
1

The CHOICE Network:
Dynamic Host Configuration for Managing

Mobility between Public and Private Networks

Allen Miu
Victor Bahl

August 2000

Technical Report
MSR-TR-2000-85

Microsoft Research
Microsoft Corporation

One Microsoft Way
Redmond, WA 98052

2

Acknowledgements
We would like to acknowledge and thank several individuals who have helped develop the CHOICE network.
In particular, Anand Balachandran, and Srinivasan Venkatachary are two of the original designers and
implementers of PANS. Stephen Dahl helped us deploy the network at the Crossroads Mall; Pierre De Vries
handled the legal formalities and helped us with usability issues while being our liaison with the product
groups Paul Hoeffer designed our web interaction. We also thank Prof. Dave Johnson of Rice University, and
Prof. Mary Baker of Stanford University for the well appreciated constructive discussions.

3

Dynamic Host Configuration for Managing
Mobility between Public and Private Networks

Allen Miu
Massachusetts Institute of Technology

aklmiu@lcs.mit.edu

Paramvir Bahl
Microsoft Research

bahl@microsoft.com

Abstract
The usage and service options of a pubic network generally differ
from a private (enterprise and home) network and consequently,
the two networks are often configured differently. The existence of
such networks motivates our need to improve support and
management of nomadic users who frequently roam between them.
Using a real-world public network as a case study, we discuss this
problem in detail and describe a solution that allows client devices
to dynamically configure themselves to adapt to the local network
configuration. In addition to supporting mobility, we describe how
our solution also provides fail-over mechanisms for providing
highly available service; load balancing and location services.
Furthermore, our solution can be used to scale networks that are
deployed in a large setting. We discuss in detail the various issues
that need to be dealt with for achieving true device-level mobility,
pointing out several unsolved problems in this area. The algorithms
and software proposed in this paper have been implemented, are
deployed, and are currently being used in a real-world public
network that is operational at the Crossroads Mall in Bellevue,
Washington.

1 Introduction

Today there is a greater demand for Internet
connectivity than anytime before in the history of the
Internet. Our nations economies and businesses rely heavily
on people having this connectivity. This combined with the
observation that we have become a highly mobile society in
which many of us invariably find ourselves spending a
considerable amount of time in public places and at public
events compels us to move in the direction of providing
high-speed Internet connectivity everywhere we can.

We have built and deployed a wireless network, called
the CHOICE network, which provides individuals Internet
access in public places such as shopping malls, airports,
libraries, train-stations etc. Our network is based on the
widely available IEEE 802.11b standards-based wireless
LAN technology [2], which enables us to provide Internet
access to authenticated users at speeds 25X to 50X greater
than 2.5G and 3G speeds [1]. Additionally, our network
offers policy-based services such as different levels of
privacy and security, different amounts of bandwidth, and
different location services all on a per-user basis. For the
host organization our network provides protection against
malicious users and options for detailed accounting and
flexible charging. Our design is conducive to developing
interesting location services such as location-based buddy
list, electronic in-building navigation, and timely shopping
promotions.

The underlying protocol that enables many of the
aforementioned features of the CHOICE network is the Protocol
for Authorization and Negotiation of Services, or PANS. PANS is
a novel lightweight protocol that facilitates (a) global
authentication of users. Users can be authenticated from anywhere
in the world, (b) authorization, monitoring and management of
network access for authenticated users, (c) enforcement of policies
on a per-user basis, and (d) device auto configuration for
supporting users who roam between differently configured
networks.

Our network is deployed in a popular shopping mall, called the
Crossroads Mall in Bellevue, Washington, USA (URL:
http://www.mschoice.com). In deploying this network we were
faced with many challenges but the one that we focus on in this
paper is the problem of accommodating roaming users who
frequently move between private and public networks.
Concretely, the Bellevue Crossroads Mall is fairly close to the
Microsoft’s corporate headquarters in Redmond, Washington
(approximately 3 miles). Microsoft employees routinely visit this
mall’s international food court during lunch hours, and hold
business meetings at the resident Starbuck’s coffee shop at
different times of the day. These employees have access to their
own corporate campus-wide wireless LAN, which is deployed in
over 30 multistory buildings. Consequently, a large number of
them have notebooks and PDA equipped with wireless LAN cards
that they use exclusively for network connectivity. We were thus
faced with the challenge of supporting these users in a way that
they don’t have to do anything to their device configurations as
they roam between their private corporate network and the public
CROssroad’s Wireless Network (a.k.a CROWN).

Typical usage scenarios for private and public networks are
different and consequently, these networks are generally
configured differently. This case is confirmed in how Microsoft’s
internal wireless network is configured compared to the how the
publicly available CROWN is configured. Large corporations
tend to be extremely security cautious taking an enterprise-centric
approach where every user is governed by a single policy. User
authentication is applied to keep out unknown persons from
accessing internal private networks. Public networks on the other
hand are security cautious only to the extent the individual using
the network is. The host organization’s focus is on establishing the
identity of a previously unknown user and then giving her access
to the network, its resources, and other location services generally
for a fee. So tracking who is using the network, what services are
being used and how much bandwidth is being used are important.
Another difference is, while corporations generally have a high
level of confidence and trust in their users (employees), public
network operators have to guard against the network users who

4

they might not know well. They need tools to protect
themselves from malicious users who are only interested in
bringing the network down.

In thinking through the different usage scenarios and
studying several privately deployed networks that we know
of, we concluded that by-and-large corporations use some
sort of a pre-configured shared key mechanism with
hardware encryption to secure network access. Public
networks on the other hand end-up doing packet-level
processing for both user-level authentication and privacy and
for offering different kinds of services and keeping track of
network use on a per-user basis. Consequently, client
devices have to change behavior according to the
network they are accessing. When accessing the private
network (normal mode), the client may not do anything;
hardware encryption with a shared key allows users access
through the network ports. However, when accessing the
public network (special mode), the client runs through an
authentication process and starts using a specialized network
access protocol, which gets them different types of
commercially interesting services.

With these issues in mind, we developed a mobility
support mechanism that allows devices to automatically
figure how to establish/re-establish network connectivity as
roaming users migrated across the different networks.

We present the architecture and operation of the
CHOICE network, focusing on the problem of supporting
mobility at the device configuration-level. We describe
PANS briefly and the features it provides, leaving out details
that are documented in [3]. We show how our system’s
mobility architecture allows us to support other important
features like load balancing, scaling, and location services.

The primary contribution of our work is a detailed
design of a system and protocol that offers the following
important features:
a. It is lightweight and protocol agnostic. PANS is not

bound to any higher-layer Internet protocols and can be
used in both WAP [25] and IP devices.

b. It is hardware agnostic. PANS does not depend on any
special hardware feature other than basic network
access. Consequently, it can be deployed over legacy
hardware today. (For a somewhat contrasting approach
to authentication see Section 8).

c. It is self-contained. It combines a lot of functionality
into a compact design without being dependent on the
co-existence of any upper-layer protocols. It can be
downloaded on-site.

In addition to the above, which are discussed in [3], this
paper described the details behind the following additional
features:
d. It supports dynamic configuration of client devices,

without user intervention, as nomadic users roam
between public and private networks.

e. It extends the dynamic configuration mechanism for
achieving high availability, scaling and load-balancing,
and

f. It supports location services currently not available in
other networks.

The rest of this paper is organized as follows: Section 2 sets up
the stage by describing a typical scenario of user interaction with
public and private networks. Section 3 then articulates the precise
mobility problem that we are interested in solving. In Section 4, we
describe the system components of the CHOICE network. In
Section 5, we discuss our solution in dealing with the mobility
problem. In Section 6, we explain how our mobility support
solution can be extended for providing a highly available system
that can scale well and has load balancing. We discuss on-going
and future work for achieving true mobility in Section 7 and survey
related work in the field in Section 8. Finally, we conclude in
Section 9.

2 A Typical Usage Scenario

A person walks into a public place where she has arranged to
conduct a business meeting with another person from a different
company. Both people are savvy wireless LAN users and come
equipped with their notebook computers and wireless LAN cards.
The public place has a CHOICE network which is available to the
general public for a small fee. As the user sits down at a coffee
table waiting for her companion, she switches-on her notebook
computer which starts to boot and as part of this boot-up process
automatically generates a DHCP request [4]. The local DHCP
server picks up this request and leases a short-term routable IP
address to the device. Once the boot-up has completed, the user
launches her web browser and points it to http://choice. The local
DNS server resolves the name Choice to the address of the host
organization’s web server. Thus, the user only has to remember the
word “choice” to get to the local web server anywhere the
CHOICE network is available. At this point, if not already done
so, the user downloads the network access software (PANS client)
from the local web server and installs it on her notebook. A reboot
of the machine is not required for this installation. Upon
installation, the PANS client module detects the presence of the
CHOICE network and displays a welcome message to the user
indicating to her that to get Internet access she has to log-on and
establish her identity. The user then proceeds to authenticate
herself via the local organization’s log-on page wherein she types
in her identity and password. These are sent to a global
authentication database to which the local host organization
subscribes. The user’s identity and password are sent encrypted via
Secure Socket Layer (SSL) [9] over an https connection so no one
accept the user and the database are privy to this information.
When the user’s identity is established and authentication granted,
the network checks to see the policy that is to be applied for this
particular user (e.g. how much bandwidth to give, what security
level to grant and how much to charge, default values exists for
first time users). Based on the policy the network generates a
unique key and sends it to the PANS client via another SSL
connection. At this point the user’s web browser automatically
refreshes to the local portal and Internet access is now possible.
Depending on the number of services this user has subscribed to
she can now get relevant messages or information about these on
her notebook. For example, if she subscribes to a location-based
buddy-list the system can inform her if her colleagues are in close
proximity (provided they are connected to the local network as
well). After she is done with her meeting she log-offs and the
network provides her with some usage statistics. She returns to her
company and opens up her notebook, which she had placed in

5

“hibernate” mode. As the notebook turns-on, the PANS
client senses that a different network is present and stops all
special processing that is necessary for the CHOICE
network.

We now describe the mobility problem precisely.

3 The Mobility Problem

While PANS provides a protocol to authenticate clients
and a means to control user access privileges, it does not
specify any mechanism for discovering the PANS service,
nor a scheme for managing the client’s configuration
according to the available access mode in the network. To
illustrate where these problems arise, let us examine the
following three scenarios:
1. The client host migrates between the company private

network and the public network. Since the company
network may not be running PANS, the client host must
recognize when to enable / disable the public network
protocol locally.

2. The client host migrates between different subnets of
the same public network. In this case, it would be
undesirable to require the user to re-authenticate herself
by repeating the logon process. Instead, the client
should gain access in the new subnet by using the same
key obtained from the previous subnet. The client host
must recognize and perform any necessary changes in
the routing configuration (e.g. directing traffic to a
different verifier server) and resume network operation
by using the same key.

3. The client host migrates between different public
networks. The client host must distinguish this from the
previous scenario and ask the user to perform the logon
process in the new network. After authentication has
succeeded, the client host will use a new key to
communicate in the new network. However, the host
should save the previous key until it expires so that it
could be reused upon returning to the previous network.

All three scenarios involve a combination of changing
the client host’s routing table, enabling / disabling the PANS
module, and managing a set of keys acquired by the client.
While one can change these configurations manually when
the client host is relatively immobile, it would be painful, if
not impossible, to have the user reconfigure the host every
time she moves to a different network.

Before we describe how we solve these problems we
need to provide some details about the CHOICE network
and introduce some of the terminology. This we do in the
following section.

4 The Choice Network

In this section, we describe the key system components
of the CHOICE network. Our description is relatively brief
as we refer the reader to [3] for greater details. Figure 1
illustrates the different components of the CHOICE network
as has been deployed at the Crossroads Mall.

4.1 System Components

The CHOICE network has several system components that
manage address allocation, authentication, authorization, security,
accounting, and last-hop QoS. We briefly explain these in relation
to our deployment.

PANS
client

Internet

AP 1 AP 2 AP 4 131.xx.yy.zz

MN

http://www.passport.com

MN MNMN
MN

CROWN Wireless Subnet

DHCP

Server

DNS

Local portal
http://choice

131.xx.yy.1
(Interface 1)

131.xx.yy.2
(Interface 2)

11.x.y.z (Private)

Toshiba Tecra

PANS
Server

MS Corp. Network

Gateway to
Internet

On PANS Client: PANS daemon
changes routes as necessary.

Initially packets destined for DNS,
WINS, DHCP, Passport, and

Choice go to Authorizer (Interface
1) of the PANS server.

On PANS Authorizer (Interface 1)
Destination based IP filtering allows

passage to: itself, DNS, WINS,
Passport, Local Portal, and DHCP

(port 67/UDP & port 68/UDP)

CROWN

CROSSROADS WIRELESS NEWTORK
(CROWN) CONFIGURATION

131.107.26.x

passport.com believes
http://www.mschoice.com only

Interface 1 is the
PANS Authorizer

Interface 2 is the
PANS Verifier

WINS

DHCP lease time for each address
is set to 2 hours.

T-1 Link (US W est)
1.544 Mbps

Allied Telesyn
AR720 Router

Allied Telesyn
AR720 Router

http:///www.mschoice.com
131.xx.yy.zz

AP 3

MN MN

MSR
Systems and Networking

Research lab

Crossroads Mall, Bellevue,
Washington

131.xx.yy.zz

SQL 2000

.....2728

The Choice Network

Figure 1: The various components of the CHOICE network as deployed at
the Crossroad Mall in Bellevue, Washington

4.1.1 Address Management and Naming
The CHOICE network uses a standard DHCP server to lease

out IP addresses to potential clients. The IP address scope and the
lease period are configured by the host organization at setup time.
Where DHCP’s limited scope is an issue a Network Address
Translator (NAT) [5] is used instead.

The IP address is given out even before the user has been
authenticated to allow her access to information about the
building’s local services and to allow her an opportunity to
download the network access software if she hasn’t already done
so. So a user can walk into any building, download the software
and start using the network.

The web server is the user’s entry point into the CHOICE
network. The local network web server is based on Active Server
Pages (ASP) [6] and guides the user through the authentication
process. It would be evident that a prerequisite to the
authentication process is the successful obtainment of a valid IP
address and a connection to the web server. Since both these
network connections have to go through prior to authentication, the
task of the PANS server module is divided between two sub
modules, which we discuss below.

4.1.2 Database for Global Authentication
We use MS Passport [8] as our authentication database.

Several factors motivated our choice of Passport as the
authentication service. First, its wide availability enables us to

6

offer network service to a substantial number of users.
Second, all transactions with Passport are web-based thereby
greatly enhancing the usability of the system for the
layperson. Third, all transactions with Passport are carried
out over https. Thus there is an end-to-end secure channel
between the user and the authentication service. Even if
CHOICE were to be set up by an un-trusted third party, this
party is not able to decrypt the user’s name and password
while it is being supplied to Passport.

4.1.3 The PANS Authorizer
The job of the PANS Authorizer is to authorize client’s

access to the network upon successful completion of user
authentication. Additionally, it handles the task of
determining service policies, generating per-user keys, and
communicating keys to the clients and to the service
gateways (PANS Verifiers, to be discussed next). The
authorizer performs IP-level filtering based on the
destination IP-address of each packet. Any packet with a
destination address other than the DHCP server, the WINS
server, the DNS server, the local web server or the Passport
server is dropped.

Upon authentication, the authorizer looks up its policy
table to determine the user’s service level, generates a
(key_id, key, token) triple, and then communicates this to the
PANS Client module residing on the user’s device and to the
service gateways. The gateways are given the key-triple,
which is stored into an array of valid (key, token) pairs
indexed by the key_id assigned to the clients. Once the user
has been authenticated, all her communication is directed to
the assigned service gateway. Individual packets are key-
tagged by the client and verified by the service gateways to
ensure that only authorized traffic is allowed to gain access
to the Internet

Each (key, token) pair is valid for a finite amount of
time. A user session is separate from key expiration times.
Depending on the host organization’s preference, the key
can either be automatically renewed or the user can be
forced to explicitly obtain a new key when the present one is
about to expire.

4.1.4 The PANS Verifier
The PANS Verifier, handles the tasks related to per-

packet verification, accounting and policy enforcement on
packet transmissions between the mobile users and the
public network. The task of the authorizer and the verifier
are separated out in order to achieve a clean separation in the
time scales of their operation. The tasks performed by the
authorizer are as frequent as the number of new
authentication operations, either due to new users in the
network or due to an old user having timed out. On the other
hand, the PANS Verifier actively processes each packet that
is sent out of the mobile host and runs on a much smaller
time scale as compared to the authorizer. The task of the
PANS Verifier includes checking if each packet from a
client (identified by a unique key_id) contains the right (key,
token) combination that the PANS Verifier has in its table
entries. In addition, the Verifier keeps an account of the
number of packets per user it has serviced and enforces
policies such as QoS service-level by dropping packets from

a user who violates her service agreement. The separation between
authorizer and the verifier was additionally motivated by the need
to support a greater number of PANS Verifiers as we introduced
support for roaming. This would mean replication of the PANS
Verifier; one for each subnet of wireless access points.

4.1.5 The PANS Client
The PANS Client resides on the mobile user’s device. Once

the Authorizer has granted access and downloaded the key to the
client machine, the PANS Client tags every outgoing packet before
sending it to the verifier (see Figure 2) Depending on the level of
service the user has opted for (which may be pre-configured into
the machine or arranged dynamically) the PANS client can
optionally encrypt the entire packet or only a portion of the
outgoing packet. The verifier can then decrypt the packet, and
remove the tag before forwarding it on to the network.

Packets are tagged only when the public network service is present.
The client host may use the same key when it migrates to a
different subnet but must negotiate a new key when it migrates to a
different public network.

4.1.6 The PANS Announcer
To facilitate auto-configuration of the PANS Client module,

PANS implements a set of Announcer and Client Configuration
modules, which resides on the PANS Authorizer and on the PANS
client respectively. The Announcer periodically broadcasts a
beacon, which contains an unique PANS network_id, a
subnet_mask, and a pair of authorizer_ip and verifier_ip addresses
to identify the PANS Authorizer and PANS Verifier that are to be
used in the local network or wireless access point (AP). The Client
Configuration module uses the beacon information to determine
whether the client has migrated to a different network and to set the
client’s default gateway in order to direct traffic to the correct
PANS server.

Having described the key system components of the CHOICE
network we are now ready to discuss our solutions to the mobility
problem described in section 5.

.

5 Dealing with the Mobility Problem

In this section we describe the design criterion, the architecture,
algorithms and the implementation details behind the mobility
support module that we have built for the CHOICE network. We
then describe how this module helps us combat the mobility
problem by running through different scenarios

key_id token MD5 checksum

packet from upper
layer

PANS_TAG (exxagerated)
21 bytes

encrypted portion

enc.
type

version
#

12 bytes4 bytes4 bits4 bits 4 bytes

Figure 2: The PANS_TAG showing the different fields. The version
number, encryption type and key_id form the unencrypted portion,
while the token and MD5 checksum are encrypted using the
encryption algorithm specified under the encryption type.

7

5.1 Design Criteria

The goals that influenced the design of the mobility
support module for the CHOICE network are summarized
below:

(I) Efficiency: Since our system will most likely run on
wireless, mobile devices, the system should be lightweight
and efficient in terms of bandwidth, memory, processing,
and power.

(II) Ease of Deployment: We wish to avoid any changes in
the existing protocol to support our auto-configuration
system. Furthermore, we wish to avoid relying on any other
special protocols to handle service discovery and auto-
configuration. Our system should work with any standard
network stack commonly found in all types of mobile
devices.

(III) Hardware agnostic: Our system should not require any
modification to existing hardware. Also, the system should
work in both wired and wireless networks.

(IV) Versatility: We wish to examine whether employing a
particular scheme would benefit or help ease the design of
other components of the PANS system.

In the wireless network, a beaconing scheme is
generally more efficient than a polling-response scheme due
to the following reasons:
! Beaconing is unidirectional so it cuts transmission

overhead by half for wireless hosts when compared to a
bi-directional polling-response scheme.

! Beaconing consumes only one unit of airtime per
broadcast period, compared to the 2n units of airtime
used by all polling and response messages created by n
different clients in a wireless network. Hence,
beaconing reduces both the total amount of airtime
overhead and the level of traffic contention.

! Polling can introduce additional waste in private
networks as the client periodically sends broadcast
packets to probe for the PANS service. As an
alternative to periodic polling, a client can send a
limited number of broadcast queries only when
necessary; that is, when there is a good hint that the
client has migrated to another network (e.g. the
hardware detects a link state change or when the host
detects excessive amount of packet lost, see black-hole
detection [10]. Unfortunately, such advice given by
other network layers are often implementation
dependent and consequently, unreliable. Please refer to
section 8.4 for further discussions.

5.2 Architecture and Implementation

Due to the considerations listed above, we have
designed and built an auto-configuration system that allows
the client host to discover the PANS service and receive
configuration parameters via broadcast advertisements or
beacons. The client then uses the beacon information to

configure itself and launches the authentication process to gain
network access. When the client migrates out of the public
network service, it no longer receives any beacon. In this case, the
client waits for a timeout period and resumes normal networking
operation by disabling the special mode at the local PANS driver.

Our scheme is very similar to the broadcast advertising
schemes found in Mobile IPv4 and Mobile IPv6 [15] except that it
also supports a number of other extended features such as client-
side key management, a system-wide fail-over mechanism, and
location-sensitive messaging. The next section describes the
components and the algorithm of the system.

5.2.1 Flow Control

Pans DriverIP Routing

Authorizer(Beacon)
Announcer

Event Handler
(User level)

Pans_Network_ID,
Authorizer_IP,
Verifier_IP

Set_Default_Gateway(Authorizer_IP),
Set_Default_Gateway(Verifier_IP)

Tagging_Start(key),
Tagging_Stop()

key, key expiration

Event
Generation

Event
Processing

Action

Keygive

key, key expiration

Figure 3: Architecture for auto-configuration of PANS

Figure 3 illustrates the architecture for supporting auto-
configuration in PANS. The diagram divides the software modules
into three separate classes: event generation, event processing, and
action. The Beacon Announcer module in the event generation
class runs on the PANS authorizer server in the public network. As
mentioned earlier, the Announcer periodically broadcasts a beacon,
which contains a unique PANS network_id, a subnet_mask, and the
current authorizer_ip and verifier_ip addresses to identify the pair
of PANS Authorzier and PANS Verifier that are to be used in the
local network or wireless access point (AP). The Event Handler, a
component of the Client Configuration module installed on the
client host, uses the network_id and the subnet_mask to distinguish
whether the client has a) roamed to a different subnet within the
same network or b) migrated to a different public network
altogether. The Event Handler uses the authorizer and verifier IP
addresses to set the client’s default gateway in order to direct traffic
to the correct server, according to the current state of the PANS
protocol.

The PANS Authorizer, as mentioned in Section 2, serves as a
proxy for a global authentication server such as MS Passport.
Whenever the user completes an authentication process, the
Authorize delivers the key-triple and key-triple expiration values
via a secure https connection, which is established by the client’s
web browser when the user logs on to the Authorizer web server.
To do this, the ASP script on the web server delivers the key values
via a MIME-typed data stream, which triggers the web browser to
launch the registered Keygive program. The web browser then

8

pipes the key values to the Keygive module, which in turn
hands them over to the Event Handler.

The event processing modules are the Keygive module
and the Event Handler. As illustrated above, the Keygive
module acts as a web browser relay to pass the key values to
the Event Handler. The Event Handler is a user-level
daemon that performs the auto-configuration of the network
parameters and key management on the client host. It listens
to two well-known ports: one is for detecting beacons
coming from the Announcer, and the other is for receiving
the key-triple and key-triple expiration values from the
Keygive module. The Event Handler stores the key values
into a table indexed by the network_id. The Event Handler
implements an “earliest-expiry-time” (EET) replacement
policy1 and invalidates a key-triple entry whenever it
expires. Then by matching a valid row entry with the
currently advertised network_id, the Event Handler can
configure the local PANS driver with the appropriate key-
triple value via a local ioctl call.

The action modules consists of the local PANS driver
and the client’s route table. The Event Handler issues ioctl
calls to pass the key-triple, and to enable / disable the PANS
driver and system calls to set the default gateway in order to
direct the client host traffic. A detailed explanation of the
interactions between these components is described in the
upcoming section.

Notice that the verifier_ip value is deliberately
transmitted inside the broadcast beacon instead of being
transmitted alongside with the key-triple and key-triple
expiration values. This is done to allow those clients who
have migrated to a different subnet but still hold a valid key-
triple to directly access the local verifier2 without repeating a
full authentication process. Furthermore, such a design
supports a useful system-wide fail-over feature. For
example, both the authorizer_ip and verifier_ip can be
changed dynamically to immediately migrate all the clients
to use another set of default gateways.

Thus by including all the network parameters within the
beacon, we have decoupled key management and mobility
management so that the network access protocol (PANS)
and the auto-configuration mechanism can work
independently of each other. In our system, the client is not
required to re-negotiate a key that has not been expired,
regardless how many times a client has moved between
different networks. Likewise, the authorizer is free to refresh
a client’s key (via out-of-band mechanisms) during an
authenticated session without affecting the client host’s
network configuration. In Section 6, we will explain how
this decoupling of key and mobility management also helps
us design a scalable key management scheme for the public
network infrastructure.

1 The replacement policy is arbitrary. If there is a monetary
cost associated with obtaining keys, a better metric might be a
policy that minimizes the key replacement cost.

2 During the authentication process, the client key may be
distributed globally among the verifiers located in different subnets.
A scalable key distribution mechanism is discussed in Section 7.

5.2.2 The Event Handler Algorithm
Figure 3 shows the finite state machine implemented by our

Event Handler. A typical PANS session begins in the Bootstrap
state, where the Event Handler determines if the PANS service is
available. If no beacon reaches the client, the Event Handler
remains in the Bootstrap state, no action is performed and the client
communicates with the network normally with the PANS driver
disabled.

Detect Authentication

Service

Detect and !Valid_Key/
Set_Default_Gateway(Authroizer IP)

!Login and Beacon advertises a different
Authorizer IP/
Set_Default_Gateway(new Authorizer IP)

Login (getkey.asp script
passes key and key
expiration to the Event
Handler via a secure
channel)

/
1. Set_Default_Gateway(

Verifier IP)
2. Tagging_Start(Key)
3. The Event Handler

starts timer to monitor
key expiration

4. Set Valid_Key = true

Legend: Incoming Event/Resulting Action(s) !Key_Timeout and Beacon advertises a
different Verifier IP/
Set_Default_Gateway(new Verifier IP)

Boot-
strap

Detect first beacon/
If client_ip.subnet != beacon.subnet
Then

update Client IP address
Else Do Nothing

!Detect/Do Nothing

Detect and Valid_Key/
Set_Default_Gateway(Verifier IP),
Tagging_Start()

No Beacon/
Do Nothing

Or
Key_Timeout/
Invalidate Key

Key_Timeout/
Invalidate Key

!Detect/
Do Nothing

!Detect/
Tagging_Stop()

Key_Timeout/
Set_Default_Gateway(

Authorizer IP),
Tagging_Stop(),
Invalidate_Key

Figure 4: State Transition Diagram for the Event Handler

When the Event Handler detects the first beacon, it pops up a
greeting message to notify the user about the discovery of the
PANS service. If the user wishes to join the service, the Event
Handler verifies that client has a valid IP address to operate in the
subnet currently advertised in the beacon and updates the address if
necessary. Our system currently relies on DHCP to obtain a
dynamic address assignment. To ensure timely address
assignment, the Event Handler will force a DHCP request and loop
in the Detect State until the client host receives a valid address.
This is done to handle roaming problems caused by inconsistent
media sensing implementations. See section 8 for a discussion.

Next, the Event Handler checks the key table if the client
currently posses a valid key for the current network. If so, it
bypasses the login and authentication procedures and enters the
Service state so that the client can seamlessly resume the previous
PANS session. If the client does not have a valid key, the Event
Handler enters the Authentication state where it sets the client’s
default gateway to the advertised Authorizer IP address. At the
same time, the user launches her default web browser and directs it
to the default site http://choice3, which is hosted on the Authorizer
web server. The user then performs the web-based authentications
process. The Event Handler waits in the Authentication state until
the authentication succeeds or until the client migrates out of the
current network.

After successful authentication, the Event Handler obtains a
set of key values and enters the Service state. The Event Handler
finds an empty row entry in the key table (with EET replacement
policy) and inserts the network_id, the key-triple, and

3 Recall that the Authorizer grants clients restricted access only to the
public authentication server, the authentication proxy, and basic level
services such as DNS, WINS and any other free services offered by the
service provider.

9

key_expiration_time into the table. At the same time, it
issues an ioctl to pass the key to the PANS driver, trigger the
driver to start tagging packets, and sets the default gateway
to the advertised verifier_ip. At this point, the client gains
access to the rest of the network by sending legitimate
(tagged) packets through the verifier. The Event Handler
remains in the Service state until either the key expires or
when no beacons are detected for a timeout period. The
former case would return the Event Handler to the
Authentication state to allow the client to re-negotiate a new
set of key and key expiration values with the Authorizer.
The latter case might indicate that the client has migrated
outside the PANS service area. Hence, the Event Handler
returns to the Bootstrap state and stops the PANS driver
from tagging any packets. Note that the client maintains the
key until it expires so that it could resume the ongoing
session when the client returns to the PANS service area (i.e.
when it starts detecting beacons again).

Finally, we wish to explain the self-loop transitions in
both the Authentication and Service state. These transitions
occur whenever the Event Handler detects a change in the
beacon. A change in the network_id signifies that the client
has migrated to a different subnet or a different public
network. In this case, the Event Handler jumps back to the
Detect state (transitions omitted from the diagram for
clarity). A change in either of the advertised authorizer_ip
or verifier_ip will cause the Event Handler to reset the
default gateway. This feature will facilitate the fail-over and
load-balancing mechanisms discussed in section 6.

5.3 System Operation in the face of Mobility

This section describes how mobility is handled when a
client migrates between a foreign network and the PANS
network, and between subnets within the same PANS
network.

5.3.1 Inter-Network Mobility – Moving Between a
Private and Public Network

A client might enter a PANS network without an IP
address (e.g. the client is turned off before entering the
PANS network) or with a stale IP address (e.g. the client
obtains an Auto IP, or the client hibernates before
disconnecting with the external network). In either case, the
client entering the network would eventually receive a
beacon and detects the existence of the PANS service. At
this point, the client Event Handler checks if the subnet of
the client host address matches the one advertised by the
beacon. If the address is found stale (i.e. the subnets do not
match), it triggers DHCP to obtain a dynamically assigned
IP address. Afterwards the Event Handler sets the default
gateway to the advertised Authorizer IP address. Now, the
client proceeds with authentication and normal operation
within the PANS service.

When the client moves out of the network, no beacon
reaches the client. When the Event Handler times out, it
stops the PANS driver from tagging any packets. Thus, the

client can attach to any foreign network, requests an IP address
update (via DHCP), and resume normal operation. The client
maintains the key until it expires. When the client returns to the
PANS service, it can resume the most recent PANS session using
the key it saved.

5.3.2 Intra-network Mobility – Moving between Subnets
within the Public Network

In this scenario, the client has either entered the PANS network but
has moved into another subnet without completing the
authentication process or already initiated a PANS session. In
either case, the Event Handler detects that it is receiving a beacon
containing different subnet information. Consequently, it would
first update the client’s IP address, and then assign the default
gateway to the advertised Authorizer or Verifier address,
depending whether the client already has a valid key for the
ongoing session.

6 Beyond Mobility -- Extending the System

One of the main goals of the CHOICE Network project is to
deploy public network access service in large settings such as
major conference centers, airports, shopping malls, and the like.
Thus, the network access service must itself be scalable and highly
available.

We have considered these issues when designing the auto-
configuration mechanism for PANS, and have found ways to
extend the beaconing mechanism to help the network access
service attain scalability and fault-tolerance. We have found other
applications for the beaconing mechanism as well. We will
describe the various extensions we have considered in the next few
subsections.

6.1 Fail-over Mechanism to Provide High Availability
Service.

Because the authorizer and verifier contain the set of active
key values in the network, the public network service must provide
a fail-over mechanism to handle the case when either of the
authorizer or verifier machine fails. To prevent loss of
information, a service provider may install multiple redundant
verifiers that replicate the table of keys currently active in the
network. Thus, whenever the authorizer detects a verifier failure, it
can announce a different beacon containing the address of the
redundant verifier. (A similar mechanism can be used to fail-over
the authorizer.) Upon receiving the new beacon, every client in the
network will immediately change its default gateway to the backup
verifier. Because the backup verifier contains the set of all active
keys in the network, the transition should occur smoothly, with
minimal disruptions, if any, to all ongoing network transaction.

6.2 Load Balancing

In addition to providing a highly available service, multiple
verifiers can be installed within a single network (or sub-network)
to load-balance the client traffic. Here, a query-response
mechanism would work very nicely because each client would
query a configuration server (possibly the authorizer) to assign a
verifier for all its network transactions. Then to load-balance

10

traffic, all the configuration server needs to do is to respond
to each client with a different verifier assignment in rotation.

Unfortunately, we will have to design a formal protocol
specification to support such a query-response mechanism,
which would complicate our system. Moreover, such a
scheme is not compatible with our fail-over mechanism
described above because when a particular load-balanced
verifier fails, only a subset of clients are affected. Hence,
any fail-over mechanism will need to figure out a) which
clients are affected and b) how to notify the affected clients
and c) how to migrate the affected clients to the appropriate
backup server. Such a fail-over mechanism can become
very complex.

Our proposed approach to load balancing is particularly
well-suited to wireless public networks4. The public
network can load-balance by assigning each authorizer,
verifier and the associated backup server to handle only the
traffic coming from a subset of wireless access points (AP).
Hence, clients in different subsets of APs would access a
different set of authorizer and verifier servers. To support
this mechanism, each authorizer must multicast beacons to
its own subset of APs. The APs in turn, must broadcast the
beacon to all of its associated clients. In this scheme, the
fail-over mechanism would work the same way as described
above.

Unfortunately, there is currently no mechanism that
allows the system to multicast broadcast packets to a subset
of specific access points in a wireless network. Although
one of our original design philosophy is to avoid changing
any existing hardware or software protocols, we wish to
advocate for implementing such a feature into future
wireless networks. We believe this feature would not
require a significant change to the existing wireless
infrastructure. We also believe that other beacon-based
wireless applications would greatly benefit from this feature.

6.3 Scaling and Subnetting

Another simple way to scale a large public network is to
divide it into subnets. This is similar to load-balancing,
where each subnet would have its own set of authorizer,
verifier and backup servers to share the load of the network.
However, the key difference is that the network has
explicitly been divided into separate address spaces.
Consequently, the client must now change its IP address,
which would disrupt any ongoing network applications
running at the client host5. On the other hand, subnetting
may be required for a number of administrative reasons.
Hence, the decision is left to the service providers to choose
the appropriate combinations of load-balancing and
subnetting to meet their needs.

4 At this point, we are not able to offer a simple load-
balancing solution for wired networks. We will leave this as part of
our future work.

5 The user should use protocols such as Mobile IP or TCP
Migrate to migrate its applications when the client changes network
attachment points (i.e. IP addresses).

In any case, a public network must find a scalable and efficient
method to manage client keys when the clients are mobile. When a
mobile client roams within a load-balanced network or migrates
across subnets, the host must change its default gateway
configuration to direct is traffic to a new verifier and use the same
key to gain access in the new network location. In section 5, we
have already discussed how our dynamic host auto-configuration
system supports mobility for the client host. However, we have
glossed over the issue about how the keys are to be distributed
behind the network. One simple solution is to distribute keys
globally within the network infrastructure. However, this approach
clearly does not scale well as the number of users grow in the
network.

The requirement for scalable key distribution in the network
infrastructure is to avoid sharing key information globally among
all the verifiers in the network. Each verifier should be responsible
for managing the set of keys belonging to the set of active clients in
its own subnet. Under this requirement, the network must be able
to migrate keys according to the client’s current location.

Here, the auto-configuration system can help. The Event
Handler can keep a history of the subnet that the client has
previously visited. Then when the client roams to another subnet,
the Event Handler can automatically request a key migration from
the authorizer server in the new subnet. The request contains an
encrypted portion containing the client’s token and an unencrypted
portion, which are the key_id index and the address of authorizer
that had issued the key. The authorizer in the new subnet would
forward the request to the indicated authorizer, which authenticates
the request by checking the encrypted token. If the verification
succeeds, the authorizer in the old network will send the requested
key to the authorizer (via secure channels) in the new subnet. After
the new authorizer receives the key, it distributes the key among
the verifiers in the new subnet and acknowledges the client’s Event
Handler. Thus, the client migrates to a new subnet seamlessly by
using this scalable, on-demand approach to key distribution.

Certainly, a more sophisticated form of migration negotiation
policy (such as restricting certain clients from accessing certain
subnets) can be easily added to the architecture described above.

6.4 Location Services

In a wireless network, the beaconing mechanism could also be
extended to provide certain coarse-grain location information. We
will outline two applications below.

6.4.1 Network Usage Service Metric
A very practical piece of information to include in the beacon

is a metric that represents the network’s load. For example, as the
verifier server becomes highly loaded, the authorizer can advertise
a low service quality metric to the clients. The Event Handler can
be modified to interpret these metrics and notify the user
appropriately. Hence, users can change their expectations or access
behavior according to the system’s feedback. For example, if there
is a cost associated with accessing the public network, then a user
can decide whether it is worth the cost to register with a public
network that is presently congested.

Finding an appropriate metric for this purpose is still an open
problem. It is unlikely that the authorizer or verifier server would

11

ever become the bottleneck of the system (provided that the
administrator has scaled the system using the suggested
techniques). Rather, the individual access points in the
wireless network are more likely to become the bottlenecks.
Hence, it would be desirable to find a way to extract load
information from the individual APs programmatically.

6.4.2 Coarse level Location Information
In the wireless network, one could imagine that every

access point broadcasts a beacon that includes an access
point identifier. Then during the authentication process, the
authorizer may download a graphical map showing the
user’s current location with respect to her access point
association. Although this is a very coarse-grain approach
for identifying the user’s location when compared to the
proposed alternatives [28][29][30], it is nevertheless a useful
feature (especially in large settings such as the airport) that
can be readily implemented in our system.

Another simple but useful location-sensitive application
is “coded messaging.” Instead of mapping the access point
identifier to a physical coordinate on a map, the Event
Handler can map the identifier to a table of messages. Thus,
depending on the user’s preference, the Event Handler can
pop up messages to notify the user about a special event that
is happening near the access point of which the client is
associated (e.g. notification of a special promotion at a
nearby coffee shop). The table can include a time-index so
that messages can pop up at specific times during the day.

Finally, we would like to extend a word of caution. The
purpose of this section is to illustrate the power behind a
beaconing system and to illustrate how it could be used to
build simple but useful services. It is not to be abused for
implementing heavy-duty service discovery applications
mentioned in [26][27]. In particular, we must be careful not
to overload the beacon with too much data as our design
goal is to keep the auto-configuration system lightweight.
The examples above shows how to do this by means of
mapping compact codes contained in the beacon with a table
containing the full information required for the application.

Supporting location information services in our auto-
configuration system may require specifying an extensible
beacon packet format to include option fields much like
those found in DHCP. Although we have not currently
implemented such a feature into our own system, we believe
doing so should be relatively straightforward.

7 Discussions

In this section, we will discuss some issues that need to
be considered for providing safe and seamless mobility
support in our auto-configuration system.

7.1 Mobile IP vs Auto-Configuration

We wish to emphasize that the set of mobility problems
addressed by our auto-configuration system is different from
those addressed by Mobile IP and other similar IP-level
migration protocols. Mobile IP is primarily concerned with
locating the mobile host and re-routing packets to the host’s
current destination. In contrast, our protocol is concerned

with configuring the host to migrate between public and private
networks.

Nevertheless, both systems do share some similarities. When
the mobile host migrates to a foreign network, the protocol
employs a similar beaconing strategy to probe for a Foreign Agent
and configure the local Mobile IP stack to the correct mode of
operation. Despite this similarity, we chose not to extend Mobile
IP to support the auto-configuration requirements in PANS. Our
goal is to be protocol agnostic so we avoided typing our system to
any specific protocols. Hence, any protocol, including Mobile IP,
will continue to operate seamlessly on our system.

7.2 Low-Level Configuration

There is one situation that prevents our auto-configuration
system from migrating a client between the public and private
networks. The problem is caused by special configurations in the
wireless network interface (WNIC). As mentioned in the
introduction sections, some private networks uses the wireless
equivalency protocol (WEP) to secure the wireless link. Because
WEP did not provision for mobility support, clients who wish to
communicate with a WEP network must manually configure and
enable the WEP settings in the WNIC driver. We attempted to
modify our auto-configuration system to address this issue.
However, we discovered that none of the IP-level broadcast
packets would reach the client unless WEP is probably configured.
Hence, we concluded that such low-level type of configuration
must be done by the protocols (i.e. WEP) at the same level.

Nevertheless, we do not believe this to be a huge concern as
implementing mobility extensions to WEP should not be a difficult
task. With the appropriate extensions and API hooks for
supporting mobility in WEP, our system should migrate clients
seamlessly between all types of public and private networks.

7.3 High-Level Configuration

Although this is more of a minor annoyance than a serious
problem, we note that some applications will need to be
reconfigured as the user migrates between networks. For example,
a client’s web browser may default to a proxy server in the
corporate network. After migrating to the public network, the user
might find excessive browser delays caused by timeouts as the
browser tries to locate the default proxy. To prevent such
problems, the applications must be made aware of the host’s
mobility. In order to do this, operating systems should facilitate
API callbacks to notify applications appropriately.

We should mention that another solution to this problem is to
employ Mobile IP. However, using such techniques may imply
certain limitations [31]. For example, Mobile IP, in certain cases,
may tunnel packets destined for the mobile agent from the Home
Agent. If the home agent is situated in the corporate network, the
client traffic will be governed by the corporate proxy and its access
policies. In contrast, the user may gain full access to the Internet
via other end-to-end mobility mechanisms that allows applications
to open direct connections and assume the access policies defined
by the public network.

12

7.4 Timely Mobility Detection: Beaconing,
Polling and Issues about Media Sensing in
Wireless Networks

Before auto-configuration can be triggered, the client
host must implement a mechanism to detect when it has
migrated to another subnet or to another network. We solve
this problem by comparing the network_id values between
beacons. This is similar to the mobility detection algorithms
proposed by [15].

Using this mobility detection scheme, there is a tradeoff
between response time and beaconing overhead. In order to
reduce the detection latency, a network may increase the
beaconing frequency. But increasing the beacon frequency
increases the overhead of the system.

Another common solution to the mobility detection
problem is to rely on a link-level (a media sensing)
mechanism to trigger the auto-configuration mechanism
when there is a change in the client’s link state. This scheme
works well for DHCP in wired networks, which, upon a
link-state change, broadcasts a configuration request
message to retrieve a dynamic address assignment. In most
instances, DHCP is able to reconfigure the client without the
use of beaconing nor the extended use of polling. That is,
the polling stops as soon as the DHCP server responds to the
client’s message. There is no need to rely on polling nor
beaconing as a “keep-alive” signal because the next link-
state change would notify DHCP to reconfigure the client.

While the media sensing method works well for DHCP,
it does not provide adequate micro-mobility detection in
wireless networks. Consider when a client roams between
two overlapping APs belonging to two different subnets.
From our experience, some of the WNICs we have
experimented with do not trigger DHCP to verify its client
address and reconfigure the client when it is necessary.
From the WNIC’s point of view, this is the correct behavior
because it is agnostic to the IP-level topology. The WNIC’s
default behavior is to handle the common case where the
client stays within the same subnet as she roams between
two APs.

The absence of well-defined media sensing capabilities
across different network interface technologies and their
implementations have reinforced our design goal to be
hardware agnostic. Hence, we have used beacons to
facilitate mobility detection in our auto-configuration
mechanism. We should note that the cost for timely
response due to the increase in beaconing frequency should
not be significant. For instance, we can send beacons (on
the order of a few hundred bytes) at the rate of 1Hz, which
translates to negligible overhead in a 11Mbps wireless
network.

7.5 Security

A good question to ask when examining the design of
any auto-configuration system is how well does the system
handle security in the face of malicious attacks. In this
section, we will concentrate on security issues that affect the
auto-configuration part of the PANS system. For a full

discussion about security topics concerning the PANS protocol,
please refer to [3]. We will assume these security features from the
PANS protocol throughout our discussion:

• The key and any other relevant parameters can be
downloaded securely from the Authorizer to the client

during the authentication process6.
• The client can use the full packet encryption feature

provided in PANS to increase security.
The auto-configuration system uses the beacon to trigger client

host configuration. Hence, the beacon becomes the entry point for
all possible attacks against the auto-configuration mechanism.
Below, we will illustrate two types of attacks against our system
and suggest possible security measures to guard against them.

7.5.1 Denial of Service (DoS)
A malicious user may learn the beaconing frequency and jam

or intercepts the beacons at the predicted rate. Without detecting
the beacons, the clients are denied access to the public network.

While we cannot prevent all forms of DoS attacks, we should
make it difficult and detectable so that the service provider is alert
to such an attack. First, the beaconing intervals can be randomized
so that the attacker must either try to jam the entire channel (in the
wireless network) or intercept the beacons on the physical network.
These measures increase the difficulty the attack by increasing the
attacker’s exposure to the system, thus preventing the attack go
unnoticed. Whether there is an attack or not, the system should
implement a network monitoring mechanism to ensure that the
public network is operating normally. As an example, receivers of
the network monitoring system can be installed throughout the
physical area of a wireless public network. These receivers will
monitor the frequency and integrity of each beacon being
broadcasted by the individual APs. In this case, a malicious
attacker can fool a receiver by replaying short-range beacons
towards it. However, the attack must devise such a device and
possibly leave more traces of evidence about the attack.

7.5.2 Hijacking
An attacker can redirect a client’s packet stream by sending a

false beacon containing an illegitimate Authorizer and/or Verifier
address. The client can guard against this by performing integrity
checks and authentication for each beacon. However, such
technique is very costly and should be avoided. As an alternative,
the network can set up a pair of public and private keys. In this
scheme, the client must authenticate the Authorizer upon
connection by, for example, checking its certificate. Then the
client obtains the public key from the trusted Authorizer after she
successfully gains access to the network. Just as she migrates her
connections to a verifier server, the client will issue a challenge to
the verifier. The verifier must return the encrypted the challenge

6 The reader may recall the key-deliver mechanism by which the
Authorizer passes the key values via a MIME-typed data stream. Upon
receiving this data, the browser than launches the Keygive program, which
passes the key to the Event Handler. This appears to be a weak security
link in our system, where the client may visit a malicious web server and
trigger the Keygive program by delivering a harmful MIME-typed data
stream. Although not in our current implementation, we could easily
modify the Keygive program to perform authentication on the MIME-
typed data stream via certificates or other out-of-band mechanisms.

13

with the network’s private key. The client will authenticate
the verifier by decrypting the challenge with the network’s
public key to see if it matches the original challenge it had
sent to the verifier.

As an added measure of security, the client should use
full packet encryption as provided by the PANS protocol.
Also, the Event Handler can detect some forms of hijacking
attacks by delaying the migration process and compare the
beacons for a small period of time. If it consistently hears
two different beacons during that period, it can alert the user
of a possible hijacking attack. Randomizing the beacon
intervals will also help strengthen the detection of the hijack
attack. The attacker must either jam the entire wireless
channel or intercept the packet in the physical network in
order to fool the detection system.

8 Related Work

We are aware of a considerable amount of on-going
work in the areas of Internet protocol design that addresses
pieces of functionality that the CHOICE network provides.
Although CHOICE combines and covers a broad range of
ideas in existing work, we will discuss the work most
relevant to our authenticated network access system and to
our dynamic host auto-configuration system. We point the
interested reader to [3] where additional details and
comparisons are provided.

In the area of providing authenticated access to users,
the two layer-2 mechanisms described in the IEEE 802.11
standard [2] (a) MAC-level filtering, and (b) the wired
equivalency protocol (WEP) are insufficient for deployment
in a public wireless networks. MAC-level filtering is
difficult to manage and doesn’t scale well, and WEP lacks
the necessary hardware support for large-scale key
management on a per-user basis. Other hardware-centric
proposals include [16],[17], and [20]. Of these the most
recent and promising one is the IEEE 801.1X standards
committee’s port-based network access control proposal
which carries out layer-2 authentication by carrying the
Extensible Authentication Protocol (EAP) frame within the
Ethernet frame [17]. However, all of these proposals
address only one aspect in our system and they do not
consider issues like accounting, service quality, and user
mobility. This last point is particularly important and has
been discussed in detail in this paper.

The only fully deployed and documented authenticated
network access system that we are aware of is the SPINACH
system developed as part of the MosquitoNet project at
Stanford University [18]. The strengths of SPINACH are the
innovative reuse of existing infrastructure with no
requirement for additional software in the client. However,
this advantage also limits its functionality to user
authentication only. The CHOICE system requires client
side software but because of this is able to incorporate
service quality and mobility support in addition to
authentication, privacy and security. Also, without IPsec [7]
in place, the SPINACH system does not protect against
hardware spoofing, whereas our system does.

As mentioned, there are some Internet protocols that can be
combined to build part of our system. For example, IPsec
authentication header (AH) [21], IPsec encapsulating security
payload (ESP) [22] and IKE [23] can be used to solve the problem
of privacy and security. However, the strength, power, and feature-
richness of these protocols come at the cost of overhead that may
be slightly too expensive for the average handheld wireless device.
In CHOICE, we reduce the cost of bearing last-hop encryption by
implementing a lightweight protocol to meet the specific needs of
our service model. Where the need arises, clients can still use
IPSec on CHOICE for strong protection of their individual end-to-
end connections.

Moreover, IPsec couples user keys and security association
tightly with IP level information. This directly impacts our goal of
supporting roaming users whose IP address changes frequently.
This point has been addressed in this paper where we have
described a system that decouples key information from IP level
information and consequently supports mobility with fast hand-
offs.

In the realms of supporting mobility, there is Mobile-IP (v4
and v6) [15], which employs a service discovery scheme based on
ICMP router discovery. The method of service discovery is similar
to ours except that our system does not provide a mechanism to
probe the network for the target service. Service discovery
protocols, such as Berkeley SDS [27] and MIT INS [26] can be
used for locating and using some network services. However,
these systems mainly address the problem of handling a large
number of services in a highly dynamic environment, which is an
over-kill for our application.

In the realms of host configuration, DHCP is perhaps the most
relevant piece of work [4]. Our system relies on it to configure the
client’s IP address. Although DHCP provides a set of configurable
options field, we have defined a separate beaconing mechanism for
our host configuration application. The primary reason for using a
beaconing mechanism is to support fast mobility detection,
dynamic failure recovery, and location information delivery.

To summarize, CHOICE is designed with a specific set of user-
centric requirements and tries to combine the strengths and features
of the on-going efforts mentioned in this section in order to build a
comprehensive system that is self-contained, hardware agnostic,
and protocol agnostic. We have designed it so that the client
software can be downloaded and installed on-site giving the service
provider considerable flexibility in personalization.

9 Conclusion

The CHOICE network is a case study of computing and
communications in public places. We have designed and deployed
this network at a popular mall with the hope that it will provide us
a research platform for studying how the general public actually
uses such networks and the sorts of services they care about. We
are unaware of any working, deployed and documented system that
addresses all the issues we tackle in our network. In this paper we
focus on the specific problem of managing nomadic users as they
move between differently configured public and private networks.
The fact that this problem is real is confirmed by our experience in
supporting corporate employees who have their own private
wireless network. Our solution to the problem has many
advantages. Specifically, (a) It supports dynamic configuration of

14

client devices, without user intervention, as nomadic users
roam between public and private networks. (b) It achieves
high availability of network services, network scaling and
load-balancing, and (c) it supports location services that are
currently not available in other networks. In describing our
solutions we make the case that achieving true device
mobility without any user intervention requires that we
resolve many issues beyond the ones being worked on
within standards committees like the IETF and the IEEE.
Although in some cases trivial the existence of standards in
device programming and access point programming can help
us achieve our ultimate goal of providing seamless mobility.

References
[1] ITU-R Rec. M. 1225, “Guidelines for Evaluation of Radio

Transmission Technologies for IMT-2000,”
[2] IEEE 802.11b/D3.0, “Wireless LAN Medium Access Control

(MAC) and Physical Layer (PHY) Specification: High Speed
Physical Layer (PHY) Extensions in the 2.4 GHz Band, ”
1999

[3] P. Bahl, A. Balachandran, and S. Venkatachary, “The
CHOICE Network – Broadband Wireless Internet Access in
Public Places,” MSR-TR-2000, February 2000

[4] R. Droms, “Dynamic Host Configuration Protocol,” IETF
RFC 2131, March 1997, http://www.ietf.org/rfc/ rfc2131.txt

[5] Y. Rekhter, B. Moskowitz, D. Karrenberg, G. de. Groot,
“Address Allocation for Private Internets,” IETF RFC 1597,
March 1994, http://www.ietf.org/rfc/rfc1597.txt

[6] Active Server Pages: http://msdn.microsoft.com/workshop/
server/asp/ASPover.asp

[7] R. Atkinson, “Security Architecture for the Internet Protocol”,
IETF RFC 2401, November 1998, http://www.ietf.org/rfc/
rfc2401.txt

[8] MS Passport: http:/www.passport.com
[9] T. Elgamal, S. Cotter, and the Netscape Security Team,

“Netscape Security: Open-standard Solutions for the
Enterprise,1998”,http://developer.netscape.com/docs/manuals/
security/scwp

[10] R. Braden, “Requirements for Internet Hosts Communication
Layers, IETF RFC 1122, October 1989

[11] P G. Viscarola and W. A. Mason, Windows NT Device Driver
Development, OSR Open System Resources, 1999

[12] CCITT.Recommendation X.509: The Directory-
Authentication Framework, Geneva, 1989

[13] VeriSign Inc., Internet Trust Service http://www.verisign.com/
[14] R. Stine, “FYI on a Network Management Tool CatalogTools

for Monitoring and Debugging TCP/IP Internets and
Interconnected Devices,” IETF RFC 1147, April 1990,
http://www.ietf.org/rfc/rfc1147.txt

[15] Internet drafts from the IETF Working Group, “IP Routing for
Mobile and Wireless Hosts (Mobile IP),”
http://www.ietf.org/html.charters/mobileip-charter.html

[16] D. L. Wasley, “Authenticating Aperiodic Connections to the
Campus Network,” June 1996, http://www.ucop.edu/irc/wp/
wp_Reports/wpr005/wpr005_Wasley.html

[17] IEEE Draft P802.1x/D1, “Port Based Network Access
Control,” September 1999

[18] G. Appenzeller, M. Roussopoulos, and M. Baker, “User-
Friendly Access Control for Public Network Ports,”
Proceedings of INFOCOM ’99, March 1999

[19] C. Rigney, A. C. Rubens, W. A. Simpson, S. Willens,
“Remote Authentication Dial-In user Service (RADIUS),”
IETF RFC 1238, http://www.ietf.org/rfc/rfc128.txt

[20] E. A. Napjus, “NetBar - Carnegie Mellon’s Solution to Authenticated
Access for Mobile Machines,” CMU White Paper,
http://www.net.cmu.edu/docs/arch/netbar.html

[21] S. Kent and R. Atkinson, “IP Authentication Header”, IETF RFC
2402, Nov. 1998, http://www.ietf.org/rfc/ rfc2402.txt

[22] S. Kent and R. Atkinson, “IP Encapsulating Security Payload (ESP)”,
IETF RFC 2406, November 1998, http://www.ietf.org/rfc/ rfc2406.txt

[23] D. Harkins, and D. Carrel, “The Internet Key Exchange (IKE)”, IETF
RFC 2409, November 1998, http://www.ietf.org/rfc/ rfc2409.txt

[24] Microsoft Virtual Private Networking (VPN) White Paper,
http://www.microsoft.com/ntserver/commserv/deployment/planguide
s/VPNSecurity.asp

[25] The Wireless Application Protocol (WAP) White Paper,
http://www.wapforum.org/what/whitepapers.htm

[26] W. Adjie-Winoto, W., E. Schwartz, H. Balakrishnan,, and J. Lilley,
“The Design and Implementation of an Intentional Naming System.,”
In Proceedings ACM Symposium on Operating Systems Principles
(Kiawah Island, SC, Dec. 1999), pp. 186-201.

[27] S. Czerwinski,, B. Zhao, T. Hodes, A. Joseph, and R. Katz, “An
Architecture for a Secure Service Discovery Service,” In Proceedings
of the ACM/IEEE MOBICOM (Seattle, WA, Aug. 1999), 24-35

[28] P. Bahl, and V. Padmanabhan, “RADAR: An In Building RF-based
User Location and Tracking System.” In Proceedings of IEEE
INFOCOM (Tel-Aviv, Israel, Mar. 2000).

[29] R. Want, A. Hopper, V. Falcao and J. Gibbons, “The Active Badge
Location System.” ACM Transactions on Information Systems 10, 1
(January 1992), 91-102

[30] N. Priyanth,, A. Chakraborty, H. Balakrishnan, “The Cricket
Location-Support System,” In Proceedings of the ACM/IEEE
MOBICOM 2000 (Boston, MA, Aug. 2000).

[31] S. Cheshire, M. Baker, “Internet Mobility 4x4.” In Proceedings of
SIGCOMM 1996, August 1996

