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ABSTRACT 

Invisible computing creates better everyday devices by 
augmenting them with computation and communication. The 
native interface of a particular device suffices, with 
computation and communication occurring transparently 
to the user. An invisible computing device does not require 
setup or maintenance overhead and can be deployed 
incrementally without prerequisite infrastructure. Low-cost 
invisible computing devices could be used in areas such as 
home automation, wearable computing, sensor networks, or 
control of critical infrastructure, e.g. power grids. 

Security is crucial in invisible computing. Nobody wants their 
home automation system accessed by others, or their everyday 
lives monitored by hackers. Security systems typically require 
the creation, distribution and revocation of security keys—a 
management chore that is potentially at odds with the 
invisibility requirements. Also at odds is the need for the 
devices to operate and communicate independently, without 
access to centralized services. Devices should also fail inde-
pendently; compromising one device should not compromise 
the whole system. Finally, a personal security system should 
be able to scale and federate itself with other systems, for 
instance when some monetary transaction is involved.

This paper describes a security and communication model for 
invisible computing that combines limited resource consump-
tion, interoperability, and security. It argues that the model 
presented sets a minimum level of functionality. It uses a 
combination of standard protocols and well known encryption 
primitives. The implementation for an embedded micro-
controller demonstrates that the goals are achievable with an 
efficient and understandable design. 

1 INTRODUCTION 

Our everyday lives are filled with various devices that help us 
with our chores, provide entertainment, help improve our 
health, provide light and heat, and help us communicate. If we 
could improve those devices and make them work together—
thus enabling new and better devices—our everyday lives 
would be more comfortable, social, and efficient. 

Invisible Computing attempts to do just that. It combines 
everyday devices with computation and communication capa-
bilities, enabling new functions and aggregation. It does this 
without forcing us to learn new or archaic computer interfaces. 
It makes it easy to adopt by keeping costs down and without 

requiring a pre-existing infrastructure. A watch could be used 
to control the volume on the radio. The refrigerator could 
automatically order more beer or notify the TV that its door is 
ajar. Energy could be saved by integrating sensors with the 
heating system. Wearable medical devices could improve our 
well-being. Utilities could reduce water lost from leaks. More 
natural user interfaces and ubiquitous communication would 
enable better social interaction regardless of our physical 
location. Smart toys would not only entertain, but also educate 
children. 
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Figure 1: The home as a secure, invisible computing system 

In virtually all of these applications we must pay attention to 
security issues. Installing a home automation system should 
not result in the loss of privacy. A wearable medical device 
could benefit from the ability to communicate directly with a 
doctor’s office but should not leak sensitive biometric data to 
outsiders. Only the authorized physician should be able to tune 
a pacemaker. Supervisory control and data acquisition
(SCADA) systems, which are used to control the operations of 
critical infrastructure (e.g. power utilities, distribution 
networks, and municipal water supplies), have generally been 
designed and installed with little attention paid to security [1]. 

An adequate security model for invisible computing devices 
must therefore ensure privacy and owner control at all times. 
To protect privacy we must use strong encryption for any and 
all communications. To protect owner control we cannot let 
the compromise of one device compromise the entire system. 
This requirement mandates a solid key exchange and trust 
management protocol; one that can only be implemented by a 
public key infrastructure (PKI), since access to authority 
servers is not always available. 

Another issue that invisible computing systems face is inter-
operability. For instance, a home automation system must 
integrate cellular phones, refrigerators, TVs, heating systems, 
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watches, heart rate monitors, etc. produced by different manu-
factures at different times. XML [30] Web Services [26] have 
been developed to help manufactures overcome this integra-
tion barrier. They provide loosely coupled, platform-indepen-
dent, and language-independent application layer interopera-
bility between different platforms, including small devices [3]. 

Combining the security and interoperability requirements with 
low cost and limited resources is a challenge. Current 
embedded systems either have no security or provide 
extremely limited interoperability. 

This paper introduces a security model and an implementation 
that provides a solution to this challenge. It is designed for 
devices that often must operate in the absence of any 
infrastructure, communicating in an ad hoc fashion with a 
small number of peers over unsecured channels, such as 
wireless radio links or electrical power lines. At times these 
devices have access to general purpose computers or the 
Internet, and want to be part of the global service architecture. 

The model provides service discovery, maintenance of 
trust/function relationships, server/client authentication, secure 
messaging, and local/global interoperability. It does not 
assume any global authority or availability of services, but still 
enables federating with external trust domains. Privacy and 
owner control are maintained via strong encryption and 
managed access at all times. Interoperability is achieved
through a unified presentation layer that leverages XML  
Web Services. A base station is required when connecting to 
the Internet but not for peer-to-peer communication. Setup  
and discovery are integrated with trust establishment and  
key distribution—thus creating an easy to use, hassle-free user 
experience. 

We implemented a prototype of this model on the MMLite 
platform [2][3]. The implementation uses standard protocols 
in an optimized fashion. The protocol uses a small number of 
the well known encryption primitives, RSA, AES, and SHA1; 
and a combination of the common protocols UDP, 
XML/SOAP [27][28][29], and Resurrecting Ducklings. In the 
Resurrecting Ducklings protocol, a device adopts the first 
“mother” it sees as its certificate authority. The implementa-
tion runs on a low-cost, single chip microcontroller [43] and 
performs well enough for real use. 

Our main contributions are: 

We designed and implemented a security model for invisi-
ble computing systems that provides confidentiality, 
integrity, authentication, and interoperability. The model 
combines well-known protocols and algorithms in a novel 
and effective way, making it suitable for invisible 
computing. 

We use XML and SOAP as a general presentation layer and 
communication protocol. We use SOAP for trust 
management, key distribution, service discovery, two-way 
authentication, application communication, etc. 

We are proposing a trust relationship infrastructure that 
does not have hierarchy or a global or online certificate 
authority (CA). In our model, each person can have her own 
trust domain that is completely independent. Any two 
devices within a trust domain can securely communicate 
with each other without access to other devices or the 
Internet. Devices can set up occasional secure interoperation 
with the outside Internet and federate across domains, 
extending the security model to a global scale. A single 
sign-in is required instead of signing in to multiple domains. 
Our model combines well with the global WS-Federation 
specification [10] but differs from the Orange Book [22] in 
its lack of hierarchy. 

The model achieves both point-to-point and end-to-end 
secure sessions using the same security mechanism. 

Discovery, authentication, and key exchange are integrated 
together to save on memory footprint. Our simple service 
discovery protocol can work with and without other naming 
services. The discovery and bootstrap messages are 
encrypted just like any other message, thus privacy is not 
compromised at any phase of the system.  

Trust establishment and functional assignment are 
combined so that all setup chores are done in a single user 
interaction. The interaction is based on physical touch and 
predicts the correct action heuristically, drawing from any 
preceding interaction. For instance, first touching a light 
bulb when it is installed and then a light switch indicates to 
the light switch that it should control the light and it also 
gives it the authority to do so. 

The implementation shows that a reliable secure protocol 
based on PKI can be implemented on embedded systems, 
despite their limited resources. It offers further proof that 
using SOAP in embedded computing is a viable choice. 

The rest of this paper is organized as follows: In sections 2, 5, 
4, and 5, we present the security model and discuss various 
stages in achieving secure communication, including trust 
management, key distribution, authentication, and encrypted 
messaging. In section 6 we examine the cryptographic 
methods used in more detail. We discuss the implementation 
of the model in section 7, present a performance evaluation in 
section 8, review related work in section 9, and draw 
conclusions in section 10. 
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2 SYSTEM ARCHITECTURE 

Our secure communication model logically comprises three 
stages. The first two enable the third. 

1) Trust relation establishment and role assignment
Who are the participants? This stage deals with questions 
on how a security domain is established; how an entity is 
created and what function it should have; how an entity is 
admitted into a security domain; and how to establish 
trust across domains. 

2) Discovery and key exchange
Why and how should we talk? Once an entity wants to 
talk to another entity it must first find its peer, verify  
trust, establish a communication key, and decide on 
communication routes and data representation. 

3) Service communication
What do we want to say? This stage is where the real 
work is done. Each entity presents itself as a service that 
can receive messages. The authenticity of the message 
needs to be verified and a decision made whether the 
message should be processed. 

Each stage defines a set of protocols and policies. Each stage 
is explained in further detail in sections 3, 4, and 5. At all 
stages, basic security properties must be maintained: 

Confidentiality: Ensuring data transmitted can not be read 
by unauthorized persons. Messages are encrypted using 
AES and access to the keys is controlled.

Authentication: The process of verifying the identity of a 
data source and destination. Certificates and public key 
cryptography of RSA and DSA are employed to show proof 
of a secret, and to establish peer-to-peer keys that are 
known only by the sender and receiver. 

Data Integrity: Verification that the data received is 
accurate and un-changed by a man in the middle. Message 
Authentication Codes (MAC) are used to provide message 
integrity. Cryptographic hash functions are calculated using 
SHA1. Sequence numbers prevent message duplication. 

Non-repudiation: Proof of transmission and reception. In 
most cases the knowledge of the peer-to-peer key is 
sufficient. If it is necessary to show that the receiver did not 
generate a message herself, digital signatures are calculated 
using PKCS#1 (SHA1 and RSA) or DSA. 

Access Control: Permits or denies access based on 
attributes of server and client. The certificate attributes are 

used for both mandatory access control (static decision) and 
for discretionary access control (dynamic decision). 

3 TRUST MANAGEMENT 

Trust management is central to the development of secure 
systems [40][22][23][4][18] and the application areas of our 
interest are no exception. 

Trust is established between entities within a trust domain. 
The trust domain is controlled by an authority that is 
acknowledged by each member. Each entity is represented by 
a certificate and the knowledge of a secret that is only known 
by the entity itself. A certificate consists of the public key 
(RSA/DSA) that matches the secret and a number of attributes.  

A small device—the focus of this paper—has one entity that 
represents the device. That entity is a member of one trust 
domain. Conversely, big computers may have multiple entities 
that represent various services or users on that computer, with 
each entity potentially being part of multiple trust domains. 

In a consumer setting, each person can have her own personal 
trust domain. A personal trust domain consists of all devices 
that have direct trust relationship even if the device locates in 
the outside Internet. This means a personal trust domain is not 
limited to the local ad hoc network. The local ad hoc network 
can work independently from the outside Internet. Our model 
also supports occasional secure cross-domain interoperation. 
Cross-domain trust relations can be established through WS-
Federation [10]. Unlike the orange book, our model is not 
hierarchical, as consumer use and a consumer society do not 
match a hierarchical model. Our model does not require a 
global certificate authority (CA), therefore systems can be set 
up completely independently and do not require connectivity. 

3.1 Bootstrapping 
Trust is established on a different channel than normal 
communication. In this paper, we call this channel the secure 
channel. This channel could be physical-touch based, meaning 
that any communication on this channel implies physical 
presence. It could be a personal visit to the bank, where a 
teller verifies that the driver’s license matches the face. It 
could be a check with the hash of the public key. When  
the check clears, trust is established. The reception of  
money makes the bank trust the customer—the policy of  
what constitutes trust is up to the participants. The touch  
based scenario seems most appropriate for consumer 
electronic devices. 

The trust is bootstrapped using the Resurrecting Duckling 
Protocol [5] on the secure channel. A device becomes a part of 
the family (the trust domain) of the first “mother duck” it sees. 
We say the “mother” is the trust authority of all devices in its 
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family. The “mother” is another device that signs the new 
device and the siblings believe in the signature because they 
share the “mother”. We call the “mother” a seal, since it is 
analogous to the seal of a duke from old times. The seal can be 
viewed as a certificate authority (CA) of the domain. One seal 
defines a personal trust domain. 

This is what happens: Initially a device is alone or “blank”. 
Each device generates a key pair for itself. The seal creates a 
certificate for itself. A certificate is a public key and a 
collection of attributes that are signed by the seal’s private key 
(SHA1 and RSA). The blank device sends its public key to the 
seal. The seal turns it into a certificate and sends it and its own 
certificate to the device. The device is now part of the family 
(trust domain). The attributes state what role the device should 
have, what the identity of the device is, and a contain a static 
access control list that—together with dynamic policies—
provides fine grain control in later stages. Possible attributes 
include a name, a unique ID, a device category, access 
privileges, the initial location, associated devices, and the 
owner of the device. 

The device proposes an attribute list, and the seal edits and 
signs the list together with the public key. The editing process 
is affected by what the seal touched previously and 
heuristically reflects the user’s intent. For example, a user can 
touch a light bulb with her seal first and then physically touch 
a light switch. The light switch is associated to control the 
light and is authorized to do so. Not all switches need to be 
authorized to control all lights even if they all are certified by 
the same seal. Note that the physical touch is only needed 
when the light bulb is installed and later configuration can be 
done remotely if desired. 

The seal also creates a shared house key and sends it to each of 
its siblings. This key is later used for discovery question 
messages to avoid any plain text communication. 

The seal never needs to communicate over the public channel 
and does not need to be on-line after certificate initialization. 

3.2 Reversion 
A device with an established identity can also be reversed 
back to its initial ownerless state—the duckling is instructed 
by the seal to crawl back into its egg. This enables a new 
“mother” to gain control over a device after it has been sold. 
Before a device is reversed, the device will verify that the seal 
is its mother. The process is: The device generates a random 
number and encrypts it with its seal’s public key. The seal 
then decrypts it with its private key. The device believes the 
seal is its mother only if the seal can recover the random 
number. After the mother is verified, the device simply purges 
its certificate and its seal’s public key. It may be desirable that 

the reversion is signaled by flashing lights or similar action so 
that it cannot be done secretively. 

In order to keep the private keys protected as much as possible, 
the private keys never leave the device. On the other hand, it is 
useful to be able to reverse a key even if the seal is lost—a 
backup would be desirable. Instead of giving out its own 
private key, the seal creates a certificate for a backup seal 
device with an ACL attribute that allows reversion. If the seal 
and the backup also sign each other’s certificates, it would be 
possible to merge the trusts of each other by each step-sibling 
transitively verifying each other’s certificates. 

Certificate updates are handled similarly to reversions. Instead 
of simply purging the old certificate, the device generates a 
new certificate proposal and sends it back to its mother or 
backup mother for recertification. 

Recall lists and other dynamic configuration changes can be 
sent over the public network at any time, with the limitation 
that changes will not immediately become active on 
disconnected devices. However, dynamic updates allow such 
functions as giving the cleaning lady temporary limited 
credentials to the home or canceling an old tenant with a 
single command. 

3.3 Direct Trust 
Within a trust domain, all devices with the same owner trust 
each other directly. This is subject to the attributes in the 
certificate since they all trust their seal’s signature. Direct trust 
can take place within the local ad hoc network or cross  
the Internet. 

For the local case, shown in Figure 2 (a), each device has a 
certificate signed by the same seal and knows the seal’s public 
key after bootstrapping with the Resurrecting Duckling 
protocol. Thus two devices can authenticate each other by 
exchanging their certificates. 

Figure 2 (b) shows another case. Occasionally, one device 
wants to request a service outside of the local wireless 
network through the Internet. For example, a user wants to 
contact the bank from her watch. To set up a secure 
connection between the bank and her watch, a trust 
relationship must be established first. She could take her seal 
to the bank and use the touch-based authentication at the bank 
(the teller checks a picture of the customer and the customer 
sees the big building and believes it is a legitimate operation). 
The seal gives its own certificate to the bank and creates a 
certificate for the bank by signing the bank’s public key and 
some attributes that state that this is the bank for the given 
account. The Resurrecting Duckling Protocol is used to 
achieve this. The process is essentially the same as when the 
seal admits a light switch. 
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The public keys could also be exchanged in other ways. In fact, 
rather than sending the entire key, a hash is sufficient. The 
customer could send a check with a hash of the public key. 
The bank could publish a hash of their key in a major 
newspaper. The attributes can be established manually based 
on the context. In a low-tech bank branch, the trust could be 
exchanged with ID cards and pieces of papers with the key 
hashes on them. 

Client Servertrust

(a) Within ad hoc network 

trust

Low bandwidth
ad hoc network

Internet

Watch BankBase
station

(b) Cross Internet 

Figure 2: Direct trust between devices within  
a personal trust domain 

The bank can later use the hash of the seal’s public key to 
verify that a certificate sent to it is correct and signed by the 
seal. For example, a watch trying to contact the bank through 
a base station and the Internet will present its own certificate, 
send a copy of the seal’s certificate, then request the bank’s 
certificate (or use the manually entered certificate that came 
on a piece of paper). 

3.4 Indirect Trust 
In some cases, a device needs to request a service across trust 
domains. For example, the refrigerator wants to order some 
beer from a supermarket. The supermarket is not within the 
same trust domain as the refrigerator. There is no direct trust 
relationship between the refrigerator and the supermarket, but 
the refrigerator and the credit card company trust each other. 
The supermarket and the credit card company also trust each 
other. When the refrigerator wants to access the service of the 
supermarket, they talk to each other first to find which identity 
is trusted by both of them (step 1 in Figure 3). Then the 
refrigerator gets the public key of the supermarket from the 
credit card company (step 2 in Figure 3), as does the 
supermarket (step 3 in Figure 3), thus creating trust between 
the refrigerator and the supermarket.  

The above case matches the Federated Identity Model of the 
industry-standard global XML architecture (GXA) [7][10].  In 
GXA terms, public keys are security tokens. A device acts as 

its own security token service instead of using a separate 
service. The level of trust established indirectly must be less 
or equal to either direct link. 

fridge

credit
card

company

super-
market

2. public key of super-
market 3. public key of the seal

4. set up cryptographic
connection

Trust Domain A Trust Domain B

1. do you trust the credit
card company?

Figure 3: Cross domain trust 

4 DISCOVERY AND KEY EXCHANGE 

The purpose of this stage is to establish enough state to allow 
communication between two parties. The instigator of 
communication needs to find the proper entity to communicate 
with, authenticate the entity, establish a communication key, 
find a communication path to the entity, and negotiate the 
protocol and data representation. 

For each peer an entity wants to communicate with, it caches a 
certificate with RSA and (optionally) DSA keys and attributes, 
a URL, a peer-to-peer AES and SHA1 key, a network route to 
where the peer was last seen, a sequence number, a session ID 
each way such as a UDP port number, and parameters (WSDL, 
compression, preferred protocol). Any of the state can be 
arbitrarily discarded with the cost of having to redo part or all 
of the discovery. 

All communication in this stage is done on the public channel 
and is categorically encrypted. 

4.1 Service Discovery 
If the client wants to access a service, it will check if the URL 
of the service is cached. If not, it will send a discovery request
through an IP multicast SOAP message on the public channel. 
The discovery request message gives a description about the 
requested service. This might be a DNS host name or 
something more abstract. The server sends back to the client a 
discovery response containing its URL through a unicast 
SOAP message. Potential service masquerading is detected by 
checking the certificate and ACL of the replying entity. 

Sometimes a user needs to access a device from outside of her 
personal ad hoc network (e.g. the home). In this case, the user 
sends a service request to the base station of her personal 
network through unicast, and then the base station multicasts 
the service request within the wireless ad hoc network. The 
right service will send a discovery response to the base station 
and the base station will forward it to the client as a regular 
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internet directory service. The message forwarding is done 
with Web Service routing and the SOAP protocol. If the base 
station has a cache of the record of the required service, it 
could respond to the client directly. In this scenario, the base 
station acts as a discovery service. 

Conversely, to find services that are outside the local ad hoc 
network from within the local network, the base station again 
acts as a proxy. The base station can either reply to the 
discovery message on behalf of the service, or the device can 
start by discovering a directory service and then use that for 
further queries. 

All discovery messages (SOAP messages) are encrypted with 
a home key. The home key is an AES key generated by the 
seal and is common to the security domain. Its purpose is to 
keep curious neighbors from knowing what is being 
discovered. We will discuss AES use further in section 6. 

4.2 Two-Way Authentication and Key Exchange 
After a potential peer has been located, it is time for authenti-
cation and key exchange. Both parties authenticate each other. 
We use a combination of symmetric and asymmetric key 
encryption techniques that keep the asymmetric use at a mini-
mum, since it is much costlier to calculate. The two-way 
authentication and peer-to-peer key exchange is done with 
RSA, while the connections are encrypted with an AES peer-
to-peer key. If one of the parties has more resources, we then 
use DSA instead of RSA, as appropriate, to make the 
resource-rich party bear the brunt of the computation. This 
takes advantage of DSA’s cost bias where public key 
operations are expensive but private key operations relatively 
cheap. RSA’s cost properties are the opposite. 

Authentication involves exchanging and verifying certificates. 
In a certificate, the public key of a device is the most 
important. It also contains the attributes of a device. Basically, 
authentication with PKI is a process to verify if a public key 
belongs to the right entity. If a public key is verified to belong 
to an entity, then one can trust that any information encrypted 
with the public key can only be understood by the entity with 
the right private key. The attributes are used to check against 
an Access Control List (ACL) to do authorization. 

After the server and client authenticate each other, the client 
generates a random symmetric peer-to-peer key, encrypts it 
with its own private key and the server’s public key (contained 
in the server’s certificate), and sends it to the server. The 
server decrypts it with the client’s public key (contained in the 
client’s certificate) and its own private key. Generating a 
random peer-to-peer key and encrypting it with the private key 
can be done during idle time prior to the key exchange. This 
avoids latency required for encryption with a private key. A 
large number of random keys can be pre-computed this way 

when convenient. Caching the results turn these public/private 
key operations into one-time events. 

5 SERVICE COMMUNICATION 

Once a shared peer-to-peer key is created, an encrypted 
connection can be set up between the client and the server. 
Encryption is applied to SOAP messages instead of transport 
layer packets like SSL does. Every node is a server and every 
node accepts SOAP messages. 

There are four basic cases of communication patterns: 

1. Direct communication between peers in an ad hoc 
network. 

2. Communication to the outside where the base station is 
trusted with the data. 

3. Communication with the outside where the base station 
is not trusted. 

4. Communication within the ad hoc network through an 
intermediary. 

In all cases, communication comprises encrypted SOAP 
messages. How the messages are encoded and what parts of 
the messages are encrypted with what keys vary slightly. 

A SOAP message consists of a SOAP header and SOAP body. 
The method name and parameter values of a remote call are 
contained in the SOAP body. The SOAP header has 
information relevant to the messaging itself, in particular the 
URL of the service object the message is meant for and a list 
of any intermediaries that are needed in delivering the 
message. The SOAP body should only be readable by the final 
server and the client, yet unreadable to any intermediate nodes. 
The information meant for the intermediaries should only be 
legible to the correct entities, thus the SOAP header needs to 
be encrypted as well. 

5.1 Peer-to-Peer Messages 
The discovery process established a peer-to-peer key and a 
session identifier (SID). The sender calculates a digital 
signature using SHA1 HMAC and attaches it to the message. 
The sender then encrypts the entire message (excluding the 
SHA1 HMAC value) using AES in the CTR (counter) mode 
and attaches the SID and sequence number in plain text to the 
beginning of the message. 

The AES encryption is driven by the sequence number and the 
peer-to-peer key. The CTR mode requires a unique bit pattern 
for each block. The sequence number is incremented for each 
block and used as the index. The instigator of the discovery 
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uses odd numbers and the respondent uses even numbers, 
avoiding the generation of the same sequence number. Once 
the bits in the sequence number have been exhausted or for 
any other reason either of the peers is free to discard the peer-
to-peer key and force a new key exchange to take place. 

The receiver gets the message and uses the SID to look up the 
correct peer state (if none is found the message is discarded). 
The received sequence number is compared with the expected 
sequence number and if it is smaller, the message is assumed 
to be a duplicate and is discarded. The expected sequence 
number is, however, only updated once the message has been 
accepted so as to prevent simple denial of service attacks. 

Next, the receiver applies the sequence number and peer key 
to decrypt the message. It then calculates a HMAC checksum 
using the peer key and compares it to the one received. If the 
checksum does not match, the message is discarded. 

Finally the receiver checks the message against the attributes 
of the peer and decides whether the message should be 
processed in light of access control lists and possible recall 
lists, etc. If the message can pass through all the filters, it is 
processed by the SOAP deserializer and served by the correct 
server object. 

The reply is sent back to the client with information in the 
SOAP routing header that lets the client correlate the response 
with the request. All the encryption and verification is done 
exactly like the request, but sent in the opposite direction. 

Note that it is safe to transmit the SID and sequence number in 
plaintext. Any forgery inevitably leads to the message being 
discarded by the receiver as the AES and HMAC calculations 
will not yield the expected result. The information content of 
these numbers is low enough that it does not constitute a 
privacy threat. The SID could be a UDP or TCP port number 
thus saving a couple of bytes. 

5.2 Messages through Trusted Base Station 
Communication with the outside world entails interoperability 
and a base station. The simplest case is where the base station 
is trusted enough to handle low security operations and can 
offload complications from a device. An example scenario is a 
refrigerator that wants to order milk from the supermarket. 
The refrigerator is no more secure than the base station so the 
base station can order the milk on behalf of the refrigerator. 

The refrigerator authenticates itself to the base station and 
uses the peer-to-peer communication patterns. The base 
station then uses the WS-Security and WS-Federation Internet 
Web Service protocols encoded as XML and Base64 blocks to 
order milk from the supermarket, while the wireless side 
simply encrypts the entire message. The two communication 

patterns and trust relationships are created independently. This 
scenario precisely corresponds to the Passive Profile of  
WS-Federation. 

5.3 Messages through Untrusted Intermediary 
In some cases, the security of the base station is insufficient; 
therefore an end-to-end secure channel must be created. The 
base station is still needed for forwarding messages. This 
corresponds to the Active Profile of WS-Federation. 

UDP + SOAP, (Kh , Ks) HTTP + SOAP, (Kp, Ks)

Low bandwidth wireless
ad hoc network

Internet/Intranet

Watch BankBase
station

Figure 4: A watch sends messages to a bank 

The scenario in Figure 4 is an example of this. The watch 
sends a SOAP message to the bank through a base station. The 
watch is within the wireless network and the bank is on the 
outside Internet. The base station knows how to forward the 
message to the bank. The base station needs to access the 
SOAP headers but only the bank and the watch need access to 
the body.  

The SOAP body is encrypted with the end-to-end (watch to 
bank) peer key (Ks in Figure 4). Only the endpoints can 
understand the contents of the body. On the wireless link the 
SOAP header is encrypted with the peer key that is shared 
between the base station and the watch (Kh in Figure 4); while 
between the base station and the bank, the SOAP header is 
encrypted with a peer key (Kp in Figure 4) that is shared 
between the base station and the bank. Since the base station 
and the bank have more powerful processors than the watch, 
they can bear the burden of the key exchange (see section 6.1).  

SOAP header SOAP body

Cipher text 1

Cipher text 2

... WS routing

HTT P/UDP header message packet

Plaintext

Seq# SID SOAP message

Plaintext

HMAC...

...

SID2Seq#2

HMAC

Figure 5: A routed message packet 
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SOAP messages can theoretically be sent over any transport. 
Our implementation supports TCP/HTTP and UDP. Within 
the wireless network, SOAP messages are transmitted through 
UDP instead of HTTP. UDP is much cheaper than HTTP and 
the extra headers are not needed. The base station then 
forwards the SOAP message to the bank through HTTP. The 
message forwarding is done using a Web Service routing 
SOAP header.  

Figure 5 shows the format of a message packet. Since it 
pointless to encrypt the same data twice, the “inner” packet is 
only encrypted with the end-to-end key; while the “outer” 
packet is encrypted with the point-to-point key. The outer 
HMAC, however, covers the entire message to maintain 
integrity between the halves. 

5.4 Ad Hoc through Intermediary 
This case is essentially the same as communication with the 
outside. It may involve the base station as a more powerful 
and possibly trusted intermediary or it may involve any device 
that happens to be able to do forwarding. Security can be 
constructed either end-to-end or hop-to-hop as needed. 

Scenarios could be arbitrarily complex where multiple headers 
should be understood by multiple intermediaries. The 
encoding model presented here extends to more complex cases 
and the small number of primitives presented here can be 
expected to cover all practical uses. 

6 CRYPTOGRAPHIC PRIMITIVES 

In this section, we examine the particular ways in which the 
cryptographic primitives RSA, AES, SHA1, and optionally 
DSA are used in our model. We use two specific 
optimizations to improve performance. First, we pre-calculate 
encryption functions allowing pipelining that reduces latency. 
Second, we recognize that sometimes there is a strength 
imbalance between two peers. In that case, we let the stronger 
peer carry a heavier calculation burden.

6.1 Public Key Primitives 
The protocols in this paper use public key cryptography in 
four places: 

1. Signing of certificate by the seal. 

2. Signing peer-to-peer key to prove it came from the 
correct entity. 

3. Encrypting peer-to-peer key in such a way that nobody 
but the correct receiver can eavesdrop the message. The 
receiver proves by understanding the message that it is 
the correct entity. 

4. Signing of message for which it is important to prove 
that the receiver did not generate the message herself. 
This might be instructions for a monetary transaction. 

In the cases 1, 2, and 4, we use a digital signature algorithm. 
The sender uses her private key to sign the message. The 
sender uses the sender’s public key to verify it. PKCS#1 [13] 
is used usually, with SHA1 for hashing and RSA for signing. 
In case 3, the key can be pre-generated and signed. When the 
key is needed, the pre-generated key is used—saving the 
latency of the RSA private key operation. The pipelining 
process reduces encryption latency significantly (see Table 2), 
since RSA is biased in such a way that public key operations 
are much faster than private key operations. 

In case 3, the receiver must do the private key operation on an 
unknown secret and thus cannot pre-calculate using RSA. If 
one of the peers is more powerful or has more available 
energy than the other, the key generation should be instigated 
by the weaker peer so that the expensive calculation can be 
done by the stronger peer. If the strong peer is the instigator, 
the receiving weak node discards the proposed key and instead 
generates its own key and sends it back to the instigator. 

In case 4 when the sender is a strong node, we again use 
PKCS#1. If the sender instead is a weak node, we use DSA 
(ElGamal), where the private key operation can be pre-
calculated without the message [41]. The DSA public key 
operation that is more expensive is done on the stronger node. 
It would be possible for the seal to use DSA for signing the 
certificate thus reducing latency. Unfortunately, that latency 
would then be added to every certificate validation—not 
necessarily the best tradeoff (once per device vs. once per 
device discovery). 

The two remaining expensive operations are not extremely 
frequent: The certificate signing is done once per device. The 
peer-to-peer key exchange is done once per device pair when 
they communicate for the first time. 

6.2 Symmetric Encryption 
The CTR mode algorithm is shown in Figure 6. We use a 128-
bit CTR mode [15] [16] AES cipher to encrypt messages. The 
CTR mode provides chaining of blocks, which is more secure 
than encrypting each block individually. 

There are four other reasons why we choose the CTR mode. 
First, the CTR mode algorithm provides semantic security. 
Second, in CTR mode, only the sequence number of a 
message, instead of individual counters for blocks, needs to be 
transmitted. All counters can be easily constructed from a 
message’s sequence number. Third, a sequence number is 
needed in the message anyway to detect duplicate or delayed 
messages and the same number can be used for AES. Fourth, 
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the counters can be predictable and encrypting/decrypting a 
message is independent from other messages. The CTR mode 
is defeated only if a counter is repeated. There is no lower 
limit to the length of the counter, but if the bits run out, a new 
peer-to-peer key must be generated. 

E

ctri

+Pi Ci

E

ctri

+Ci Pi

K K

encrypt decrypt

Bi Bi

Figure 6: Counter mode block cipher. E stands for any symmet-
ric cipher function, e.g. AES, K a secret key, ctri the ith counter. Pi

the ith block of plaintext, Ci the ith block of cipher-text, and Bi the 
result of applying E on ctri. ⊕ stands for the XOR operator.  

Since the counter is predictable, the CTR mode lends itself 
well to pipelining. New encryption pads are calculated during 
idle time after previous messages have been processed. At 
latency critical times, when a server needs to respond to a 
request message, only an exclusive-or (XOR) operation is 
needed. This way AES does not factor into latency, but only to 
the frequency that messages can be processed. Also, the 
pipelining does not save energy but the pre-calculation could 
be done more aggressively when more energy is available if 
there is fluctuation. 

6.3 Hashing Primitives 
Encryption itself is not enough to keep the integrity of the data. 
Integrity is verified by a MAC (Message Authentication Code). 
This is a bit string that is a one way hash function of the 
message and the secret key. The secret key is shared by the 
sender and the receiver and is part of the peer-to-peer key. 

The SHA1-checksum algorithm is used with the symmetric 
key MAC [14] when the sender and receiver trust each other. 
When it is important to prove which peer generated the 
message, a more expensive digital signature that uses 
SHA1/RSA or DSA is used instead. 

7 IMPLEMENTATION 

We implemented a prototype of the model described in this 
paper on the MMLite platform [2][3]. The platform is 
specifically designed for invisible and embedded use. It takes 
an objects everywhere approach and is built out of 
components that expose well-defined interfaces. The platform 

combines the benefits of special and general purpose systems. 
It is general-purpose in the abstract, allowing code reuse and 
quick programming, but special purpose in the concrete, 
allowing efficiency and small footprint. The same interfaces 
are implemented by many components. These components are 
rarely aware of their intended system layer, and the same 
implementation can be reused in many different places.  

MMLite adopts a unified namespace to hold any kind of 
object, e.g. a file, a heap, an instance of any class or even a C 
struct. Through this unified namespace, a component can gain 
access to objects maintained by other components. The 
namespace has a close relationship with Web URLs. All 
components and interfaces are described by an XML metadata 
database that is also used to drive SOAP serialization and 
deserialization. 

MMLite supports programming in a convenient C 
environment for performance critical components or in C# 
when desired for code mobility or quick extensibility. 

MMLite uses SOAP as a general communication protocol and 
XML for data representation. For example, we use SOAP to 
do key distribution, service discovery, two-way authentication, 
etc. The implementation interoperates with ASP+ and the 
SOAP Toolkit on Windows XP®. The SOAP implementation 
supports high level remote method calling. Through 
automatically generated SOAP proxies it is almost as easy to 
call a remote method as it is making a function call in a local 
application, with some obvious differences in timing and 
failure modes. 

The network component is based on the Berkeley 4.4BSD-
Lite TCP/IP stack. The stack is adapted to share network 
buffers with other components. This way the same buffer is 
operated on in different parts of the system without copying, 
and saves significant amounts of memory. The driver puts the 
data into a buffer, which is operated on by the network stack, 
is directly decrypted, and the XML parser and SOAP 
deserializer use the same data. 

Besides the core system components, any networking, security, 
and application code is encapsulated into components. In an 
embedded system there is no real distinction between an 
application and an OS kernel, and this is reflected in the 
system. Components are insulated only when needed by 
security reasons. Insulation for security is not confused with 
the modularity of the system. 

We use a pipelining technique to save latency. This is done in 
peer-to-peer key generation when encrypting with a private 
key (see sections 4.2, 6.1). Latency is also saved in prediction 
and encryption of counters in CTR mode AES cipher (see 
section 6.2). 



Microsoft Research Technical Report MSR-TR-2003-65. Submitted for Publication. 

12

BASE

DRIVERS

NET
XML

SOAP

AES

RSA

SHA1

SECProto

C-Library

8 PERFORMANCE 

We measured our system on AT91EB63 evaluation boards 
(called EB63 board for simplicity in the rest of this paper) [42]. 
An EB63 has a 25MHz ARM7 microcontroller, 256Kbyes 
SRAM and 2 Mbytes Flash. Since this is more than a cost-
effective system would have, we limited the memory usage to 
32KB of RAM and 256KB of Flash ROM. The board was 
chosen for its processor and I/O capabilities, not for its energy 
efficiency or lack thereof.  

Instead of an actual wireless network we ran the measure-
ments over serial lines with one serial line representing a 
secure channel and another representing the public channel. 
The serial lines were run at 38400 baud, which is in range of 
several available low-power wireless radios. We used a PC as 
a “base station” achieving connectivity to the Internet. 

We will now evaluate the cost of the different pieces based on 
measurements. The cost includes costly system resources, 
time, and energy. 

Files ROM 
Static 
RAM Heap Stack 

Total 
RAM 

BASE 24,676 1,940 2,837  2,777 

DRIVERS 11,464 332 896 2,288 3,516 

NET 77,024 3,424 2,648 3,400 9,472 

XML 7,860 16 88  104 

SOAP 29,504 280 996 4,320 5,596 

SECProto 14,180 604 1,848 2,648 5,100 

AES 16,532 8   8 

RSA 9,784 28 24  52 

SHA1 5,436 8   8 

C-Library 7,620 12   12 

TOTAL 204,080 6,652 9,337 12,656 28,645 

Table 1: Footprint (arm - in bytes) at peak usage 

8.1 Footprint 
The system can be compiled with many compilers. The 
measurements were carried out using the ARM Software 
Development Kit 2.11. Table 1 shows the memory usage of 
the whole system. The ROM footprint is the amount of Flash 
required. The RAM footprint is measured at the point of 
execution where the memory usage was at its maximum. The 
RAM usage of the individual components varies but this is the 
point that determines how much actual RAM is required. 

Figure 7 and Figure 8 show the percentage occupation of 
footprint. The network stack occupies about 38% of the 
footprint of the whole system. It includes DHCP, IGMP, IP, 
UDP, multicast, routing, sockets, etc. The code also supports 
IP auto-configuration [21] for IP applications on an ad hoc 
network in the absence of a DHCP server.  

The XML parser and generator take about 8KB or 4% of the 
total. The SOAP component includes a schema checker and a 
serializer/deserializer that translates between SOAP messages 
to application stack frames according to an XML specification. 

Figure 7: ROM Footprint 

The SECProto component leverages the SOAP component 
and includes the security protocol implementation, i.e. trust 
management, service discovery, key distribution, two-way 
authentication, etc. The cryptographic algorithms AES, RSA 
and SHA-1 are lifted from Windows® and are not particularly 
optimized for size. The C-Library is the part of the ISO C 
runtime library that was used. 

The BASE component includes the real-time scheduler, a heap 
manager, a loader, any machine dependent initialization code, 
threading and synchronization, and the unified namespace.  

BASE

(other)

DRIVERS

NET

SOAP

SECProto

Figure 8: RAM footprint at peak usage 

The total system heap is 9,337 bytes including the usage of the 
heap itself but excluding stacks. We can see that the ROM 
footprint (including code and read only data) of the whole sys-
tem is less than 200 KB (204,080 bytes) and at peak usage the 
RAM footprint—including static data (.data, .bss, and inter-
rupt vectors), heap and stacks—is about 28 KB (28,645 bytes). 

8.2 Latency 
We measured how long it took to respond to a service 
message. Table 2 shows the latency of major cryptography 
operations. We ran each operation on an EB63 board—
running from slow external Flash memory—500 times and 
calculated the average latency and the standard deviation. 
Generating a key pair of 1024-bit RSA takes almost 5 minutes. 
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Fortunately, key pair generation is required only once on each 
device, when first initialized.  

Encryption/decryption with an RSA private key is also quite 
expensive. It takes about 103 seconds per kilobyte. There are 
two applications of RSA: 1) signing the hash value of a 
certificate and 2) exchanging a peer-to-peer key. For both of 
these cases, the data is less than a block (128 bytes). A 
certificate only needs to be signed once. Any later use 
involves the cheaper public key operation. The latency of 
signing a certificate is thus about 14 seconds. 

Exchange of one peer-to-peer key needs four RSA 
cryptographic operations: Two with private keys and two with 
public keys. The first private key operation can be pre-
calculated so that it does not need to be factored into the 
response time. Therefore, the cryptographic latency of peer-to-
peer key exchange is about 14 seconds. If one of the parties is 
a more powerful computer, it can bear the burden of both 
expensive operations by a combination of RSA and DSA use. 
That cuts the exchange time down to about 1.5 seconds.  

The most frequently used cryptographic operations are AES 
encryption/decryption and SHA1-HMAC. Table 2 shows that 
encrypting/decrypting one KB with 128-bit AES takes about 
16.3 ms and hashing one KB with SHA1-HMAC takes about 
79.6 ms. However, in AES CTR mode, counters can be 
predicted easily so that encrypting the counters with an AES 
key can be pre-calculated during CPU idle time. Thus the 
latency of CTR-mode AES cipher is just XOR operation time. 
XOR operation latency is negligible. Therefore, the latency to 
encrypt a message with one KB and hash it is just 79.6 ms. 

Table 3 shows that the latency of doing one remote ADD 
operation through SOAP. The SOAP request message for 
ADD operation is 835 bytes long and the SOAP response 
message has 747 bytes. 

Including ~74 bytes of overhead (14-byte Ethernet header, 20-
byte IP header, 8-byte UDP header, and 20 bytes for HMAC, 
4 for Sequence number and 16-byte alignment) for each of 
them, the serial packet for the SOAP request message is 912 
bytes, and the SOAP response message is 818 bytes. 
Transmitting one byte on serial line needs 10 bits. Therefore, 
the theoretical serial transmit latency = (912 + 818) * 10 / 
38400 / 1000 = 450 ms, where 38400 is the baud rate of the 
serial line. 

8.3 Energy Consumption 
Energy consumption is directly related to: a) how much data 
has to be transmitted—the time the radio is on, and b) the 
amount of computation that needs to be done—the time the 
CPU is on. Some of the cost could be alleviated by 
compressing the messages so less is transmitted. 

The overhead of the secure protocol is, on average, 30 bytes 
per service message compared to plain text messages. This is 
about 4% of the XML messages. With a compressed message, 
the overhead would be somewhat higher. 

The CPU overhead of the encryption per message with the 
same dataset as the latency calculation is about 20%, 
excluding the one time costs of certificate handling and key 
exchange. This is the percentage of the message processing—
the percentage of the total workload of the system depends

Table 2: Latency of cryptography operations 

Latency on a 25 MHz ARM 7 
Average Standard deviation 

Processes included 

Total measured latency 760 ms 5% Generate, parse, process, encrypt/decrypt and transmit the 
SOAP request and response. 

Theoretical serial transmit 
latency 

450 ms N/A Ideally transmit the request and response on serial line. 

Local SOAP processing 
latency w/o encryption 

101 ms 2.1% Generate, parse and process the SOAP request and 
response. 

Cryptographic latency 65.6 ms <1% AES and SHA1-HMAC on the request and response. 

Other 143 ms  Drivers, network stack, etc. 
Table 3: Latency of remote ADD operation

Latency on a 25 MHz ARM 7 Algorithm Operation 
Average Standard deviation  Per KB 

Generate a key pair 290 s 56% N/A 
Private key Encrypt/decrypt a block (128 bytes) 12.9 s <1% 103 s 

1024-bit RSA  

Public key Encrypt/decrypt a block (128 bytes) 0.667 s <1% 5.34 s 
128-bit AES Encrypt/decrypt a block (16 bytes) 0.254 ms <1% 16.3 ms 

SHA1-HMAC 1024 bytes 79.6 ms <1% 79.6 ms 
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on applications that run on the platform. We measured the 
EB63 board energy usage and observed that it consumes 68 
mA at 7V when idle and 108 mA when busy. Integrating the 
difference for one service request yields 270 mJ, which 
corresponds to 20 million cycles. More energy efficient 
hardware would yield smaller numbers. The measurement, 
however, reflects the finding that the protocol processing can 
be done within reasonable time and within a reasonable 
number of cycles. 

9 RELATED WORK 

Many researchers identify that trust management plays a 
significant role in a distributed security system [22][23] [24]. 
Yahalom et al. gave a formal definition of trust [40]. Wilhelm 
et al. discussed trust management for mobile networks in [18]. 
A trust bootstrapping protocol, the Resurrecting Duckling 
protocol, is proposed in [5]. It avoids an online CA and is 
suitable for low-cost device use. We extend the Resurrecting 
Duckling protocol to function relationship initialization and 
trust federation. 

Tatebayashi et al. proposed a key distribution protocol (TMN) 
for mobile network [31]. However, their protocol is only 
suitable for star-type mobile networks and some researchers 
point out it is flawed, e.g. Simmons describes an attack against 
TMN [39] and Park et al. also analyzed its weakness and 
propose an improvement for it [33]. Carman et al. compared 
performance of a wide variety of key distribution schemes on 
different sensor network platforms [8]. 

Beller and Yacobi propose a protocol that uses pre-
computation techniques to reduce the response time of key 
distribution for mobile uses [37]. However, their protocol is 
vulnerable to a man-in-the-middle attack [36]. 

Zhou and Haas use routing redundancies of ad hoc networks 
to achieve availability, and use threshold cryptography to 
isolate compromised nodes [32]. Marti et al. proposed a 
mechanism that uses a watchdog to recognize misbehaving 
nodes and then uses a patherater to avoid them. 

Hubaux, Buttyan and Capkun analyze security threats specific 
to ad hoc networks and propose a self-organizing public-key 
distribution scheme, in which certificates are issued by users 
(corresponding to devices in our work) instead of a CA [35]. 
Their algorithm involves complex graphic operations that are 
neither scalable nor suitable for embedded systems use. 

Czerwinski et al. propose a secure centralized service location 
model, in which service advertisements and queries are all 
done through a central server [9]. However, their work is too 
complicated for use on low-cost devices. 

All the above papers involve one or several aspects of the 
security issue for low-cost embedded system use. The model 
proposed in this paper pulls them together and fills in the gaps. 

Fox and Gribble presented a security protocol for mobile 
computing based on a proxied version of Kerberos IV, which 
provides secure access to application level services [11]. 
However, as would be expected, their solution requires an 
online centralized authentication service. Traditional security 
solutions that require online trusted authorities or certificate 
authorities are not suited for mobile ad hoc network 
environments. Mobile ad hoc networks are often unable to 
provide access to an online centralized trust authority due to 
their highly dynamic infrastructure and their need for reliable 
autonomous operation. 

Perrig et al. [6] propose two secure building blocks for low-
cost devices: SNEP and µTESLA. They claimed that SNEP 
provides confidentiality, authentication, and data freshness, 
and µTESLA provides authenticated streaming broadcast. 
Their system security is based on a preset master key shared 
by all devices. The block chaining they use, does not remove 
the weakness that if an adversary compromises the master key 
on any device, he can easily eavesdrop and impersonate all 
other devices. In our system, we use PKI to exchange trust and 
peer-to-peer keys and avoid these pitfalls, but end up with a 
slightly more complex model. Their savings from avoiding the 
trust and key issues do not appear to help—there still is no 
space left for any applications in [6]. 

We introduced embedded Web Services in [3]. No other 
comparable work has been published since. In this paper, we 
focus on secure Web Services for invisible computing use. As 
far as we know, even though recently much work has been 
done on ad hoc network security, nobody else has done any 
research on secure Web Services for embedded systems. Our 
work shows two suppositions are incorrect: 1) Web Services 
would be unsuitable for embedded use because they need a 
large footprint, CPU time, energy, and network bandwidth; 
and 2) that public key infrastructure (PKI) would be unsuitable 
for embedded use because it consumes lots of energy and CPU 
time [6]. 

One may argue that Web Services’ advantages come with a 
performance penalty: XML based SOAP messages are textual 
so that their sizes are significantly larger than protocols that 
send specific binary data. It turns out that the special protocols 
are often not that efficient and their inability to scale to new 
demands make it necessary to support many different 
mechanisms largely erasing any imagined performance benefit. 
We also note that compressing XML can be done in CPU-
efficient ways and result in significant reduction in size. 
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10 CONCLUSIONS 

This paper described a secure communication model and 
implementation for invisible computing. It showed that it is 
possible to combine low-cost with strong security and first 
class interoperation. A trust and key exchange model based on 
public key infrastructure and a presentation layer based on 
XML Web Services were not out of reach when properly put 
together. 

Combining trust establishment with functional assignment led 
to a physical touch based user interaction paradigm that did 
not completely eliminate configuration, but made it simple and 
understandable. Federating with outside trust authorities 
proved centralized and hierarchical models unnecessary. The 
independence achieved allows for incremental and self-
sufficient deployment. 

The security does not come for free but the cost is in our view 
reasonable considering the alternative of inadequate security. 
A high level of security and interoperation is achievable on 
low-cost devices and should therefore be adopted. 

The implementation proved that secure Web Services make 
sense in embedded systems with a careful design and on-the-
target optimizations. The disciplined component-based 
approach of MMLite made it a good platform for achieving 
the efficiency goals and enabled the project to be completed. 
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