
Analysis of a Cone-Based Distributed Topology Control Algorithm
for Wireless Multi-hop Networks

Li Li
Joseph Y. Halpern

Paramvir Bahl
Yi-Min Wang

Roger Wattenhofer

May 8, 2001

Technical Report
MSR-TR-2001-53

Microsoft Research
Microsoft Corporation
One Microsoft Way

Redmond, WA 98052

To appear in Proc. ACM Symposium on Principles of Distributed Computing (PODC), August 2001.

Copyright c© 2001 by the Association for Computing Machinery, Inc. Permission to make digital or hard copies of
part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Publications Dept, ACM Inc., fax +1 (212) 869-0481, or permissions@acm.org.

Analysis of a Cone-Based Distributed Topology Control
Algorithm for Wireless Multi-hop Networks

Li Li Joseph Y. Halpern
Department of Computer Science Department of Computer Science

Cornell University Cornell University
lili@cs.cornell.edu halpern@cs.cornell.edu

Paramvir Bahl Yi-Min Wang Roger Wattenhofer
Microsoft Research Microsoft Research Microsoft Research
bahl@microsoft.com ymwang@microsoft.com rogerwa@microsoft.com

ABSTRACT
The topology of a wireless multi-hop network can be con-
trolled by varying the transmission power at each node. In
this paper, we give a detailed analysis of a cone-based dis-
tributed topology control algorithm. This algorithm, intro-
duced in [16], does not assume that nodes have GPS in-
formation available; rather it depends only on directional
information. Roughly speaking, the basic idea of the algo-
rithm is that a node u transmits with the minimum power
pu,α required to ensure that in every cone of degree α around
u, there is some node that u can reach with power pu,α. We
show that taking α = 5π/6 is a necessary and sufficient con-
dition to guarantee that network connectivity is preserved.
More precisely, if there is a path from s to t when every
node communicates at maximum power then, if α ≤ 5π/6,
there is still a path in the smallest symmetric graph Gα con-
taining all edges (u, v) such that u can communicate with v
using power pu,α. On the other hand, if α > 5π/6, connec-
tivity is not necessarily preserved. We also propose a set of
optimizations that further reduce power consumption and
prove that they retain network connectivity. Dynamic re-
configuration in the presence of failures and mobility is also
discussed. Simulation results are presented to demonstrate
the effectiveness of the algorithm and the optimizations.

1. INTRODUCTION
Multi-hop wireless networks, such as radio networks [6], ad-
hoc networks [10] and sensor networks [2, 11], are networks
where communication between two nodes may go through
multiple consecutive wireless links. Unlike wired networks,
which typically have a fixed network topology (except in case
of failures), each node in a wireless network can potentially
change the network topology by adjusting its transmission
power to control its set of neighbors. The primary goal of

topology control is to design power-efficient algorithms that
maintain network connectivity and optimize performance
metrics such as network lifetime and throughput. As pointed
out by Chandrakasan et. al [1], network protocols that min-
imize energy consumption are key to the successful usage of
wireless sensor networks. To simplify deployment and recon-
figuration upon failures and mobility, distributed topology
control algorithms that utilize only local information and
allow asynchronous operations are particularly attractive.

The topology control problem can be formalized as follows:
We are given a set V of possibly mobile nodes located in
the plane. Each node u ∈ V is specified by its coordi-
nates, (x(u), y(u)) at any given point in time. Each node
u has a power function p where p(d) gives the minimum
power needed to establish a communication link to a node
v at distance d away from u. Assume that the maximum
transmission power P is the same for every node, and the
maximum distance for any two nodes to communicate di-
rectly is R, i.e. p(R) = P . If every node transmits with
power P , then we have an induced graph GR = (V,E) where
E = {(u, v)| d(u, v) ≤ R} (where d(u, v) is the Euclidean
distance between u and v).

It is undesirable to have nodes transmit with maximum
power for two reasons. First, since the power required to
transmit between nodes increases as the nth power of the
distance between them, for some n ≥ 2 [13], it may re-
quire less power for a node u to relay messages through a
series of intermediate nodes to v than to transmit directly
to v. In addition, the greater the power with which a node
transmits, the greater the likelihood of the transmission in-
terfering with other transmissions.

Our goal in performing topology control is to find a subgraph
G of GR such that (1) G consists of all the nodes in GR but
has fewer edges, (2) if u and v are connected in GR, they
are still connected in G, and (3) a node u can transmit to
all its neighbors in G using less power than is required to
transmit to all its neighbors in GR. Since minimizing power
consumption is so important, it is desirable to find a graph G
satisfying these three properties that minimizes the amount
of power that a node needs to use to communicate with all its
neighbors. For a topology control algorithm to be useful in

practice, it must be possible for each node u in the network
to construct its neighbor set N(u) = {v|(u, v) ∈ G} in a
distributed fashion. Finally, if GR changes to G′

R due to
node failures or mobility, it must be possible to reconstruct
a connected G′ without global coordination.

In this paper we consider a cone-based topology-control al-
gorithm introduced in [16], and show that it satisfies all
these desiderata. Most previous papers on topology control
have utilized position information, which usually requires
the availability of GPS at each node. There are a number
of disadvantages with using GPS. In particular, the acqui-
sition of GPS location information incurs a high delay, and
GPS does not work in indoor environments or cities. By
way of contrast, the cone-based algorithm requires only the
availability of directional information. That is, it must be
possible to estimate the direction from which another node
is transmitting. Techniques for estimating direction without
requiring position information are available, and discussed
in the IEEE antenna and propagation community as the
Angle-of-Arrival problem. The standard way of doing this
is by using more than one directional antenna (see [8]).1

The cone-based algorithm takes as a parameter an angle α.
A node u then tries to find the minimum power pu,α such
that transmitting with pu,α ensures that in every cone of
degree α around u, there is some node that u can reach
with power pu,α. In [16], it is shown that taking α ≤ 2π/3
is sufficient to preserve network connectivity. That is, let
Gα be the symmetric closure of the communication graph
that results when every node transmits with power pu,α (so
that the neighbors of u in Gα are exactly those nodes that u
can reach when transmitting with power pu,α together with
those nodes v that can reach u by transmitting with power
pv,α). Then it is shown that if there is a path from u to v
in GR, then there is also such a path in G2π/3. Moreover, it
is also shown that for a reasonable class of power cost func-
tions and for α ≤ π/2, the network has competitive power
consumption. More precisely, given arbitrary nodes u and v,
it is shown that the power used in the most power-efficient
route between u and v in Gα is no worse than k+2k sin(α/2)
times the power used in the most power-efficient route in GR

(where k is a constant that depends on the power consump-
tion model; if only transmission power is considered and the
transmission power p(d) is proportional to the nth power of
the distance d, we have k = 1). Finally, some optimizations
to the basic algorithm are presented. In the present paper,
we show that taking α = 5π/6 is necessary and sufficient to
preserve connectivity. That is, we show that if α ≤ 5π/6,
then there is a path from u to v in GR iff there is such a path
in Gα (for all possible node locations) and that if α > 5π/6,
then there exists a graph GR that is connected while Gα is
not. Moreover, we propose new optimizations and show that
they preserve connectivity. Finally, we discuss how the algo-
rithm can be extended to deal with dynamic reconfiguration
and asynchronous operations.

There are a number of other papers in the literature on
topology control; as we said earlier, all assume that position
information is available. Hu [4] describes an algorithm that

1Of course, if GPS information is available, a node can sim-
ply piggyback its location to its message and the required
directional information can be calculated from that.

does topology control using heuristics based on a Delauney
triangulation of the graph. There seems to be no guarantee
that the heuristics preserve connectivity. Ramanathan and
Rosales-Hain [12] describe a centralized spanning tree algo-
rithm for achieving connected and biconnected static net-
works, while minimizing the maximum transmission power.
(They also describe distributed algorithms that are based on
heuristics and are not guaranteed to preserve connectivity.)
Rodoplu and Meng [14] propose a distributed position-based
topology control algorithm that preserves connectivity; their
algorithm is improved by Li and Halpern [9]. In a different
vein is the work described in [3, 7]; although it does not
deal directly with topology control, the notion of θ-graph
used in these papers bears some resemblance to the cone-
based idea described in this paper. Relative neighborhood
graphs [15] and their relatives (such as Gabriel graphs, or
Gβ graphs [5]) are similar in spirit to the graphs produced
by the cone-based algorithm.

The rest of the paper is organized as follows. Section 2
presents the basic cone-based algorithm and shows that α =
5π/6 is necessary and sufficient for connectivity. Section 3
describes several optimizations to the basic algorithm and
proves their correctness. Section 4 extends the basic algo-
rithm so that it can handle the reconfiguration necessary to
deal with failures and mobility. Section 5 briefly describes
some network simulation results that show the effectiveness
of the basic approach and the optimizations. Section 6 con-
cludes the paper.

2. THE BASIC CONE-BASED TOPOLOGY
CONTROL (CBTC) ALGORITHM

We consider three communication primitives: broadcast,
send, and receive, defined as follows:

• bcast(u, p,m) is invoked by node u to send message
m with power p; it results in all nodes in the set
{v|p(d(u, v)) ≤ p} receiving m.

• send(u, p,m, v) is invoked by node u to sent message
m to v with power p. This primitive is used to send
unicast messages, i.e. point-to-point messages.

• recv(u,m, v) is used by u to receive message m from v.

We assume that when v receives a message m from u, it
knows the reception power p′ of message m. This is, in gen-
eral, less than the power p with which u sent the message,
because of radio signal attenuation in space. Moreover, we
assume that, given the transmission power p and the recep-
tion power p′, u can estimate p(d(u, v)). This assumption is
reasonable in practice.

For ease of presentation, we first assume a synchronous model;
that is, we assume that communication proceeds in rounds,
governed by a global clock, with each round taking one time
unit. (We deal with asynchrony in Section 4.) In each round
each node u can examine the messages sent to it, compute,
and send messages using the bcast and send communication
primitives. The communication channel is reliable. We later
relax this assumption, and show that the algorithm is cor-
rect even in an asynchronous setting.

The basic Cone-Based Topology Control (CBTC) algorithm
is easy to explain. The algorithm takes as a parameter an
angle α. Each node u tries to find at least one neighbor in
every cone of degree α centered at u. Node u starts running
the algorithm by broadcasting a “Hello” message using low
transmission power, and collecting replies. It gradually in-
creases the transmission power to discover more neighbors.
It keeps a list of the nodes that it has discovered and the
direction in which they are located. (As we said in the intro-
duction, we assume that each node can estimate directional
information.) It then checks whether each cone of degree α
contains a node. This check is easily performed: the nodes
are sorted according to their angles relative to some refer-
ence node (say, the first node from which u received a reply).
It is immediate that there is a gap of more than α between
the angles of two consecutive nodes iff there is a cone of
degree α centered at u which contains no nodes. If there
is such a gap, then u broadcasts with greater power. This
continues until either u finds no α-gap or u broadcasts with
maximum power.

Figure 1 gives the basic CBTC algorithm. In the algorithm,
a “Hello” message is originally broadcasted using some min-
imal power p0. In addition, the power used to broadcast
the message is included in the message. The power is then
increased at each step using some function Increase. As
in [9] (where a similar function is used, in the context of
a different algorithm), in this paper, we do not investigate
how to choose the initial power p0, nor do we investigate
how to increase the power at each step. We simply assume
some function Increase such that Increasek(p0) = P for suf-
ficiently large k. As observed in [9], an obvious choice is to
take Increase(p) = 2p. If the initial choice of p0 is less than
the total power actually needed, then it is easy to see that
this guarantees that u’s estimate of the transmission power
needed to reach a node v will be within a factor of 2 of the
minimum transmission power actually needed to reach v.
Upon receiving a “Hello” message from u, node v responds
with an Ack message. (Recall that we have assumed that v
can compute the power required to respond.) Upon receiv-
ing the Ack from v, node u adds v to its set Nu of neighbors
and adds v’s direction diru(v) (measured as an angle rela-
tive to some fixed angle) to its set Du of directions. (Recall
that we have assumed that u can compute this angle.) The
test gap-α(Du) tests if there is a gap greater than α in the
angles in Du.

CBTC(α)

Nu ← ∅; //the set of discovered neighbors of u
Du ← ∅; //the directions from which the Acks have come
pu ← p0;

while (pu < P and gap-α(Du)) do
pu ← Increase(pu);
bcast(u, pu, (“Hello”,pu)) and gather Acks;
Nu ← Nu ∪ {v : v discovered};
Du ← Du ∪ {diru(v) : v discovered}

Figure 1: The basic cone-based algorithm running
at each node u.

Let Nα(u) be the final set of discovered neighbors computed
by node u at the end of running CBTC(α); let pu,α be the
corresponding final power. Let Nα = {(u, v) ∈ V × V : v ∈
Nα(u)}. Note that the Nα relation is not symmetric. As
the following example shows, it is possible that (v, u) ∈ Nα

but (u, v) /∈ Nα.

Example 2.1. Suppose that V = {u0, u1, u2, u3, v}. (See
Figure 2.) Further suppose that d(u0, v) = R. Choose ε with
0 < ε < π/12 and place u1, u2, u3 so that (1) \vu0u1 =
\vu0u2 = π/3 + ε = α/2, (2) \u1vu0 = \u2vu0 = π/3− ε
(so that \vu1u0 = \vu2u0 = π/3), (3) \vu0u3 = π (so
that \u1u0u3 = \u2u0u3 = 2π/3 − ε) and (4) d(u0, u3) =
R/2. Note that, given ε and the positions of u0 and v, the
positions of u1, u2, and u3 are determined. Since \u1u0v >
\u0u1v > \u1vu0, it follows that d(u1, v) > d(u0, v) = R >
d(u0, u1); similarly d(u2, v) > R > d(u0, u2). (Here and
elsewhere we use the fact that, in a triangle, larger sides
are opposite larger angles.) It easily follows that Nα(u0) =
{u1, u2, u3} while Nα(v) = {u0}, as long as 2π/3 < α ≤
5π/6. Thus, (v, u0) ∈ Nα, but (u0, v) /∈ Nα.

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

2π/3−ε

2π/3−ε π/3+ε

π/3+ε

π/3

π/3−ε
π/3−ε

π/3

u

2

1

u

R v
u u3 0

Figure 2: Nα may not be symmetric.

Let Gα = (V,Eα), where V consists of all nodes in the net-
work and Eα is the symmetric closure of Nα; that is, (u, v) ∈
Eα iff either (u, v) ∈ Nα or (v, u) ∈ Nα. We now prove the
two main results of this paper: (1) if α ≤ 5π/6, then Gα

preserves the connectivity of GR and (2) if α > 5π/6, then
Gα may not preserve the connectivity of GR. Note that Ex-
ample 2.1 shows the need for taking the symmetric closure
in computing Gα. Although (u0, v) ∈ GR, there would be
no path from u0 to v if we considered just the edges deter-
mined by Nα, without taking the symmetric closure. (The
fact that α > 2π/3 in this example is necessary. As we
shall see in Section 3.2, taking the symmetric closure is not
necessary if α ≤ 2π/3.) As we have already observed, each
node u knows the power required to reach all nodes v such
that (u, v) ∈ Eα: it is just the max of pu,α and the power
required by u to reach each of the nodes v from which it
received a “Hello” message. (As we said earlier, if u receives
a “Hello” message from v, since it includes the power used
to transmit it, u can determine the power required for u to
reach v.)

Theorem 2.1. If α ≤ 5π/6, then Gα preserves the con-
nectivity of GR; u and v are connected in Gα iff they are
connected in GR.

Proof. Since Gα is a subgraph of GR, it is clear that if
u and v are connected in Gα, they must be connected in
GR. To prove the converse, we start with the following key
lemma.

Lemma 2.2. If α ≤ 5π/6, and u and v are nodes in V
such that (u, v) ∈ E (that is, (u, v) is an edge in the graph
GR, so that d(u, v) ≤ R), then either (u, v) ∈ Eα or there
exist u′, v′ ∈ V such that (a) d(u′, v′) < d(u, v), (b) either
u′ = u or (u, u′) ∈ Eα, and (c) either v

′ = v or (v, v′) ∈ Eα.

Proof. A few definitions will be helpful in this and the
following proof. Given two nodes u′ and v′,

• Let cone(u′, α, v′) be the cone of degree α which is
bisected by the line u′v′, as in Figure 3;

• Let circ(u, r) be the circle centered at u with radius r;
• Let rad−u,α be the distance d(u, v) of the neighbor v
farthest from u in Nα(u); that is, p(rad

−
u,α) = pu,α;

• Let radu,α be the distance d(u, v) of the neighbor v
farthest from u in Eα.

���� ��������������

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

������������������
u’ v’α/2

α/2

Figure 3: cone(u′, α, v′)

If (u, v) ∈ Eα, we are done. Otherwise, it must be the case
that d(u, v) > max(rad−u,α, rad

−
v,α). Thus, both u and v ter-

minate CBTC(α) with no α-gap. It follows that cone(u, α, v)∩
Nα(u) �= ∅ and cone(v, α, u) ∩ Nα(v) �= ∅. Choose z ∈
cone(v, α, u) ∩Nα(v) such that \zvu is minimal. (See Fig-
ure 4.) Suppose without loss of generality that z is in the
halfplane above uv. If z is actually in cone(v, 2π/3, u), since
d(v, z) ≤ rad−v,α < d(u, v), it follows that d(z, u) < d(u, v).
For otherwise, the side zu would be at least as long as any
other side in the triangle vzu, so that \zvu would have to
be at least as large as any other angle in the triangle. But
since \zvu ≤ π/3, this is impossible. Thus, taking u′ = u
and v′ = z, the lemma holds in this case. So we can assume
without loss of generality that z /∈ cone(v, 2π/3, u) (and,
thus, that cone(v, 2π/3, u) ∩Nα(v) = ∅). Let y be the first
node in Nα(v) that a ray that starts at vz would hit as it
sweeps past vu going counterclockwise. By construction, y
is in the half-plane below uv and \zvy ≤ α.

Similar considerations show that, without loss of generality,
we can assume that cone(u, 2π/3, v) ∩Nα(u) = ∅, and that

there exist two points w, x ∈ Nα(u) such that (a) w is in the
halfplane above uv, (b) x is in the halfplane below uv, (c) at
least one of w and x is in cone(u, α, v), and (d) \wux ≤ α.
See Figure 4.

��
��
��
��

��
��
��
��
��
��
��
��

�
�
�
�

Only black points

have radius d

are actual nodes.z

v

y

w
u

x tw

u

d

d
t

All circles

Figure 4: Illustration for the proof of Lemma 2.2.

If d(w, v) < d(u, v), then the lemma holds with u′ = w
and v′ = v, so we can assume that d(w, v) ≥ d(u, v). Simi-
larly, we can assume without loss of generality that d(z, u) ≥
d. We now prove that d(w, z) and d(x, y) cannot both be
greater than or equal to d. This will complete the proof
since, for example, if d(w, z) < d, then we can take u′ = w
and v′ = z in the lemma.

Suppose, by way of contradiction, that d(w, z) ≥ d and
d(x, y) ≥ d. Let t be the intersection point of circ(z, d)
and circ(v, d) that is closest to u. Recall that at least one
of w and x is in cone(u, α, v). As we show in the full paper,
since node w must be outside (or on) both circles circ(z, d)
and circ(v, d), we have \wuv ≥ \tuv (see the closeup on
the far right side of Figure 4).

Since d(t, z) = d(t, v) = d(u, v) = d, and d(z, v) < d, it
follows that \zvt > π/3. Thus,

\tvu = \zvu− \zvt < \zvu− π/3 and
\tvu = π − 2× \tuv,

and so

\zvu− π/3 > π − 2× \tuv and,
\tuv > 2π/3− \zvu/2.

Since \wuv ≥ \tuv, we have that
\wuv > 2π/3−\zvu/2. (1)

By definition of z, \zvu ≤ α/2 ≤ 5π/12, so \wuv > 2π/3−
5π/24 = 11π/24 > α/2. Thus, it must be the case that
w /∈ cone(u, α, v), so x ∈ cone(u, α, v).

Argument identical to those used to derive (1) (replacing
the role of w and z by y and x, respectively) can be used to
show that

\yvu > 2π/3−\xuv/2 (2)

From (1) and (2), we have

\wuv + \xuv
> (2π/3− \zvu/2) + (4π/3− 2× \yvu)
= 2π −\zvu/2− 2× \yvu

Since \wuv + \xuv ≤ α ≤ 5π/6, we have that 5π/6 >
2π − \zvu/2 − 2× \yvu. Thus,
\zvu/2+2×\yvu = ((\zvu+\yvu)+3×\yvu)/2 > 7π/6.

Since \zvu + \yvu ≤ α ≤ 5π/6, it easily follows that
\yvu > π/2. As we showed earlier, \zvu ≥ \zvt > π/3.
Therefore, \zvu + \yvu > 5π/6. This is a contradic-
tion.

The proof of Theorem 2.1 now follows easily. Order the
edges in E by length. We proceed by induction on the the
rank of the edge in the ordering, using Lemma 2.2, to show
that if (u, v) ∈ E, then there is a path from u to v in Gα.
It immediately follows that if u and v are connected in GR,
then there is a path from u to v in Gα.

The proof of Theorem 2.1 gives some extra information,
which we cull out as a separate corollary:

Corollary 2.3. If α ≤ 5π/6, and u and v are nodes in
V such that (u, v) ∈ E, then either (u, v) ∈ Eα or there
exists a path u0 . . . uk such that u0 = u, uk = v, (ui, ui+1) ∈
Eα, and d(ui, ui+1) < d(u, v), for i = 0, . . . , k − 1.

Next we prove that degree 5π/6 is a tight upper bound;
if α > 5π/6, then CBTC(α) does not necessarily preserve
connectivity.

Theorem 2.4. If α > 5π/6, then CBTC(α) does not nec-
essarily preserve connectivity.

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

All circles
have radius R

Only black points
are actual nodes.

s

s’

v1

v0

u1
u0

3u

v3

v2

u2

Figure 5: A disconnected graph if α = 5π/6 + ε.

Proof. Suppose α = 5π/6 + ε for some ε > 0. We
construct a graph GR = (V, E) such that CBTC(α) does
not preserve the connectivity of this graph. V has eight
nodes: u0, u1, u2, u3, v0, v1, v2, v3. (See Figure 5.) We call
u0, u1, u2, u3 the u-cluster, and v0, v1, v2, v3 the v-cluster.
The construction has the property that d(u0, v0) = R and
for i, j = 0, 1, 2, 3, we have d(u0, ui) < R, d(v0, vi) < R, and
d(ui, vj) > R if i + j ≥ 1. That is, the only edge between
the u-cluster and the v-cluster in GR is (u0, v0). However, in
Gα, the (u0, v0) edge disappears, so that the u-cluster and
the v-cluster are disconnected.

In Figure 5, s and s′ are the intersection points of the cir-
cles of radius R centered at u0 and v0, respectively. Node
u1 is chosen so that \u1u0v0 = π/2. Similarly, v1 is cho-
sen so that \v1v0u0 = π/2 and u1 and v1 are on oppo-
site sides of the line u0v0. Because of the right angle, it is
clear that, whatever d(u0, u1) is, we must have d(v0, u1) >
d(v0, u0) = R; similarly, d(u0, v1) > R whatever d(v0, v1)
is. Next, choose u2 so that \u1u0u2 = min(α, π) and u0u2

comes after u0u1 as a ray sweeps around counterclockwise
from u0v0. It is easy to see that d(v0, u2) > R, whatever
d(u0, u2) is, since \v0u0u2 ≥ π/2. For definiteness, choose
u2 so that d(u0, u2) = R/2. Node v2 is chosen similarly.
The key step in the construction is the choice of u3 and v3.
Note that \s′u0u1 = 5π/6. Let u3 be a point on the line
through s′ parallel to u0v0 slightly to the left of s

′ such that
\u3u0u1 < α. Since α = 5π/6 + ε, it is possible to find
such a node u3. Since d(u0, s

′) = d(v0, s
′) = R by construc-

tion, it follows that d(u0, u3) < R and d(v0, u3) > R. It is
clearly possible to choose d(v0, v1) sufficiently small so that
d(u3, v1) > R. The choice of v3 is similar.

It is now easy to check that when u0 runs CBTC(α), it will
terminate with pu0,α = max(d(u0, u3), R/2) < R; similarly
for v0. Thus, this construction has all the required proper-
ties.

3. OPTIMIZATIONS
In this section, we describe three optimizations to the basic
algorithm. We prove that these optimizations allow some of
the edges to be removed while still preserving connectivity.

3.1 The shrink-back operation
In the basic CBTC(α) algorithm, u is said to be a boundary
node if, at the end of the algorithm, u still has an α-gap.
Note that this means that, at the end of the algorithm, a
boundary node broadcasts with maximum power. An opti-
mization, sketched in [16], would be to add a shrinking phase
at the end of the growing phase to allow each boundary node
to broadcast with less power, if it can do so without reduc-
ing its cone coverage. To make this precise, given a set dir of
directions (angles) and an angle α, define coverα(dir) = {θ :
for some θ′ ∈ dir, |θ − θ′| mod 2π ≤ α/2}. We modify
CBTC(α) so that, at each iteration, a node in Nu is tagged
with the power used the first time it was discovered. Sup-
pose that the power levels used by node u during the algo-
rithm were p1, . . . , pk. If u is a boundary node, pk is the
maximum power P . A boundary node successively removes
nodes tagged with power pk, then pk−1, and so on, as long
as their removal does not change the coverage. That is,
let diri, i = 1, . . . , k, be the set of directions found with
all power levels pi or less, then the minimum i such that

coverα(diri) = coverα(dirk) is found. Let Ns
α(u) consist of

all the nodes in Nα(u) tagged with power pi or less. Let
Ns

α = {(u, v) : v ∈ Ns
α(u)}, and let Es

α be the symmetric
closure of Ns

α. Finally, let G
s
α = (V,E

s
α).

Theorem 3.1. If α ≤ 5π/6, then Gs
α preserves the con-

nectivity of GR.

Proof. It is easy to check that the proof of Theorem 2.1
depended only on the cone coverage of each node, so it goes
through without change.

Note that this argument actually shows that we can remove
any nodes from Nu that do not contribute to the cone cov-
erage. However, our interest here lies in minimizing power,
not in minimizing the number of nodes in Nu. There may
be some applications where it helps to reduce the degree of
a node; in this case, removing further nodes may be a useful
optimization.

3.2 Asymmetric edge removal
As shown by Example 2.1, in order to preserve connectivity,
it is necessary to add an edge (u, v) to Eα if (v, u) ∈ Nα,
even if (u, v) /∈ Nα. In Example 2.1, α > 2π/3. This is
not an accident. As we now show, if α ≤ 2π/3, not only
don’t we have to add an edge (u, v) if (v, u) ∈ Nα, we can
remove an edge (v, u) if (v, u) ∈ Nα but (u, v) /∈ Nα. Let
E−

α = {(u, v) : (u, v) ∈ Nα and (v, u) ∈ Nα}. Thus, while
Eα is the smallest symmetric set containing Nα, E

−
α is the

largest symmetric set contained in Nα. Let G
−
α = (V,E−

α).

Theorem 3.2. If α ≤ 2π/3, then G−
α preserves the con-

nectivity of GR.

Proof. We start by proving the following lemma, which
strengthens Corollary 2.3.

Lemma 3.3. If α ≤ 2π/3, and u and v are nodes in V
such that (u, v) ∈ E, then either (u, v) ∈ Nα or there exists
a path u0 . . . uk such that u0 = u, uk = v, (ui, ui+1) ∈ Nα,
and d(ui, ui+1) < d(u, v), for i = 0, . . . , k − 1.

Proof. Order the edges in E by length. We proceed
by strong induction on the rank of an edge in the ordering.
Given an edge (u, v) ∈ E of rank k in the ordering, if (u, v) ∈
Nα, we are done. If not, as argued in the proof of Lemma 2.2,
there must be a node w ∈ cone(u, α, v) ∩Nα(u). Since α ≤
2π/3, the argument in the proof of Lemma 2.2 also shows
that d(w, v) < d(u, v). Thus, (w, v) ∈ E and has lower rank
in the ordering of edges. Applying the induction hypothesis,
the lemma holds for (u, v). This completes the proof.

Lemma 3.3 shows that if (u, v) ∈ E, then there is a path
consisting of edges in Nα from u to v. This is not good
enough for our purposes; we need a path consisting of edges
in E−

α . The next lemma shows that this is also possible.

Lemma 3.4. If α ≤ 2π/3, and u and v are nodes in V
such that (u, v) ∈ Nα, then there exists a path u0 . . . uk such
that u0 = u, uk = v, (ui, ui+1) ∈ E−

α , for i = 0, . . . , k − 1.

Proof. Order the edges in Nα by length. We proceed
by strong induction on the rank of an edge in the ordering.
Given an edge (u, v) ∈ Nα of rank k in the ordering, if
(u, v) ∈ E−

α , we are done. If not, we must have (v, u) �∈ Nα.
Since (v, u) ∈ E, by Lemma 3.3, there is a path from v to
u consisting of edges in Nα all of which have length smaller
than d(v, u). If any of these edges is in Nα − E−

α , we can
apply the inductive hypothesis to replace the edge by a path
consisting only of edges in E−

α . By the symmetry of E
−
α ,

such a path from v to u implies a path from u to v. This
completes the inductive step.

The proof of Theorem 3.2 is now immediate from Lem-
mas 3.3 and 3.4.

To implement asymmetric edge removal, the basic CBTC
needs to be enhanced slightly. After finishing CBTC(α), a
node u must send a message to each node v to which it sent
an Ack message that is not in Nα(u), telling v to remove
u from Nα(v) when constructing E−

α . It is easy to see that
the shrink-back optimization discussed in Section 3.1 can
be applied together with the removal of these asymmetric
edges.

It is clear that there is a tradeoff between using CBTC(5π/6)
and using CBTC(2π/3) with asymmetric edge removal. In
general, pu,5π/6 (i.e., p(rad

−
u,5π/6)) will be smaller than pu,2π/3.

However, the power p(radu,5π/6) with which u needs to
transmit may be greater than pu,5π/6 since u may need to
reach nodes v such that u ∈ N5π/6(v) but v /∈ N5π/6(u).
In contrast, if α = 2π/3, then asymmetric edge removal al-
lows u to still use pu,2π/3 and may allow v to use power less
than pv,2π/3. Our experimental results confirm this. See
Section 5.

3.3 Pairwise edge removal
The final optimization aims at further reducing the trans-
mission power of each node. In addition to the directional
information, this optimization requires two other pieces of
information. First, each node u is assigned a unique in-
teger ID denoted IDu, and that IDu is included in all of
u’s messages. Second, although a node u does not need to
know its exact distance from its neighbors, given any pair of
neighbors v and w, node u needs to know which of them is
closer. This can be achieved as follows. Recall that a node
grows its radius in discrete steps. It includes its transmission
power level in each of the “Hello” messages. Each discov-
ered neighbor node also includes its transmission power level
in the Ack. When u receives messages from nodes v1 and
v2, it can deduce which of v1 and v2 is closer based on the
transmission and reception powers of the messages.

Even after the shrink-back operation and possibly asym-
metric edge removal, there are many edges that can be
removed while still preserving connectivity. For example,
if three edges form a triangle, we can clearly remove any

one of them while still maintaining connectivity. This op-
timization (where the longest edge is removed) is used in
[16]. In this section, we improve on this result by show-
ing that if there is an edge from u to v1 and from u to v2,
then we can remove the longer edge even if there is no edge
from v1 to v2, as long as d(v1, v2) < max(d(u, v1), d(u, v2)).
Note that a condition sufficient to guarantee that d(v1, v2) <
max(d(u, v1), d(u, v2)) is that \v1uv2 < π/3 (since the longest
edge will be opposite the largest angle).

To make this precise, we use the notion of an edge ID. Each
edge (u, v) is assigned an edge ID eid(u, v) = (i1, i2, i3),
where i1 = d(u, v), i2 = max(IDu, IDv), and i3 = min(IDu,
IDv). Edge IDs are compared lexicographically, so that
(i, j, k) < (i′, j′, k′) iff either (a) i < i′, (b) i = i′ and j < j′,
or (c) i = i′, j = j′, and k < k′.

Definition 3.5. If v and w are neighbors of u, \vuw <
π/3, and eid(u, v) > eid(u,w), then (u, v) is a redundant
edge.

As the name suggests, redundant edges are redundant, in
that it is possible to remove them while still preserving con-
nectivity. The following theorem proves this.

Theorem 3.6. For α ≤ 5π/6, all redundant edges can be
removed while still preserving connectivity.

Proof. Let Enr
α consist of all the non-redundant edges

in Eα. We show that if (u, v) ∈ Eα − Enr
α , then there is a

path from u to v consisting only of edges in Enr
α . Clearly,

this suffices to prove the theorem.

Let e1, e2, · · · , em be a listing of the redundant edges (i.e,
those in Eα−Enr

α) in increasing lexicographic order of edge
ID. We prove, by induction on k, that for every redundant
edge ek = (uk, vk) there is a path from uk to vk consisting
of edges in Enr

α . For the base case, consider e1 = (u1, v1).
By definition, there must exist an edge (u1, w1) such that
\v1u1w1 < π/3 and eid(u1, v1) > eid(u1, w1). Since e1

is the redundant edge with the smallest edge ID, (u1, w1)
cannot be a redundant edge. Since \v1u1w1 < π/3, it
follows that d(w1, v1) < d(u1, v1). If (w1, v1) ∈ Eα, then
(w1, v1) ∈ Enr

α (since (u1, v1) is the shortest redundant edge)
and (u1, w1), (w1, v1) is the desired path of non-redundant
edges. On the other hand, if (w1, v1) /∈ Eα then, since
d(w1, v1) < d(u1, v1) ≤ R and α ≤ 5π/6, by Corollary 2.3,
there exists a path from w1 to v1 consisting of edges in Eα

all shorter than d(w1, v1). Since none of these edges can be
redundant edge, this gives us the desired path.

For the inductive step, suppose that for every ej = (uj , vj),
1 ≤ j ≤ i − 1, we have found a path H ′

j between uj and
vj , which contains no redundant edges. Now consider ei =
(ui, vi). Again, by definition, there exists another edge (ui, wi)
with eid(ui, vi) > eid(ui, wi) and \viuiwi < π/3. If (ui, wi)
is a redundant edge, it must be one of ej ’s, where j ≤ i− 1.
Moreover, if the pathHi (from Corollary 2.3) between vi and
wi contains a redundant edge ej , we must have |ej | < |ei|
and so j ≤ i−1. By connecting (ui, wi) with Hi and replac-
ing every redundant edge ej on the path with H ′

j , we obtain

a path H ′
i between ui and vi that contains no redundant

edges. This completes the proof.

Although Theorem 3.6 shows that all redundant edges can
be removed, this doesn’t mean that all of them should nec-
essarily be removed. For example, if we remove some edges,
the paths between nodes become longer, in general. Since
some overhead is added for each link a message traverses,
having fewer edges can affect network throughput. In ad-
dition, if routes are known and many messages are being
sent using point-to-point communication between different
senders and receivers, having fewer edges is more likely to
cause congestion. Since we would like to reduce the trans-
mission power of each node, we remove only redundant edges
with length greater than the longest non-redundant edges.
We call this optimization the pairwise edge removal opti-
mization.

4. DEALING WITH RECONFIGURATION,
ASYNCHRONY, AND FAILURES

In a multi-hop wireless network, nodes can be mobile. Even
if nodes do not move, nodes may die if they run out of energy.
In addition, new nodes may be added to the network. We
need a mechanism to detect such changes in the network.
This is done by the Neighbor Discovery Protocol (NDP). A
NDP is usually a simple beaconing protocol for each node to
tell its neighbor that it is still alive. The beacon includes the
sending node’s ID and the transmission power of the beacon.
A neighbor is considered failed if a pre-defined number of
beacons are not received for a certain time interval τ . A
node v is considered a new neighbor of u if a beacon is
received from v and no beacon was received from v during
the previous τ interval.

The question is what power a node should use for beaconing.
Certainly a node u should broadcast with sufficient power
to reach all of its neighbors in Eα (or E

−
α , if α ≤ 2π/3). As

we will show, if u uses a beacon with power p(radu,α) (recall
that p(radu,α) is the power that u must use to reach all its
neighbors in Eα), then this is sufficient for reconfiguration
to work with the basic cone-based algorithm (possibly com-
bined with asymmetric edge removal if α ≤ 2π/3, in which
case we can use power p(rad−u,α)).

We define three basic events:

• A joinu(v) event happens when node u detects a bea-
con from node v for the first time;

• A leaveu(v) event happens when node u misses some
predetermined number of beacons from node v;

• An aChangeu(v) event happens when u detects that
v’s angle with respect to u has changed. (Note this
could be due to movement by either u or v.)

Our reconfiguration algorithm is very simple. It is conve-
nient to assume that each node is tagged with the power
used when it was first discovered, as in the shrink-back op-
eration. (This is not necessary, but it minimizes the number
of times that CBTC needs to be rerun.)

• If a leaveu(v) event happens, and if there is an α-
gap after dropping diru(v) from Du, node u reruns
CBTC(α) (as in Figure 1), starting with power p(rad−u,α)
(i.e., taking p0 = p(rad−u,α)).

• If a joinu(v) event happens, u computes diru(v) and
the power needed to reach v. As in the shrink-back
operation, u then removes nodes, starting with the
farthest neighbor nodes and working back, as long as
their removal does not change the coverage.

• If an aChangeu(v) event happens, node u modifies the
set Du of directions appropriately. If an α-gap is then
detected, then CBTC(α) is rerun, again starting with
power p(rad−u,α). Otherwise, nodes are removed, as in
the shrink-back operation, to see if less power can be
used.

In general, there may be more than one change event that
is detected at a given time by a node u. (For example, if u
moves, then there will be in general several leave, join and
aChange events detected by u.) If more than one change
event is detected by u, we perform the changes suggested
above as if the events are observed in some order, as long
as there is no need to rerun CBTC. If CBTC needs to be
rerun, it deals with all changes simultaneously.

Intuitively, this reconfiguration algorithm preserves connec-
tivity. We need to be a little careful in making this precise,
since if the topology changes frequently enough, the recon-
figuration algorithm may not ever catch up with the changes,
so there may be no point at which the connectivity of the
network is actually preserved. Thus, what we want to show
is that if the topology ever stabilizes, so that there are no
further changes, then the reconfiguration algorithm even-
tually results in a graph that preserves the connectivity of
the final network, as long as there are periodic beacons. It
should be clear that the reconfiguration algorithm guaran-
tees that each cone of degree α around a node u is covered
(except for boundary nodes), just as the basic algorithm
does. Thus, the proof that the reconfiguration algorithm
preserves connectivity follows immediately from the proof
of Theorem 2.1.

While this reconfiguration algorithm works in combination
with the basic algorithm CBTC(α) and in combination with
the asymmetric edge removal optimization, we must be care-
ful in combining it with the other optimizations discussed
in Section 3. In particular, we must be very careful about
what power a node should use for its beacon. For example,
if the shrink-back operation is performed, using the power
to reach all the neighbors in Gs

α does not suffice. For sup-
pose that the network is temporarily partitioned into two
subnetworks G1 and G2; for every pair of nodes u1 ∈ G1

and u2 ∈ G2, the distance d(u1, u2) > R. Suppose that u1

is a boundary node in G1 and u2 is a boundary node in G2,
and that, as a result of the shrink-back operation, both u1

and u2 use power P
′ < P . Further suppose that later nodes

u1 and u2 move closer together so that d(u1, u2) < R. If P ′

is not sufficient power for u1 to communicate with u2, then
they will never be aware of each other’s presence, since their
beacons will not reach each other, so they will not detect
that the network has become reconnected. Thus, network
connectivity is not preserved.

This problem can be solved by having the boundary nodes
broadcast with the power computed by the basic CBTC(α)
algorithm, namely P in this case. Similarly, with the pair-
wise edge removal optimization, it is necessary for u’s beacon
to broadcast with p(radu,α), i.e., the power needed to reach
all of u’s neighbors in Eα, not just the power needed to
reach all of u’s neighbors in Enr

α . It is easy to see that this
choice of beacon power guarantees that the reconfiguration
algorithm works.

It is worth noting that a reconfiguration protocol works per-
fectly well in an asynchronous setting. In particular, the
synchronous model with reliable channels that has been as-
sumed up to now can be relaxed to allow asynchrony and
both communication and node failures. Now nodes are as-
sumed to communicate asynchronously, messages may get
lost or duplicated, and nodes may fail (although we consider
only crash failures: either a node crashes and stops sending
messages, or it follows its algorithm correctly). We assume
that messages have unique identifiers and that mechanisms
to discard duplicate messages are present. Node failures re-
sult in leave events, as do lost messages. If node u gets a
message after many messages having been lost, there will be
a join event corresponding to the earlier leave event.

5. EXPERIMENTAL RESULTS
In order to understand the effectiveness of our algorithm
and its optimizations, we generated 100 random networks,
each with 100 nodes. These nodes are randomly placed in a
1500× 1500 rectangular region. Each node has a maximum
transmission radius of 500.

In Figure 6, the results from one of these random networks
are used to illustrate how CBTC and the various optimiza-
tions improve network topology. Figure 6(a) shows a topol-
ogy graph in which no topology control is employed and ev-
ery node transmits with maximum power. Figures 6(b) and
(c) show the corresponding graphs produced by CBTC(2π/3)
and CBTC(5π/6), respectively. From them, we can see
that both CBTC(2π/3) and CBTC(5π/6) allow nodes in
the dense areas to automatically reduce their transmission
radius. Figures 6(d) and (e) illustrate the graphs after the
shrink-back operation is performed. Figure 6(f) shows the
graph for α = 2π/3 as a result of the shrink-back operation
and the asymmetric edge removal. Figures 6(g) and (h)
show the topology graphs after all applicable optimizations.

Table 1 compares the cone-based algorithm with α = 2π/3
and α = 5π/6 in terms of average node degree and aver-
age radius. It also shows the effect of transmitting at maxi-
mum power (i.e., with no attempt at topology control.) The
results are averaged over the 100 random networks men-
tioned earlier. As expected, using a larger value for α re-
sults in a smaller node degree and radius. However, as we
discussed in Section 3.2, there is a tradeoff between using
CBTC(2π/3) and CBTC(5π/6). Just using the basic algo-
rithm results in radu,5π/6 = 436.8 < radu,2π/3 = 457.4. But
after applying asymmetric edge removal with α = 2π/3,
the resulting radius is 301.2 (this number is not shown in
the table); asymmetric edge removal can result in signifi-
cant savings. After applying all applicable optimizations,
both α = 2π/3 and α = 5π/6 end up with essentially the
same average node degree of 3.6 and almost the same aver-

Basic with op1 with op1 and op2 with all op Max Power
Average α = 5π/6 α = 2π/3 α = 5π/6 α = 2π/3 α = 2π/3 α = 5π/6 α = 2π/3
Node Degree 12.3 15.4 10.3 12.8 7.0 3.6 3.6 25.6
Average radius 436.8 457.4 373.7 398.1 276.8 155.9 160.6 500

Table 1: Average degree and radius of the cone-based topology control algorithm with different α and
optimizations (op1–shrink-back, op2–asymmetric edge removal, op3–pairwise edge removal).

age radius. However, there are some secondary advantages
to take α = 5π/6. In general, CBTC(5π/6) will terminate
sooner than CBTC(2π/3) and so expend less power during
its execution (since pu,5π/6 < pu,2π/3). Thus, especially if
reconfiguration happens often, there are advantages to using
CBCT(5π/6).

The last column in Table 1 gives the performance numbers
for the case of no topology control, under the assumption
that each node uses the maximum transmission power of
p(500). Using topology control cuts down the average degree
by a factor of more than 7 (3.6 vs. 25.6) and cuts down the
average radius by a factor of more than 3 (155.9 or 160.6
vs. 500). Clearly, this is a significant improvement.

6. DISCUSSION
We have analyzed the distributed cone-based algorithm and
proved that 5π/6 is a tight upper bound on the cone de-
gree for the algorithm to preserve connectivity. We have
also presented three optimizations to the basic algorithm—
the shrink-back operation, asymmetric edge removal, and
pairwise edge removal—and proved that they improve per-
formance while still preserving connectivity. Finally, we
showed that there is a tradeoff between using CBTC(α) with
α = 5π/6 and α = 2π/3, since using α = 2π/3 allows an ad-
ditional optimization, which can have a significant impact.
The algorithm extends easily to deal with reconfiguration
and asynchrony. Most importantly, simulation results show
that it is very effective in reducing power demands.

Reducing energy consumption has been viewed as perhaps
the most important design metric for topology control. There
are two standard approaches to reducing energy consump-
tion: (1) reducing the transmission power of each node as
much as possible; (2) reducing the total energy consump-
tion through the preservation of minimum-energy paths in
the underlying network. These two approaches may conflict:
reducing the transmission power required by each node may
not result in minimum-energy paths (see [16] for a discus-
sion) or vice versa. Furthermore, there are other metrics to
consider, such as network throughput and network lifetime.
Reducing energy consumption tends to increase network life-
time. (This is particularly true if the main reason that nodes
die is due to loss of battery power.) However, there is no
guarantee that it will. For example, using minimum-energy
paths for all communication may result in hot spots and con-
gestion, which in turn may drain battery power and lead to
network partition. Using approach (1) in this case may do
better (although there is no guarantee). If topology control
is not done carefully, network throughput can be hurt. As
we have already pointed out, eliminating edges may result
in more congestion and hence worse throughput, even if it
saves power in the short run. The right tradeoffs to make
are very much application dependent. We hope to explore

these issues in more details in future work.

7. REFERENCES
[1] A. Chandrakasan, R. Amirtharajah, S. H. Cho,

J. Goodman, G. Konduri, J. Kulik, W. Rabiner, and
A. Wang. Design considerations for distributed microsensor
systems. In Proc. IEEE Custom Integrated Circuits
Conference (CICC), pages 279–286, May 1999.

[2] L. P. Clare, G. J. Pottie, and J. R. Agre. Self-organizing
distributed sensor networks. In Proc. SPIE Conf. on
Unattended Ground Sensor Technologies and Applications,
pages 229–237, April 1999.

[3] Y. Hassin and D. Peleg. Sparse communication networks
and efficient routing in the plane. In Proc. 19th ACM
Symp. on Principles of Distributed Computing, pages
41–50, 2000.

[4] L. Hu. Topology control for multihop packet radio
networks. IEEE Trans. on Communications, 41(10):1474
–1481, October 1993.

[5] J. W. Jaromczyk and G. T. Toussaint. Relative
neighborhood graphs and their relatives. Proc. IEEE,
80:1502–1517, 1992.

[6] R. E. Kahn. The organization of computer resources into a
packet radio network. IEEE Transactions on
Communications, COM-25(1):169–178, January 1977.

[7] J. M. Keil and C. A. Gutwin. Classes of graph which
approximate the complete Euclidean graph. Discrete and
computational geometry, 7:13–28, 1992.

[8] K. Krizman, T. E. Biedka, and T.S. Rappaport. Wireless
position location: fundamentals, implementation strategies,
and source of error. In IEEE 47th Vehicular Technology
Conference, pages 919–923, 1997.

[9] L. Li and J. Y. Halpern. Minimum energy mobile wireless
networks revisited. In Proc. IEEE International Conference
on Communications (ICC), June 2001.

[10] C. E. Perkins. Ad Hoc Networking. Addison-Wesley,
Reading, MA, 2001.

[11] G. J. Pottie and W. J. Kaiser. Wireless integrated network
sensors. Communications of the ACM, 43(5):51–58, May
2000.

[12] R. Ramanathan and R. Rosales-Hain. Topology control of
multihop wireless networks using transmit power
adjustment. In Proc. IEEE Infocom 2000, pages 404–413,
March 2000.

[13] T. S. Rappaport. Wireless communications: principles and
practice. Prentice Hall, 1996.

[14] V. Rodoplu and T. H. Meng. Minimum energy mobile
wireless networks. IEEE J. Selected Areas in
Communications, 17(8):1333–1344, August 1999.

[15] G. Toussaint. The relative neighborhood graph of a finite
planar set. Pattern recognition, 12(4):261–268, 1980.

[16] R. Wattenhofer, L. Li, P. Bahl, and Y. M. Wang.
Distributed topology control for power efficient operation in
multihop wireless ad hoc networks. In Proc. IEEE Infocom
2001, pages 1388–1397, April 2001.

.

99

98

97

96

95

94

9392

91

90

89

88

87

86

85

84

83

82

81

80

79

78

77

76

75

74

73

72

71

70

69

68

67

66 65

64

63

62

61

60

59

58

57

56

55

54

53

52

51

50

49

48

47

46

45

44 43

42

41

40

39

38

37

36

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

20

19

18

17

16

15

14
13

12

11

10

9

8

7

6

5

4

3

2

1

0

99

98

97

96

95

94

9392

91

90

89

88

87

86

85

84

83

82

81

80

79

78

77

76

75

74

73

72

71

70

69

68

67

66 65

64

63

62

61

60

59

58

57

56

55

54

53

52

51

50

49

48

47

46

45

44 43

42

41

40

39

38

37

36

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

20

19

18

17

16

15

14
13

12

11

10

9

8

7

6

5

4

3

2

1

0

(a) no topology control (b) α = 2π/3, basic algorithm

99

98

97

96

95

94

9392

91

90

89

88

87

86

85

84

83

82

81

80

79

78

77

76

75

74

73

72

71

70

69

68

67

66 65

64

63

62

61

60

59

58

57

56

55

54

53

52

51

50

49

48

47

46

45

44 43

42

41

40

39

38

37

36

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

20

19

18

17

16

15

14
13

12

11

10

9

8

7

6

5

4

3

2

1

0

99

98

97

96

95

94

9392

91

90

89

88

87

86

85

84

83

82

81

80

79

78

77

76

75

74

73

72

71

70

69

68

67

66 65

64

63

62

61

60

59

58

57

56

55

54

53

52

51

50

49

48

47

46

45

44 43

42

41

40

39

38

37

36

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

20

19

18

17

16

15

14
13

12

11

10

9

8

7

6

5

4

3

2

1

0

(c) α = 5π/6, basic algorithm (d) α = 2π/3 with shrink-back

99

98

97

96

95

94

9392

91

90

89

88

87

86

85

84

83

82

81

80

79

78

77

76

75

74

73

72

71

70

69

68

67

66 65

64

63

62

61

60

59

58

57

56

55

54

53

52

51

50

49

48

47

46

45

44 43

42

41

40

39

38

37

36

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

20

19

18

17

16

15

14
13

12

11

10

9

8

7

6

5

4

3

2

1

0

99

98

97

96

95

94

9392

91

90

89

88

87

86

85

84

83

82

81

80

79

78

77

76

75

74

73

72

71

70

69

68

67

66 65

64

63

62

61

60

59

58

57

56

55

54

53

52

51

50

49

48

47

46

45

44 43

42

41

40

39

38

37

36

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

20

19

18

17

16

15

14
13

12

11

10

9

8

7

6

5

4

3

2

1

0

(e) α = 5π/6 with shrink-back (f) α = 2π/3 with shrink-back
and asymmetric edge removal

99

98

97

96

95

94

9392

91

90

89

88

87

86

85

84

83

82

81

80

79

78

77

76

75

74

73

72

71

70

69

68

67

66 65

64

63

62

61

60

59

58

57

56

55

54

53

52

51

50

49

48

47

46

45

44 43

42

41

40

39

38

37

36

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

20

19

18

17

16

15

14
13

12

11

10

9

8

7

6

5

4

3

2

1

0

99

98

97

96

95

94

9392

91

90

89

88

87

86

85

84

83

82

81

80

79

78

77

76

75

74

73

72

71

70

69

68

67

66 65

64

63

62

61

60

59

58

57

56

55

54

53

52

51

50

49

48

47

46

45

44 43

42

41

40

39

38

37

36

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

20

19

18

17

16

15

14
13

12

11

10

9

8

7

6

5

4

3

2

1

0

(g) α = 5π/6 with all applicable optimizations (h) α = 2π/3 with all optimizations

Figure 6: The network graphs as a result of different optimizations.

