. I.e., we have Cartesian(V) = cartesian Æ �cartesian(V).

In general, one has to account formally for the empty set (i.e., introduce a special bottom
element ? and identify each tuple of sets that has at least one empty component); in the context
of the �xpoints considered here (we look at the smallest �xpoint that is greater than a given
element, e.g. �bool(init)), we can gloss over this issue.

We next formalize the Cartesian approximation for sets of bitvectors. The nonempty sets of
Boolean values are of one of three forms: f0g, f1g or f0; 1g. It is convenient to write 0 for f0g,
1 for f1g and � for f0; 1g, and thus represent a tuple of sets of Boolean values by what we
call a trivector, which is an element of f1; 0; �gn. We therefore introduce the abstract domain

of trivectors

AbsDomcartesian = f0; 1; �gn

(again, we gloss over the issue of a special trivector ?). The partial ordering < is the pointwise
extension of the partial order given by 0 < � and 1 < �; i.e., for two trivectors hv1; : : : ; vni
and hv01; : : : ; v

0
ni, hv1; : : : ; vni < hv01; : : : ; v

0
ni if v1 < v01, . . . , vn < v0n. The Cartesian abstrac-

tion �cartesian maps a set of bitvectors V to a trivector,

�cartesian : AbsDombool ! AbsDomcartesian; V 7! hv1; : : : ; vni

where, for i = 1; : : : ; n,

vi =

8><
>:
0 if �i(V) = f0g
1 if �i(V) = f1g
� if �i(V) = f0; 1g:

The meaning cartesian(v) of a trivector v is the set of bitvectors that are smaller than v (wrt. the
partial ordering giving on trivectors given above); i.e., it is the Cartesian product of the n sets
of bitvalues denoted by the components of v. The meaning function cartesian : AbsDomcartesian !
AbsDombool forms a Galois connection with �cartesian.

6 The Abstract Post Operator post
#
b�c

over Trivectors

We de�ne a new Galois connection by composing the ones considered in the previous two
sections,

�b�c : 2
States ! AbsDomcartesian; �b�c = �cartesian Æ �bool

b�c : AbsDomcartesian ! 2States; b�c = bool Æ cartesian

and the abstract post operator over trivectors, post
#
b�c : AbsDomcartesian ! AbsDomcartesian,

de�ned by
post

#
b�c = �b�c Æ post Æ b�c:

We have thus given a formalization of the �xpoint operator that implicitely de�nes the invari-
ant Inv1 given by I1 in [17]; i.e., the invariant is the meaning (under b�c) of the least �xpoint

of post#
b�c that is not smaller than the abstraction of init (under �b�c), or

Inv1 = b�c(post
#
b�c

?
(�b�c(init))):

The invariant Inv1 is represented abstractly by one trivector, i.e. it is the Cartesian product of
sets each desribed by p, :p or p _ :p (i.e. true) where p is a predicate of the set P.

7 The c2bp Algorithm to compute post
#
b�c

Given the transition system (de�ning the operators post and fpre) and the set of n predicates P,
the tool c2bp produces a Boolean program over n `Boolean' variables v1; : : : ; vn. Each statement
of the C program corresponds to a multiple assignment statement of the form

hv1; : : : ; vni := he1; : : : ; eni

where e1; : : : ; en are expressions over v1; : : : ; vn that are evaluated to a value in f0; 1; �g. We
write e[v1; : : : ; vn] for e if we want to stress that e is an expression over v1; : : : ; vn. The Boolean

program represents an operator post#c2bp over trivectors de�ned in the following way.

post
#
c2bp(hv1; : : : ; vni) = hv01; : : : ; v

0
ni if v01 = e1[v1; : : : ; vn]; : : : ; v

0
n = en[v1; : : : ; vn]

In this section, we present the expressions ei[v1; : : : ; vn] that are computed by c2bp. We then

prove that the tool c2bp is correct, meaning that the operator post#c2bp is exactly the operator

post
#
b�c (the operator post

#
b�c is the speci�cation of the tool c2bp).

The expression ei over the variables v1; : : : ; vn that de�nes the i-th value of the successor
trivector of the Boolean program is

ei = H(ei(1); ei(0)):

Here, the function H applied to two Boolean expressions e and e0 over the variables v1; : : : ; vn
yields a third expression H(e; e0) over the variables v1; : : : ; vn that evaluates as follows:

H(e[v1; : : : ; vn]; e
0[v1; : : : ; vn]) =

8><
>:
1 if hv1; : : : ; vni j= e

0 if hv1; : : : ; vni j= e0

� if neither

The satisfaction of a Boolean expression e by a trivector hv1; : : : ; vni is de�ned as one expects,
namely hv1; : : : ; vni j= e if all bitvectors in bool(hv1; : : : ; vni) satisfy e. Thus, for example,
h0; 1; �i j= :v1 ^ v2 but h0; 1; �i 6j= v3 and h0; 1; �i 6j= :v3.

The two Boolean expressions ei(1) and ei(0) over the variables v1; : : : ; vn are obtained by
direct correspondence from the two Boolean expressions Ei(0) and Ei(1) over the predicates
p1; : : : ; pn that are computed, in the form of disjunctions of conjunctions of possibly negated
predicates, according to the following de�nition.

Ei(0) = F(fpre(fs j s j= :pig))

Ei(1) = F(fpre(fs j s j= pig))

Here, the function F assigns each set of states S a representation of its Boolean under -
approximation, i.e. the greatest Boolean expression over predicates in P whose denotation
is contained in S; formally,

F(S) = �E 2 BoolExpr(P): fs j s j= Eg � S:

That is, the set of states denoted by F(S) is States � (bool Æ �bool)(States � S). The ordering
e < e0 on Boolean expressions is such that each disjunct of e implies some disjunct of e0 (e.g.,
p1 is greater than p1 ^ p2 _ p1 ^ :p2).

Proposition 1. The operator post
#
c2bp (represented by the Boolean program computed by c2bp)

is exactly the operator post
#
b�c, the Cartesian of the Boolean abstraction of the operator post.

Proof. We de�ne the n abstraction functions �
(i)
b�c by

�
(i)
b�c(M) =

8><
>:
1 if M � fs j s j= pig
0 if M � fs j s j= :pig
� if neither

and the i-th abstract post function post
#
b�c

(i)
by

post
#
b�c

(i)
= �

(i)
b�c Æ post Æ b�c:

Since the value of any set of states S under the abstraction �b�c is the trivector

�b�c(S) = h�
(1)
b�c(S); : : : ; �

(n)
b�c (S)i;

we can express the abstract post operator post
#
b�c over trivectors as the tuple of the abstract

post functions, each mapping trivectors to values in f0; 1; �g,

post
#
b�c(hv1; : : : ; vni) = hpost#

b�c

(1)
(hv1; : : : ; vni); : : : ; post

#
b�c

(n)
(hv1; : : : ; vni)i:

Now, we can represent the abstract post operator post#
b�c in terms of the sets Vi(0), Vi(1) and

Vi(�), de�ned as the inverse images of the values 0, 1 or �, respectively, under the i-th abstract

post functions post#
b�c

(i)
.

Vi(0) = fhv1; : : : ; vni j post
#
b�c

(i)
(hv1; : : : ; vni) = 0g

Vi(1) = fhv1; : : : ; vni j post
#
b�c

(i)
(hv1; : : : ; vni) = 1g

Vi(�)= fhv1; : : : ; vni j post
#
b�c

(i)
(hv1; : : : ; vni) = �g

= AbsDomcartesian � (Vi(0) [Vi(1))

The statement of the proposition can now be expressed by the fact that the sets Vi(0), Vi(1)
and Vi(�) are exactly the sets of trivectors that satisfy the Boolean expressions ei(0), ei(1) or
neither.

Vi(0) = fhv1; : : : ; vni j hv1; : : : ; vni j= ei(0)g

Vi(1) = fhv1; : : : ; vni j hv1; : : : ; vni j= ei(1)g

Vi(�) = fhv1; : : : ; vni j hv1; : : : ; vni 6j= ei(0); hv1; : : : ; vni 6j= ei(1)g

(1)

That is, in order to prove the proposition we need to prove (1).

Since AbsDombool is a complete distributive lattice, the membership of a trivector hv1; : : : ; vni
in Vi(0) is equivalent to the condition that cartesian(hv1; : : : ; vni) is contained inBi(0), the largest

set of bitvectors that is mapped to the value 0 by the function �
(i)
b�c Æ postbool. That is, if we

de�ne
Bi(0) = �B 2 AbsDombool: �

(i)
b�c Æ post Æ bool(B) = 0

then
Vi(0) = fhv1; : : : ; vni 2 AbsDomcartesian j bool(hv1; : : : ; vni) � Bi(0)g: (2)

By de�nition of �
(i)
b�c, we can express the set of bitvectors Bi(0) as

Bi(0) = �B 2 AbsDombool: post Æ bool(B) � fs j s j= :pig:

The operators post and fpre form a Galois connection), i.e. post(S) � S0 if and only if S � fpre(S0).
Therefore, we can write Bi(0) equivalently as

Bi(0) = �B 2 AbsDombool: bool(B) � fpre(fs j s j= :pig):

Thus, Bi(0) is exactly the set of all bitvectors that satisfy the Boolean expression ei(0).

Bi(0) = fhv1; : : : ; vni 2 f0; 1gn j hv1; : : : ; vni j= ei(0)g

This fact, together with (2), yields directly the characterization of Vi(0) in (1). The other two
statements in (1) follow in the similar way. 2

Complexity. We need to compute F(S) for 2n sets S that are either of the form
S = fpre(fs 2 States j s j= pig or of the form S = fpre(fs 2 States j s j= :pig.

In order to compute each F(S), we need to �nd all minimal implicants of S in the form of
a cube, i.e. a conjunction

C =
^
i2I

`i

of possibly negated predicates (i.e., `i is pi or :pi) such that fs j s j= Cg � S). We use some
quick syntactic checks to �nd which of the predicates pi can possibly inuence S (i.e. such pi
or :pi can appear in a minimal implicant); usually, there are only few of those. `Minimal' here
means: if an implicant C is found, no larger conjunction C ^pj needs to be considered. Also, if C
is incompatible with S (i.e., fs j s j= Cg \ S = ;), no larger conjunction needs to be considered
(since no conjunction C ^ pj can be an implicant).

In the worst case, computing F(S) may require exponentially many calls to the theorem
prover. In practice (for the reasons above), we �nd that we can compute F(S) with far fewer
number of theorem prover calls.

By restricting the size of the sets I to at most 3, we obtain a sound approximation. In
practice, in all examples we have seen so far, this restriction (which reduces the worst case to
a cubic number of calls to the theorem prover) does not lose any precision. Consequently, c2bp
(with or without the restriction) is able to handle C programs with several hundred lines and
about 35 predicates in a few minutes.

8 Loss of Precision under Cartesian Abstraction

We will next analyze in what way precision may get lost through the Cartesian abstraction. It
is important to distinguish that loss from the one that incurs from the Boolean abstraction.
The latter is addressed by adding new predicates in the re�nement phase.

`Loss of precision' is made formally precise in the following way (see [10, 16]). Given a
concrete and an abstract domain, an abstraction � and a meaning , we say that the operator
F does not loose precision under the abstraction to F# [on the abstract value a] if ÆF# = F Æ
[if Æ F#(a) = F Æ (a)].

In our setting, F will always be instantiated by post
#
bool

. In this section, `the Cartesian

abstraction does not loose precision' is short for `post#
bool

does not loose precision under the

abstraction to post
#
b�c'. We de�ne function F to be deterministic if it maps singleton sets to

singleton sets. It will become useful to establish the following observation.

Proposition 2. If the operator post
#
bool

is deterministic, then the Cartesian abstraction does

not loose precision on trivectors hv1; : : : ; vni such that vi 6= �, for 1 � i � n.

Example 1. We take the (simple and somewhat contrived) example of the C program with
one statement x = y updating x by y and the set of predicates P = fp1; p2; p2g where p1
expresses \x > 5", p2 expresses \x < 5" and p3 expresses \y = 5". Note that the conjunction

of :p1 and :p2 expresses x = 5. The image of the trivector h0; 0; 0i under the abstract post

operator post#
b�c is the trivector h�; �; 0i,

post
#
b�c(h0; 0; 0i) = h�; �; 0i

because post
#
b�c = �cartesian Æ �bool Æ post Æ bool Æ cartesian and by the following equalities.

cartesian(h0; 0; 0i) = fh0; 0; 0ig 2 AbsDombool

bool(fh0; 0; 0ig) = fhx; yi j x = 5; y 6= 5g 2 2States

post(fhx; yi j x = 5; y 6= 5g) = fhx; yi j x = y; y 6= 5g 2 2States

�bool(fhx; yi j x = y; y 6= 5g) = fh1; 0; 0i; h0; 1; 0ig 2 AbsDombool

�cartesian(fh1; 0; 0i; h0; 1; 0ig) = h�; �; 0i 2 AbsDomcartesian

The meaning of the trivector h�; �; 0i is a set of four bitvectors that properly contains the

image of the Boolean abstraction of the post operator post
#
bool

applied to the meaning of the
trivector h0; 0; 0i.

cartesian(post
#
b�c(h0; 0; 0i))= fh0; 0; 0i; h1; 0; 0i; h0; 1; 0i; h1; 1; 0ig

� fh1; 0; 0i; h0; 1; 0ig

= post
#
bool

(cartesian(h0; 0; 0i))

That is, the Cartesian abstraction looses precision by adding the bitvector h0; 0; 0i (express-
ing x = 5 through the negation of both, x < 5 and x > 5) to the two bitvectors h1; 0; 0i
and h0; 1; 0i that form the image of the Boolean abstract post operator. (The added bitvec-
tor h1; 1; 0i is semantically inconsistent and will be eliminated by standard methods in Boolean
abstraction; see [17].) Note that the concrete operator post is deterministic; the loss of precision

in the Cartesion abstraction occurs because post
#
bool

is not deterministic (post#
bool

(h0; 0; 0i) =
fh1; 0; 0i; h0; 1; 0ig; as an aside, post does not loose precision under the Boolean abstraction).

Example 2. The next example is simpler than the previous one but it is not relevant in the
context of C programs where the transition relation is deterministic. Nondeterminism arises in
the interleaving semantics of concurrent systems. Take a program with Boolean variables x and
y (standing e.g. for `critical') and the transition relation speci�ed by the assertion x0 = :y0

(as usual, a primed variable stands for the variable's value after the transition). For simplicity
of presentation, we here identify states and bitvectors. The image of every nonempty set of
bitvectors under post

#
bool

is the set of bitvectors fh0; 1i; h1; 0ig. The image of every trivector

under post
#
b�c is the trivector h�; �i whose meaning is the set of all bitvectors. Here again,

post
#
bool

is not deterministic. Unlike the previous example, the concrete operator post is not
deterministic as well.

Example 3. The next example shows, in the setting of a deterministic transition relation, that
precision can get lost if post#

b�c is applied to a trivector with components having value �. Take
a program with 2 Boolean variables x1; x2 and the transition relation speci�ed by the assertion
x1 = x2^x

0
1 = x1^x

0
2 = x2 (corresponding to a `�lter' that enforces a condition, here the equality

between the two variables). The image of the trivector h�; �i under post#
b�c is the trivector h�; �i.

The image of its meaning cartesian(h�; �i) under post
#
bool

is the set of bitvectors fh0; 0i; h1; 1ig.

We will come back to this example in Section 9.3; there, we will also consider the general
version of the same program with n � 2 Boolean variables x1; : : : ; xn and the transition relation
speci�ed by the assertion x1 = x2^x

0
1 = x1^ : : :^x

0
n = xn. The image of the trivector h�; : : : ; �i

under post#
b�c is the trivector h�; : : : ; �i. The image of its meaning under post#

bool
is the set of all

bitvectors whose �rst two components are equal.

In this section, the formalization of the Cartesian abstraction has proven useful in analyzing
the loss of precision incurred by replacing the `classical' Boolean abstract post operator post#

bool

with the `more eÆcient' operator post#
b�c. It ma

of the procedure relates to the return value at the caller. These are handled essentially in the
same way as assignment statements.

The post operator is now a tuple of post operators post`, one for each location ` of the
control ow graph, post = hpost[`]i`2Loc, where post[`] is de�ned in the standard way. We de�ne

the abstract post operator accordingly as the tuple post
#
b�c = hpost#

b�c[`]i`2Loc.

If ` is the \join" location after a conditional statement and its two predecessors are
`1 and `2, then post[`](S) = S[`1] [S[`2]. We de�ne the `-th abstract post operator,

post
#
b�c[`](h: : : ; v[`1]; : : : ; v[`2]; : : :i) = v[`1] t v[`2] where v t v0 is the least upper bound of the

two trivectors v and v0 in AbsDomcartesian.

In all other cases, there is a unique predecessor location for `, and post[`] is de�ned by the
transition relation for the unique edge leading into `. The `-th abstract post operator is then
de�ned (and computed) as described in the preceding sections, post#

b�c[`] = �b�c Æ post[`] Æ b�c.

Specializing the observations in Section 8, we now study the loss of precision of post#
bool

[`]
under the Cartesian abstraction speci�cally for each kind of location `. There is no loss of
precision if the edge into ` is one of the two nondeterministic branches corresponding to a
conditional since all data values are unchanged. If the edge corresponds to an \assume(�)"
statement (which corresponds to an assertion where primed variables only appear in the form
x0 = x), then there is a loss of precision exactly if � expresses a dependence between variables

(such as x = y as in Example 2); since the operator post
#
b�c[`] is deterministic, Proposition 2

applies. If the edge corresponds to an update statement, then (and only then) the operator

post
#
b�c[`] may not be deterministic (even if the concrete operator post[`] is deterministic).

If ` is a \join" location, then the loss of precision is apparent: the union of two Cartesian
products gets approximated by a Cartesian product. This loss of precision gets eliminated by
the re�nement of the next section.

9.2 Disjunctive Completion

Following standard methods from program analysis [10], we go from the abstract domain of
trivectors AbsDomcartesian to its disjunctive completion, which we may model as the abstract
domain of sets of trivectors,

AbsDomb�c�_ = 2f0;1;�g
n

with the partial ordering < obtained by extending the ordering < on trivectors, i.e., for two sets
V and V 0 of trivectors, we have V < V 0 if for all trivectors v 2 V there exists a trivector v0 2 V 0

such that v < v0. For our purposes, the least element of the abstract domain AbsDomb�c�_ is the
set f�cartesian Æ �bool(init)g.

Note that the two domains AbsDombool and AbsDomb�c�_ are not isomorphic; we have that
V1 = fh0; �i; h1; �ig is strictly smaller than V2 = fh�; �ig. The reduced quotient of AbsDomb�c�_

(obtained by identifying sets with the same meaning, such as V1 and V2) is isomorphic to
AbsDombool; there, the �xpoint test is exponentially more expensive than in AbsDomb�c�_ (but
may be practically feasible if symbolic representations are used)

The abstract post operator post#
b�c�_ over sets of trivectors V 2 AbsDomb�c�_ is the canonical

extension of the abstract post operator over trivectors to a function over sets of trivectors, i.e.,

for V 2 2f0;1;�g
n

,
post

#
b�c�_(V) = fpost#

b�c(v) j v 2 V g:

9.3 The Focus Operation

Assuming the re�nement to the disjunctive completion, we now introduce the focus operation
(the terminology stems from an|as it seems to us, related|operation in shape analysis via
3-valued logic [23]). This operation can be used to eliminate all loss of precision under Cartesian
abstraction except for post operators post[`] at locations ` with a nondeterministic statement
(on the incoming edge). Examples of such nondeterministic statements are given in Examples 1
and 2.

The idea of the focus operator can be explained at hand of Example 3. Here, the assertion
de�ning the operator post associated with the \assume(x1 = x2)" statement (which corresponds
to the assertion \x1 = x2 ^ x01 = x1 ^ x02 = x2") expresses a dependence between the variables x1
and x2. Therefore, one de�nes the focus operation focus[1; 2] that, if applied to a trivector of
length n � 2, replaces the value � in its �rst and second components; i.e.,

focus[1; 2](hv1; v2; v3; : : : ; vni) = fhv01; v
0
2; v3; : : : ; vni j v

0
1; v

0
2 2 f0; 1g; v

0
1 � v1; v

0
2 � v2g:

We extend the operation from trivectors v to sets of trivectors V in the canonical way. We are
now able to de�ne the `focussed' abstract post operator post

#
b�c�_�[1;2] as follows (re�ning the

operator post#
b�c given in the previous section).

post
#
b�c�_�[1;2](V) = fpost#

b�c(v) j v 2 focus[1; 2](V)g

Continuing Example 3, we have that post
#
b�c�_�[1;2](fh�; �ig) = fh0; 0i; h1; 1ig, which means

that the operator post does not loose precision under the `focussed' abstraction (i.e., the

meaning function composed with post
#
b�c�_�[1;2] equals post composed with the meaning func-

tion). Note that in general, the focus operation and the `focussed' operator post
#
b�c�_ may

yield trivectors with components �. Continuing Example 3 and taking the general version
of the program with n � 2 Boolean variables, we have post

#
b�c�_�[1;2](fh�; �; �; : : : ; �ig) =

fh0; 0; �; : : : ; �i; h1; 1; �; : : : ; �ig.

The de�nitions above generalize directly to focus operations in other than the �rst two and
more than two components. The following observation follows directly from Proposition 2.

Proposition 3. For every deterministic operator post, there exists a focus operation such

that post does not loose precision under the `focussed' Cartesian abstraction.

The abstract post operator post
#
slam

that is used in SLAM results from combining the three
re�nements presented in Sections 9.1, 9.2 and 9.3, with the total focus operation focus[1; 2; : : : ; n]
in each component. For each control point ` in the program, we have:

post
#
slam

[`] = post
#
b�c�_�[1;:::;n][`]:

bebop is a symbolic model checker. It implements the disjunctive completion and the total focus
operation symbolically.

10 Conclusion

Abstraction is probably the single most important issue in model checking software. The SLAM
project at Microsoft Research is an e�ort to check temporal safety properties of software, by
automatically constructing abstractions of the software, and doing model checking on the ab-
stractions. This paper formally describes the abstraction implemented by the SLAM tools c2bp
and bebop. The technical contributions are the formalization of the abstract post operator
post

#
b�c in terms of Boolean and Cartesian abstraction, and an algorithm (for computing this

operator) that is practical in our setting which addresses programs with recursive procedures.
The formal machinery developed here has potentially other applications in designing new ab-
stractions for model checking software, and also in classifying data-ow analysis problems in
the spirit of [26, 24].

We have implemented both the tools c2bp and bebop. c2bp is written in OCAML and
interfaces with existing theorem provers to compute the F function. It also uses inputs from
a ow-insensitive points-to-analysis, in order to compute fpre in the presence of pointers and
aliasing. bebop is written in C++ and interfaces with existing BDD packages. We have managed
to use c2bp and bebop to successfully check properties of a Windows NT device driver for the
serial port. The driver has a few thousand lines of C code, and a particular property we checked
requires analyzing about 350 lines of C code. We introduced 35 predicates manually, and c2bp
was able to process 350 lines of C code with about 35 predicates in under a minute, and generate
a Boolean program. bebop was able to check the property on this Boolean program in a few
seconds. All tools were run on an 800MHz Pentium III PC with 512MB of RAM. More details
and a case study on using SLAM tools to check properties of Windows NT device drivers will
appear in a forthcoming paper.

Acknowledgement

We thank Todd Millstein and Rupak Majumdar for their work in the c2bp implementation. We
thank Bertrand Jeannet and Laurent Mauborgne for helpful comments on preliminary versions
of this paper.

References

1. R. Alur, C. Courcoubetis, N. Halbwachs, T. Henzinger, P.-H. Ho, X. Nicollin, A. Olivero, J. Sifakis, and
S. Yovine. The algorithmic analysis of hybrid systems. Theoretical Computer Science, 138:3{34, 1995.

2. T. Ball and S. K. Rajamani. Bebop: A symbolic model checker for boolean programs. In SPIN 00: SPIN
Workshop, Lecture Notes in Computer Science 1885, pages 113{130. Springer-Verlag, 2000.

3. A. Bouajjani, J. Esparza, and O. Maler. Reachability analysis of pushdown automata: Application to model-
checking. In CONCUR'97: Concurrency theory, volume 1243 of Lecture Notes in Computer Science (LNCS),
pages 135{150. Springer-Verlag, 1997.

4. E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided abstraction re�nement. In CAV
00: Computer-Aided Veri�cation, Lecture Notes in Computer Science 1855, pages 154{169. Springer-Verlag,
2000.

5. E. Clarke, O. Grumberg, and D. Long. Model checking and abstraction. In Proceedings of the 19th Annual
Symposium on Principles of Programming Languages, pages 343{354. ACM Press, 1992.

6. E. M. Clarke. Synthesis of resource invariants for concurrent programs. ACM Transactions on Programming
Languages and Systems (TOPLAS), 2(3):338{358, 1980.

7. E. M. Clarke and E. A. Emerson. Synthesis of synchronization skeletons for branching time temporal logic.
In In Logic of Programs: Workshop, Yorktown Heights, NY, May 1981, volume 131 of Lecture Notes in
Computer Science (LNCS). Springer-Verlag, 52{71.

8. R. Cleaveland, P. Iyer, and D. Yankelevich. Optimality in abstractions of model checking. In Static Analysis
Symposium, volume 983 of Lecture Notes in Computer Science (LNCS), pages 51{63. Springer-Verlag, 1995.

9. J. Corbett, M. Dwyer, J. Hatcli�, C. Pasareanu, Robby, S. Laubach, and H. Zheng. Bandera : Extracting
�nite-state models from java source code. In ICSE 2000: International Conference on Software Engineering,
2000.

10. P. Cousot and R. Cousot. Abstract interpretation: a uni�ed lattice model for the static analysis of programs
by construction or approximation of �xpoints. In Proceedings of the Fourth Annual Symposium on Principles
of Programming Languages. ACM Press, 1977.

11. P. Cousot and R. Cousot. Formal language, grammar and set-constraint-based program analysis by abstract
interpretation. In FPCA: Functional Programming and Computer Architecture, pages 170{181. ACM Press,
1995.

12. D. Dams, O. Grumberg, and R. Gerth. Abstract interpretation of reactive systems: abstractions preserving
ACTL�, ECTL�, and CTL�. In E.-R. Olderog, editor, IFIP Working Conference on Programming Concepts,
Methods, and Calculi. Elsevier Science Publishers, 1994.

13. S. Das, D. L. Dill, and S. Park. Experience with predicate abstraction. In 11th International Conference on
Computer-Aided Veri�cation. Springer-Verlag, July 1999.

14. J. Esparza, D. Hansel, P. Rossmanith, and S. Schwoon. EÆcient algorithms for model checking pushdown
systems. Technical Report Technical Report TUM-I0002, SFB-Bericht 342/1/00 A, Technische Universitat
Munchen, Institut fur Informatik, February 2000.

15. A. Finkel, B. Willems, and P. Wolper. A direct symbolic approach to model checking pushdown systems. In
INFINITY' 97: Veri�cation of In�nite-state Systems, July 1997.

16. R. Giacobazzi, F. Ranzato, and F. Scozzari. Making abstract interpretations complete. Journal of the ACM,
47(2):361{416, March 2000.

17. S. Graf and H. Saidi. Construction of abstract state graphs with PVS. In O. Grumberg, editor, CAV 97:
Computer Aided Veri�cation, Lecture Notes in Computer Science 1254, pages 72{83. Springer-Verlag, 1997.

18. T. Henzinger, P.-H. Ho, and H. Wong-Toi. HyTech: the next generation. In Proceedings of the 16th Annual
Real-time Systems Symposium, pages 56{65. IEEE Computer Society Press, 1995.

19. R. Kurshan. Computer-aided Veri�cation of Coordinating Processes. Princeton University Press, 1994.
20. C. Loiseaux, S. Graf, J. Sifakis, A. Bouajjani, and S. Bensalem. Property preserving abstractions for the

veri�cation of concurrent systems. Formal Methods in System Design Volume 6, Issue 1, 1995.
21. T. Reps. Program analysis via graph reachability. Information and Software Technology, 40(11-12):701{726,

November-December 1998.
22. T. Reps, S. Horwitz, and M. Sagiv. Precise interprocedural dataow analysis via graph reachability. In

Proceedings of the 22nd ACM Symposium on Principles of Programming Languages, pages 49{61, January
1995.

23. M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis via 3-valued logic. In PLDI: Programming
Language Design and Implementation, pages 105{118, 1998.

24. D. Schmidt. Data ow analysis is model checking of abstract interpretation. In Proceedings of the Twenty
Fifth Annual Symposium on Principles of Programming Languages, pages 38{48. ACM Press, 1998.

25. M. Sharir and A. Pnueli. Two approaches to interprocedural data dalow analysis. In S. Muchnick and
N. Jones, editors, Program Flow Analysis: Theory and Applications, pages 189{233. Prentice-Hall, 1981.

26. B. Ste�en. Data ow analysis as model checking. In Theoretical Aspects of Computer Science (TACS'91),
volume 536, Sendai (Japan), September 1991.

27. B. Ste�en and O. Burkart. Model checking for context-free processes. In CONCUR'92, Stony Brook (NY),
volume 630 of Lecture Notes in Computer Science (LNCS), pages 123{137, Heidelberg, Germany, 1992.
Springer-Verlag.

