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ABSTRACT
In comparison to text, audio-video content is much more
challenging to browse. Time-compression has been
suggested as a key technology that can support browsing –
time compression speeds-up the playback of audio-video
content without causing the pitch to change. Simple forms
of time-compression are starting to appear in commercial
streaming-media products from Microsoft and Real
Networks.

In this paper we explore the potential benefits of more
recent and advanced types of time compression, called
non-linear time compression. The most advanced of these
algorithms exploit fine-grain structure of human speech
(e.g., phonemes) to differentially speed-up segments of
speech, so that the overall speed-up can be higher. In this
paper we explore what are the actual gains achieved by
end-users from these advanced algorithms, and whether
the gains are worth the additional systems complexity.
Our results indicate that the gains today are actually quite
small and may not be worth the additional complexity.

Keywords: Time compression, Digital library,
Multimedia browsing, User evaluation

1 INTRODUCTION
Digital multimedia information on the Internet is growing
at an increasing rate – corporations are posting their
training materials and talks online [13], universities are
putting up their videotaped courses online [23], news
organizations are making newscasts available online.
While the network bandwidth is somewhat of a bottleneck
today, this is rapidly getting addressed with the new
broadband infrastructure being put in place. The eventual
bottleneck really is the limited human time.

With so much content available, it is highly desirable to
have technologies that let people browse audio-video
quickly. The impact of even a 10% increase in browsing
speed can be large, if one considers the vast number of
people that will end-up saving time. Just as a person may
read text at different rates depending on the situation (e.g.,
when reading a deep technical article vs. skimming a
magazine) or different people may have different reading
rates, we will like to provide people the ability to speed-
up or slow-down audio-video content based on their
preferences.

In this paper we focus on technologies that allow such
speed-up and slow-down of speech content. While the
video-portion of audio-video content is also important, it
is easier to handle than speech and is considered

elsewhere [24]. Also, we focus on informational content
with speech (e.g., talks, lectures, and news) rather than
entertainment content (e.g., music videos, soap operas), as
previous work has shown that people are less likely to
speed-up the latter [16].

The core technology that supports such speed-up or slow-
down of speech is called time-compression [6, 9, 12, 14,
20]. Simple forms of time-compression have been used
before in hardware device contexts [1] and telephone
voicemail systems [17]. Within the last few months, we
have also seen basic support for time-compression in
major streaming-media products from Microsoft and Real
Networks [5, 18].

Most systems today use linear time-compression, where
the speech content is uniformly time compressed, e.g.,
every 100ms chunk of speech is shortened to 75ms. Using
linear time compression, previous user studies show [11,
16, 19] that participants achieve steady-state speed-up
factors of ~1.4. With that speed-up, users can save more
than 15 minutes on a one-hour lecture.

In this paper, we explore how much additional benefit can
be achieved from non-linear time-compression
techniques. We consider two such algorithms. The first,
simpler algorithm combines pause-removal with linear
time compression. It first detects pauses (silence
intervals) in the speech, then shortens or removes the
pauses. Such a procedure can remove 10-25% from
normal speech [8]. It then performs linear time
compression on the remaining speech.

The second non-linear algorithm we consider is much
more sophisticated. It is based on the recently proposed
Mach1 algorithm [3], the best such algorithm known to us.
It tries to mimic the compression strategies that people use
when they talk fast in natural settings, and it tries to adapt
the compression rate at a fine granularity based on low-
level features (e.g., phonemes) of human speech.

As we will elaborate later, the non-linear algorithms,
while offering the potential for higher speed-ups, require
significantly more compute (CPU) cycles, cause increased
complexity in client-server systems for streaming media,
and may result in a jerky video portion. So the core
questions we address in this paper are the following:

1. What are the additional benefits of the two non-linear
algorithms over the simple linear time-compression
algorithm implemented in products today? While
inventors of Mach1 present some user-study data
about benefits, their results correspond to very high



speed-up factors (2.6 to 4.2 fold speedup), where only
a subset of speech is understood. Most people will
not listen to speech at such fast rates. We are
interested in understanding people’s preference at
more comfortable and sustainable speed-up rates.
Only if the difference at sustainable speed is large
will it be worthwhile to implement these algorithms in
products.

2. How much better is the more sophisticated algorithm
over the simpler non-linear algorithm? The
magnitude of differences will again guide our
implementation strategy in products.

At a high level, our results show that for speed-up factors
most likely to be used by people, the benefits of the more
sophisticated non-linear time compression algorithms are
quite small. Consequently, given the substantial
complexity associated with these algorithms, we may not
see them adopted in the near future.

The paper is organized as follows: Section 2 reviews
various time-compression algorithms evaluated in this
paper and associated systems implications. Section 3
presents our user-study goals, Section 4 the experimental
method, and Section 5 the results of the study. We
discuss results and present related work in Section 6 and
conclude in Section 7.

2 TIME-COMPRESSION ALGORITHMS USED AND
SYSTEMS IMPLICATIONS
In this section, we briefly discuss the three classes of
algorithms we consider in this paper, and systems
implications for incorporating them in client-server
delivery systems.

2.1 Linear Time Compression (Linear)
In this class of algorithms, time-compression is applied
consistently across the entire audio stream with a given
speed-up rate, without regard to the audio information
contained therein. The most basic technique for achieving
time-compressed speech involves taking short fixed-
length speech segments (e.g., 100ms), and discarding
portions of these segments (e.g., dropping 33ms segment
to get 1.5-fold compression), and abutting the retained
segments [6].

Discarding segments and abutting the remnants, however,
produces discontinuities at the interval boundaries and
produces audible clicks and other forms of signal
distortion. To improve the quality of the output signal, a
windowing function or smoothing filter–such as a cross-
fade–can be applied at the junctions of the abutted
segments [20]. A technique called Overlap Add (OLA)
yields good quality (Figure 1). Further improvements to
OLA are made in Synchronized OLA (SOLA) [21] and
Pitch-Synchronized OLA [10].

Original Speech

Compressed Speech

Gap Frame

Figure 1: An illustration of Overlap Add algorithm.

The technique used in this study is SOLA, first described
by Roucos and Wilgus [21]. It consists of shifting the
beginning of a new speech segment over the end of the
preceding segment to find the point of highest waveform
similarity. This is usually accomplished by a cross-
correlation computation. Once this point is found, the
frames are overlapped and averaged together, as in OLA.
SOLA provides a locally optimal match between
successive frames and mitigates the reverberations
sometimes introduced by OLA. The SOLA algorithm is
labeled “Linear” in our user studies.

2.2 Pause Removal plus Linear Time Compression
(PR-Lin)

Non-linear time compression is an improvement on linear
compression: the content of the audio stream is analyzed,
and compression rates may vary from one point in time to
another. Typically, non-linear time compression involves
compressing redundancies, such as pauses or elongated
vowels, more aggressively. The PR-Lin algorithm we use
here first detects pauses using the algorithm described
below. It leaves pauses below 150ms untouched, and
shortens longer pauses to 150ms. It then applies linear
time-compression as described in the previous subsection.

Pause detection algorithms have been published
extensively. A variety of measures can be used for
detecting pauses even under noisy conditions [2]. Our
algorithm uses “Energy” and “Zero crossing rate (ZCR)”
features. In order to adjust changes in the background
noise level, a dynamic energy threshold is used. We use a
fixed ZCR threshold of 0.4 in this study.

If the energy of a frame is below the dynamic threshold
and its ZCR is under the fixed threshold, the frame is
categorized as a potential-pause frame, otherwise it is
labeled as a speech frame. Contiguous potential-pause
frames are marked as real-pause frames when they exceed
150ms.

Pause removal typically shortens the speech by 10-25%
before linear time-compression is applied.

2.3 Adaptive Time Compression (Adapt)
A variety of more sophisticated algorithms have been
proposed for non-linear adaptive time compression. For
example, Lee and Kim [15] try to preserve the phoneme
transitions in the compressed audio to improve
understandability. Audio spectrum is computed first for



audio frames of 10ms. If the magnitude of the spectrum
difference between two successive frames is above a
threshold, they are considered as a phoneme transition and
not compressed.

Mach1 [3] makes further improvements and tries to mimic
the compression that takes place when people talk fast in
natural settings. These strategies come from the linguistic
studies of natural speech [25, 26] and are listed as
follows:

• Pauses and silences are compressed the most

• Stressed vowels are compressed the least

• Schwas and other unstressed vowels are
compressed by an intermediate amount

• Consonants are compressed based on the stress
level of the neighboring vowels

• On average, consonants are compressed more
than vowels

Mach1 estimates continuous-valued measures of local
emphasis and relative speaking rate. Together, these two
sequences estimate the audio tension: the degree to which
the local speech segments resist changes in rate. High-
tension regions are compressed less and low-tension
regions are compressed more aggressively. Based on the
audio tension, the local target compression rates are
computed and used to drive a standard time-scale
modification algorithm, such as SOLA.

Since Mach1 is, to our knowledge, the best adaptive time
compression technique, the algorithm used in our adaptive
time compression condition is based on it. The Mach1
executable was not available to us, so we could not use it
directly. Furthermore, the original Mach1 algorithm
cannot guarantee a specified speedup rate (it is an “open
loop” algorithm). In order to compare audio clips
compressed using different algorithms, we required
precise speedup as specified by the user. We made
modifications to the algorithm so the achieved speedup
rate is always as the same as specified.

We wanted to ensure that our revised algorithm (Adapt)
was comparable in quality to Mach1 algorithm. A
preference study was run to compare our adaptive
algorithm against the original Mach1 algorithm. Without
indication of the sources, 12 colleagues were asked to
compare 3 time-compressed speech files published on
Mach1’s web site and the same source files compressed
using our implementation. Out of the total 36
comparisons, our algorithm was preferred 9 times, Mach1
was preferred 12 times, and they were found to be equal
15 times. A one-sample Chi-square test was conducted to
assess whether the participants preferred the results from
our algorithm, the published Mach1 results, or had no
preference. The results of the test were non significant:
Chi2 (2,N=36) = 1.5, p=0.472, indicating our technique is
comparable to the Mach1 algorithm.

2.4 Systems Implications of Algorithms
In deciding between these three algorithms for inclusion
in products, there are two considerations: 1) what are the
relative benefits (e.g. speed-up rates) achievable, and 2)
what are the costs (e.g. implementation challenges). We
explore the former in the User Study section. Here we
briefly discuss the latter.

The first issue is computational complexity or CPU
requirements. The first two algorithms, Linear and PR-
Lin, are easily executed in real-time on any Pentium-class
machine using only a small fraction of the CPU. The
Adapt algorithm, in contrast, has 10+ times higher CPU
requirements, although it can be executed in real-time on
modern desktop CPUs.

The second issue is complexity of client-server
implementations. We assume people will like the time-
compression feature to be available with streaming-media
clients where they can just turn a virtual knob to adjust
speed-up. While there are numerous issues [19], a key
issue has to do with buffer management and flow-control
between the client and server. The Linear algorithm has
the simplest requirements, where the server simply needs
to speed-up its delivery at the same rate at which time-
compression is requested by client. The nonlinear
algorithms (both PR-Lin and Adapt) have much more
complex requirements due to the uneven rate of data
consumption at the client – e.g., if a 2 second pause is
removed, then associated data is instantaneously
consumed by the client and the server will have to
compensate.

The third issue is audio-video synchronization quality.
(This issue is obviously not present when considering
speech-only content.) With the Linear algorithm, the
rendering of video frames is speeded up at the same rate
as the speed-up for speech. While everything happens at
higher speed, the video remains smooth and perfect lip-
synchronization between audio and video can be
maintained. This task is much more difficult with non-
linear algorithms (PR-Lin and Adapt). As an example,
consider removal of a 2-second pause from the audio
track. Option-1 is to also remove the video frames
corresponding to those 2 seconds. In this case the video
will appear jerky to the end-user, although we will retain
lip synchronization between audio and video for
subsequent speech. Option-2 is to make the video
transition smoother by keeping some of the video frames
from that 2-second interval and removing some later ones,
but now we will loose the lip synchronization for
subsequent speech. There is no perfect solution.

The bottom line is that non-linear algorithms add
significant complexity to the implementer’s task. We
would like to know if there are significant user benefits.



3 USER STUDY GOALS
There are multiple dimensions along which we will like to
understand users’ reactions to the three algorithms
presented above. We used the following four metrics:

1. Highest intelligible speed. What is the highest
speed-up factor at which the user still understands the
majority of the content? This metric tells us which
algorithms perform best when the end-user is pushing
the limits of time-compression technology for short
segments of speech.

2. Comprehension. Given the same fixed speed-up
factor for all algorithms, what is a user’s relative
comprehension? This metric is indicative of the
relative quality of speech produced by algorithms.
When observed for multiple speed-up factors, it also
indicates when we are driving users beyond
sustainable speed.

3. Subjective preference. When given the same audio
clip compressed using two different techniques at the
same speed-up factor, which one does a user prefer?
This metric is directly indicative of the relative
quality of speech produced by the algorithms. Since
people are very sensitive to subtle distortions that are
not computationally understood, this is the only way
to understand quality issues.

4. Sustainable speed. What is the speed-up factor that
end-users will settle on when listening to long pieces
of content (e.g., a lecture), still assuming some time
pressure? We believe this metric is the most
indicative of benefits that will accrue to users in
natural settings.

4 EXPERIMENTAL METHOD
24 people participated our study in exchange for a
gratuity. They came with a variety of background from
professionals in local firms to retirees to homemakers. All
of them had some computer experience and some used
computers on a daily basis. The subjects were invited to
our usability lab to take the test.

The listener study was Web based. All the instructions
were presented to the subjects via web pages. The study
consisted of four tasks corresponding to the four goals
outlined in the previous section (see Table 1).

Highest Intelligible Speed Task: The subjects were
given 3 clips time-compressed by Linear, PR-Lin, and
Adapt and were asked to find the fastest speed at which
the audio was still intelligible. For each algorithm, short
segments of a clip were presented to the subjects in
sequence. The subjects used five speed-control buttons
(much-faster, faster, same, slower, much-slower) to
control the speed at which the next segment was played.
The speed control buttons increased or decreased the
speed by a discrete level of either 0.1 or 0.3. The subjects
clicked the Done button when they found their highest
intelligible speed for the clip. We asked the subjects to

choose their own definition of what intelligible meant, e.g.
understanding 90-95% of words in the audio, as long as
they were consistent with their definition throughout the
task.

The audio clips used in this task were from 3 talks. The
natural speech speed, as measured by words per minute
(WPM), had a fairly wide range among the chosen clips
(see Table 1). The WPM of the fastest speaker is 71%
greater than the slowest speaker. However, the
experiments were all counterbalanced among subjects, as
we will discuss later.

Comprehension Task: We gave each subject 6 clips of
conversations time-compressed by the three algorithms at
1.5x and at 2.5x. The subjects listened to each
conversation once (repeats were not allowed) and then
answered four multiple-choice questions about the
conversation. The conversation clips were taken from the
audio CDs from Kaplan’s TOEFL (Test of English as
Foreign Language) study program [22]. The subjects
were encouraged to guess if they were not sure of the
answer. We note that the two chosen speed-up factors,
1.5x and 2.5x, represent points on each side of the
sustained speed-up factor for users.

Subjective Preference Task: The subjects were
instructed to compare 6 pairs of clips time-compressed by
the three algorithms at 1.5x and at 2.5x and indicate their
preference on a three-point scale: prefer clip 1, no
preference, prefer clip 2. The audio clips in this task were
captured live from an ACM’97 talk given by Brenda
Laurel.

Sustainable Speed Task: We gave the subjects 3 clips
time-compressed by the three algorithms and asked them
to imagine that they were in a hurry, but still wanted to
listen to the clips. They adjusted the speed control
buttons to find a maximum speed for each clip that was

Table 1: Information about tasks and test materials.

Task Audio source WPM
Approx.

Length

1
Highest
intelligible speed

3 technical talks 99-169
In 10 sec
segments

2 Comprehension

6 conversations
from Kaplan’s
TOEFL
program

185-204 28-50 sec

3 Preference
3 clips from an
ACM’97 talk by
Brenda Laurel

178 30 sec

4
Sustainable
speed

3 clips from
“Don’t know
much about
geography”

169 8 min



sustainable for the duration of the clips, which were about
8 minutes uncompressed. They were required to write 4-5
sentences to summarize what they just heard upon the
completion each clip, though the textual summaries were
used only to motivate the subjects to pay more attention
but not as part of the actual measurement. The audio clips
in this task were taken from the audio CD book “Don’t
Know Much About Geography” [4].

Within each task, we used a repeated measures design in a
3x3 Latin Square configuration to counterbalance against
ordering effects, i.e., the order in which users experienced
the time compression methods. The task list for a typical
subject is listed in Table 2.

Table 2: The task list for a typical subject.

Task Condition TC factor

Linear

PR-Lin1
Highest
intelligible speed

Adapt

(User
adjusted)

Linear

PR-Lin

Adapt

1.5

Linear

PR-Lin

2 Comprehension

Adapt

2.5

Linear vs. Adapt

PR-Lin vs. Linear

Adapt vs. PR-Lin

1.5

Linear vs. Adapt

PR-Lin vs. Linear

3 Preference

Adapt vs. PR-Lin

2.5

Linear

PR-Lin4
Sustainable
speed

Adapt

(User
adjusted)

5 LISTENER STUDY RESULTS
As stated in the Introduction section, for each of the
metrics we would first like to understand the benefits of
the non-linear algorithms (PR-Lin and Adapt together)
over the simpler Linear algorithm. Second, if the non-
linear algorithms are indeed better, we would like to
differentiate between the simpler PR-Lin and the more
complex Adapt algorithm.

5.1 Highest Intelligible Speed
The first task measures the highest speed at which the
clips are still intelligible. As one would expect, we see
that the non-linear algorithms do significantly better than
Linear – combined average speed-up of 2.05 vs. 1.76 (see
Tables 3 and 4). This is also true when listening speed is
measured as words per minute (WPM).

Comparing the two non-linear algorithms, we find that
PR-Lin does significantly better than Adapt when using
speed-up factor as metric, but not when using WPM as a
metric (see Table 4). The result is somewhat
contradictory to our expectations, as we would have
expected the more sophisticated Adapt algorithm to do
better. On the other hand, one possible explanation may
be as follows. PR-Lin is more aggressive as it totally
eliminates pauses, while Adapt is gentler when shortening
pauses and as a result it has to compress the audible
speech more to reach the same speed-up as PR-Lin.

Table 3: Highest intelligible speed task. WPM numbers
converted from raw speed are also listed. The standard
deviations are in the parenthesis.

Condition Speed (StDev) WPM (StDev)

Linear 1.76 (0.29) 246 (64)

PR-Lin 2.15 (0.45) 296 (67)

Adapt 1.94 (0.36) 271 (75)

Average 1.95 (0.40) 271 (71)

Table 4: The results of the one-way within-subject ANOVA
contrast test for highest intelligible speed task.

Contrast test F P

Linear vs. (Adapt & PR-Lin) in speed 44.910 .000

Adapt vs. PR-Lin in speed 8.137 .009

Linear vs. (Adapt & PR-Lin) in WPM 5.362 .030

Adapt vs. PR-Lin in WPM 1.885 .183

5.2 Comprehension Task
In this task, listener comprehension was tested under
different algorithms at the speed-up factors of 1.5x and
2.5x. We expected Adapt to do best, followed by PR-Lin
and Linear, and the comprehension differences to increase
at the higher speed-up factor. Note that 1.5x and 2.5x
represent points on the two sides of the highest intelligible
speed-up factor for users.

The quiz scores from the comprehension task are listed in
Table 5. At 1.5x speed-up, the average score of Linear
actually came out on top, although there is no significant
difference between Linear and the other two conditions
(see Table 6). In essence, the data simply say that at 1.5x
the content is well understood across all conditions.

At 2.5x speed-up, we see that the two non-linear
algorithms do significantly better than Linear (see Table
6, row 3). This is not very surprising, since the non-linear
algorithms need to compress the audible portions of
speech much less than the Linear algorithm (since the
pauses are compressed much higher than target rate by
PR-Lin and Adapt).

Comparing PR-Lin and Adapt at 2.5x, there is no
significant difference at p <.05 level. There does seem to
be a trend in favor of Adapt though, given that p = 0.083



(Table 6, row 4). We reflect on this trend in the
discussion section.

Table 5: Quiz score results from the comprehension task.

Condition 1.5x (%) 2.5x (%) Overall (%)

Linear 84 49 67

PR-Lin 78 61 70

Adapt 82 74 78

Average 82 61 72

Table 6: The results of the one-way within-subject ANOVA
contrast test for the comprehension task.

Contrast test F P

Linear vs. (Adapt & PR-Lin) at 1.5x .754 .394

Adapt vs. PR-Lin at 1.5x .324 .575

Linear vs. (Adapt & PR-Lin) at 2.5x 8.507 .008

Adapt vs. PR-Lin at 2.5x 3.286 .083

5.3 Preference Task
In this task, subjective preference was tested under
different algorithms at the speed-up factors of 1.5x and
2.5x. The motivation was that minor artifacts caused by
time compression which might not affect comprehension
may still change a listener’s preference.

At 1.5x (see Tables 7 and 8), we see that people’s
preference is essentially the same for Linear and Adapt,
although there is a slight preference for PR-Lin (p=.093).

Table 7: The preference counts from the preference task.

Condition Preference 1.5x 2.5x Overall

Linear 6 2 8

None 5 8 13
Linear vs. PR-

Lin
PR-Lin 13 14 27

PR-Lin 13 4 17

None 5 9 14
PR-Lin vs.

Adapt
Adapt 6 11 17

Adapt 8 21 29

None 8 3 11
Adapt vs.

Linear
Linear 8 0 8

Table 8: Chi square test results on the preference task.

Condition Chi2 P

Linear vs. PR-Lin at 1.5x 4.750 .093

PR-Lin vs. Adapt at 1.5x 4.750 .093

Adapt vs. Linear at 1.5x .000 1.000

Linear vs. PR-Lin at 2.5x 9.000 .011

PR-Lin vs. Adapt at 2.5x 3.250 .197

Adapt vs. Linear at 2.5x 13.500 .000

At 2.5x, as may be expected, both PR-Lin and Adapt do
significantly better than Linear (p=.011 and p=.000
respectively). Comparing the two non-linear algorithms,
there is slight but non-significant preference for Adapt
over PR-Lin (p=.197), with 11 subjects preferring Adapt,
8 having no preference, and 4 preferring PR-Lin.

5.4 Sustainable Speed
This task tries to measure the highest speed at which a
subject can listen to the audio for a sustained period of
time. The average speed-up factors at which the listeners
eventually settled are summarized in Table 9. The highest
speed-up factor is with Adapt (8% better than Linear),
followed by PR-Lin (4% better than Linear).

Again a one-way within-subject ANOVA was conducted.
The contrast between PR-Lin and Adapt as a group vs.
Linear is significant (see Table 10). There is no
significant difference between Adapt and PR-Lin, though
there is a trend in favor of Adapt. We comment on this
trend in the discussion section.

Table 9: Sustainable speed by conditions. WPM numbers
converted from raw speed are also listed. The standard
deviations are in the parenthesis.

Condition Speed (StDev) WPM (StDev)

Linear 1.62 (0.28) 273 (46)

PR-Lin 1.69 (0.38) 286 (63)

Adapt 1.76 (0.40) 298 (68)

Average 1.69 (0.36) 286 (60)

Table 10: The results of the one-way within-subject ANOVA
contrast test for sustainable speed task. The results for raw
speed and WPM are the same because all three clips were
from the same speaker and have almost identical WPM.

Contrast test F P

Linear vs. (Adapt & PR-Lin) in speed 9.414 .005

Adapt vs. PR-Lin in speed 2.181 .153

Linear vs. (Adapt & PR-Lin) in WPM 9.414 .005

Adapt vs. PR-Lin in WPM 2.181 .153

6 DISCUSSION AND RELATED WORK
Before discussing results from this paper we briefly
summarize results from the Mach1 paper [3]. The user
study reported in the Mach1 paper included listener
comprehension and preference tasks comparing Mach1
and linear time compression algorithm. Clips of 2 to 15
sentences in length were compressed at a speedup factor
of 2.6-4.2. These are very high speeds, as the resulting
word rates are from 390 to an astonishing 673 wpm.
Listener comprehension for Mach1 compressed speech
was found to improve on average 17% over that for linear
time compressed speech. In the preference test, Mach1
compressed speech was chosen 95% of the time. The



difference between Mach1 and linear time compression
was found to increase with the speedup factor.

In attempting to benefit from Mach1’s results, and our
own results reported earlier, it is useful to segment the
observations into two sets: a) for low-to-medium speed-up
factors (e.g., 1.5x), and b) for high speed-up factors (e.g.,
2.5x).

For low-to-medium speed-up factors, we have no data
from Mach1 paper. Our own data for 1.5x – looking at
comprehension and preference metrics – shows that there
is no significant difference between Linear, PR-Lin, and
Adapt. There is a slight trend in favor of PR-Lin (p=.093)
in the preference task. Our speculation is that this is due
to the fact that with removal of pauses (~15-20% time
savings upfront), PR-Lin has to compress the audible
speech much less than the other two algorithms, and the
data seem to indicate that people do not care as much
about pauses when listening to short speeded-up speech
segments.

At high speed-up factors (e.g., 2.5x), our own data show
that there is significant preference for the non-linear
algorithms (PR-Lin and Adapt) over Linear (p=.008 for
comprehension task and p=.011 and p=.000 for preference
task). These are consistent with the Mach1 results, which
compared at even higher speed-up factors (2.6 to 4.2).
Comparing PR-Lin and Adapt, while we see no significant
differences at p < .05, we see a slight trend in favor of
Adapt. Our intuition is that as we go to much higher
speed-up factors beyond 2.5, Adapt will likely be
significantly better.

So what do the above results imply for a designer? The
first question to ask is what will be the sweet-spot speedup
factor where users will spend most of the time. Our data
here on sustainable speed indicates around 1.6-1.7 when
in a hurry. Past results from Harrigan [11], Omoigui et al
[19] and Li et al [16] indicate comfortable speed-up factor
of ~1.4. Results from Foulke and Sticht [7] indicate
speedup of ~1.25 corresponding to a word rate of 212
WPM.

The above data indicate that low-to-medium speed-up
factors will likely dominate users’ viewing patterns.
Consequently, for most purposes the Linear algorithm
should suffice – as discussed in Section 2.4, it is
computationally efficient, simpler for client-server
systems, and there is no jerky video. More aggressive
implementations can go to PR-Lin, while still having the
benefit of being computationally simple. Algorithms like
Adapt/Mach1 may only be suitable for very high speed-up
factors, for example, when one is in fast-forward mode.

As we were wrapping up these studies – and thinking
about the results showing no substantial benefits from
sophisticated algorithms like Mach1/Adapt at sustainable
speeds – we were left wondering whether it is the case
that these state-of-the-art algorithms are still not so good
or whether we are hitting some more inherent human

limits. With even the best algorithms, participants
reached a sustainable speed of only 1.76x. Is that limit due
to the technology or to a human limitation on the parsing
end? Assuming humans are most adept at parsing natural
human speech, this can be tested by comparing naturally
sped up speech with artificially compressed speech. We
ran two such comparisons in a quick user study.

A colleague of ours with significant background in public
speaking was asked to read 2 articles (each around 700
words) and 3 short sentences at two speeds. His fast
speed was approximately 1.4 times the regular speed.
Both the slow readings (SR) and fast readings (FR) were
digitized and were time compressed using our Adapt
algorithm. Fifteen colleagues participated in the web-
based experiment.

In the first comparison, subjects compared the slow
readings speeded-up by Adapt at 1.4x versus the fast
readings (which were naturally 1.4 times faster than the
slow reading). Out of 45 total comparisons (since there
were 3 short clips) 19 preferred FR, 18 preferred speeded-
up SR, and 8 expressed no preference.

Our second comparison was a sustainable speed test
where subjects speeded-up both SRs and FRs until
comfortable. If naturally sped up speech is qualitatively
different from that generated by Adapt, we would expect
the benefits of each to be somewhat additive. Using
Adapt, participants should be able to speed up the FR
clips to a speed faster than that of the SR clips. This was
not the case. When normalized to the speech-rate of the
slow readings, the sustainable speed-up for SR was 1.63
and 1.68 for FR. There were no statistical differences,
suggesting that the algorithm is a reasonable substitute for
natural human speech “compression.”

The results from both tasks support the hypothesis that for
low-to-medium speed-up factors – speeds that end-users
feel comfortable with – end-users cannot distinguish
between computer algorithms speeding-up speech and a
human speaking faster. The results also indicate that the
current crop of algorithms is indeed very good, effectively
substitutable for natural speech speed-up. It may be the
case that limits are on the human-listening side rather than
on how we generate time-compressed speech.

7 CONCLUDING REMARKS
We are faced with an information glut, both of textual
information and, increasingly, audio-visual information.
The most precious commodity today is human attention
and time. Time-compression in some sense is a magical
technology that helps us generate extra time by allowing
us to watch audio-visual content speeded-up. Simple
forms of time-compression technology are already
appearing in commercial streaming-media products from
Microsoft and Real Networks. The question explored in
this paper is whether the new advanced algorithms for
time-compression have the potential of significantly



enhancing user benefits (time savings) and to develop an
understanding of the associated implementation costs.

Our results show that for speed-up factors most likely to
be used by people, the more sophisticated non-linear time
compression algorithms do not offer a significant
advantage. Consequently, given the substantial
implementation complexity associated with these
algorithms in client-server streaming-media systems, we
may not see them adopted in the near future. Based on a
preliminary study, we speculate the problem is not that the
benefits are small because the sophisticated algorithms are
not very good. In fact, end-users cannot distinguish
between these algorithms speeding-up speech and a
human speaking faster. Thus delivering significantly
larger time-compression benefits to end-users remains an
open challenge for researchers.
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