Deciding Assertionsin Programs with References

Shaz Qadeer Sriram K. Rajamani
Microsoft Research
{gadeer, srirami@ri crosoft.com

September 2005

Technical Report
M SR-TR-2005-08

Modular analysis of procedures using summaries is a key technique to improve scalability of software model checking. Existing
software model checkers do not fully exploit procedural structure for modular analysis. In the SLAM project, modular analysis
using procedure summaries is done on a Boolean Program model, which contains only boolean types. \We extend Boolean Pro-
grams to include reference types, and show that modular analysis using procedure summaries is still possible. As a consequence,
we obtain an algorithm for deciding assertions in programs where the lengths of the paths in the heap are bounded, even though
the heap size is potentially unbounded. Even in programs with unbounded paths in the heap, the result provides a way to separate
reasoning about the finite backbone of the heap from the reasoning about unbounded data structures. We have implemented this
algorithm in the zING model checker, which supports a rich input language with references as well as concurrent threads. Our
algorithm improved the performance of the model checker by 30-35% on a concurrent transaction management program with
7000 lines of code, 57 dynamic allocation sites, and several million reachable states and found a subtle concurrency bug. On pa-
rameterized examples artificially constructed to demonstrate the benefits of summarization, the algorithm improves performance
asymptotically as expected. The implementation is robust —on hundreds of small examples in the SLAM and ZING regression
suites, the implementation produces correct results.

Microsoft Research
Microsoft Corporation
One Microsoft Way
Redmond, WA 98052
http://ww. research. m crosoft.com

1 Introduction

Boolean Programs are programs in which all variables are boolean.
They have been used successfully as a target for representing
automatically extracted models from C programs in the SLAM
project [4]. Boolean Programs are infinite-state systems since they
can have recursive procedures, and the stack depth is unbounded.
Regardless, assertion checking is still decidable for Boolean Pro-
grams. A common technique for analyzing such programs is
CFL reachability [16, 11] (or equivalently, pushdown model check-
ing [17, 6]), where the key idea is to build procedure summaries.
The summary of a procedure P contains the state pair (s,s’) if in
state s, there is an invocation of P that yields the state s’ on ter-
mination. Summaries enable modular analysis of large programs.
Summaries enable reuse—if P is called from two different places
with the same state s, the work done in analyzing the first call is
reused for the second. This reuse is the key to scalability of in-
terprocedural analyses. Additionally, summarization avoids direct
representation of the call stack, and guarantees termination of the
analysis even if the program has recursion.

In this paper, we extend Boolean Programs with references and
show how we can still retain the benefits of modular analysis us-
ing procedure summaries. Analyzing such programs modularly is
non-trivial, since we allow unbounded dynamic allocations of ob-
jects on the heap, and arbitrary aliasing of objects. A key insight
we have is that even with all the extra complexities we can still
construct a summary for every invocation of a procedure, that is
a pair consisting of (1) the visible state that is reachable from the
procedure through globals and the formal parameters, and (2) the
effect that the procedure has on this visible state, which could in-
volve changing some values and allocating new objects and linking
them to the visible state. Typically, a procedure does not make use
of its entire visible state during its execution. We can generalize
the notion of visible state to a pattern, which is the subset of the
visible state that is actually observed by a procedure during its exe-
cution, and both generate fewer summaries, and obtain better re-use
of generated summaries.

We define an equivalence relation that relates “similar” visible
states. We prove that the index of this equivalence relation is
bounded if all paths in the heap are of bounded length, thereby
yielding an algorithm to decide assertions in such programs. Note
that this result is non-trivial since bounded path length does not
mean bounded heap —executions of the program can still have un-
bounded call stacks and can potentially allocate unbounded mem-
ory (see Section 3 for an example). Certain natural syntactic re-
strictions on the program provide sufficient conditions for bounded
path lengths on the heap. For example, if all the reference types in
the program are non-recursive, the type structure guarantees that all
paths in the heap will be bounded.

Even for programs with recursive data types and unbounded paths
in the heap, the result is still useful. For such programs, we can par-
tition the heap into a backbone component, which contains paths
of bounded length, an an unbounded component which contains
data structures such as lists or trees. By viewing the unbounded
data structures as collections, sets or arrays we can use predicate-
abstraction or other finitary abstractions and represent these un-
bounded components using finitary representations. Thus, we can
retain the backbone components “as is”, view the unbounded com-
ponents as collections and abstract them into finitary representa-
tions, and use the algorithm in this paper to decide assertions in
such programs. Other analyses can be used to prove that the code
for the linked lists correctly implements the collection or set ab-

straction [15]. Since the relevant references on the backbone part
are present in the extracted model, all aliasing queries are resolved
with full precision on-the-fly during model checking. This feature
of our analysis obviates the need for a coarse apriori pointer analy-
sis while doing predicate abstraction as in [2, 7]. A number of itera-
tions in the refinement loop are wasted in discovering extra aliasing
predicates to regain the precision lost by the static pointer analysis.
These iterations can be avoided making the analysis much more ef-
ficient.

In a recent paper [10], we show to use the idea of transactions to
build procedure summaries for concurrent programs. However, the
work reported in [10] does not deal with reference data-types, and
no implementation was presented. By combining the results of this
paper with the results from [10], we have implemented a sum-
marization algorithm in zING, a software model checker being de-
veloped in Microsoft Research, for programs that have no restric-
tions on reference data types or concurrency. Though termination
is guaranteed only when the path length in the heap is bounded,
base types are finite domain, and recursive procedures are “transac-
tional” as defined by [10], we find that the implementation termi-
nates on several cases and outperforms the model checker without
summarization. \We obtained a concurrent transaction management
program obtained from a product group at Microsoft. The program
has recursive data types, but all paths in the heap are bounded. We
found that the the model checker with summarization outperforms
the model checker without summarization by 30-35%. On param-
eterized examples artificially constructed to demonstrate the bene-
fits of summarization, the algorithm improves performance asymp-
totically as expected. The implementation is robust as evidenced
by correct results on hundreds of small examples in the SLAM and
ZING regression suites.

To summarize, this paper has two contributions:

e \We present a new model checking algorithm for deciding as-
sertions in programs with references. Our algorithm termi-
nates and yields precise results even on programs that allocate
unbounded amount of memory, as long as the paths in the
heap have bounded length.

e \We combine the above result, with another result we presented
in [10] and implement a general summarization algorithm in
the zING model checker, for programs that that have no re-
strictions on reference data types or concurrency. Our earlier
paper [10] did not deal with references, and did not have an
accompanying implementation. We present details and exper-
iments from this implementation.

2 Related work

Interprocedural analyses based on context-free reachability [11]
have recently been used in error-detection tools such as sLAM [4]
and ESP [5]. SLAM uses an alias-analysis to first conservatively
abstract a C program to a Boolean Program (a program without
references), and EsP uses value-flow analysis and bit-vectorization
to conservatively partition the analysis problem into separate prob-
lems, one each per distinct value. Imprecision in alias analysis and
value flow analysis can lead to false errors in both approaches. In
the case of sLAM some of these false errors can be eliminated using
abstraction-refinement, where some extra predicates are added to
keep track of specific aliasing relationships more precisely. The
treatment of pointers in this paper differs from both these ap-
proaches. We show that for models with bounded paths on the heap
and finite base types, we can decide assertions interprocedurally

without losing any precision.

In the compiler community, extensive work has been done in the
area of pointer analysis(see [8] for an assessment of the state-of-
the-art). In particular, prior work on context-sensitive pointer anal-
yses have investigated methods to do interprocedural pointer anal-
ysis using partial transfer functions (PTFs) [20], which bear some
similarity to the patterns and effects used in this paper. By cloning
information at every calling context, and using Binary Decision Di-
agrams to represent the sharing between various contexts, context-
sensitive pointer analyses have been recently made to scale on very
large programs [19]. These analyses lose precision to enable scal-
ing, and are mostly flow-insensitive. Though some of our tech-
niques are inspired by such work, our goals and results are qualita-
tively different. We want to extract a model from a large program,
which captures only relevant variables and pointers that are of inter-
est to prove a particular property. Once we construct such a model,
we want to decide assertions in this model without losing any pre-
cision. We do not know of any prior work that precisely decides as-
sertions on possibly recursive programs with bounded path lengths
on the heap, and possibly unbounded number of allocations. The
algorithm and implementation reported in this paper achieve this
result.

In the model checking community, researchers have built model
checkers that operate over concurrent heap-manipulating programs
written in common programming languages such as Java [18, 9, 14].
None of these model checkers exploit the procedural structure of the
program for efficiency in model checking. The model checker BE-
BOP [3] from the SLAM project exploits summarization in the sim-
pler setting of boolean program models. The algorithm presented
in this paper is a generalization of BEBOP to handle models with
references. In a prior unpublished paper, Thomas Ball proposed
extending Boolean Programs with references and extending BEBOP
to handle these extended programs symbolically [1]. He also con-
jectured that the assertion checking problem is decidable for this
extension.

Sagiv et al. [15] have developed an abstract-interpretation frame-
work based on 3-valued logic to reason about heap-manipulating
programs. Recent work by Rinetzky et al. [12, 13] has combined
the idea of visible states with 3-valued logic to build an interproce-
dural shape analysis. Their work identified the novel concept of cut-
points, which are heap cells reachable in the visible state of a called
procedure that are reachable from the local variables of the calling
procedure. The presence of cutpoints is the main obstacle to per-
forming interprocedural analysis in the presence of a heap. There
are technical and algorithmic differences between their work and
ours. The technical difference is that they use a storeless semantics
whereas we use a store-based semantics for the program. The algo-
rithmic difference is that Rinetzky et al. compute cutpoints eagerly
whenever a procedure call happens, whereas we identify cutpoints
lazily as we build the summary of the called procedure. In addition,
we introduce the novel implementation technique of patterns (See
Section 6). Our experimental results show that the use of patterns
is crucial for the scalability of the analysis.

3 Overview

In this section, we informally introduce the main ideas of this paper
using the example program shown in Figure 1. Inside procedure M
at line L0, a new object is allocated and assigned to local variable f .
Then, a nondeterministic choice is made at line L1, and in one of the
choices, f . x is assigned the value of g1. x, and then the global g1 is

class Main {

static Bool Box g1, g2;
activate

static void main() {

cl ass Bool Box { gl = new Bool Box();

bool x; g2 = g1,
/I constructor gl.x = fal se;
Bool Box() { M);
X = true; assert((gl.x == fal se)
} && (g2.x == false));
1 }
}; static void M) {
Foo f;
L0: f = new Bool Box();
L1 if(*) {
L2: f.x =gl.x;
L3: gl =f;
L4 M);
}
}

};
Figure 1. Example program which can allocate potentially un-
bounded memory

made to point to the local object created at line LO, and pointed-to
by f. This is followed by a recursive call to M The other choice just
terminates Mand returns. This program can allocate an unbounded
amount of memory since there is an execution that always chooses
to take the “if” branch of the nondeterministic choice at line L1 and
creates an unbounded stack, allocating an unbounded number of
objects each pointed-to by a local variable from a stack frame.

Visible states and effects. The state of a program contains the
globals, the stack and the heap. To do modular analysis of a pro-
gram, it is useful to consider the notion of visible state of a program
with respect to a particular invocation of a procedure (i.e., a stack
frame). The visible state of a program consists of the locals, for-
mals, globals in the current stack frame and the subset of the heap
that is reachable from the locals, formals and globals. Thus, heap
addresses that are only reachable from other stack frames such as
the caller, or the caller’s caller are not part of the visible state.

Consider the invocation of Min procedure nai n from the example.
The visible state S; of Mat this invocation consists of g1, g2 and the
single heap cell that they both point to, which is of type Bool Box
and has its x field set to false. Let us call the address of the heap
cell as A0. We will represent visible states by a set of address-value
pairs. For example, the visible state described above is represented
by: S1 = {(91, A0), (g2, A0), ((A0,x),false)}.

Two visible states are equivalent if they differ in only the actual ad-
dress of the heap cells, and are indistinguishable otherwise, in terms
of aliasing or values of base-types in the state. For example consider
the visible state S, = {(g1, Al), (g2,Al), ((Al,x),false)}.
Then, S; and S, are equivalent. However, the visible state S3
={(g1, A0), (02,A2), ((A0,x), false), ((A2,x), false)}is
not equivalent to S; since the aliasing relationship between g1 and
g2 is different in S and Ss.

Even though the number of heap cells allocated by a program could
be unbounded, the number of non-equivalent visible states for a
procedure invocation has to be finite if the base types are boolean
and the length of the paths in the heap are bounded. This notion is
made precise in Sections 4 and 5, and is crucial for our termination
theorem (Theorem 3 in Section 5). For example, if we consider all
the (unbounded number of) invocation contexts of procedure Min

class Main {
static int x;

static int vy; static void foo() {

static int z; L1 if(*) {
L2: assume(x == 0);
activate L3: z =1,
static void main(){ }
M: x =0, y=0;, z=0; el se {
ML: foo(); L4: assume(y == 1);
My = 1; L5: assert(false);
M3: foo(); }
} 1

1
Figure 2. Example program to illustrates unsoundness with
naive usage of patterns

Figure 1 every visible state is equivalent to either S; or S3— the
visible state is equivalent to S; for the call made to Mfrom nai n,
and the visible state is equivalent to S3 for each of the unbounded
number of recursive calls made to Mat line L4.

An effect is a function from visible states to visible states. A sum-
mary of a procedure P is a state pair (S,e), where S is a visible state
and e is an effect. Intuitively, e(S) represents a possible visible state
at termination of procedure P if the procedure is invoked at visible
state S. More concretely, an effect e is represented as a pair (as,m)
where as is a set of addresses that represent object allocations, and
m is a set of updates. In order to apply an effect e = (as,m) on a
state S, one first allocates objects at addresses from as in S and then
performs the updates prescribed by m.

For example, if Mis invoked at visible state S; = {(g1, A0),
(g2, A0), ((A0,x),false)}, the procedure Mcan have three dif-
ferent behaviors: (1) it can generate an empty effecte; = ({}, {}),
which represents the case where the “if” branch is not taken, and
the final visible state at the exit of procedure Mis the same as
the visible state on entry, or (2) it can generate a effect ex = (
{ALl}, {(g1, A1), ((A1,x),false)}) ,whereAl isthe address of
a newly allocated object, and the pair (g1, Al) denotes that g1 is
updated to hold the value Al, and the pair ((AL, x), fal se) de-
notes the value of the Bool Box object at address Al, or (3) it can
enter an infinite recursion and never return. We do not generate
summaries for non-terminating executions since we are checking
for safety properties only. Thus, for the visible state S; we have
two summaries for procedure M namely {(S1,e1),(S1,e2)}. The
Algorithm in Section 5 shows how these two summaries (and only
these two summaries) are computed for M

An invocation to M at Sz = {(gl,A0), (g2, A2),

((A0,x),false), ((A2,x),false)} also can generate the
same three behaviors as the ones for S;. Thus the summaries of
Mare given by the finite set: {(S1,e1),(S1,€2),(S3,e1),(S3,€2)}.
Since any invocation to M happens at a visible state equivalent
to either S; or Sz, these summaries can be used to generate all
possible visible states at the exit of M without descending into the
body of M Applying the effects of these summaries lets us decide
that the assertion after the call to Min mai n can never get violated.

Patterns. Often, a procedure does not make use of its entire visible
state during its execution. In such cases, it is useful to generalize
the notion of visible state to a pattern, which is the subset of the
visible state observed by the procedure Mduring its execution.

A pattern © is a set of visible states. It is tempting to generalize a

summary to be a pair (©,€), where © is a pattern and e is an effect.
However, this leads to unsoundness in the decision procedure as il-
lustrated by the example in Figure 2. In the example, the procedure
mai n calls procedure f oo twice. The first call is made at line ML
with visible state SS1 = {(x, 0), (y,0), (z,0)}. Inside foo we
have a non-deterministic branch at line L1, which has two targets L2
and L3. The behavior at L2 passes the assume statement assunme(x
== 0) This results in a summary (©,eeq) where the pattern ©1
={(x, 0) }, an the effect ee; = {(z, 1) }. Thus, the pattern records
that the value 0 is read from variable x and the effect records that the
value 1 is written into variable z. The other behavior at L3 is pruned
silently since the assume statement assune(y == 1) fails. During
the second call to procedure f oo from line M3, the visible state is
SS2 ={(x,0), (y,1), (z,1)} . This state matches the pattern
©1 ={(x, 0) }, and if the summary (©1,ee;) is applied without fur-
ther analysis inside procedure f 00 we get a single successor state
SS3={(x,0), (y,1), (z,1)} afterreturning from f 0o. How-
ever, this misses the assertion failure in line L5 since the second
call is made from a state where variable y has value 1, and thus can
fail the assertion. The reason for the unsoundness is that the pat-
tern ®1 does not capture the values of the variables read in all the
non-deterministic paths inside f 0o.

We therefore generalize a summary to be a pair (©,E) where O is
a pattern over a visible state and E is a set of effects. Intuitively, for
such summaries to be sound, the pattern © should include all val-
ues read over all the non-deterministic behaviors inside the function
starting from a given visible state and the set E should include all
the resulting effects. Thus, the correct summary for the call to f oo
at line L1 should be (©1,E) where ©®1 ={ (x, 0),) } ,and
E = {ee1}, is a singleton set with only one effect, since the behavior
at line L3 is pruned. However, even though the behavior is pruned,
the fact that value 0 was read from variable y is still recorded as part
of the pattern. Thus, during the second call to procedure f 0o from
line MB, with visible state SS, ={ (x,0), (y,1), (z,1) } ,we
find that the pattern ©@, = { (x,0), (y,0) } does not match the
visible state since the pattern requires variable y to have the value
0. Thus, procedure f 00 is re-analyzed from this visible state and
the assertion failure is detected.

Consider again, the procedure Mfrom Figure 1. The value of the
global variable g2 is never observed by procedure M Thus, the por-
tion of the visible state S; that is observed by Mis given by @3 =
{ (g1, A0), ((A0,x),false) }.Similarly,the portion of the vis-
ible state Sg that is observed by Mis given by ©4 = { (g1, A0),
((A0, x), fal se) }. Even though the visible states S; and Sg are
not equivalent, the patterns ©3 and ©4 are equivalent. Thus, the
same set of behaviors will be generated by executing Mfrom these
two visible states. With this generalization, the procedure Min Fig-
ure 1 has summaries {(©s, {e1,e2})}. By using this generalization,
we were able to generate fewer summaries than our earlier repre-
sentation {(S1,€1),(S1,€2),(S3,e1),(S3,€2)}.

4 Definitions

A state of a program is a 3-tuple (h,1,s), consisting of a heap h, a
local store I, and a stack s. The heap h is a collection of cells, each
of which has a unique address and contains a finite set of fields.
Formally, the heap h is a partial function mapping addresses to a
function that maps fields to values. Given address a and field f,
the value stored in the field f of cell with address a is denoted by
h(a, f). Let |h| be the largest element in Addr on which h is defined.
The local store | is a valuation to local variables, and the stack s is a
sequence of local stores. A field of a particular cell is called a loca-

tion. Each variable or location has a unique type, either boolean or
reference. A variable or location of boolean type contains a boolean
value and of reference type contains either null or the address of a
cell.

The behavior of a program is completely specified by the following
entities:

1. A control flow graph C C PC x Action x PC.

2. The initial program counter pc, € PC.

3. The initial local store || : LocalVar — Value that assigns false
to each variable of boolean type and null to each field of ref-
erence type.

4. The object initialization function A; : Field — Value that as-
signs false to each field of boolean type and null to each field
of reference type.

5. The initial heap h; : Addr — Field — Value that is defined only
at the special address globals such that h; (globals) = A,.

Domains
I 1
b € Bool = {true,false}
a € Addr = {globals}uU{1,2,...}
i€ PC
v € Value = PCUAddruUBoolU{null}
f e Field
X € LocalVar
a € Expr = globals | null | false | x | x.f
| -0 |aiVoy | o =adz
Action = x=new|x=a|x.f=a
| assume(x) | call | return
h e Heap = Addr — Field — Value
L) e Local = PC x (LocalVar — Value)
s € Stack = Local*
(h,t) € VisibleState = Heap x Local
(h,t;s) € State = Heap x Local x Stack
as € Addrs = Powerset(Addr)
loc € Location = Addr x Field
rw € Locations = Powerset(Location)
m € LocationMap = Location — Value
e € Effect = Addrs x LocationMap

We formalize the semantics of a program as a tuple (T, T, T~) of
three relations:

T C VisibleState x Locations x Addrs x Locations x VisibleState
T+ C VisibleState x Local
T~ C VisibleState

The relation T models steps that do not manipulate the stack.
T(h,¢,r,as,w,h’,¢) holds whenever the program executes an ac-
tion in the visible state (h,¢), reads locations in r, allocates new
heap cells with addresses in as, writes locations in w, and modi-
fies the state to (h',¢'). Note that the set of locations r and w re-
spectively record reads from and writes to fields in the heap but
not the local variables. The relation T+ models a procedure call.
T*(h,¢,¢") holds whenever the program executes a call action in
the visible state (h,¢) modifying the local store in the current stack
frame to ¢/, and pushing a fresh stack frame (pc;,l;). The relation
T~ models a procedure return. T~ (h,¢) holds whenever the pro-
gram executes a return action in the visible state (h, ¢). This action
pops the current stack frame. Both the push and pop actions leave
the heap unchanged.

We use the notation a[h, 1] to denote the value of the expression o
when evaluated over the visible state (h,1) and R(a)[h,] to denote

the set of locations read during the evaluation of a in (h,l). The
definition of R(a)[/h, 1] is as follows:

R(null)h,I] = 0
R(false)[h, I\] = 0
()[\h | = 0
R(x.)1 = {(100,)}
R(-a)[h.I] = R(a)[hI]
R(agVag)[h,I] = R(ay)[h,IJUR(az)]hI]
R(ay = az)lh,1] = R(ag)fh,IUR(az)[h, 1]

The formal definitions of T, T™ and T~ are given below:

Transition relation

' (ALLOCATE)
(i,x=new, j) € C x e LocalVar h(a) isundefined 1’ =1[I(x):=

T(h,(i,1),0,{a},0,h[a :=N],(j,I"))
(WRITELOCAL)
(i,x=a,j) €C xe LocalVar
=R(a)[h,1] v=alhl] I"=Ix:=V]
T (h,(i,I),r,0,0,h,(j,I"))

(WRITEHEAP)
(i,x.f=a,j)eC xe LocalVar
=R(a)[hI1] v=alhl] h =h[{I(x),f):=V]
T(h, (0,1),5,0,{(x), H)}, 0", (5,1))
(CONDITIONAL)
(i,assume(x),j) € C I(x) =true
T(h,(i.1),0,0,0,h,(j,1))
(caLL)
(i,call,j)eC
TH(h, (1.1, (3.1)
(RETURN)
(i,return, j) € C
T=(h, (i,1))

The program starts execution in the state (hy, (pc;,li),€), where h
is the initial heap, I, is the initial local store, and € is the initial
empty stack. Let ¢ denote the pair (pc;,l;). When the program
makes a transition, its state is updated according to the transition
executed in T, T or T~. The operational semantics — of the
program is formally defined as follows:

Operatlonal semantics

(STEP)
T((h,6),r,as,w, (0, ')
(h,¢,s) — (N, ¢',s)

(PUSH)
T*(¢h,6),0)
(h,0,s) — (h,¢,s-0)
(POP)

T ((h,9))
.05 0) — (0,73

For each visible state (h,¢), let Cells(h,¢) be the set of addresses
of reachable cells. Formally, Cells(h, ¢) is the least set of addresses
satisfying the following conditions: (1) globals € Cells(h, ¢). (2) if
£(x) € Addr, then £(x) € Cells(h,). (3) if f € Field, a € Cells(h, ¢),
and h(a, f) € Addr, then h(a,) € Cells(h, ?¢).

A visible state (h,¢) is called garbage-free if dom(h) = Cells(h, ¢).
Let gc(h,¢) denote the garbage-free visible state (h’,¢) where h’ is
h restricted to Cells(h, ¢).

A visible state (h, ¢) is well formed if h is defined for all addresses
in Cells(h,¢). A state (h,¢,s) is well formed if the heap h is defined
for all address values that are reachable from the or local variables
in all the stack frames in s. In the following, we assume that all
states and all visible states are well formed.

A partial function p : Value — Value is a permutation for a heap h
if p(v) = v whenever v € PCUBool U {null,globals}, and for any
a € Addr, if h(a) is defined, we have that p(a) is defined. If hy
and hy are two heaps and p; is a permutation for hy, and p; is a
permutation for hy, we say that p, extends p; if for all a in the
domain of hq, we have that p1(a) = p2(a).

For any permutation p, we define

°

—
o~

—
Il

Ax € LocalVar. p(¢(x))
Aa e Addr.f e Field. p(h(p~1(a), f))

°
S
=
=
I

Let (hy,¢1) and (hy,¢>) be garbage-free visible states. Then
(h1,€1) = (hp,0p), if there exists a permutation p such that
(p(h1),p(£1)) = (ha,£2). Clearly, the relation = is an equivalence
relation and partitions the set of garbage-free visible states into a
set of equivalence classes. We extend p to visible states and de-
fine p((h,2)) = (p(h),p(¢)). For each state (h,¢), we fix a unique
representative which can, for example, be obtained by performing
a depth-first search on the heap graph of (h,¢) with | as roots and
renaming the index of each heap cell to its depth-first number. Let
A be the function that maps each visible state (h, ¢) to the unique
representative of gc(h, ¢). We call A the canonizing function for the
sequential program.

Given a set of addresses as, we define p(as) = {p(a) | a € as}.
Given a set of locations w, we define p(w) = {(p(a), f) | (a,f) €
w}.

We note that transitions are preserved under permutations, which
is a key property of programs. To state this formally, we define
permutations over stacks as well. If p is a permutation and stack s is
asequence ¢1,¢a,...,¢n of local variables, then p(s) is the sequence

p(€1)7 p(€2)7 (RN} p(én)

LEMMA 1. for any transition (h,l,s) — (h’,I’;s), and for any
permutation p for h’, there exists a permutation p’ for h’, such that
p' extends p, and (p(h), p(1),p(s)) — (p'("), P (I"),P'(s))-

5 Algorithm

In this section, we present our algorithm for procedure summariza-
tion in the presence of references. Our algorithm uses the relations
T, T+, and T~ to perform a fixpoint computation over the follow-
ing relations:

P C \VisibleState x Addrs x Locations x VisibleState
Pt C VisibleState x Addrs x Locations x VisibleState
Sum C Heap x Addrs x LocationMap
Q <C \VisibleState x VisibleState
QT C \VisibleState x VisibleState
R C \VisibleState

The relation P is analogous to the set of “path edges” in interpro-
cedural dataflow analyses [11]. P(h,¢,as,w,h’,¢') holds if there is
an execution from (h,¢) to (h’,¢') along which as is the set of al-
located addresses that are still reachable from (h’,1’) and w is the
set of locations that were written to, and are reachable either from
(h,£) or from (h’.¢'). In this section, we do not aggregate the set r
of read locations and consequently the r parameter in T, T, and
T~ is not used. We will show how to use r in the next section to do
a further important optimization.

Algorithm
I 1
(INIT)
Q(h, &1, A(hi, 1))
(STEP)

P(hl,fl,aS,W,hz,fz)
T(ha,(2,1",as", W', hg, (3)
as” = (asUas’) NCells(hs, I3)

w’ ={(a, f) ewuw' | a € Cells(hy,l1) UCells(hs,l3)}
d=r(w")\as"
—Q(hy,41,A(h3,l5+8))
P(hl,ifl,as”,w”,hg,&)
Q(hy,£1,A(h3,l3+9))

(PUSH)
P(h17£17as7w7 h2,¢2)
T+ (ha,l2,03)
6="T(w)\as
Q" (A(hy, £1),A(h2,£3+3))
P+(h1,fl,aS,W, h2,153)
Q+(h1,fl,A(h2,f3 + 6))

(START SUM)
Pt (hy,01,a5,W,h2,02) —R(A(h2,41))
P(h2,£,0,0,h2,41) R(A(h2,4)))

(POP)
P(hl,ifl,as,w, hz,fz)
Tf(hz,fz)
m = Map(w,hz)
Sum(hy,as,m)

(USE sum)
P*(hy,01,as,W,h2,62) Sum(hs,as’,m’)
p(ge(hs, 41)) =ge(ha, &)
(as”,w” hs) = apply((as’,m’), p,hz)
as” = (asuas”) NCells(hg,l)
w” ={(a,f) ewuw"” | a € Cells(hy,l1) UCells(ha,l2)}
6 — I—(W///) \ as///
—Q(h1,€1,A\(hg,€2+5))
P(hy,(1,as”,w"” ha, ()
Q(h1,£1,A(hs,l2+9))

The relation P denotes those path edges that end in a proce-
dure call. The relation Sum is analogous to the set of “summary

edges” [11]. Sum(h,as,m) holds if there is an execution that be-
gins in (h,¢), allocates the addresses in as and updates the heap
according to m. A pair (as, m) is called an effect.

The relations Q and Q* contain canonized representations of the
edges in P and P respectively. These last two relations are crucial
for the termination of the algorithm.

Let " be a function that maps a set of locations to a set of heap ad-
dresses referred in the set. For example ' ({1.f,2.g}) = {1,2}. Ifl
is a set of local variables, and & is a set of heap addresses, we use
| + o to denote an augmentation of the local variables with a local
data structure containing the set of heap addresses. During canoni-
calizaiton and garbage collection, if | is a set of local variables, as
is a set of locally allocated addresses, and w is a set of written lo-
cations, we augment the local variables to | 4 (I'(w) \ as) so as to
take into account written addresses that have been potentially made
garbage due to updates.

Our algorithm is specified as a set of rules for performing a fix-
point computation over the relations mentioned above. To ensure
that the fixpoint terminates, we also compute the canonical repre-
sentative of each new edge generated by the algorithm. Whenever
anew edge (h,¢,as,w,h', ') is added to P, its canonical representa-
tive (A(h, ﬁ),/\(h’ E’ I (w))\as)) is added to Q. Similarly, whenever
anew edge (h,¢,as,w,h’ ¢ is added to P*, its canonical represen-
tative (A(h, £), (h’,ﬁ’, (Y\ as)) is added to Q.

Recall that h; is the initial heap and ¢, is the initial local store. The
fixpoint computation is kicked off by an application of the first rule
(I1N1T), which adds the edge ((h;,4),(0,0),(h,4)) to P. The rule
(STEP) extends an edge in P by exploring a transition. The new
edge generated is added to P only if its canonical representative is
not already present in Q. The rule (PUSH) is similar to the rule
(sTEP) and generates an edge in P if the canonical representative
of that edge is not present in Q. The rule (START SUM) starts off
a fresh summary computation in the called procedure.

The rule (POP) creates a procedure summary edge in Sum. This
edge consists of the heap h; and an effect (as,m) that describes
the updates to the global variables and the heap. The function Map
takes as arguments a set of locations and a heap. It returns a location
map obtained by looking up in the heap the values of the locations
in the set.

The rule (USE suM) is the most complicated rule and deals with the
application of a summary edge in Sum at a call site. A summary
edge is applicable if the heap and global store at its source is iso-
morphic to the heap and global store at the call site. Suppose p is
the witness to the equivalence. The function apply is used to apply
the summary. The operation apply takes as input an effect (as, m),
a permutation p, and a heap h. It returns a set of addresses as’, a set
of locations W/, and a heap h’ created by performing the following
operations in sequence.

1. Letas’={|h|+1,...,|h|+]as|}. Extend htoas’ so that for all
acas’ andfield f € Field, if f has type boolean then h(a, f) =
false otherwise h(a, f) = null.

2. Extend p to p’ so that p’ maps as one-one onto as’.

3. For each address a and field f such that m(a, f) is defined,
update h(p’(a), f) = p/(m(a, f)). Let the final heap be h’.

4. Letw' = {(p/(a), f) | m(a, f) is defined }

We now present theorems that establish the correctness of our algo-

rithm.
THEOREM 1 (SOUNDNESS). If (hy,4,e) —* (h,{,s), then
there exist (b, ¢), and & such that (W,¢) = (h,¢) and

Q(h1,£|,h/,f/+6).

THEOREM 2 (COMPLETENESS). If
then there exist (h,¢) and s such that (h,¢) =
(h|,f|,€) — (h,f,S).

Q(hy, 41,0, +3),
(W, ¢y and

The proofs of these theorems can be found in the appendix.

We now present the argument for the termination of our algorithm.
This argument requires the notion of k-boundedness for some non-
negative number k. A visible state (h, ¢) is k-bounded if the longest
chain of references starting from a global or a local variable has
length at most k. Although the set of k-bounded visible states is un-
bounded, this unbounded set is partitioned into a finite set of equiv-
alence classes by the relation =. This observation forms the crux of
the argument for the termination of our algorithm.

A sequential program (T, T*,T) is k-bounded if whenever (h, ¢)
is k-bounded and T (h, ¢,r,as,w,h’,), then (', ¢’} is k-bounded.

Consider a sequential program all of whose base types have finite
domains and all of whose reference types are non-recursive. It is
easy to show that such a program is k-bounded for some finite num-
ber k that can be determined from the static type structure of the
program. We can now state our termination theorem.

THEOREM 3 (TERMINATION). If the sequential program
(T, T+, T7) is k-bounded, then the fixpoint computation specified
by the rules described above terminates.

6 Patterns

In this section, we describe an optimization to the algorithm in Sec-
tion 5, where we generalize the visible state in summaries to a pat-
tern, which is the subset of the visible state that is actually observed
during execution. We generalize summaries to be pairs (©,E)
where © is a pattern over a visible state and E is a set of effects.
Recall from Section 3 that for such summaries to be sound, the pat-
tern © should include all values read over all the non-deterministic
behaviors inside the function starting from a given visible state and
the set E should include all the resulting effects.

With this generalization, we find it difficult to present our optimized
algorithm in the style of a fixpoint over relations, since some of
the relations grow non-monotonically. Hence, we present the op-
timization as an imperative algorithm. Figure 3 gives the types of
variables used in the algorithm. A Node is a “shell” around a vis-
ible state, with a node type and an effect, which accumulates all
alocations and writes along an execution path. There are three node
types: CALL, RETURN and EXECUTE. Local searches in each
procedure start at roots of type Root, where a pair of hash tables
visitedTable and returnTable are used respectively to (1) keep track
of visited states and ensure termination of the search, and (2) pre-
vent repeated addition of identical effects. Each root holds a sum-
mary, which consists of a pattern and a set of effects.

The main loop of the algorithm is shown in Figure 4. There are
3 global variables, namely (1) workList, a list of pending work
items, (2) rootList, a list of roots where local searches begin in-
side each procedure (3) graph, a set of dependencies between caller
and callee procedures. The main loop processes the work list and

record Edge {
num: integer;
addrMap : Addr — Addr;

Graph = (Root x VisibleState) — Root — Edge
AddrMap = Addr — Addr

record Effect {
alloc: Set (Addr);
wmap: LocationMap;

record Root {
pattern: LocationMap;
effects: Array (Effect);
visitedTable: Set (VisibleState);
returnTable: Set (VisibleState);
updated: boolean;

void Search(Workltem w) {
Root r = w.root;
Stack(Node) stack = 0;

} Node node, newNode;

enum WorkltemType { STATE, SUMMARY } if (w.type = STATE)

record Workltem { node = { state = w.state; effect = 0;type = EXECUTE};
root: Root; else
state: VisibleState; node = { state = w.state; effect = 0;type = CALL};
type: WorkltemType; stack.Push(node);

r.visitedTable = r.visitedTable U Representative (w.state);

}
enum NodeType { CALL, RETURN, EXECUTE } while (stack # 0) {

record Node { node = stack.Peek();
state: VisibleState; if (node.type = CALL)
effect: Effect; newNode = GetNextSuccessorCall(r,node)
type: NodeType; else

newNode = GetNextSuccessorExecute(r,node)
if (newNode = null) {
stack.Pop(); continue;

Figure 3. Types

State rep = Representative(newNode.state);

workList : list(Workltem); if (newNode.type = RETURN) {

rootList : list(Root) if (rep & r.returnTable) {
graph : Graph r.returnTable = r.returnTable Urep;

r.effects.Add (newNode.effect);

Root r = { visitedTable = 0; returnTable = 0; updated = false; }; r.updated = true;

Workltem w = { root = r;state = (ho,go, lo); type = STATE; };
workList.Add (w);

rootList.Add(r);

graph = 0;

while (workList # 0) {
w = workList.Get();
w.root.updated = false;
Search(w);
if (w.root.updated) {
Root x;
VisibleState s;
Root y;
integer i;
Graph staleEdges = {(x,s,Y,€) € graph | y = w.root};
graph = graph \ staleEdges;
foreach ((x,s,y,e) € staleEdges) {
w = { root = x; state = s; type = SUMMARY };
workList.Add (w);

}

Figure4. Main loop of optimized algorithm that uses patterns

}

continue;
if (rep € r.visitedTable) continue;

r.visitedTable = r.visitedTable U rep;
stack.Push(newNode);

Figure5. The procedure Search

calls the procedure Search on each work item until there are no
more work items. A root gets updated when its effects get up-
dated or when it pattern gets updated. In either case, the main
loop deletes the edges and reschedules the caller on the work-
list so that the dependencies can be computed afresh. Figure 5
shows the Search procedure. It implements Depth First Search
that calls GetNextSuccessorCall for getting the successors of CALL
nodes and GetNextSuccessorExecute for getting the successors of
EXECUTE nodes. The search terminates at the RETURN nodes,
and effects are updated at each RETURN node.

The lookup of summaries happens inside the implementation of
GetNextSuccessorCall shown in Figure 6. Procedure Match is used
to match the current visible state with the pattern of a summary, and
function Apply is used to apply the effect of a matched summary on
a visible state. If a pattern matches with a visible state, the Match
procedure computes a mapping between the pointers of the visible
state and the pattern, and the Apply procedure uses this mapping to
apply the effect correctly on the visible state. The implementation
of GetNextSuccessorExecute iterates over the transitions of the vis-
ible state associated with an EXECUTE node. We assume that the
following functions on visible states are available:

1. boolean ExistsNextSuccessor (VisibleState s)

2. (Set(Location) x Set(Addr) x Set(Location) x VisibleState x
NodeType) GetNextSuccessor (VisibleState s)

3. Value Read(VisibleState s, Location loc)
4. void Write(VisibleState s, Location loc, Value v)
5. integer HeapSize(VisibleState s)

7 Experiments

We implemented the summarization algorithm from Section 6 in
ZING, which is a software model checker being developed in Mi-
crosoft Research. Our implementation is more general than the de-
scription from Section 6 in two ways: (1) it works on the entire
ZING language with both integer and boolean base types, and unre-
stricted reference types and (2) it also handles concurrent programs
in a sound manner using transactions, and the idea of summarizing
within a transaction, a technique described in [10]. Termination of
the algorithm is guaranteed if base types are boolean, and paths in
the heap are bounded, and it is either the case that the program is
sequential (due to Theorem 3 of this paper), or it is the case that the
program is concurrent, and every recursive function call is trans-
actional (obtained by combining Theorem 3 of this paper with the
termination result in [10]).

We describe four sets of experiments that we designed to measure
the effectiveness of summarization. The first two experiments were
designed to measure the performance gain due to summarization,
and the next two were designed to assess the correctness and ro-
bustness of the implementation.

Transaction Manager. We obtained a concurrent transaction man-
agement program from a product group in Microsoft. It was au-
tomatically translated to Zing from C#. It has about 7000 lines
of code, several dynamically created objects and two concurrent
threads. A grep of the program shows 57 places in the code where
new objects are allocated dynamically, and several of these happen
in procedures that are called in several call-sites in the program.
The zING model checker discovered a null-pointer dereference bug
in this program. We then proposed a fix, and checked that the fix
did not have null-pointer dereferences. Both the models have sev-

requi res node.type = CALL
Node GetNextSuccessorCall(Root r, Node node) {
Effect newEffect;
VisibleState newState;
NodeType newType;
Node returnNode;
Root target;
Edge edge, newEdge;
Workltem w;
AddrMap map;

if (graph(r, node.state) is undefined) {
boolean found = false;
target = null;
foreach (Root r’ € rootList) {
(found, map) = Match(r’.pattern, state);
if (found) {target = r’;break; }

if (target =null) {
w = { root = target; state = node.state;
type = STATE); }
workList.Add (w);
return null;

edge = {num = 0;addrMap = map; };

graph = graph U (r,node.state, target, edge);
} else

(target,edge) = graph(r,node.state);

if (edge.num < target.effects.length) {
Set(Location)rset = target.pattern \ (LocalVar U {pc});
foreach (Location loc € rset) {
if (node.effect.wmap[loc] is undefined){
r.pattern[loc] = Read(node.state, loc);
r.updated = true;

(newEffect, newState) =
Apply(target.effects[edge.num|,addrMap, node .state);
newEdge = {num = edge.num+1;
addrMap = edge.addrMap; };
graph(r,node.state, target) = newEdge;
returnNode = { state = newState; effect = newEffect;
type = EXECUTE; };
} else
return null;

return returnNode;

Figure 6. The procedure GetNextSuccessorCall

(boolean, AddrMap) Match(LocationMap pattern, VisibleState state) {

AddrMap addrMap = 0
foreach ((Location loc, Value v) € pattern) {
Location loc’ = case loc of
(a, f) — (addrMap]a], f)
|- —loc;
Value v/ = Read(state, loc’);
if (ve (BoolUPCU{null})) {
if (V' #£V)
return(false, 0);
}else {
if ((addrMaplv]is defined AaddrMap|v] # V')
v (addrMap~1[V']is defined A addrMap~1[V'] # v))
return(false, 0);
addrMaplv] = V/;
}

return (true,addrMap);

}
Figure 7. The procedure Match

(Effect x VisibleState) Apply(Effect effect, AddrMap addrMap,
VisibleState state) {
Effect newEffect;
VisibleState newState = state;
integercount = HeapSize(newState) + 1;
foreach (Addr a € effect.alloc) {
newEffect.alloc = newEffect.alloc U {count};
foreach (f € Field) {
if (f isboolean)
Write(newState, (count, f), false);
else
Write(newState, (count,), null);

addrMap[a] = count;
count = count +1;

foreach ((Location loc, Value v) € effect.wmap) {
Location loc’ = case loc of
(a, f) — (addrMapla],)
|- —loc;
Value v/ = case v of
Addr — addrMap|v]
| booleanUPC U {null} — v;
newEffect.wmap(loc’] = V/;
Write(newState, loc’,v/');

return (newEffect, newState);

Figure 8. The procedure Apply

requi res node.type = EXECUTE
Node GetNextSuccessorExecute(Root r, Node node) {
Effect newEffect;
VisibleState newState;
NodeType newType;
Node returnNode;

if (ExistsNextSuccessor(node.state)) {
Set(Location) rset, wset;
Set(Addr) as;
(rset, as, wset, newState, newType) =
GetNextSuccessor (node.state);
foreach (Location loc € rset) {
if (node.effect.wmap[loc] is undefined){
r.pattern[loc] = Read(node.state, loc);
r.updated = true;

}

newEffect.alloc = node.effect.allocUas;
newEffect.wmap = node.effect.wmap;
foreach (Location loc € wset)
newEffect.wmap|loc] = Read(newState, loc);
returnNode = { state = newState; effect = newEffect;
type = newType; };
} else
return null;

return returnNode;

Figure 9. The procedure GetNextSuccessorExecute

Program Without With
summarization | summarization
(seconds) (seconds)
TM with bug 147.750 97.736
TM without bug 227.050 169.292

Table 1. Comparison of model checking timeswith and without
summarization for atransaction management program

eral millions of reachable states. The error happens only in a par-
ticular, rarely exercised, interleaving between the two threads, and
thus remained undetected in previous testing efforts by the product
group. Table 1 shows the total time taken for model checking with
and without summarization. The transaction management program
has recursive data types, but does not have procedural recursion.
However, it only creates bounded chains of objects and our model
checker ends up terminating on this example with and without sum-
marization. In both the buggy program, and the bug-fixed program,
the model checking time improved by the order of 30%-35% due to
summarization.

The use of patterns optimization was crucial. For the bug-fixed
program, with the patterns optimization (Section 6) a total of 1125
summaries are computed and looked up 528982 times. Without the
patterns optimization (using the visible states as in Section 5), a
total of 56881 summaries were computed and looked up 557752
times. Thus, the use of patterns increases the reuse of summaries
by over a factor of 50 in this example.

Micro-benchmark. We consider the benchmark from Figure 10.
Inside the function Mmakes two recursive calls to M due to the non-

class Foo { static void Mint i) {
bool x; Foo f;
bool b;
Foo Cone() { if (i <N {
Foo t = new Foo; f = g.done();
t.x = x; b = choose(bool);
return t; g.x = b;
} Mi +1);
}; assert(g.x == b)
g.x =f.x;
class Main { }
static Foo g; }
¥
activate
static void main() {
g = new Foo;
MO0);

assert(g.x == false);

Figure 10. Benchmark program for Summarization

N Without summarization | With summarization
(seconds) (seconds)
5 .942 0.928
10 1.944 0.942
15 44,949 0.988
20 Timeout 1.059
30 Timeout 1.191
40 Timeout 1.268
50 Timeout 1.435
60 Timeout 1.644
70 Timeout 1.848
80 Timeout 2121
90 Timeout 2.484
100 Timeout 2.848
200 Timeout 7.772

Table 2. Comparison of model checkingtimeswith and without
summarization for theprogram in Figure 10. Timeout indicates
that therun did not terminate within 10 minutes

deterministic assignment n = choose(bool). Thus, as N varies,
a naive model checker analyzing this program needs to make 2N
calls to M However, if we use the summarization algorithm from
this paper, only 2N summaries for Mare needed since only values
that influence the behavior of M are its argument i , which can take
N different values, and the value of g. x which can be either true
or false. Thus, a model checker using summarization can scale lin-
early with N on this program. Note that inside each recursive call, a
fresh allocation to local variable f is done, and the algorithm is able
to handle this case. The empirical results presented in Table 2 show
exponential blowup in the model checker without summarization,
and linear scaling with summarization.

ZING Regressions. We tested all the programs in the zING regres-
sion suite with and without summarization. This suite contains 67
tests. One of the tests is a recursive program called Par Recur si on.
In this example the model checker without summarization enters an
infinite loop, but the model checker with summarization terminates.
The other tests all run within a few seconds, and the improvements
due to summarization are not noticeable. Table 3 shows representa-
tive numbers for four of these tests: buggy and fixed versions of a
bluetooth device driver, an implementation of Lamport’s bakery al-
gorithm, and a model of Dijkstra’s dining philosophers. The model
checker with the summarization algorithm produces identical re-

Program Without With

Program summarization | summarization
(seconds) (seconds)

ParRecursion Timeout 0.914

BluetoothBuggy 1.870 1.889

BluetoothFixed 2.118 1.941

BakeryAlgorithm 2.080 1.960

DiningPhilosophers 2.915 2.814

Table 3. Comparison of model checking timeswith and without
summarization for Zing regression tests

sults (pass or fail) as the model checker without summarization on
all the tests. This gives us confidence that our implementation is
working correctly.

SLAM Regressions. We have adapted the sLAM toolkit [4] to use
ZING as the back-end model checker for boolean programs instead
of sLAm’s model checker BEBOP. This is a somewhat restricted
use of zING since boolean programs have only boolean variables
and do not have any reference types. However, the summarization
algorithm presented in the paper should produce identical results to
BEBOP’s summarization algorithm, when restricted to boolean pro-
grams. We were able to check this on 198 of the 204 positive tests
in the SLAM regression suite. Both BEBOP and zING processed
each of these tests in a second or less and produced identical re-
sults. The 6 remaining tests have several global boolean variables
with non-deterministically initialized values. BEBOP is able to han-
dle this initial non-determinism symbolically using Binary Decision
Diagrams (BDDs), but zING is unable to complete analyzing these
examples within comparable running times. We are currently aug-
menting zING with some symbolic techniques to resolve this prob-
lem. This issue is orthogonal to the evaluation of the summarization
algorithm.

Summary of Experiments. We find that summarization outper-
forms the naive model checker if the same procedure is called with
the same context a large number of times, as expected. This was
demonstrated both using the artificial program in Figure 10 as well
as a real-life transaction manager program obtained from a product
group at Microsoft, where speedups of 30%-35% were observed.
Further, we have done extensive testing of our implementation with
almost all the regression tests from zING and SLAM regression
suites. With a few exceptions, the algorithm produces identical re-
sults to a naive model checker giving us very high confidence that
our implementation is working correctly (we are tracking and fixing
the few remaking anomalies at the time of writing this paper).

8 Conclusions

We have presented an algorithm to perform precise interprocedu-
ral analysis of programs with references. Our algorithm terminates
on programs with finite base types and bounded paths in the heap.
Thus, it enables generating models with references as abstractions
of large programs during model checking. We have combined this
technique with a prior technique we developed to summarize proce-
dures in concurrent programs, and implemented the algorithm for
the whole of the zING modeling language, which has both unre-
stricted reference types and unrestricted concurrency. \We observe
that the algorithm improves the speed of the model checker by 30-
35% on a model obtained from a distributed program inside Mi-
crosoft. We have also done extensive comparisons of our imple-
mentation with the BEBOP tool from sLAM for boolean programs.

Acknowledgments. We thank an anonymous reviewer for pointing
out a subtle error in an earlier version of the algorithm presented in
this paper. We thank Thomas Ball for discussions about extensions
to Boolean Programs without losing decidability of model check-
ing. We thank Jakob Rehof for collaborating with us on how to do
summarization for concurrent programs. The concurrent transac-
tion manager example was obtained as a result of Mayur Naik and
Jakob Rehof’s work in the summer of 2004 to build a concurrency
testing tool for distributed and concurrent programs. Wolfgang
Grieskamp wrote a translator from C# to zING that enabled us to
convert the Transaction Manager example to zING. We thank Tony
Andrews for several discussions on how to adapt the ZING runtime
and compiler to implement the summarization algorithm. The idea
of instrumenting the zING runtime so as to record reads and writes,
and then generate patterns and effects from such recorded informa-
tion was proposed by Yichen Xie, when he as an intern with MSR
in the summer of 2003. Georg Weissenbacher, Jakob Lichtenberg
and Vlad Levin helped build a path from SLAM to zING, in order
to check concurrency properties of drivers during the summer of
2003. This infrastructure was greatly useful in letting us compare
the results of BEBOP and zING on the SLAM regression tests.

9 References

[1] T. Ball. Symbolic reachability of boolean programs with ref-
erences, unpublished document from personal communica-
tion. June 2003.

[2] T. Ball, R. Majumdar, T. Millstein, and S. K. Rajamani. Au-
tomatic predicate abstraction of C programs. In PLDI 01:
Programming Language Design and Implementation. ACM,
2001.

[3] T. Ball and S. K. Rajamani. Bebop: A symbolic model
checker for Boolean programs. In SPIN 00: SPIN Workshop,
LNCS 1885, pages 113-130. Springer-Verlag, 2000.

[4] T. Ball and S. K. Rajamani. The SLAM project: Debugging
system software via static analysis. In POPL 02: Principles
of Programming Languages, pages 1-3. ACM, January 2002.

[5] M. Das, S. Lerner, and M. Seigle. ESP: Path-sensitive pro-
gram verification in polynomial time. In PLDI: Programming
Language Design and Implementation, pages 57-69. ACM,
2002.

[6] J. Esparza and S. Schwoon. A BDD-based model checker for
recursive programs. In CAV 01: Computer Aided Verficiation,
LNCS 2102, pages 324-336. Springer-Verlag, 2001.

[7]1 T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy
abstraction. In POPL ’02, pages 58-70. ACM, January 2002.

[8] M. Hind. Pointer analysis: Haven’t we solved this problem
yet? In PASTE 01: Workshop on Program Analysis for Soft-
ware Tools and Engineering, pages 54-61. ACM, 2001.

[9] R. losif and R. Sisto. dSPIN: A dynamic extension of SPIN.
In SPIN 99: SPIN Workshop, LNCS 1680, pages 261-276.
Springer-Verlag, 1999.

[10] S. Qadeer, S. K. Rajamani, and J. Rehof. Summarizing proce-
dures in concurrent programs. In Principles of Programming
Languages, pages 245-255. ACM, 2004.

[11] T. Reps, S. Horwitz, and M. Sagiv. Precise interprocedural
dataflow analysis via graph reachability. In POPL 95: Princi-
ples of Programming Languages, pages 49-61. ACM, 1995.

[12] N. Rinetzky, J. Bauer, T. Reps, M. Sagiv, and R. Wilhelm.

A semantics for procedure local heaps and its abstraction.
In POPL 05: Principles of Programming Languages, pages
296-309. ACM, 2005.

[13] N. Rinetzky, M. Sagiv, and E. Yahav. Interprocedural shape
analysis for cutpoint-free programs. In SAS 05: Static Analy-
sis Symposium, 2005.

[14] Robby, M. Dwyer, and J. Hatcliff. Bogor: An extensible
and highly-modular model checking framework. In FSE 03:
Foundations of Software Engineering, pages 267-276. ACM,
2003.

[15] M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis
via 3-valued logic. In POPL 99: Principles of Programming
Languages, pages 105-118. ACM, 1999.

[16] M. Sharir and A. Pnueli. Two approaches to interprocedural
data flow analysis. In Program Flow Analysis: Theory and
Applications, pages 189-233. Prentice-Hall, 1981.

[17] B. Steffen and O. Burkart. Composition, decomposition and
model checking optimal of pushdown processes. Nordic Jour-
nal of Computing, 2(2):89-125, 1995.

[18] Willem Visser, Klaus Havelund, Guillaume Brat, and Se-
ungJoon Park. Java pathfinder - second generation of a java
model checker. In Proceedings of Post-CAV Workshop on Ad-
vances in Verification, July 2000.

[19] J. Whaley and M. S. Lam. Cloning-based context-sensitive
pointer alias analysis using binary decision diagrams. In
PLDI 04: Programming Language Design and Implementa-
tion, pages 131-134, 2004.

[20] R. P. Wilson and M. S. Lam. Efficient context-sensitive
pointer analysis for C programs. SIGPLAN Notices, 30(6):1-
12, 1995.

Appendix

The proof of the soundness theorem requires the following lemma,
which can be proved by induction on the length of execution paths
of the form: (h;,¢,€) —* (h,£,s). We first give a few definitions
used to state the lemma.

An execution sequence (h, ¢,s) —* (W' ¢',s') is balanced if every
push action has a corresponding pop action and every pop action
has a corresponding push action. A balanced subsequence o’ of g is
left-maximal, if there is no left-extension of o’ that is also balanced.
Given an execution sequence o = (h;, ¢;,&) —* (h,¢,s), we define
Entry(h,£,s) to be the first state in the left-maximal sub sequence
o' = (h,Z,s) —* (h,¢,s) of o. Intuitively, Entry(h,,s) is the state
when the current stack frame on top of the stack was first pushed,
and has not been popped since.

LEMMA 2. Consider any execution sequence (hj,¢,e) —*
(h,£,8) — (W, 0')s"). Let (W,¢')s") = Entry(h,¢';s"). Let o’ be
the subsequence of the execution (W', ¢,s") —* (W, ¢',s'). Letas’
be the set of addresses allocated in the heap during the execution
of o’ that are reachable from the visible state (h',¢'). Let w’ be the
set of heap locations on the heap that were written during the exe-
cution of o’ and are reachable from either (b, #) or (W', ¢'). Let &
be the set of addresses I'(w') \ as’.

Then the following two statements hold:

1. There exists p such that Q(p(I),p(¢),A(p(W,¢' +&))) and

P(p(W),p(2"), p(W'),p(N),p(£")).

2. Supppose the last step in the sequence (h,¢,s) — (N, ¢')s)
is a pop action. Let (h,7,s) = Entry(h,/,s). Let o be the sub-
sequence of the execution (ﬁﬁs) —* (h,¢,s). Let as be the
set of addresses allocated in the heap during the execution of
o that are reachable from the visible state (h,). Let w be the
set of heap locations on the heap that were written during the
execution of o and are reachable from either (h,¢) or (h,?).
Let 0 be the set of addresses I' (w) \ as.

Then, there exist pih§,Is,ass,ms,asr and w; such that
p(gc((hs,fs))) = ge(h,£) and Sum((hs,gs), (ass,ms)), and
apply((ass,ms), p, (h,) = (', asr, wy).

Proof of Lemma 2: The proof is by induction on execution se-
quences. We sktech the auxiliary lemmas used in the proof. The
following lemma states that if there are two paths within the same
function that lead to the same term in Q, then the two paths agree on
the allocated and written addresses and values that are accumulated
in P. This lemma is used to prove that the STEP rule obeys Lemma
2.

LEMMA 3. Let o1 = (h4,s) —* (hy,01,5) and
o2 = (h,4,s) —™* (h2,¢2,5) be two left-maximal subsequences
that start at the same state. Let as; be the set of addresses allocated
in the heap during the execution of g1 that are reachable from the
state (h1,¢1). Let wy be the set of heap locations on the heap that
were written during the execution of g1 and are reachable from
either (h,£;) or (hy,£1). Let &1 be the set of addresses I' (wy) \ asy.
Let as, be the set of addresses allocated in the heap during the
execution of o, that are reachable from the state (hy, ¢2). Let wy be
the set of heap locations on the heap that were written during the
execution of g, and are reachable from either (h,¢;) or (hz,£>).
Let &, be the set of addresses I" (wz) \ as.

Then, if A(hq,¢1+01) = A(h2, 2+ dp), then there exists a bijection
p from as to as, such that p(as;) = asp and Map(p(wy),p(h1)) =
Map(wa, h2)

The following lemma states that the seqeunce of allocated and
writen addresses and values that are accumulated within a summary
are sufficient to precisely produce the state after the application of
the POP rule.

LEMMA 4. Consider any execution sequence o = (h;,¢;,&) —*
(h1,£1,s) — (h1,£|,s.£’1) — (hz,fz,s.ﬂa) — (hz,f/,s) such
that the subsequence o’ = (hy,4;,5.07) —* (h2,€2,5.0}) is left-
maximal. Let as be the set of addresses allocated in the heap during
the execution of o that are reachable from the state (hy, ¢2). Letw
be the set of heap locations on the heap that were written during the
execution of o1 and are reachable from either (hy,¢;) or (hz,¢2).

Then, if (as’,w’,h") = apply((as,Map(w,h3)),pi,h1), where p; is
the identity permutation, we have that h’ = ho.

The proof of Lemma 2 also requires the following auxililary lem-
mas showing that the different steps of the algorithm commute un-
der permutations.

LEMMA 5. Suppose T ((h,I),r,as,w, (h’,1'}). For any permuation
p for h, there exists a permutation p’ for h’, such that p’ extends p,

and T ((p(h),p(1)),p'(r).p'(as), P’ (w), (p' (W), ' (I")))

LEMMA 6. Suppose the application of the STEP rule in

the algorithm with P(hq,l1,as,w,hp,l2) as input yields
P(hy,l1,as’, W', hg,I3)as output. Then, for any p that is a
permutation for hy and hy, there exists a permutation p’ for h; and
hs, such that p’ extends p, such that the application of the STEP
rule in the algorithm with P(p(h1),p(l1),p(as),p(w),p(h2),p(l2))
as input yields P(p'(h1),p'(I1),p’(as’),p’ (W), p'(h3),p'(l3)) as
output.

