
Secure Invisible Computing
Yong Xiong, Johannes Helander
Alessandro Forin, Gideon Yuval

7 October 2003

Technical Report
MSR-TR-2003-65

Invisible computing creates better everyday devices by augmenting them with computation and
communication. The native interface of a particular device suffices, with computation and
communication occurring transparently to the user. An invisible computing device does not require
setup or maintenance overhead and can be deployed incrementally without prerequisite infrastructure.
Low-cost invisible computing devices could be used in areas such as home automation, wearable
computing, sensor networks, or control of critical infrastructure, e.g. power grids.

Security is crucial in invisible computing. Nobody wants their home automation system accessed by
others, or their everyday lives monitored by hackers. Security systems typically require the creation,
distribution and revocation of security keys—a management chore that is potentially at odds with the
invisibility requirements. Also at odds is the need for the devices to operate and communicate
independently, without access to centralized services. Devices should also fail independently;
compromising one device should not compromise the whole system. Finally, a personal security
system should be able to scale and federate itself with other systems, for instance when some monetary
transaction is involved.

This paper describes a security and communication model for invisible computing that combines
limited resource consumption, interoperability, and security. It argues that the model presented sets a
minimum level of functionality. It uses a combination of standard protocols and well known encryp-
tion primitives. The implementation for an embedded microcontroller demonstrates that the goals are
achievable with an efficient and understandable design

Microsoft Research
Microsoft Corporation

One Microsoft Way
Redmond, WA 98052

Microsoft Research Technical Report MSR-TR-2003-65. Submitted for Publication.

* Currently Ph.D. Candidate at Texas A&M University 3

Secure Invisible Computing
Yong Xiong*, Johannes Helander
Alessandro Forin, Gideon Yuval

ABSTRACT

Invisible computing creates better everyday devices by
augmenting them with computation and communication. The
native interface of a particular device suffices, with
computation and communication occurring transparently
to the user. An invisible computing device does not require
setup or maintenance overhead and can be deployed
incrementally without prerequisite infrastructure. Low-cost
invisible computing devices could be used in areas such as
home automation, wearable computing, sensor networks, or
control of critical infrastructure, e.g. power grids.

Security is crucial in invisible computing. Nobody wants their
home automation system accessed by others, or their everyday
lives monitored by hackers. Security systems typically require
the creation, distribution and revocation of security keys—a
management chore that is potentially at odds with the
invisibility requirements. Also at odds is the need for the
devices to operate and communicate independently, without
access to centralized services. Devices should also fail inde-
pendently; compromising one device should not compromise
the whole system. Finally, a personal security system should
be able to scale and federate itself with other systems, for
instance when some monetary transaction is involved.

This paper describes a security and communication model for
invisible computing that combines limited resource consump-
tion, interoperability, and security. It argues that the model
presented sets a minimum level of functionality. It uses a
combination of standard protocols and well known encryption
primitives. The implementation for an embedded micro-
controller demonstrates that the goals are achievable with an
efficient and understandable design.

1 INTRODUCTION

Our everyday lives are filled with various devices that help us
with our chores, provide entertainment, help improve our
health, provide light and heat, and help us communicate. If we
could improve those devices and make them work together—
thus enabling new and better devices—our everyday lives
would be more comfortable, social, and efficient.

Invisible Computing attempts to do just that. It combines
everyday devices with computation and communication capa-
bilities, enabling new functions and aggregation. It does this
without forcing us to learn new or archaic computer interfaces.
It makes it easy to adopt by keeping costs down and without

requiring a pre-existing infrastructure. A watch could be used
to control the volume on the radio. The refrigerator could
automatically order more beer or notify the TV that its door is
ajar. Energy could be saved by integrating sensors with the
heating system. Wearable medical devices could improve our
well-being. Utilities could reduce water lost from leaks. More
natural user interfaces and ubiquitous communication would
enable better social interaction regardless of our physical
location. Smart toys would not only entertain, but also educate
children.

Refrigerator
Light
Bulb

Light
Switch

Watch

Base
Station

Low Bandwidth
Wireless

Ad Hoc Network

Bank

Supermarket

Data
Center

Internet

Credit Card
Company

Figure 1: The home as a secure, invisible computing system

In virtually all of these applications we must pay attention to
security issues. Installing a home automation system should
not result in the loss of privacy. A wearable medical device
could benefit from the ability to communicate directly with a
doctor’s office but should not leak sensitive biometric data to
outsiders. Only the authorized physician should be able to tune
a pacemaker. Supervisory control and data acquisition
(SCADA) systems, which are used to control the operations of
critical infrastructure (e.g. power utilities, distribution
networks, and municipal water supplies), have generally been
designed and installed with little attention paid to security [1].

An adequate security model for invisible computing devices
must therefore ensure privacy and owner control at all times.
To protect privacy we must use strong encryption for any and
all communications. To protect owner control we cannot let
the compromise of one device compromise the entire system.
This requirement mandates a solid key exchange and trust
management protocol; one that can only be implemented by a
public key infrastructure (PKI), since access to authority
servers is not always available.

Another issue that invisible computing systems face is inter-
operability. For instance, a home automation system must
integrate cellular phones, refrigerators, TVs, heating systems,

Microsoft Research Technical Report MSR-TR-2003-65. Submitted for Publication.

4

watches, heart rate monitors, etc. produced by different manu-
factures at different times. XML [30] Web Services [26] have
been developed to help manufactures overcome this integra-
tion barrier. They provide loosely coupled, platform-indepen-
dent, and language-independent application layer interopera-
bility between different platforms, including small devices [3].

Combining the security and interoperability requirements with
low cost and limited resources is a challenge. Current
embedded systems either have no security or provide
extremely limited interoperability.

This paper introduces a security model and an implementation
that provides a solution to this challenge. It is designed for
devices that often must operate in the absence of any
infrastructure, communicating in an ad hoc fashion with a
small number of peers over unsecured channels, such as
wireless radio links or electrical power lines. At times these
devices have access to general purpose computers or the
Internet, and want to be part of the global service architecture.

The model provides service discovery, maintenance of
trust/function relationships, server/client authentication, secure
messaging, and local/global interoperability. It does not
assume any global authority or availability of services, but still
enables federating with external trust domains. Privacy and
owner control are maintained via strong encryption and
managed access at all times. Interoperability is achieved
through a unified presentation layer that leverages XML
Web Services. A base station is required when connecting to
the Internet but not for peer-to-peer communication. Setup
and discovery are integrated with trust establishment and
key distribution—thus creating an easy to use, hassle-free user
experience.

We implemented a prototype of this model on the MMLite
platform [2][3]. The implementation uses standard protocols
in an optimized fashion. The protocol uses a small number of
the well known encryption primitives, RSA, AES, and SHA1;
and a combination of the common protocols UDP,
XML/SOAP [27][28][29], and Resurrecting Ducklings. In the
Resurrecting Ducklings protocol, a device adopts the first
“mother” it sees as its certificate authority. The implementa-
tion runs on a low-cost, single chip microcontroller [43] and
performs well enough for real use.

Our main contributions are:

We designed and implemented a security model for invisi-
ble computing systems that provides confidentiality,
integrity, authentication, and interoperability. The model
combines well-known protocols and algorithms in a novel
and effective way, making it suitable for invisible
computing.

We use XML and SOAP as a general presentation layer and
communication protocol. We use SOAP for trust
management, key distribution, service discovery, two-way
authentication, application communication, etc.

We are proposing a trust relationship infrastructure that
does not have hierarchy or a global or online certificate
authority (CA). In our model, each person can have her own
trust domain that is completely independent. Any two
devices within a trust domain can securely communicate
with each other without access to other devices or the
Internet. Devices can set up occasional secure interoperation
with the outside Internet and federate across domains,
extending the security model to a global scale. A single
sign-in is required instead of signing in to multiple domains.
Our model combines well with the global WS-Federation
specification [10] but differs from the Orange Book [22] in
its lack of hierarchy.

The model achieves both point-to-point and end-to-end
secure sessions using the same security mechanism.

Discovery, authentication, and key exchange are integrated
together to save on memory footprint. Our simple service
discovery protocol can work with and without other naming
services. The discovery and bootstrap messages are
encrypted just like any other message, thus privacy is not
compromised at any phase of the system.

Trust establishment and functional assignment are
combined so that all setup chores are done in a single user
interaction. The interaction is based on physical touch and
predicts the correct action heuristically, drawing from any
preceding interaction. For instance, first touching a light
bulb when it is installed and then a light switch indicates to
the light switch that it should control the light and it also
gives it the authority to do so.

The implementation shows that a reliable secure protocol
based on PKI can be implemented on embedded systems,
despite their limited resources. It offers further proof that
using SOAP in embedded computing is a viable choice.

The rest of this paper is organized as follows: In sections 2, 5,
4, and 5, we present the security model and discuss various
stages in achieving secure communication, including trust
management, key distribution, authentication, and encrypted
messaging. In section 6 we examine the cryptographic
methods used in more detail. We discuss the implementation
of the model in section 7, present a performance evaluation in
section 8, review related work in section 9, and draw
conclusions in section 10.

Microsoft Research Technical Report MSR-TR-2003-65. Submitted for Publication.

5

2 SYSTEM ARCHITECTURE

Our secure communication model logically comprises three
stages. The first two enable the third.

1) Trust relation establishment and role assignment
Who are the participants? This stage deals with questions
on how a security domain is established; how an entity is
created and what function it should have; how an entity is
admitted into a security domain; and how to establish
trust across domains.

2) Discovery and key exchange
Why and how should we talk? Once an entity wants to
talk to another entity it must first find its peer, verify
trust, establish a communication key, and decide on
communication routes and data representation.

3) Service communication
What do we want to say? This stage is where the real
work is done. Each entity presents itself as a service that
can receive messages. The authenticity of the message
needs to be verified and a decision made whether the
message should be processed.

Each stage defines a set of protocols and policies. Each stage
is explained in further detail in sections 3, 4, and 5. At all
stages, basic security properties must be maintained:

Confidentiality: Ensuring data transmitted can not be read
by unauthorized persons. Messages are encrypted using
AES and access to the keys is controlled.

Authentication: The process of verifying the identity of a
data source and destination. Certificates and public key
cryptography of RSA and DSA are employed to show proof
of a secret, and to establish peer-to-peer keys that are
known only by the sender and receiver.

Data Integrity: Verification that the data received is
accurate and un-changed by a man in the middle. Message
Authentication Codes (MAC) are used to provide message
integrity. Cryptographic hash functions are calculated using
SHA1. Sequence numbers prevent message duplication.

Non-repudiation: Proof of transmission and reception. In
most cases the knowledge of the peer-to-peer key is
sufficient. If it is necessary to show that the receiver did not
generate a message herself, digital signatures are calculated
using PKCS#1 (SHA1 and RSA) or DSA.

Access Control: Permits or denies access based on
attributes of server and client. The certificate attributes are

used for both mandatory access control (static decision) and
for discretionary access control (dynamic decision).

3 TRUST MANAGEMENT

Trust management is central to the development of secure
systems [40][22][23][4][18] and the application areas of our
interest are no exception.

Trust is established between entities within a trust domain.
The trust domain is controlled by an authority that is
acknowledged by each member. Each entity is represented by
a certificate and the knowledge of a secret that is only known
by the entity itself. A certificate consists of the public key
(RSA/DSA) that matches the secret and a number of attributes.

A small device—the focus of this paper—has one entity that
represents the device. That entity is a member of one trust
domain. Conversely, big computers may have multiple entities
that represent various services or users on that computer, with
each entity potentially being part of multiple trust domains.

In a consumer setting, each person can have her own personal
trust domain. A personal trust domain consists of all devices
that have direct trust relationship even if the device locates in
the outside Internet. This means a personal trust domain is not
limited to the local ad hoc network. The local ad hoc network
can work independently from the outside Internet. Our model
also supports occasional secure cross-domain interoperation.
Cross-domain trust relations can be established through WS-
Federation [10]. Unlike the orange book, our model is not
hierarchical, as consumer use and a consumer society do not
match a hierarchical model. Our model does not require a
global certificate authority (CA), therefore systems can be set
up completely independently and do not require connectivity.

3.1 Bootstrapping
Trust is established on a different channel than normal
communication. In this paper, we call this channel the secure
channel. This channel could be physical-touch based, meaning
that any communication on this channel implies physical
presence. It could be a personal visit to the bank, where a
teller verifies that the driver’s license matches the face. It
could be a check with the hash of the public key. When
the check clears, trust is established. The reception of
money makes the bank trust the customer—the policy of
what constitutes trust is up to the participants. The touch
based scenario seems most appropriate for consumer
electronic devices.

The trust is bootstrapped using the Resurrecting Duckling
Protocol [5] on the secure channel. A device becomes a part of
the family (the trust domain) of the first “mother duck” it sees.
We say the “mother” is the trust authority of all devices in its

Microsoft Research Technical Report MSR-TR-2003-65. Submitted for Publication.

6

family. The “mother” is another device that signs the new
device and the siblings believe in the signature because they
share the “mother”. We call the “mother” a seal, since it is
analogous to the seal of a duke from old times. The seal can be
viewed as a certificate authority (CA) of the domain. One seal
defines a personal trust domain.

This is what happens: Initially a device is alone or “blank”.
Each device generates a key pair for itself. The seal creates a
certificate for itself. A certificate is a public key and a
collection of attributes that are signed by the seal’s private key
(SHA1 and RSA). The blank device sends its public key to the
seal. The seal turns it into a certificate and sends it and its own
certificate to the device. The device is now part of the family
(trust domain). The attributes state what role the device should
have, what the identity of the device is, and a contain a static
access control list that—together with dynamic policies—
provides fine grain control in later stages. Possible attributes
include a name, a unique ID, a device category, access
privileges, the initial location, associated devices, and the
owner of the device.

The device proposes an attribute list, and the seal edits and
signs the list together with the public key. The editing process
is affected by what the seal touched previously and
heuristically reflects the user’s intent. For example, a user can
touch a light bulb with her seal first and then physically touch
a light switch. The light switch is associated to control the
light and is authorized to do so. Not all switches need to be
authorized to control all lights even if they all are certified by
the same seal. Note that the physical touch is only needed
when the light bulb is installed and later configuration can be
done remotely if desired.

The seal also creates a shared house key and sends it to each of
its siblings. This key is later used for discovery question
messages to avoid any plain text communication.

The seal never needs to communicate over the public channel
and does not need to be on-line after certificate initialization.

3.2 Reversion
A device with an established identity can also be reversed
back to its initial ownerless state—the duckling is instructed
by the seal to crawl back into its egg. This enables a new
“mother” to gain control over a device after it has been sold.
Before a device is reversed, the device will verify that the seal
is its mother. The process is: The device generates a random
number and encrypts it with its seal’s public key. The seal
then decrypts it with its private key. The device believes the
seal is its mother only if the seal can recover the random
number. After the mother is verified, the device simply purges
its certificate and its seal’s public key. It may be desirable that

the reversion is signaled by flashing lights or similar action so
that it cannot be done secretively.

In order to keep the private keys protected as much as possible,
the private keys never leave the device. On the other hand, it is
useful to be able to reverse a key even if the seal is lost—a
backup would be desirable. Instead of giving out its own
private key, the seal creates a certificate for a backup seal
device with an ACL attribute that allows reversion. If the seal
and the backup also sign each other’s certificates, it would be
possible to merge the trusts of each other by each step-sibling
transitively verifying each other’s certificates.

Certificate updates are handled similarly to reversions. Instead
of simply purging the old certificate, the device generates a
new certificate proposal and sends it back to its mother or
backup mother for recertification.

Recall lists and other dynamic configuration changes can be
sent over the public network at any time, with the limitation
that changes will not immediately become active on
disconnected devices. However, dynamic updates allow such
functions as giving the cleaning lady temporary limited
credentials to the home or canceling an old tenant with a
single command.

3.3 Direct Trust
Within a trust domain, all devices with the same owner trust
each other directly. This is subject to the attributes in the
certificate since they all trust their seal’s signature. Direct trust
can take place within the local ad hoc network or cross
the Internet.

For the local case, shown in Figure 2 (a), each device has a
certificate signed by the same seal and knows the seal’s public
key after bootstrapping with the Resurrecting Duckling
protocol. Thus two devices can authenticate each other by
exchanging their certificates.

Figure 2 (b) shows another case. Occasionally, one device
wants to request a service outside of the local wireless
network through the Internet. For example, a user wants to
contact the bank from her watch. To set up a secure
connection between the bank and her watch, a trust
relationship must be established first. She could take her seal
to the bank and use the touch-based authentication at the bank
(the teller checks a picture of the customer and the customer
sees the big building and believes it is a legitimate operation).
The seal gives its own certificate to the bank and creates a
certificate for the bank by signing the bank’s public key and
some attributes that state that this is the bank for the given
account. The Resurrecting Duckling Protocol is used to
achieve this. The process is essentially the same as when the
seal admits a light switch.

Microsoft Research Technical Report MSR-TR-2003-65. Submitted for Publication.

7

The public keys could also be exchanged in other ways. In fact,
rather than sending the entire key, a hash is sufficient. The
customer could send a check with a hash of the public key.
The bank could publish a hash of their key in a major
newspaper. The attributes can be established manually based
on the context. In a low-tech bank branch, the trust could be
exchanged with ID cards and pieces of papers with the key
hashes on them.

Client Servertrust

(a) Within ad hoc network

trust

Low bandwidth
ad hoc network

Internet

Watch BankBase
station

(b) Cross Internet

Figure 2: Direct trust between devices within
a personal trust domain

The bank can later use the hash of the seal’s public key to
verify that a certificate sent to it is correct and signed by the
seal. For example, a watch trying to contact the bank through
a base station and the Internet will present its own certificate,
send a copy of the seal’s certificate, then request the bank’s
certificate (or use the manually entered certificate that came
on a piece of paper).

3.4 Indirect Trust
In some cases, a device needs to request a service across trust
domains. For example, the refrigerator wants to order some
beer from a supermarket. The supermarket is not within the
same trust domain as the refrigerator. There is no direct trust
relationship between the refrigerator and the supermarket, but
the refrigerator and the credit card company trust each other.
The supermarket and the credit card company also trust each
other. When the refrigerator wants to access the service of the
supermarket, they talk to each other first to find which identity
is trusted by both of them (step 1 in Figure 3). Then the
refrigerator gets the public key of the supermarket from the
credit card company (step 2 in Figure 3), as does the
supermarket (step 3 in Figure 3), thus creating trust between
the refrigerator and the supermarket.

The above case matches the Federated Identity Model of the
industry-standard global XML architecture (GXA) [7][10]. In
GXA terms, public keys are security tokens. A device acts as

its own security token service instead of using a separate
service. The level of trust established indirectly must be less
or equal to either direct link.

fridge

credit
card

company

super-
market

2. public key of super-
market 3. public key of the seal

4. set up cryptographic
connection

Trust Domain A Trust Domain B

1. do you trust the credit
card company?

Figure 3: Cross domain trust

4 DISCOVERY AND KEY EXCHANGE

The purpose of this stage is to establish enough state to allow
communication between two parties. The instigator of
communication needs to find the proper entity to communicate
with, authenticate the entity, establish a communication key,
find a communication path to the entity, and negotiate the
protocol and data representation.

For each peer an entity wants to communicate with, it caches a
certificate with RSA and (optionally) DSA keys and attributes,
a URL, a peer-to-peer AES and SHA1 key, a network route to
where the peer was last seen, a sequence number, a session ID
each way such as a UDP port number, and parameters (WSDL,
compression, preferred protocol). Any of the state can be
arbitrarily discarded with the cost of having to redo part or all
of the discovery.

All communication in this stage is done on the public channel
and is categorically encrypted.

4.1 Service Discovery
If the client wants to access a service, it will check if the URL
of the service is cached. If not, it will send a discovery request
through an IP multicast SOAP message on the public channel.
The discovery request message gives a description about the
requested service. This might be a DNS host name or
something more abstract. The server sends back to the client a
discovery response containing its URL through a unicast
SOAP message. Potential service masquerading is detected by
checking the certificate and ACL of the replying entity.

Sometimes a user needs to access a device from outside of her
personal ad hoc network (e.g. the home). In this case, the user
sends a service request to the base station of her personal
network through unicast, and then the base station multicasts
the service request within the wireless ad hoc network. The
right service will send a discovery response to the base station
and the base station will forward it to the client as a regular

Microsoft Research Technical Report MSR-TR-2003-65. Submitted for Publication.

8

internet directory service. The message forwarding is done
with Web Service routing and the SOAP protocol. If the base
station has a cache of the record of the required service, it
could respond to the client directly. In this scenario, the base
station acts as a discovery service.

Conversely, to find services that are outside the local ad hoc
network from within the local network, the base station again
acts as a proxy. The base station can either reply to the
discovery message on behalf of the service, or the device can
start by discovering a directory service and then use that for
further queries.

All discovery messages (SOAP messages) are encrypted with
a home key. The home key is an AES key generated by the
seal and is common to the security domain. Its purpose is to
keep curious neighbors from knowing what is being
discovered. We will discuss AES use further in section 6.

4.2 Two-Way Authentication and Key Exchange
After a potential peer has been located, it is time for authenti-
cation and key exchange. Both parties authenticate each other.
We use a combination of symmetric and asymmetric key
encryption techniques that keep the asymmetric use at a mini-
mum, since it is much costlier to calculate. The two-way
authentication and peer-to-peer key exchange is done with
RSA, while the connections are encrypted with an AES peer-
to-peer key. If one of the parties has more resources, we then
use DSA instead of RSA, as appropriate, to make the
resource-rich party bear the brunt of the computation. This
takes advantage of DSA’s cost bias where public key
operations are expensive but private key operations relatively
cheap. RSA’s cost properties are the opposite.

Authentication involves exchanging and verifying certificates.
In a certificate, the public key of a device is the most
important. It also contains the attributes of a device. Basically,
authentication with PKI is a process to verify if a public key
belongs to the right entity. If a public key is verified to belong
to an entity, then one can trust that any information encrypted
with the public key can only be understood by the entity with
the right private key. The attributes are used to check against
an Access Control List (ACL) to do authorization.

After the server and client authenticate each other, the client
generates a random symmetric peer-to-peer key, encrypts it
with its own private key and the server’s public key (contained
in the server’s certificate), and sends it to the server. The
server decrypts it with the client’s public key (contained in the
client’s certificate) and its own private key. Generating a
random peer-to-peer key and encrypting it with the private key
can be done during idle time prior to the key exchange. This
avoids latency required for encryption with a private key. A
large number of random keys can be pre-computed this way

when convenient. Caching the results turn these public/private
key operations into one-time events.

5 SERVICE COMMUNICATION

Once a shared peer-to-peer key is created, an encrypted
connection can be set up between the client and the server.
Encryption is applied to SOAP messages instead of transport
layer packets like SSL does. Every node is a server and every
node accepts SOAP messages.

There are four basic cases of communication patterns:

1. Direct communication between peers in an ad hoc
network.

2. Communication to the outside where the base station is
trusted with the data.

3. Communication with the outside where the base station
is not trusted.

4. Communication within the ad hoc network through an
intermediary.

In all cases, communication comprises encrypted SOAP
messages. How the messages are encoded and what parts of
the messages are encrypted with what keys vary slightly.

A SOAP message consists of a SOAP header and SOAP body.
The method name and parameter values of a remote call are
contained in the SOAP body. The SOAP header has
information relevant to the messaging itself, in particular the
URL of the service object the message is meant for and a list
of any intermediaries that are needed in delivering the
message. The SOAP body should only be readable by the final
server and the client, yet unreadable to any intermediate nodes.
The information meant for the intermediaries should only be
legible to the correct entities, thus the SOAP header needs to
be encrypted as well.

5.1 Peer-to-Peer Messages
The discovery process established a peer-to-peer key and a
session identifier (SID). The sender calculates a digital
signature using SHA1 HMAC and attaches it to the message.
The sender then encrypts the entire message (excluding the
SHA1 HMAC value) using AES in the CTR (counter) mode
and attaches the SID and sequence number in plain text to the
beginning of the message.

The AES encryption is driven by the sequence number and the
peer-to-peer key. The CTR mode requires a unique bit pattern
for each block. The sequence number is incremented for each
block and used as the index. The instigator of the discovery

Microsoft Research Technical Report MSR-TR-2003-65. Submitted for Publication.

9

uses odd numbers and the respondent uses even numbers,
avoiding the generation of the same sequence number. Once
the bits in the sequence number have been exhausted or for
any other reason either of the peers is free to discard the peer-
to-peer key and force a new key exchange to take place.

The receiver gets the message and uses the SID to look up the
correct peer state (if none is found the message is discarded).
The received sequence number is compared with the expected
sequence number and if it is smaller, the message is assumed
to be a duplicate and is discarded. The expected sequence
number is, however, only updated once the message has been
accepted so as to prevent simple denial of service attacks.

Next, the receiver applies the sequence number and peer key
to decrypt the message. It then calculates a HMAC checksum
using the peer key and compares it to the one received. If the
checksum does not match, the message is discarded.

Finally the receiver checks the message against the attributes
of the peer and decides whether the message should be
processed in light of access control lists and possible recall
lists, etc. If the message can pass through all the filters, it is
processed by the SOAP deserializer and served by the correct
server object.

The reply is sent back to the client with information in the
SOAP routing header that lets the client correlate the response
with the request. All the encryption and verification is done
exactly like the request, but sent in the opposite direction.

Note that it is safe to transmit the SID and sequence number in
plaintext. Any forgery inevitably leads to the message being
discarded by the receiver as the AES and HMAC calculations
will not yield the expected result. The information content of
these numbers is low enough that it does not constitute a
privacy threat. The SID could be a UDP or TCP port number
thus saving a couple of bytes.

5.2 Messages through Trusted Base Station
Communication with the outside world entails interoperability
and a base station. The simplest case is where the base station
is trusted enough to handle low security operations and can
offload complications from a device. An example scenario is a
refrigerator that wants to order milk from the supermarket.
The refrigerator is no more secure than the base station so the
base station can order the milk on behalf of the refrigerator.

The refrigerator authenticates itself to the base station and
uses the peer-to-peer communication patterns. The base
station then uses the WS-Security and WS-Federation Internet
Web Service protocols encoded as XML and Base64 blocks to
order milk from the supermarket, while the wireless side
simply encrypts the entire message. The two communication

patterns and trust relationships are created independently. This
scenario precisely corresponds to the Passive Profile of
WS-Federation.

5.3 Messages through Untrusted Intermediary
In some cases, the security of the base station is insufficient;
therefore an end-to-end secure channel must be created. The
base station is still needed for forwarding messages. This
corresponds to the Active Profile of WS-Federation.

UDP + SOAP, (Kh , Ks) HTTP + SOAP, (Kp, Ks)

Low bandwidth wireless
ad hoc network

Internet/Intranet

Watch BankBase
station

Figure 4: A watch sends messages to a bank

The scenario in Figure 4 is an example of this. The watch
sends a SOAP message to the bank through a base station. The
watch is within the wireless network and the bank is on the
outside Internet. The base station knows how to forward the
message to the bank. The base station needs to access the
SOAP headers but only the bank and the watch need access to
the body.

The SOAP body is encrypted with the end-to-end (watch to
bank) peer key (Ks in Figure 4). Only the endpoints can
understand the contents of the body. On the wireless link the
SOAP header is encrypted with the peer key that is shared
between the base station and the watch (Kh in Figure 4); while
between the base station and the bank, the SOAP header is
encrypted with a peer key (Kp in Figure 4) that is shared
between the base station and the bank. Since the base station
and the bank have more powerful processors than the watch,
they can bear the burden of the key exchange (see section 6.1).

SOAP header SOAP body

Cipher text 1

Cipher text 2

... WS routing

HTT P/UDP header message packet

Plaintext

Seq# SID SOAP message

Plaintext

HMAC...

...

SID2Seq#2

HMAC

Figure 5: A routed message packet

Microsoft Research Technical Report MSR-TR-2003-65. Submitted for Publication.

10

SOAP messages can theoretically be sent over any transport.
Our implementation supports TCP/HTTP and UDP. Within
the wireless network, SOAP messages are transmitted through
UDP instead of HTTP. UDP is much cheaper than HTTP and
the extra headers are not needed. The base station then
forwards the SOAP message to the bank through HTTP. The
message forwarding is done using a Web Service routing
SOAP header.

Figure 5 shows the format of a message packet. Since it
pointless to encrypt the same data twice, the “inner” packet is
only encrypted with the end-to-end key; while the “outer”
packet is encrypted with the point-to-point key. The outer
HMAC, however, covers the entire message to maintain
integrity between the halves.

5.4 Ad Hoc through Intermediary
This case is essentially the same as communication with the
outside. It may involve the base station as a more powerful
and possibly trusted intermediary or it may involve any device
that happens to be able to do forwarding. Security can be
constructed either end-to-end or hop-to-hop as needed.

Scenarios could be arbitrarily complex where multiple headers
should be understood by multiple intermediaries. The
encoding model presented here extends to more complex cases
and the small number of primitives presented here can be
expected to cover all practical uses.

6 CRYPTOGRAPHIC PRIMITIVES

In this section, we examine the particular ways in which the
cryptographic primitives RSA, AES, SHA1, and optionally
DSA are used in our model. We use two specific
optimizations to improve performance. First, we pre-calculate
encryption functions allowing pipelining that reduces latency.
Second, we recognize that sometimes there is a strength
imbalance between two peers. In that case, we let the stronger
peer carry a heavier calculation burden.

6.1 Public Key Primitives
The protocols in this paper use public key cryptography in
four places:

1. Signing of certificate by the seal.

2. Signing peer-to-peer key to prove it came from the
correct entity.

3. Encrypting peer-to-peer key in such a way that nobody
but the correct receiver can eavesdrop the message. The
receiver proves by understanding the message that it is
the correct entity.

4. Signing of message for which it is important to prove
that the receiver did not generate the message herself.
This might be instructions for a monetary transaction.

In the cases 1, 2, and 4, we use a digital signature algorithm.
The sender uses her private key to sign the message. The
sender uses the sender’s public key to verify it. PKCS#1 [13]
is used usually, with SHA1 for hashing and RSA for signing.
In case 3, the key can be pre-generated and signed. When the
key is needed, the pre-generated key is used—saving the
latency of the RSA private key operation. The pipelining
process reduces encryption latency significantly (see Table 2),
since RSA is biased in such a way that public key operations
are much faster than private key operations.

In case 3, the receiver must do the private key operation on an
unknown secret and thus cannot pre-calculate using RSA. If
one of the peers is more powerful or has more available
energy than the other, the key generation should be instigated
by the weaker peer so that the expensive calculation can be
done by the stronger peer. If the strong peer is the instigator,
the receiving weak node discards the proposed key and instead
generates its own key and sends it back to the instigator.

In case 4 when the sender is a strong node, we again use
PKCS#1. If the sender instead is a weak node, we use DSA
(ElGamal), where the private key operation can be pre-
calculated without the message [41]. The DSA public key
operation that is more expensive is done on the stronger node.
It would be possible for the seal to use DSA for signing the
certificate thus reducing latency. Unfortunately, that latency
would then be added to every certificate validation—not
necessarily the best tradeoff (once per device vs. once per
device discovery).

The two remaining expensive operations are not extremely
frequent: The certificate signing is done once per device. The
peer-to-peer key exchange is done once per device pair when
they communicate for the first time.

6.2 Symmetric Encryption
The CTR mode algorithm is shown in Figure 6. We use a 128-
bit CTR mode [15] [16] AES cipher to encrypt messages. The
CTR mode provides chaining of blocks, which is more secure
than encrypting each block individually.

There are four other reasons why we choose the CTR mode.
First, the CTR mode algorithm provides semantic security.
Second, in CTR mode, only the sequence number of a
message, instead of individual counters for blocks, needs to be
transmitted. All counters can be easily constructed from a
message’s sequence number. Third, a sequence number is
needed in the message anyway to detect duplicate or delayed
messages and the same number can be used for AES. Fourth,

Microsoft Research Technical Report MSR-TR-2003-65. Submitted for Publication.

11

the counters can be predictable and encrypting/decrypting a
message is independent from other messages. The CTR mode
is defeated only if a counter is repeated. There is no lower
limit to the length of the counter, but if the bits run out, a new
peer-to-peer key must be generated.

E

ctri

+Pi Ci

E

ctri

+Ci Pi

K K

encrypt decrypt

Bi Bi

Figure 6: Counter mode block cipher. E stands for any symmet-
ric cipher function, e.g. AES, K a secret key, ctri the ith counter. Pi

the ith block of plaintext, Ci the ith block of cipher-text, and Bi the
result of applying E on ctri. ⊕ stands for the XOR operator.

Since the counter is predictable, the CTR mode lends itself
well to pipelining. New encryption pads are calculated during
idle time after previous messages have been processed. At
latency critical times, when a server needs to respond to a
request message, only an exclusive-or (XOR) operation is
needed. This way AES does not factor into latency, but only to
the frequency that messages can be processed. Also, the
pipelining does not save energy but the pre-calculation could
be done more aggressively when more energy is available if
there is fluctuation.

6.3 Hashing Primitives
Encryption itself is not enough to keep the integrity of the data.
Integrity is verified by a MAC (Message Authentication Code).
This is a bit string that is a one way hash function of the
message and the secret key. The secret key is shared by the
sender and the receiver and is part of the peer-to-peer key.

The SHA1-checksum algorithm is used with the symmetric
key MAC [14] when the sender and receiver trust each other.
When it is important to prove which peer generated the
message, a more expensive digital signature that uses
SHA1/RSA or DSA is used instead.

7 IMPLEMENTATION

We implemented a prototype of the model described in this
paper on the MMLite platform [2][3]. The platform is
specifically designed for invisible and embedded use. It takes
an objects everywhere approach and is built out of
components that expose well-defined interfaces. The platform

combines the benefits of special and general purpose systems.
It is general-purpose in the abstract, allowing code reuse and
quick programming, but special purpose in the concrete,
allowing efficiency and small footprint. The same interfaces
are implemented by many components. These components are
rarely aware of their intended system layer, and the same
implementation can be reused in many different places.

MMLite adopts a unified namespace to hold any kind of
object, e.g. a file, a heap, an instance of any class or even a C
struct. Through this unified namespace, a component can gain
access to objects maintained by other components. The
namespace has a close relationship with Web URLs. All
components and interfaces are described by an XML metadata
database that is also used to drive SOAP serialization and
deserialization.

MMLite supports programming in a convenient C
environment for performance critical components or in C#
when desired for code mobility or quick extensibility.

MMLite uses SOAP as a general communication protocol and
XML for data representation. For example, we use SOAP to
do key distribution, service discovery, two-way authentication,
etc. The implementation interoperates with ASP+ and the
SOAP Toolkit on Windows XP®. The SOAP implementation
supports high level remote method calling. Through
automatically generated SOAP proxies it is almost as easy to
call a remote method as it is making a function call in a local
application, with some obvious differences in timing and
failure modes.

The network component is based on the Berkeley 4.4BSD-
Lite TCP/IP stack. The stack is adapted to share network
buffers with other components. This way the same buffer is
operated on in different parts of the system without copying,
and saves significant amounts of memory. The driver puts the
data into a buffer, which is operated on by the network stack,
is directly decrypted, and the XML parser and SOAP
deserializer use the same data.

Besides the core system components, any networking, security,
and application code is encapsulated into components. In an
embedded system there is no real distinction between an
application and an OS kernel, and this is reflected in the
system. Components are insulated only when needed by
security reasons. Insulation for security is not confused with
the modularity of the system.

We use a pipelining technique to save latency. This is done in
peer-to-peer key generation when encrypting with a private
key (see sections 4.2, 6.1). Latency is also saved in prediction
and encryption of counters in CTR mode AES cipher (see
section 6.2).

Microsoft Research Technical Report MSR-TR-2003-65. Submitted for Publication.

12

BASE

DRIVERS

NET
XML

SOAP

AES

RSA

SHA1

SECProto

C-Library

8 PERFORMANCE

We measured our system on AT91EB63 evaluation boards
(called EB63 board for simplicity in the rest of this paper) [42].
An EB63 has a 25MHz ARM7 microcontroller, 256Kbyes
SRAM and 2 Mbytes Flash. Since this is more than a cost-
effective system would have, we limited the memory usage to
32KB of RAM and 256KB of Flash ROM. The board was
chosen for its processor and I/O capabilities, not for its energy
efficiency or lack thereof.

Instead of an actual wireless network we ran the measure-
ments over serial lines with one serial line representing a
secure channel and another representing the public channel.
The serial lines were run at 38400 baud, which is in range of
several available low-power wireless radios. We used a PC as
a “base station” achieving connectivity to the Internet.

We will now evaluate the cost of the different pieces based on
measurements. The cost includes costly system resources,
time, and energy.

Files ROM
Static
RAM Heap Stack

Total
RAM

BASE 24,676 1,940 2,837 2,777

DRIVERS 11,464 332 896 2,288 3,516

NET 77,024 3,424 2,648 3,400 9,472

XML 7,860 16 88 104

SOAP 29,504 280 996 4,320 5,596

SECProto 14,180 604 1,848 2,648 5,100

AES 16,532 8 8

RSA 9,784 28 24 52

SHA1 5,436 8 8

C-Library 7,620 12 12

TOTAL 204,080 6,652 9,337 12,656 28,645

Table 1: Footprint (arm - in bytes) at peak usage

8.1 Footprint
The system can be compiled with many compilers. The
measurements were carried out using the ARM Software
Development Kit 2.11. Table 1 shows the memory usage of
the whole system. The ROM footprint is the amount of Flash
required. The RAM footprint is measured at the point of
execution where the memory usage was at its maximum. The
RAM usage of the individual components varies but this is the
point that determines how much actual RAM is required.

Figure 7 and Figure 8 show the percentage occupation of
footprint. The network stack occupies about 38% of the
footprint of the whole system. It includes DHCP, IGMP, IP,
UDP, multicast, routing, sockets, etc. The code also supports
IP auto-configuration [21] for IP applications on an ad hoc
network in the absence of a DHCP server.

The XML parser and generator take about 8KB or 4% of the
total. The SOAP component includes a schema checker and a
serializer/deserializer that translates between SOAP messages
to application stack frames according to an XML specification.

Figure 7: ROM Footprint

The SECProto component leverages the SOAP component
and includes the security protocol implementation, i.e. trust
management, service discovery, key distribution, two-way
authentication, etc. The cryptographic algorithms AES, RSA
and SHA-1 are lifted from Windows® and are not particularly
optimized for size. The C-Library is the part of the ISO C
runtime library that was used.

The BASE component includes the real-time scheduler, a heap
manager, a loader, any machine dependent initialization code,
threading and synchronization, and the unified namespace.

BASE

(other)

DRIVERS

NET

SOAP

SECProto

Figure 8: RAM footprint at peak usage

The total system heap is 9,337 bytes including the usage of the
heap itself but excluding stacks. We can see that the ROM
footprint (including code and read only data) of the whole sys-
tem is less than 200 KB (204,080 bytes) and at peak usage the
RAM footprint—including static data (.data, .bss, and inter-
rupt vectors), heap and stacks—is about 28 KB (28,645 bytes).

8.2 Latency
We measured how long it took to respond to a service
message. Table 2 shows the latency of major cryptography
operations. We ran each operation on an EB63 board—
running from slow external Flash memory—500 times and
calculated the average latency and the standard deviation.
Generating a key pair of 1024-bit RSA takes almost 5 minutes.

Microsoft Research Technical Report MSR-TR-2003-65. Submitted for Publication.

13

P
R

E
LIM

IN
A

R
Y

Fortunately, key pair generation is required only once on each
device, when first initialized.

Encryption/decryption with an RSA private key is also quite
expensive. It takes about 103 seconds per kilobyte. There are
two applications of RSA: 1) signing the hash value of a
certificate and 2) exchanging a peer-to-peer key. For both of
these cases, the data is less than a block (128 bytes). A
certificate only needs to be signed once. Any later use
involves the cheaper public key operation. The latency of
signing a certificate is thus about 14 seconds.

Exchange of one peer-to-peer key needs four RSA
cryptographic operations: Two with private keys and two with
public keys. The first private key operation can be pre-
calculated so that it does not need to be factored into the
response time. Therefore, the cryptographic latency of peer-to-
peer key exchange is about 14 seconds. If one of the parties is
a more powerful computer, it can bear the burden of both
expensive operations by a combination of RSA and DSA use.
That cuts the exchange time down to about 1.5 seconds.

The most frequently used cryptographic operations are AES
encryption/decryption and SHA1-HMAC. Table 2 shows that
encrypting/decrypting one KB with 128-bit AES takes about
16.3 ms and hashing one KB with SHA1-HMAC takes about
79.6 ms. However, in AES CTR mode, counters can be
predicted easily so that encrypting the counters with an AES
key can be pre-calculated during CPU idle time. Thus the
latency of CTR-mode AES cipher is just XOR operation time.
XOR operation latency is negligible. Therefore, the latency to
encrypt a message with one KB and hash it is just 79.6 ms.

Table 3 shows that the latency of doing one remote ADD
operation through SOAP. The SOAP request message for
ADD operation is 835 bytes long and the SOAP response
message has 747 bytes.

Including ~74 bytes of overhead (14-byte Ethernet header, 20-
byte IP header, 8-byte UDP header, and 20 bytes for HMAC,
4 for Sequence number and 16-byte alignment) for each of
them, the serial packet for the SOAP request message is 912
bytes, and the SOAP response message is 818 bytes.
Transmitting one byte on serial line needs 10 bits. Therefore,
the theoretical serial transmit latency = (912 + 818) * 10 /
38400 / 1000 = 450 ms, where 38400 is the baud rate of the
serial line.

8.3 Energy Consumption
Energy consumption is directly related to: a) how much data
has to be transmitted—the time the radio is on, and b) the
amount of computation that needs to be done—the time the
CPU is on. Some of the cost could be alleviated by
compressing the messages so less is transmitted.

The overhead of the secure protocol is, on average, 30 bytes
per service message compared to plain text messages. This is
about 4% of the XML messages. With a compressed message,
the overhead would be somewhat higher.

The CPU overhead of the encryption per message with the
same dataset as the latency calculation is about 20%,
excluding the one time costs of certificate handling and key
exchange. This is the percentage of the message processing—
the percentage of the total workload of the system depends

Table 2: Latency of cryptography operations

Latency on a 25 MHz ARM 7
Average Standard deviation

Processes included

Total measured latency 760 ms 5% Generate, parse, process, encrypt/decrypt and transmit the
SOAP request and response.

Theoretical serial transmit
latency

450 ms N/A Ideally transmit the request and response on serial line.

Local SOAP processing
latency w/o encryption

101 ms 2.1% Generate, parse and process the SOAP request and
response.

Cryptographic latency 65.6 ms <1% AES and SHA1-HMAC on the request and response.

Other 143 ms Drivers, network stack, etc.
Table 3: Latency of remote ADD operation

Latency on a 25 MHz ARM 7 Algorithm Operation
Average Standard deviation Per KB

Generate a key pair 290 s 56% N/A
Private key Encrypt/decrypt a block (128 bytes) 12.9 s <1% 103 s

1024-bit RSA

Public key Encrypt/decrypt a block (128 bytes) 0.667 s <1% 5.34 s
128-bit AES Encrypt/decrypt a block (16 bytes) 0.254 ms <1% 16.3 ms

SHA1-HMAC 1024 bytes 79.6 ms <1% 79.6 ms

Microsoft Research Technical Report MSR-TR-2003-65. Submitted for Publication.

14

on applications that run on the platform. We measured the
EB63 board energy usage and observed that it consumes 68
mA at 7V when idle and 108 mA when busy. Integrating the
difference for one service request yields 270 mJ, which
corresponds to 20 million cycles. More energy efficient
hardware would yield smaller numbers. The measurement,
however, reflects the finding that the protocol processing can
be done within reasonable time and within a reasonable
number of cycles.

9 RELATED WORK

Many researchers identify that trust management plays a
significant role in a distributed security system [22][23] [24].
Yahalom et al. gave a formal definition of trust [40]. Wilhelm
et al. discussed trust management for mobile networks in [18].
A trust bootstrapping protocol, the Resurrecting Duckling
protocol, is proposed in [5]. It avoids an online CA and is
suitable for low-cost device use. We extend the Resurrecting
Duckling protocol to function relationship initialization and
trust federation.

Tatebayashi et al. proposed a key distribution protocol (TMN)
for mobile network [31]. However, their protocol is only
suitable for star-type mobile networks and some researchers
point out it is flawed, e.g. Simmons describes an attack against
TMN [39] and Park et al. also analyzed its weakness and
propose an improvement for it [33]. Carman et al. compared
performance of a wide variety of key distribution schemes on
different sensor network platforms [8].

Beller and Yacobi propose a protocol that uses pre-
computation techniques to reduce the response time of key
distribution for mobile uses [37]. However, their protocol is
vulnerable to a man-in-the-middle attack [36].

Zhou and Haas use routing redundancies of ad hoc networks
to achieve availability, and use threshold cryptography to
isolate compromised nodes [32]. Marti et al. proposed a
mechanism that uses a watchdog to recognize misbehaving
nodes and then uses a patherater to avoid them.

Hubaux, Buttyan and Capkun analyze security threats specific
to ad hoc networks and propose a self-organizing public-key
distribution scheme, in which certificates are issued by users
(corresponding to devices in our work) instead of a CA [35].
Their algorithm involves complex graphic operations that are
neither scalable nor suitable for embedded systems use.

Czerwinski et al. propose a secure centralized service location
model, in which service advertisements and queries are all
done through a central server [9]. However, their work is too
complicated for use on low-cost devices.

All the above papers involve one or several aspects of the
security issue for low-cost embedded system use. The model
proposed in this paper pulls them together and fills in the gaps.

Fox and Gribble presented a security protocol for mobile
computing based on a proxied version of Kerberos IV, which
provides secure access to application level services [11].
However, as would be expected, their solution requires an
online centralized authentication service. Traditional security
solutions that require online trusted authorities or certificate
authorities are not suited for mobile ad hoc network
environments. Mobile ad hoc networks are often unable to
provide access to an online centralized trust authority due to
their highly dynamic infrastructure and their need for reliable
autonomous operation.

Perrig et al. [6] propose two secure building blocks for low-
cost devices: SNEP and µTESLA. They claimed that SNEP
provides confidentiality, authentication, and data freshness,
and µTESLA provides authenticated streaming broadcast.
Their system security is based on a preset master key shared
by all devices. The block chaining they use, does not remove
the weakness that if an adversary compromises the master key
on any device, he can easily eavesdrop and impersonate all
other devices. In our system, we use PKI to exchange trust and
peer-to-peer keys and avoid these pitfalls, but end up with a
slightly more complex model. Their savings from avoiding the
trust and key issues do not appear to help—there still is no
space left for any applications in [6].

We introduced embedded Web Services in [3]. No other
comparable work has been published since. In this paper, we
focus on secure Web Services for invisible computing use. As
far as we know, even though recently much work has been
done on ad hoc network security, nobody else has done any
research on secure Web Services for embedded systems. Our
work shows two suppositions are incorrect: 1) Web Services
would be unsuitable for embedded use because they need a
large footprint, CPU time, energy, and network bandwidth;
and 2) that public key infrastructure (PKI) would be unsuitable
for embedded use because it consumes lots of energy and CPU
time [6].

One may argue that Web Services’ advantages come with a
performance penalty: XML based SOAP messages are textual
so that their sizes are significantly larger than protocols that
send specific binary data. It turns out that the special protocols
are often not that efficient and their inability to scale to new
demands make it necessary to support many different
mechanisms largely erasing any imagined performance benefit.
We also note that compressing XML can be done in CPU-
efficient ways and result in significant reduction in size.

Microsoft Research Technical Report MSR-TR-2003-65. Submitted for Publication.

15

10 CONCLUSIONS

This paper described a secure communication model and
implementation for invisible computing. It showed that it is
possible to combine low-cost with strong security and first
class interoperation. A trust and key exchange model based on
public key infrastructure and a presentation layer based on
XML Web Services were not out of reach when properly put
together.

Combining trust establishment with functional assignment led
to a physical touch based user interaction paradigm that did
not completely eliminate configuration, but made it simple and
understandable. Federating with outside trust authorities
proved centralized and hierarchical models unnecessary. The
independence achieved allows for incremental and self-
sufficient deployment.

The security does not come for free but the cost is in our view
reasonable considering the alternative of inadequate security.
A high level of security and interoperation is achievable on
low-cost devices and should therefore be adopted.

The implementation proved that secure Web Services make
sense in embedded systems with a careful design and on-the-
target optimizations. The disciplined component-based
approach of MMLite made it a good platform for achieving
the efficiency goals and enabled the project to be completed.

ACKNOWLEDGEMENTS

Thanks to Tuomas Aura and Yacov Yacobi for advice on the
cryptography and security protocols.

REFERENCES

[1] United States House of Representatives, Committee on Energy
and Commerce, Subcommittee on Oversight and Investigations,
“Statement of Dr. Samuel G. Varnado – Sandia National
Laboratories,”

http://www.sandia.gov/news-center/esources/congress-
testimony/ pdf/Varnado020709.pdf

[2] Johannes Helander, Alessandro Forin, “MMLite: A Highly
Componentized System Architecture,” in the 8th ACM SIGOPS
European Workshop, September 1998.

[3] Alessandro Forin, Johannes Helander, Paul Pham,
Jagadeeswaran Rajendiran, “Component Based Invisible
Computing,” in the 3rd IEEE/IEE Real-Time Embedded Systems
Workshop, London, December 2001.

[4] A. Abdul-Rahman, S. Hailes, “A distributed trust model,” in
Proc. New Security Paradigms Workshop (NSPW-97), New
York: ACM, 1997, pp. 48-60.

[5] F. Stajano, R. Anderson, “The Resurrecting Duckling: Security
Issues for Ad-hoc Wireless Networks,” LNCS 1796, Springer-
Verlag, 1999.

[6] Adrian Perrig, Robert Szewczyk, Victor Wen, David Culler, J.
D. Tygar, “SPINS: Security Protocols for Sensor Networks,” in
Wireless Networks Journal (WINE), September 2002.

[7] “Security in a Web Services World: A Proposed Architecture
and Roadmap,”

http://www.verisign.com/wss/ architectureRoadmap.pdf

[8] David W. Carman, Peter S. Kruus, Brian J. Matt, “Constraints
and Approaches for Distributed Sensor Network Security,” NAI
Labs Technical Report #00-010.

[9] S. E. Czerwinski, B. Y. Zhao, T. D. Hodes, A. D. Joseph, R. H.
Katz, “An Architecture for a Secure Service Discovery Service,”
in the 5th Annual ACM/IEEE International Conference on
Mobile Computing and Networking (MOBICOM 1999), pages
24-35, Seattle, WA USA, August 1999.

[10] IBM Corporation and Microsoft Corporation, “Federation of
Identities in a Web Services World,”

http://msdn.microsoft.com/webservices/understanding/advanced
webservices/default.aspx?pull=/library/en-
us/dnglobspec/html/ws-federation-strategy.asp

[11] Armando Fox, S.D. Gribble, “Security on the move: indirect
authentication using Kerberos,” in the 2nd Annual ACM/IEEE
International Conference on Mobile Computing and Networking
(MOBICOM 1996), pages 155-164, White Plains, NY USA,
November 1996.

[12] Bahrat Patel, Jon Crowcroft, “Ticket based service access for
the mobile user,” in the 3rd annual ACM/IEEE International
Conference on Mobile Computing and Networking (MOBICOM
1997), pages 223-233, Budapest Hungary, September, 1997.

[13] “PKCS#1 v2.1: RSA Cryptography Standard,” RSA
Laboratories, June 14, 2002.

[14] P. Cheng, R. Glenn, “HMAC: Keyed-Hashing for Message
Authentication,” Internet RFC 2104, February 1997.

[15] Whitfield Diffie, Martin Hellman, “Privacy and Authentication:
An Introduction to Cryptography,” in Proceedings of the IEEE,
67 (1979), pp. 397-427.

[16] Morris Dworkin, “Recommendation for Block Cipher Modes of
Operation – Methods and Techniques,” NIST Special
Publication 800-38A, 2001 Edition.

[17] Srdjan Capkun, Levente Buttyan, Jean-Pierre Hubaux, “Self-
Organized Public-Key Management for Mobile Ad Hoc
Networks,” IEEE Transactions on Mobile Computing, vol. 2, no.
1, January-March 2003.

[18] U. G. Wilhelm, S. Staamann, L. Buttyan, “On the problem of
trust in mobile agent systems,” in IEEE Network and
Distributed Systems Security Symposium 1998, pages 11-13, San
Diego, CA.

[19] T. Grandison, M. Sloman, “A Survey of Trust in Internet
Applications,” in IEEE Communications Surveys, Fourth
Quarter 2000.

[20] S. M. Bellovin, M. Merritt, “Limitations of the Kerberos
Authentication System,” in ACM Computer Communication
Review vol. 20(5), pp. 119-132, 1990.

[21] Ryan Troll, “Automatically Choosing an IP Address in an Ad-
Hoc IPv4 Network,”

[22] DoD Trusted Computer System Evaluation Criteria, 26
December 1985 (Supercedes CSC-STD-001-83, dtd 15 Aug 83).
(Orange Book)

Microsoft Research Technical Report MSR-TR-2003-65. Submitted for Publication.

16

[23] Matt Blaze, Joan Feigenbaum, Jack Lacy, “Decentralized Trust
Management,” in Proceedings of the IEEE Conference on
Privacy and Security, 1996.

[24] P. Zimmermann, “PGP User’s Guide,” MIT Press, Cambridge,
1994.

[25] IBM®, Microsoft®, etc., “Specification: Web Services
Federation Language (WS-Federation), 08 July 2003,”

http://www-106.ibm.com/developerworks/webservices /library/ws-
fed/

[26] “Web Services Architecture—W3C® Working Draft 8 August
2003,” http://www.w3.org/TR/ws-arch/

[27] “Simple Object Access Protocol (SOAP) 1.1—W3C® Note 08
May 2000,” http://www.w3.org/TR/SOAP/

[28] “SOAP Version 1.2 Part 1: Messaging Framework—W3C®

Recommendation 24 June 2003,”

http://www.w3.org/TR/soap12-part1/

[29] “SOAP Version 1.2 Part 2: Messaging Framework—W3C®

Recommendation 24 June 2003,”

http://www.w3.org/TR/soap12-part2/

[30] “Extensible Markup Language (XML),”

http://www.w3.org/XML/

[31] M. Tatebayashi, N. Matsuzaki, D.B.J. Newman, “Key
distribution protocol for digital mobile communication
systems,” in Advances in Cryptology-Crypto ’89 Proceedings,
Lecture Notes in Computer Science, vol. 435, 1989, pp. 324-334.

[32] L. Zhou, Z. Haas, “Securing ad hoc networks,” IEEE Network
Magazine, 13(6), 1999.

[33] C. Park, K. Kurosawa, T. Okamoto, S. Tsujii, “On key distribu-
tion and authentication in mobile radio networks,” in Advances
in Cryptology EuroCrypt ’93, Lecture Notes in Computer
Science, vol. 765, pp. 461-465, 1993.

[34] S. Marti, T. Giuli, K. Lai, M. Baker, "Mitigating routing
misbehavior in mobile ad hoc networks," in Proceedings of the

Sixth Annual International Conference on Mobile Computing
and Networking, 2000, pp. 255--265.

[35] J. Hubaux, L. Buttyan, and S. Capkun, "The quest for security in
mobile ad hoc networks," in Proceedings of the ACM
Symposium on Mobile Ad Hoc Networking and Computing
(MobiHOC) 2001.

[36] C. Boyd and A. Mathuria, “Key establishment protocols for
secure mobile communications: A selective survey,” in
Proceedings of ACISP'98 , Lecture Notes in Computer Science,
vol. 1438, 1998, pp. 344-355.

[37] M. J. Beller, Y. Yacobi, "Fully-Fledged Two-Way Public Key
Authentication and Key Agreement for Low-Cost Terminals,"
Proceedings of Electronic Letters, May 27, 1993, Vol. 29, No.
11, pp. 999-1000.

[38] S. Basagni, K. Herrin, E. Rosti, D. Bruschi, “Secure
Pebblenets,” in ACM International Symposium on Mobile Ad
Hoc Networking and Computing (MobiHoc), pages 156--163,
2001.

[39] G. J. Simmons, “Cryptanalysis and protocol failure,”
Communications of the ACM, 37(11), Nov 1994.

[40] R. Yahalom, B. Klein, T. Beth, “Trust relationships in secure
systems—A distributed authentication perspective," in Proc. of
the 1993 IEEE Symposium on Research in Security and Privacy,
pages 150-164, May 1993.

[41] A. J. Menezes, P. C. Oorschot, S. A. Vanstone, “Handbook of
Applied Cryptography,” CRC Press, 1997.

[42] “AT91EB63 Evaluation Board User Guide,”

http://www.atmel.com/dyn/resources/prod_documents/DOC135
9.PDF

[43] “AT91M63200 Summary, AT91 ARM Thumb MCU,”

http://www.atmel.com/dyn/resources/prod_documents/1028S.P
DF

