
DUPLICATE DETECTION AND AUDIO THUMBNAILS WITH AUDIO
FINGERPRINTING

Christopher Burges, Daniel Plastina, John Platt, Erin Renshaw, and Henrique Malvar

March 2004

Technical Report
MSR-TR-2004-19

Audio fingerprinting is a powerful tool for identifying either streaming or file-based audio, using a
database of fingerprints. This paper presents two new applications: duplicate detection, whose goal is
to identify duplicate audio clips in a set, even if they differ in compression quality or duration, and thumb-
nail generation, which aims at providing a representative short clip of a music track. Each application is
self-contained in that it does not require an external database of fingerprints. Thanks to the robustness of
the fingerprinting engine, both applications perform well.

Microsoft Research
Microsoft Corporation

One Microsoft Way
Redmond, WA 98052

http://www.research.microsoft.com

1. INTRODUCTION

Audio fingerprinting (AFP) has recently emerged as a
powerful method for identifying audio, either in streams
or in files [1]. Several companies now offer music ser-
vices based on audio fingerprinting. These services re-
quire that one or more fingerprints be extracted from
the audio to be identified, and that these fingerprints be
checked against a large database of previously-computed
fingerprints. In this paper, we explore two new AFP ap-
plications: duplicate detection and audio thumbnail gen-
eration. In duplicate detection, we aim to identify dupli-
cate audio files based only on the audio data, even if one
is a noisy version of the other or if they have different
durations. In audio thumbnail generation, the task is to
find a short (we use 15 seconds) representative section of
the music – a “thumbnail.” Duplicate detection is use-
ful for automatically cleaning large audio databases, e.g.
to help users identify duplicate copies of songs on their
PCs, and audio thumbnails facilitate audio browsing.

We build these two applications using the RARE
(Robust Audio Recognition Engine) AFP system [2],
which converts a segment of audio to 64 floating-point
numbers (a fingerprint). RARE has two main features:
its fingerprints are very robust to distortions of the origi-
nal audio [2], and the AFP lookup method uses a new
technique that is about a factor of 50 faster than the
fastest competing method [3]. For each created finger-
print, a normalization factor is also created, so that the
mean Euclidean distance from that fingerprint to a large
collection of fingerprints computed from other audio is
one. We refer the reader to [2, 3] for details. In the fol-
lowing, “trace” means any kind of fingerprint extracted
from audio, and “fingerprint” means a reference finger-
print against which traces are compared to determine the
audio identity. The normalization factor is always asso-
ciated with the fingerprint, so Euclidian distances D(·, ·)
between traces and fingerprints are normalized.

2. THE RARE DUPLICATE DETECTOR

The RARE duplicate detector DupDet works as in the
basic diagram of Fig. 1, recursively processing all audio
files in a directory tree. It creates a set of traces for each
file, and checks it against a set of fingerprints created
for the other audio files. If D(·, ·) between a trace and
a fingerprint falls below a threshold [2], the associated
audio files are declared to be duplicates. For each file,
the fingerprints are computed at a fixed location L in the
file, and the traces are computed in a search window W
around L; L and W are user defined.

DupDet can simultaneously create fingerprints and
check for duplicates in one pass, as indicated in Fig. 1.
When the first audio file is read, a 6s fingerprint at loca-
tion L is computed and saved. When the second audio
file is loaded, traces that begin in the window W − L

d = 0

Load next
audio file F
until done

Compute trace
at L-W+d

Trace matches
any fingerprint
in database?

Tag as duplicate
 of F

Yes

Verbose
mode?

Save best score
and offset and

matching
fingerprint ID

Increment d d > 2W ?

No

Yes

Match
found?

Add to list of
duplicates of

matched
fingerprint

Add fingerprint
for F to database

No

Yes

Yes

No

No

Fig. 1. Basic flowgraph of the duplicate detector.

to W + L are computed in time order (each trace com-
puted 1/6 s after the previous one). If one of these traces
is a match, the file is declared a duplicate and added to
the list of duplicates for that fingerprint. No external
database of fingerprints is needed, and the amount of
data loaded at run time is of order 2 MB. If no match
is found for the entire set of traces in the search win-
dow, then the fingerprint (already compute at location
L in the audio) is saved in the database, representing a
(so far) unique clip. Finally, the system also uses 6 ‘veto
fingerprints,’ which are fingerprints collected from noise
(e.g. silence, sound cards with no input, etc.) Audio files
that match a veto fingerprint can also be labeled as ‘junk
files.’

We ran DupDet on 41,490 audio files. We selected
fingerprints at 40 s into the music and a ±5s search win-
dow. The threshold squared Dt for which two audio
clips are identified as duplicates is 0.1 [2]. Of all files,
436 were unreadable, 63 loaded but were identified as
noise thanks to the veto fingerprints, and the results on
the remaining files are shown in Fig. 2. The top panel
shows a histogram of the number of duplicates found.
The log linear plot shows the Poisson nature of the distri-
bution: the occurrence of duplicates is well-modeled as
the limit of a binomial random process. The center panel
is a histogram of optimal matching scores. We find that

95% of matches occur with score less than 0.026, and
99% with scores less than 0.067. (This is to be com-
pared with 0.14, the threshold score the RARE engine
currently uses to identify audio [2]). The highest score
was 0.09948, which corresponded to the two copies be-
ing different mixes of a Beatles song. The bottom panel
of Figure 1 shows a histogram of offsets, in seconds,
where the center bar (of height 8,450) has been removed
for clarity. Here, 95% of matches occur at absolute off-
sets less than 0.557s, and 99% at absolute offsets less
than 2.04s.

0 2 4 6 8 10 12 14 16 18 20
10

0

10
5

log(freq) versus the number of duplicates

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

1000

2000

3000

Histogram of normalized squared Euclidean distances

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

500

1000

Optimal offset counts,
(offsets in seconds)

Fig. 2. Results of duplicate detection on 40,991 audio
files.

3. AUDIO THUMBNAILS

The RARE audio thumbnail generator GenThumb works
as in the basic diagram of Fig. 3, to generate a represen-
tative short clip for an audio file. The basic idea behind
GenThumb is to find parts of the audio that repeat within
the audio clip. That way, if a song has a chorus and
all chorus instances are similar, the system will be able
to identify the chorus, and use that to construct a good
thumbnail. GenThumb also uses a measure of spectral
flatness and a measure of spectral energy to decide be-
tween different pieces of the audio that repeat. These
measures also allow GenThumb to generate a thumbnail
even if the audio contains no repeats.

GenThumb uses audio fingerprinting to find repeat-
ing sections, since we expect similar sections of music
to generate similar fingerprints. Using the fingerprints
rather than attempting to match the original audio has
two advantages: (1) due to the robustness of RARE to

Form cluster sets
using threshold θ

>= 3 clusters?

Find best trace

Expand audio
around trace,

save

θ > θU ?θ ← θ+ε Yes

No

Yes

No

θ = θ1

Fig. 3. Basic flowgraph of the thumbnail generator.

distortions, variations of the same segment within a song
will often still give similar fingerprints, and (2) finger-
prints are low-dimensional representations of the origi-
nal music, so handling them instead of the audio is more
efficient in terms of both memory and CPU usage. Gen-
Thumb computes three features from the audio to use
for chorus detection: a ‘cluster feature’ FC , which is a
fingerprint and associated normalization, an ‘energy fea-
ture’ FE , and a ‘spectral flatness feature’ FF (with FE

and FF computed from the same segment as FC). The
goal is to use these features to distinguish voiced cho-
ruses from purely instrumental repeated phrases, since
the former are believe to be more mnemonic. Also, fea-
tures FE and FF are used when the FC features can’t
lead to a good chorus. GenThumb computes fingerprints
that are approximately 3s long by concatenating 16 win-
dows of 372 ms, each overlapping by 50% (the last layer
of the DDA network was retrained for 3 second outputs
[2]). All features FC , FE , and FF are computed using
these 372-ms frames. Three seconds was chosen as a
good fit to the chorus detection task.

3.1. Feature Computation

Computation of the fingerprints follows [2]: in particu-
lar, for each frame, the spectral magnitudes are evalu-
ated. The features FE and FF both use an average spec-
tral magnitude as a normalization factor, so the features
are independent of overall volume. To obtain FE for
each frame, a mean, normalized energy is computed by
dividing the mean per-frequency-bin energy within the
frame by the average of that quantity over all frames.
This quantity is again averaged over the 16 frames that
contribute to a given fingerprint. Thus, FE measures

0 100 200 300 400 500 600 700 800 900 1000 1100
-2

-1

0

1
Normalized log energy, averaged per trace

0 100 200 300 400 500 600 700 800 900 1000 1100
-8

-6

-4

-2
Normalized log geometric mean, averaged per trace

Fig. 4. Normalized log means for a song with 5 verses.

spectral energy per fingerprint.
For FF , we compute the log normalized geometric

mean of the magnitudes, where the normalization is per-
formed by subtracting the per-frame log arithmetic mean
of the magnitudes. The idea is that if the spectral energy
is spread evenly throughout the frequency bins, then this
quantity will be much larger than if it is concentrated
across a few frequency bins. Finally, just as for the spec-
tral energy FE , this quantity is computed per fingerprint,
by averaging over all frames that contribute to that fin-
gerprint. Thus, FF is a measure of spectral flatness per
fingerprint. For some kinds of audio, we have found that
high values of this quantity indicate a full sound (for
example, when vocals dominate the sound this quantity
tends to be high). Fig. 4 shows the per-trace quantities
computed for the song “Buckets of Rain” by Bob Dylan;
the top curve is FF , the bottom is FE . In this case FF

tracks the voice well: the song consists of 5 verses, and
each verse is split temporally in two by a short instru-
mental. However, FF is not always predictive of voiced
music (for example, if the instruments dominate in a vo-
cals/instrumental mix). For this reason GenThumb pri-
marily uses the features FC ; features FE and FF are
only used to distinguish cases for which FC does not
give a clear choice.

3.2. Cluster Computation

Traces for the whole song are computed, together with
their normalization factors [2]. Traces are then added to
‘cluster sets’ Ci. A trace T1 is added to a cluster set Ci if
there is a trace T2 that is a member of Ci and that satisfies
two conditions: (1) D(T1, T2) < θ, where θ is a thresh-
old, and (2) T1 must be temporally separated from T2

by a fixed minimum duration Y (we use 6s). Condition
(2) is required to prevent adding traces that are similar
just because they occur nearby. If a trace does not meet

both conditions, for all cluster sets created so far, then
it is added to a new cluster set. In this way, the num-
ber of cluster sets is grown until all traces are accounted
for, and each cluster set contains one or more clusters of
traces. A cluster is defined to be a collection of traces
which is separated from all other such collections by at
least Y . Once a cluster set has been created, it is added
to recursively, until no more traces can be added. Once
all traces have been processed, we determine the multi-
plicity mi as the number of clusters in Ci.

The steps above are performed for an initial value of
the threshold θ = θ1. If the maximum multiplicity of the
resulting cluster sets is at least three, then that collection
of cluster sets is used; otherwise, θ is incremented by a
small amount, and the above computation is repeated, as
shown in Fig. 3. This procedure also stops if θ ≥ θU

for a fixed upper bound θU . In this way, the search cri-
teria for forming clusters is incrementally loosened until
either at least three clusters are found, or until further
search is unlikely to find good clusters.

3.3. Choice of Cluster Set

If the clustering procedure finds no cluster sets with m i >
1, then we resort to using the energy measures alone: we
consider only fingerprints whose FE is in the top third
of the values of FE for the whole song, to avoid quiet
parts of the song. For the traces that survive this test,
that trace whose surrounding 6s has the highest FF is
taken to be the optimal trace. If the clustering did result
in at least one cluster set with mi ≥ 2, the remaining
tasks are (1) to choose a good cluster set (which is likely
to contain a fingerprint index corresponding to a chorus
or repeat instrumental), and (2) to use that fingerprint to
pick a suitable 15s thumbnail.

The quality of the clustering in a given cluster set C
is measured using a scaled Renyi entropy R, in order to
favor clusters that are evenly spread in time over clusters
that are not. R is computed by normalizing the duration
of the entire song to 1, and then scaling the center of
each cluster to lie in the interval [0, 1]. Let the time posi-
tion of the ith cluster be ti, and let C contain N clusters.
Setting t0 = 0 and tN+1 = 1, then R is defined as

R =
N + 1

N

(
1 −

N+1∑
i=1

(ti − ti−1)2
)

Since
∑N+1

i=1 (ti − ti−1) = 1, and since ti ≥ ti−1, the
differences ti − ti−1 can be interpreted as probabilities,
so R is linearly related to the Renyi entropy for the cor-
responding distribution. The offset and scaling factor
have been chosen so that R takes the maximum value of
1 and minimum value of 0, for any number of clusters
N . This allows us to compare the quality of the spread
of sets of clusters even when those sets contain different
numbers of clusters.

Sometimes the spectral flatness feature FF doesn’t
predict voice sections well. In those cases FF tends to
not vary much through the clip. Thus, we weight the
FF feature by its standard deviation: let smax and smin

be the maximum and minimum standard deviations of
a set of validation songs (only the central part of each
song is used, to skip quiet introductions and fades). De-
fine the linear mapping (a, b) by asmin + b = 0 and
asmax + b = 1. Suppose a test clip has standard de-
viation s, and compute y = as + b. Replace y by
ȳ ≡ min{max{y, 0}, 1}, and linearly map all values of
FF for the clip to the interval [0, ȳ]. Finally, each clus-
ter set is ascribed a mean spectral flatness quality, which
is just the mean of the scaled values FF for the finger-
prints in that set. Thus each set now has two numbers
associated with it: one measures cluster spread quality,
and varies from 0 to 1, and the other measures spectral
spread quality, and varies from 0 to ȳ, where ȳ is at most
1, and where it is large for those songs whose variance
in their spectral spread is large. The best set is chosen to
be that one for which the sum of the square of these two
numbers is the highest. Once a set has been chosen, that
trace with largest surrounding spectral energy in the set
is chosen, and the thumbnail is taken as the 15s of audio
surrounding that.

3.4. Results

To test GenThumb, we wrote a testing tool which presents
two thumbnails to a user, who then rates them each on
a scale of 0 to 5, corresponding to the thumbnail con-
taining ‘Voiced Title’, ‘Repeating Voiced Words’, ‘Any
Other Vocals’, ‘Instrumental Only, Repeating’, ‘Instru-
mental Only, Not Repeating’ and ‘Other (e.g. Applause)’.
The second method used to generate the thumbnail was
to take the 15s starting 30s into the song, which was
found to work well in many cases. For any given song
the user is presented with the two thumbnails blindly, to
prevent bias. GenThumb was tested on 68 songs, with
lengths greater than 30s. GenThumb achieved a score of
68, whereas the default method scored 94 (lower score
indicates higher quality). We also performed a Wilcoxon
signed rank test on the score, to determine if the differ-
ence is statistically significant. This gave a z value of
2.219 in favor of GenThumb, meaning that GenThumb
does better than the default at a confidence level of 99.9%,
validating the significance of the results.

3.5. Conclusions

Audio fingerprinting has uses beyond the simple iden-
tification of music. We have shown that it can be used
to detect duplicate audio files in large databases, even
if the duplicates are compressed differently, or have dif-
ferent durations; in fact in the latter case, by aligning
the matching fingerprints, the locations where the two

files differ can be automatically detected (and if nec-
essary checked with further fingerprint matching). We
have also shown that by searching for repeated musical
phrases within a single piece of music, representative
sections of the music can be found automatically, which
can then be used to create thumbnails that greatly facili-
tate browsing.

4. REFERENCES

[1] P. Cano, E. Batlle, T. Kalker, and J. Haitsma, “A
review of algorithms for audio fingerprinting,” in
International Workshop on Multimedia Signal Pro-
cessing, December 2002.

[2] C.J.C. Burges, J.C. Platt, and S. Jana, “Distor-
tion discriminant analysis for audio fingerprinting,”
IEEE Transactions on Speech and Audio Process-
ing, vol. 11, no. 3, pp. 165–174, 2003.

[3] J. Goldstein, J.C. Platt, and C.J.C. Burges, “Index-
ing high dimensional rectangles for fast multimedia
identification,” Tech. Rep. MSR-TR-2003-38, Mi-
crosoft Research, 2003.

