
Sound Transaction-based Reduction without Cycle

Detection

Vladimir Levin1 Robert Palmer2

Shaz Qadeer1 Sriram K. Rajamani1

Microsoft1

The University of Utah2

vladlev@microsoft.com, rpalmer@cs.utah.edu,

qadeer@microsoft.com, sriram@microsoft.com

April 2005

Technical Report

MSR-TR-2005-40

Partial order reduction is widely used to alleviate state space explosion in
model checkers for concurrent programs. Traditional approaches to par-
tial order reduction are based on ample sets. Natural ample sets can be
computed for threads that communicate with each other predominantly
through message queues. For threads that communicate with shared
memory using locks for synchronization, Lipton’s theory of reduction
provides a promising way to aggregate several fine-grained transitions
into larger transactions. In traditional partial order reduction, actions
that are not in the ample set are delayed, thus avoiding the redundant
exploration of equivalent interleaving orders. Delaying the execution of
actions indefinitely can lead to loss of soundness. This is called the ig-

noring problem. The usual solution to the ignoring problem is by Cycle
Detection. Explicit state model checkers usually use Depth First Search,
and when a cycle is detected, disallow using a reduced ample set that
closes the cycle.
The ignoring problem exists in transaction-based reduction as well. We
present a novel solution to the ignoring problem in the context of trans-
action-based reduction. We designate certain states as commit points

and track the exploration to discover whether the reduced exploration
guarantees a path from each commit point to a state where the trans-
action is completed. If such a path does not exist, we detect this at the
time a commit point is popped from the stack, and schedule all threads
at the commit point. This paper presents our algorithm, called Commit
Point Completion (CPC). We have implemented both CPC and Cycle
Detection in the Zing model checker, and find that the CPC algorithm
performs better.

Microsoft Research
Microsoft Corporation
One Microsoft Way

Redmond, WA 98052
http://www.research.microsoft.com

1 Introduction

Partial order methods have been widely used as an optimization in building
model checkers for concurrent software [1–6]. Traditional partial order reduction
methods are based on the notion of independence between actions. Two actions
α and β are independent if (1) they do not disable one another and (2) if both
actions are enabled in a state s, then executing them in the order α followed by
β from s, or in the order β followed by α from s, leads to the same resulting
state. Partial order reduction algorithms explore a subset of enabled actions
in each state called the ample set. The set of all actions enabled in a state
s is denoted Enabled(s) and the ample set of actions in a state s is denoted
Ample(s). Obviously, Ample(s) ⊆ Enabled(s). For partial order reduction to be
sound, ample sets need to be chosen in such a way that a transition that is
dependent on a transition in Ample(s) cannot execute without a transition in
Ample(s) occurring first (see condition C1 in [1] page 148). Choosing a minimal
ample set satisfying C1 is a very hard problem. In practice, ample sets are formed
from local actions, and from restricted versions of send and receive actions, such
as: sending to a queue, with the sender having exclusive rights of sending to the
queue, and receiving from a queue, with the receiver having exclusive rights of
receiving from the queue [3]. If the system consists of threads interacting via
shared memory, Lipton’s theory of reduction [7] provides an alternate way to do
partial order reduction. Reduction views a transaction as a sequence of actions
a1, . . . , am, x, b1, . . . , bn such that each ai is a right mover and each bi is a left
mover. A right mover is an action that commutes to the right of every action
by another thread; a left mover is an action that commutes to the left of every
action by another thread. Thus, to detect transactions we need to detect right
and left movers. Most programs consistently use mutexes to protect accesses to
shared variables, we can exploit this programming discipline to infer left and
right movers:

– The action acquire(m), where m is a mutex, is a right mover.
– The action release(m) is a left mover.
– An action that accesses only a local variable or shared variable that is con-

sistently protected by a mutex is both a left mover and a right mover.

A transaction is a sequence of right movers, followed by a committing action
that is not a right mover, followed by a sequence of left movers. A transaction
can be in two states: pre-commit or post-commit. A transaction starts in the
pre-commit state and stays in the pre-commit state as long as right movers are
being executed. When the committing action is executed, the transaction moves
to the post-commit state. The transaction stays in the post-commit state as long
as left movers are being executed until the transaction completes. In addition to
being able to exploit programmer-imposed discipline such as protecting each
shared variable consistently with the same lock, transaction-based reduction
allows extra optimizations such as summarization [8].
Ignoring Problem. All partial order reduction algorithms work by delaying
the execution of certain actions, thus avoiding the redundant exploration of

int g = 0;

void T1() {

L0: g = 1;

L1: skip;

L2: while(true){

L3: skip;

}

L4: return;

}

void T2() {

M0: assert(g == 0);

M1: return;

}

P = { T1() } || { T2() }

Fig. 1. Ignoring problem

equivalent executions. For instance, if thread t1 executes an action from state
s1 that reads and writes only local variables, then thread t2 does not need to
be scheduled to execute in s1, and t2’s scheduling can be delayed without losing
soundness. For any interleaving that starts from s1 and ends in a state where
some thread t goes wrong, there exists an equivalent interleaving where the
execution of t2 is delayed at s1. However, unless we are careful, the scheduling of
thread t2 can be delayed indefinitely resulting in loss of soundness. This situation
is called the ignoring problem in partial order reduction.

Consider the example in Figure 1. The initial state of this program has two
threads t1 and t2 starting to execute functions T1 and T2 respectively. The
program has one global variable g, which has an initial value 0. A typical model
checking algorithm first schedules t1 to execute the statement at line L0, which
updates the value of g to 1. Let us call this state s1. Since the next statement
executed by thread t1 from s1 reads and writes only local variables of t1 (namely
its program counter) and does not read or write the global variables, partial order
reduction algorithms delay execution of thread t2 at state s1. Continuing, the
while loop in lines L2 and L3 also reads and writes only the local variables of t1
and thus execution of t2 can be delayed during the execution of these statements
as well. However, since reached states are stored, and a newly generated state
is not re-explored if it is already present in the set of reached states, a fix-
point is reached after executing the loop in T1 once. Thus, the execution of t2 is
delayed indefinitely, and the reduction algorithm can be unsound, and say that
the assertion in line M0 is never violated.

Most partial order reduction algorithms “fix” the ignoring problem by de-
tecting cycles, and disallowing the actions of a thread to be ample when a cycle is
“closed” (see condition C3, pages 150 and 158 in [1]). Since explicit-state model
checkers usually use depth first search (DFS), cycle detection can be performed
by detecting whether a newly generated state is already present in the DFS
stack. In the SPIN model checker this is implemented using a bit in the hash
table entry for reached states. This bit indicates whether the newly generated
successor state is currently also on the depth first search stack.

Cycle detection is neither necessary nor sufficient for transaction-based re-
duction. Consider the variant of our current example in Figure 2. Here, we have

int g = 0;

void T1() {

L0: g = 1;

L1: skip;

L2: if (*) {

L3: while(true){

L4: skip;

L5: }

}

L6: return;

}

void T2() {

M0: assert(g == 0);

M1: return;

}

P = { T1() } || { T2() }

Fig. 2. Cycle detection is not necessary for transaction-based reduction

introduced a nondeterministic choice in line L2 of procedure T1. In one branch of
the nondeterministic choice, we have a while-loop with statements reading and
writing only local variables of thread t1 (lines L3-L4). The other branch of the
nondeterministic choice just terminates the procedure. In this case, even with-
out doing any cycle detection, since one branch of the nondeterministic choice
terminates, a partial order reduction algorithm can schedule thread t2 after pro-
cedure T1 terminates, and thus the assertion violation in line M0 can be detected.
If we consider a variant of this example, where the entire “if” statement (from
line L2 to L6 is replaced by assume(false) at line L2, some other mechanism in
addition to cycle detection is needed to schedule the thread t2 after t1 executes
the statement L1.

In the current literature on transaction-based reduction, the ignoring prob-
lem is addressed indirectly by disallowing certain types of infinite executions,
such as those consisting of only internal hidden actions, within each thread (see
Condition C from Section 4.2 in [9] which forbids the transaction from having in-
finite executions after committing, but without completing, and well-formedness
assumption Wf-ifinite-invis from Section 4 in [10]). These assumptions do not
hold in practice. In particular, when we analyze models that arise from abstrac-
tions (such as predicate abstraction) of programs, it is common to have loops
with non-deterministic termination conditions, which violate the above assump-
tions. Thus, a more direct and computationally effective solution to the ignoring
problem is required for wide applicability of transaction-based reduction. This
paper presents a novel solution to this problem.
CPC Algorithm. We propose a new technique called Commit Point Com-

pletion (CPC) to solve the ignoring problem without cycle detection. We keep
track of the state immediately after the committing action is executed, called
the commit point. When a committed transaction completes, we simply mark
the commit point as completed. When an unmarked commit point is about to
be popped from the DFS stack, we schedule all threads from that state. Our
insight is that we can delay the decision to forcibly end a transaction up to the
time when commit point is about to be popped from the stack, avoiding taking
such a decision pre-maturely when cycles are closed.

Mutex m;

int x = 0; /* all accesses to x will be guarded by m*/

int y = 0; /* accesses to y are not guarded */

void T1() {

L0: acq(m);

L1: y := 42;

L2: x := 1;

L3: rel(m);

L4: while (true)

{ skip; }

}

void T2() {

M0: acq(m);

M1: assert(x == 0);

M2: rel(m);

}

void T3() {

N0: y = 10;

}

P = { T1() } || { T2() } || { T3() }

Fig. 3. CPC algorithm in the presence of left movers

In the example from Figure 1 the state immediately after t1 executes the
statement at line L0 is a commit point. Due to the non-terminating while loop,
the transaction that is committed here never completes. Thus, when this commit
point is about to the popped from the DFS stack, it is unmarked, and the
CPC algorithm schedules thread t2 from this state, and the assertion violation
in line M0 is detected. The example from Figure 2, has an identical commit
point. However, since one nondeterministic branch completes the transaction, the
commit point gets marked. Thus, when the commit point gets popped from the
DFS stack, the other thread t2 is not scheduled. Note that the assertion failure
at M0 is detected even without scheduling thread t2 from the commit point,
because t2 will be scheduled by the reduction algorithm after the transaction in
t1 completes on one of the nondeterministic branches.

The above description of the CPC algorithm is simplistic. In the presence of
left movers there may be more than one commit point for a transaction, and all
of these commit points need to reach a state where the transaction completes to
ensure sound reduction. For example, consider the example shown in Figure 3.
In this example, there are two global variables x and y and one mutex m. All
accesses to x are protected by mutex m, and are thus both movers. Accesses to
y are unprotected, and are hence non-movers. Acquires of mutex m are right
movers and releases are left movers as mentioned earlier. Thus, when thread
T1 executes the assignment to y at label L1, its transaction commits, since the
access to y is a non-mover. The resulting state, where y has just been assigned
42 and the program counter of the thread T1 is at L2 is a commit point. Due
to the infinite while-loop at at L4 this committed transaction never completes,
and the CPC algorithm can schedule threads at the above commit point when
it is about to be popped from the stack. However, for us to detect the assertion
violation at line M1 of thread T2, another commit point needs to be established in
T1 after the assignment to x at line L2. We handle this case by designating every
state in a committed-transaction obtained by executing a “pure” left mover (i.e,
a transaction that is a left mover but not a both-mover) as a commit point.

Thus, in T1, the state after executing the release at line L3 is also designated as
a commit point, and the algorithm schedules T2 when this state is about to be
popped, leading to the assertion violation.

We have implemented the CPC algorithm in the Zing model checker at MSR.
Section 5 presents experimental results that compare the CPC algorithm with a
Cycle Detection algorithm for various Zing programs. The results clearly demon-
strate that the CPC algorithm generally explores far fewer states than the Cycle
Detection algorithm.
Outline. The rest of the paper is organized as follows. Section 2 introduces
notations for describing multithreaded programs precisely. Section 3 gives an
abstract framework for sound transaction-based reduction. Section 4 presents the
CPC algorithm and a statement of its correctness. This section contains the core
new technical results of the paper. Section 5 presents experimental results from
the implementation of the CPC algorithm in the Zing model checker. Section 6
compares the CPC algorithm with related work, and Section 7 concludes the
paper.

2 Multithreaded programs

The store of a multithreaded program is partitioned into the global store Global

and the local store Local of each thread. We assume that the domains of Local

and Global are finite sets. The set Local of local stores has a special store called
wrong . The local store of a thread moves to wrong on failing an assertion and
thereafter the failed thread does not make any other transitions.

t, u ∈ Tid = {1, . . . , n}
i, j ∈ Choice = {1, 2, . . . , m}

g ∈ Global

l ∈ Local

ls ∈ Locals = Tid → Local

State = Global × Locals

A multithreaded program (g0, ls0,T) consists of three components. g0 is the
initial value of the global store. ls0 maps each thread id t ∈ Tid to the initial
local store ls0(t) of thread t. We model the behavior of the individual threads
using two transition relations:

TG ⊆ Tid × (Global × Local) × (Global × Local)
TL ⊆ Tid × Local × Choice × Local

The relation TG models system visible thread steps. The relation
TG(t, g, l, g′, l′) holds if thread t can take a step from a state with global store
g and local store l, yielding (possibly modified) stores g′ and l′. The relation
TG has the property that for any t, g, l, there is at most one g′ and l′ such that
TG(t, g, l, g′, l′). We use functional notation and say that (g′, l′) = TG(t, g, l) if
TG(t, g, l, g′, l′). Note that in the functional notation, TG is a partial function
from Tid × (Global ×Local) to (Global ×Local). The relation TL models thread
local thread steps. The relation TL(t, l, i, l′) holds if thread t can move its local
store from l to l′ on choice i. The nondeterminism in the behavior of a thread

is captured by TL. This relation has the property that for any t, l, i, there is a
unique l′ such that TL(t, l, i, l′).

The program starts execution from the state (g0, ls0). At each step, any
thread may make a transition. The transition relation →t⊆ State × State of
thread t is the disjunct of the system visible and thread local transition relations
defined below. For any function h from A to B, a ∈ A and b ∈ B, we write
h[a := b] to denote a new function such that h[a := b](x) evaluates to h(x) if
x 6= a, and to b if x = a.

TG(t, g, ls(t), g′, l′)

(g, ls) →t (g′, ls [t := l′])

TL(t, ls(t), i, l′)

(g, ls) →t (g, ls[t := l′])

The transition relation →⊆ State × State of the program is the disjunction
of the transition relations of the various threads:

→ = ∃t. →t

3 Transactions

Transactions occur in multithreaded programs because of the presence of right
and left movers. Inferring which actions of a program are right and left movers
is a problem that is important but orthogonal to the contribution of this paper.
In this section, we assume that right and left movers are available to us as the
result of a previous analysis (see, e.g. [11]).

Let RM ,LM ⊆ TG be subsets of the transition relation TG with the following
properties for all t 6= u:

1. If RM (t, g1, l1, g2, l2) and TG(u, g2, l3, g3, l4), there is g4 such that
TG(u, g1, l3, g4, l4) and RM (t, g4, l1, g3, l2).

2. If TG(u, g1, l1, g2, l2) and RM (t, g2, l3, g3, l4), then for all g′, l′

(TG(t, g1, l3, g
′, l′) ⇒ RM (t, g1, l3, g

′, l′)).
3. If TG(u, g1, l1, g2, l2) and LM (t, g2, l3, g3, l4), there is g4 such that

LM (t, g1, l3, g4, l4) and TG(u, g4, l1, g3, l2).
4. If TG(u, g1, l1, g2, l2) and LM (t, g1, l3, g3, l4), there is g4 such that

LM (t, g2, l3, g4, l4).

The first property states that a right mover of thread t commutes to the
right of a transition of a different thread u. The second property states that if
a right mover of thread t is enabled in the post-state of a transition of another
thread u, and thread t is enabled in the pre-state, then the transition of thread
t is a right mover in the pre-state. The third property states that a left mover of
thread t commutes to the left of a transition of a different thread u. The fourth
property states that a left mover that is enabled in the pre-state of a transition
by another thread is also enabled in the post-state.

Our analysis is parameterized by the values of RM and LM and only requires
that they satisfy these four properties. The larger the relations RM and LM ,

the longer the transactions our analysis infers. Therefore, these relations should
be as large as possible in practice.

In order to minimize the number of explored interleaving orders and to max-
imize reuse, we would like to infer transactions that are as long as possible (i.e.,
they are maximal with respect to a given thread). To implement this inference,
we introduce in each thread a boolean local variable to keep track of the phase of
that thread’s transaction. Note that this instrumentation is done automatically
by our analysis, and not by the programmer. The phase variable of thread t is
true if thread t is in the right mover (or pre-commit) part of the transaction; oth-
erwise the phase variable is false. We say that the transaction commits when the
phase variable moves from true to false. The initial value of the phase variable
for each thread is false.

p, p′ ∈ Boolean = {false, true}

`, `′ ∈ Local# = Local × Boolean

s̀, s̀′ ∈ Locals# = Tid → Local#

State# = Global × Locals#

Let Phase(t, (g, s̀)), the phase of thread t in state (g, s̀) be the second component
of s̀(t).

The initial value of the global store of the instrumented program remains g0.
The initial value of the local stores changes to s̀0, where s̀0(t) = 〈ls0(t), false〉
for all t ∈ Tid . We instrument the transition relations TG and TL to generate a
new transition relation T #.

T # ⊆ Tid × (Global × Local#) × Choice × (Global × Local#)

T #(t, g, 〈l, p〉, i, g′, 〈l′, p′〉)
def
=






∨ TG(t, g, l, g′, l′) ∧
p′ = (RM (t, g, l, g′, l′) ∧ (p ∨ ¬LM (t, g, l, g′, l′)))

∨ TL(t, l, i, l′) ∧ g = g′ ∧ p′ = p

In the definition of T #, the relation between p′ and p reflects the intuition
that if p is true, then p′ continues to be true as long as it executes right mover
transitions. The phase changes to false as soon as the thread executes a transition
that is not a right mover. Thereafter, it remains false as long as the thread
executes left movers. Then, it becomes true again as soon as the thread executes
a transition that is a right mover and not a left mover. A transition from TL does
not change the phase. We overload the transition relation →t defined in Section 2
to represent transitions in the instrumented transition relation. Similar to the
functional notation defined for TG in Section 2, we sometimes use functional
notation for T #.

Given an instrumented transition relation T #, we define three sets for each
thread t: R(t),L(t),N (t) ⊆ State#. These sets respectively define when a thread
is executing in the right mover part of a transaction, the left mover part of a
transaction, and outside any transaction. These three sets are a partition of
State# defined as follows:

– R(t) = { (g, s̀) | ∃l. s̀(t) = 〈l, true〉 ∧ l 6∈ {ls0(t),wrong} }.

– L(t) =

{
(g, s̀) ∃l. s̀(t) = 〈l, false〉 ∧ l 6∈ {ls0(t),wrong} ∧

(∃i, g′, l′. LM (t, g, l, g′, l′) ∨ TL(t, l, i, l′))

}
.

– N (t) = State# \ (R(t) ∪ L(t)).

The definition of R(t) says that thread t is in the right mover part of a
transaction if and only if the local store of t is neither its initial value nor wrong

and the phase variable is true. The definition of L(t) says that thread t is in
the left mover part of a transaction if and only if the local store of t is neither
its initial value nor wrong , the phase variable is false, and there is an enabled
transition that is either a left mover or thread-local. Note that since the global
transition relation is deterministic, the enabled left mover is the only enabled
transition that may access a global variable. Since (R(t),L(t),N (t)) is a partition
of State#, once R(t) and L(t) have been picked, the set N (t) is implicitly defined.

A transaction p →∗

t p′ has the following properties.

1. p ∈ N (t), and
2. – Either

(a) for 0 < j < n p0, . . . , pj ∈ R(t) ∨ L(t), and
(b) p′ = pn ∈ L(t) ∨ N (i).

– Or

(a) for 0 < j ≤ n pj ∈ R(t).

A transition relation Y right-commutes with a transition relation Z if Y ◦Z ⊆
Z ◦ Y , and Y left-commutes with Z if Z ◦ Y ⊆ Y ◦Z. Any transaction of thread
u in which p′ ∈ R(u) can be commuted to the right of transactions of other
threads. Therefore we consider sequences of transactions.

p = p1 →+
t(1) p2 →+

t(2) p3 · · · pk →+
t(k) pk+1 = q1 →+

u(1) q2 →+
u(2) q3 · · · ql →

+
u(l) ql+1 = q

� �� �

(p2 = p2,1 →t(2) · · · →t(2) p2,x = p3)
� �� �

(q2 = q2,1 →u(2) · · · →u(2) q2,x = q3)

Fig. 4. A sequence of transactions.

A sequence of states from Figure 4 is called a sequence of transactions if

– for all 1 ≤ m ≤ k, if pm = pm,1 →t(m) · · · →t(m) pm,x = pm+1, then
(1) pm,1 ∈ N (t(m)), (2) pm,2, . . . , pm,x−1 ∈ R(t(m)) ∨ L(t(m)), and (3)
pm,x ∈ L(t(m)) ∨N (t(m)).

– for all 1 ≤ m ≤ l, if qm = qm,1 →u(m) · · · →u(m) qm,x = qm+1, then (1)
qm,1 ∈ N (u(m)), and (2) qm,2, . . . , qm,x ∈ R(u(m)).

Intuitively, for every i, pi →
+
t(i) pi+1 is a committed transaction and for every j,

qj →+
u(j) qj+1 is an uncommitted transaction.

For any state set X ⊆ State# and transition relation Y ⊆ State# × State#,
by X/Y we mean the transition relation obtained by restricting Y to pairs whose
first component is in X . Similarly, by Y \X we mean the restriction of Y to pairs
whose second component is in X .

Theorem 1 says that we can represent any arbitrarily interleaved execution
sequence with a sequence in a canonical form based on transactions.

Theorem 1 (Reduction). For all t, let R(t), L(t), and W(t) be sets of states,

and →t be a transition relation. Suppose for all t,

1. R(t), L(t), and W(t) are pairwise disjoint,

2. (L(t)/→t\R(t)) is false,

and for all u 6= t,

3. (→t\R(t)) right-commutes with →u,

4. (L(t)/→t) left-commutes with →u,

5. if p →t q, then p ∈ R(u) ⇔ q ∈ R(u), p ∈ L(u) ⇔ q ∈ L(u), and p ∈
W(u) ⇔ q ∈ W(u).

Let N (t) = ¬(R(t) ∨ L(t)), N = ∀t. N (t), and →= ∃t. →t.

Suppose p ∈ N and p →∗ q. Then there exist k, l ≥ 0 and a transition

sequence

p = p1 →+
t(1) p2 →+

t(2) p3 · · · pk →+
t(k) pk+1

= q1 →+
u(1) q2 →+

u(2) q3 · · · ql →
+
u(l) ql+1 = q

with the following properties:

– for all 1 ≤ m ≤ k, if pm = pm,1 →t(m) · · · →t(m) pm,x = pm+1, then

1. pm,1 ∈ N (t(m)),

2. pm,2, . . . , pm,x−1 ∈ R(t(m)) ∨ L(t(m)), and

3. pm,x ∈ L(t(m)) ∨ N (t(m)).

– for all 1 ≤ m ≤ l, if qm = qm,1 →u(m) · · · →u(m) qm,x = qm+1, then

1. qm,1 ∈ N (u(m)), and

2. qm,2, . . . , qm,x ∈ R(u(m)).

Proof. We will prove our theorem by induction on the length of the sequence from
p to q. Suppose p ∈ N and p →∗ q. For the base case we have k = l = 0 ⇒ p = q.
For the inductive case we will assume that the inductive hypothesis holds (i.e.,
the sequence exists) for p →∗ q. We will consider the added step q →t q′. Now
we will perform a case analysis on q.

– q ∈ N (t). We show the following two statements by mutual induction:

• qm ∈ N (t) for all 1 ≤ m ≤ l + 1

• t 6= u(m) for all 1 ≤ m ≤ l

For the base case, we have ql+1 = q ∈ N (t). There are two inductive cases.
Suppose qm+1 ∈ N (t). From the definition of the sequence we know that
qm+1 ∈ R(u(m)). Now if t = u(m) then qm+1 ∈ N (t) ∩ R(u(m)) which
would result in a contradiction. Therefore we have t 6= u(m). We also have
qm ∈ N (t) by the definition of the sequence. We can conclude that pk+1 =
q1 ∈ N (t).
Since u(1), · · · , u(l) are all different from t, we commute all the actions per-
formed by these threads to the right of the action by thread t such that
thread t executes at state pk+1 →t q′. Resulting in one of the following
sequences:
• q′ ∈ N (t)

p = p1 →+
t(1) p2 →+

t(2) p3 · · · pk →+
t(k) pk+1,1 →t pk+1,2

= q′1 →+
u(1) q′2 →+

u(2) q′3 · · · q
′

l →
+
u(l) q′l+1 = q′ .

• q′ ∈ L(t)

p = p1 →+
t(1) p2 →+

t(2) p3 · · · pk →+
t(k) pk+1,1 →t pk+1,2

= q′1 →+
u(1) q′2 →+

u(2) q′3 · · · q
′

l →
+
u(l) q′l+1 = q′ .

• q′ ∈ R(t)

p = p1 →+
t(1) p2 →+

t(2) p3 · · · pk →+
t(k) pk+1

= q1,1 →t q1,2 →+
u(1) q′2 →+

u(2) q′3 · · · q
′

l →
+
u(l) q′l+1 = q′ .

– q ∈ L(t). By induction we show that
• qm ∈ L(t) for all 1 ≤ m ≤ l + 1
• t 6= u(m) for all 1 ≤ m ≤ l

For the base case, we have ql+1 = q ∈ L(t). There are two inductive cases.
Suppose qm+1 ∈ L(t). Since qm+1 ∈ R(u(m)), we have t 6= u(m). There-
fore qm ∈ L(t). In particular, we get that pk+1 = q1 ∈ L(t). There must
be some m such that t(m) = t. Otherwise p = p1 ∈ L(t) which vio-
lates our assumptions. Consider the greatest m such that t(m) = t. Then
t(m + 1), · · · , t(k) and u(1), · · · , u(l) are all different from t. (Recall that
(→t/L(t)) left-commutes with →t(m) for all t(m) 6= t.) We commute the
action performed by thread t to the left of all actions performed by these
threads to get the execution sequence

p = p1 →+
t(1) p2 · · · pm →+

t(m)

p′m+1 →+
t(m+1) p′m+2 · · · p

′

k →+
t(k) p′k+1

= q′1 →+
u(1) q′2 →+

u(2) q′3 · · · q
′

l →
+
u(l) q′l+1 = q′ .

Since q ∈ L(t), we have q′ ∈ L(t) ∨ N (t). Therefore p′m+1 ∈ L(t) ∨ N (t).
– q ∈ R(t). We first prove by contradiction that u(1), . . . , u(l) are all distinct

from each other. Suppose 1 ≤ a, b ≤ l are such that u(a) = u(b) and u(m) 6=
u(a) for all a < j < b. Then we know that qa+1 ∈ R(u(a)). Therefore

qb ∈ R(u(a)) which is a contradiction since qb ∈ N (u(b)). From which we
conclude that any thread that moved from q1 · · · ql+1 only moved once.
We now prove by contradiction that t = u(m) for some m such that 1 ≤
m ≤ l. If not, then pk+1 = q1 ∈ R(t). We now perform a case analysis.
1. Suppose there is no m′ such that t(m′) = t. Then p = p1 ∈ R(t) which

is a contradiction since p ∈ N .
2. Suppose m′ is the greatest such that t(m′) = t. Then pm′+1 ∈ R(t),

which is a contradiction since pm′+1 ∈ L(t(m′)) ∨ N (t(m′)).
From which we can conclude that thread t did move in the sequence from
q1 · · · ql+1.
Therefore u(1), . . . , u(m − 1), u(m + 1), . . . , u(l) are all different from t =
u(m). We first commute the actions performed by u(m + 1), . . . , u(l) to the
right of the action performed by t to get the execution sequence

p = p1 →+
t(1) p2 →+

t(2) p3 · · · pk →+
t(k) pk+1

= q1 →+
u(1) q2 · · · qj →+

u(m) q′m+1 · · · q
′

l →
+
u(l) q′l+1 = q′ .

If q′m+1 ∈ R(u(m)) then we are done. Otherwise, we commute actions per-
formed by threads u(1), . . . , u(m − 1) to the right of all actions performed
by thread u(m) to get the execution sequence

p = p1 →+
t(1) p2 →+

t(2) p3 · · · pk →+
t(k) pk+1

= q′1 →+
u′(1) q′2 · · · q

′

j →+
u′(j) q′j+1 · · · q

′

l →
+
u′(l) q′l+1 = q′

where u′(1) = u(m), u′(2) = u(1), . . . , u′(m) = u(m− 1), u′(m + 1) = u(m +
1), . . . , u′(l) = u(l).

Since q is in R(t),L(t), or N (t) our proof is complete.

Theorem 2 says if a sequence of transactions results in a state q ∈ N then
every transaction that committed also completed.

Theorem 2. Suppose the antecedents to Theorem 1 are satisfied. Let →→=
∃t. (∀u 6= t. N (u))/→t. If ∀t. p ∈ N (t) ∧ p →∗ q ∧ ∀t. q ∈ N (t) then p →→∗ q

Proof. By theorem 1 we have that there exists a transition sequence

p = p1 →+
t(1) p2 →+

t(2) p3 · · · pk →+
t(k) pk+1

= q1 →+
u(1) q2 →+

u(2) q3 · · · ql →
+
u(l) ql+1 = q

with the properties stated in that theorem. Since ∀t, q ∈ N (t) we have l = 0
and pk+1 = q1 = q. We will now show by induction that for 0 ≤ m ≤ k + 1
and for all t, pm ∈ N (t). The base case is that pm = pk+1 ∈ N (t) for all t. The
inductive case is as follows. Suppose pm+1 ∈ N (t) for all t. Since pm →∗

t(m) pm+1

we have pm ∈ N (t) for all t 6= t(m). We have as a property of the sequence that
pm = pm,1 ∈ N (t(m)) so for all t, pm ∈ N (t). Therefore for all m ≤ k + 1 and
for all t, pm ∈ N (t). Therefore p →→∗ q.

Theorem 3 says that it is unnecessary to explore any transactions where the
final state is in R(i) to find a state that is in W .

Theorem 3. Suppose the antecedents to Theorem 1 are satisfied. Let W =
∃t. W(t). If p ∈ N ∧ p →∗ q ∧ q ∈ W then ∃ q′ such that p →∗ q′ →∗ q,
for all t, q′ ∈ L(t) ∨ q′ ∈ N (t) and q′ ∈ W.

Proof. Since q ∈ W we have ∃t. q ∈ N (t). By induction we have already proved
that ql+1 ∈ N (t) ⇒ pk+1 ∈ N (t) ∧ u(m) 6= t for all m. By the same argument
we conclude that pk+1 ∈ W(t). Let q′ = pk+1 and we are done.

Theorem 4 gives a sufficient subset of transaction sequences to insure sound-
ness.

Theorem 4. Suppose the antecedents to Theorem 1 are satisfied. Let W =
∃t. W(t). If p ∈ N ∧ p →∗ q ∧ q ∈ W. Then p →→∗ q or p →∗ q′ →∗ q ∧ (∀t.q′ ∈
L(t) ∨ q′ ∈ N (t)) ∧ q′ ∈ W.

Proof. The representative sequence from p to q from Theorem 1 takes one of two
forms. If for all t, q ∈ N (t) then all transitions satisfy →→ in which case q = q′.
Otherwise, by theorem 3 we have p →∗ q′ via the sequence

p = p1 →+
t(1) p2 →+

t(2) p3 · · · p′k →t(m) p′k+1 = q′

where q′ ∈ W(t). For each m, 1 ≤ m ≤ k + 1, pm,x ∈ L(t(m)) ∨ pj,x ∈ N (t(m)).
Therefore q′ ∈ W is visited by one of these sequences and we are done.

We will find the following Lemmas useful in the proof of Theorem 5.
Lemma 1 says that the mover status of a transition of thread u does not

change when a right mover transition of thread t is commuted past the transition
of thread u.

Lemma 1. If RM (t, g1, l1, g2, l2) and TG(u, g2, l3, g3, l4), then there exists g4

such that

1. TG(u, g1, l3, g4, l4)
2. RM (u, g1, l3, g4, l4) ⇔ RM (u, g2, l3, g3, l4)
3. LM (u, g1, l3, g4, l4) ⇔ LM (u, g2, l3, g3, l4)

Proof. We will prove each item separately.

1. Follows immediately from Assumption 1 on RM and LM .
2. In the ⇒ direction, assume RM (u, g1, l3, g4, l4). We have assumed that

RM ,LM ⊆ TG. From Assumption 1 on RM and LM we have
TG(t, g4, l1, g3, l2). We can again apply Assumption 1 on RM and
LM to get that there exists some g5 such that TG(t, g1, l1, g5, l2) and
RM (u, g5, l3, g3, l4). We have also assumed that for any state (g, s̀) there
is at most one state (g′, s̀′) such that TG(t, g, s̀(t), g′, s̀′(t)). Therefore we
know that TG(t, g1, l1, g2, l2) is the only transition enabled for t at (g1, l1).
Therefore g5 = g2 and RM (u, g2, l3, g3, l4). In the ⇐ direction, assume
RM (u, g2, l3, g3, l4). Then by Assumption 2 on RM and LM and (1) from
above we have RM (u, g1, l3, g4, l4).

3. In the ⇒ direction, assume LM (u, g1, l3, g4, l4). Then by assumption 4 on
RM and LM there exists some g5 such that LM (u, g2, l3, g5, l4). We have
assumed that RM ,LM ⊆ TG. We have also assumed that for any state
(g, s̀) there is at most one state (g′, s̀′) such that TG(t, g, s̀(t), g′, s̀′(t)).
Therefore we know that TG(u, g2, l3, g5, l4) is the only transition enabled for
u at (g2, l3). Therefore g5 = g2 and LM (u, g2, l3, g3, l4). In the ⇐ direction,
assume LM (u, g2, l3, g3, l4). By Assumption 3 on RM and LM we have that
there exists some g5 such that LM (u, g1, l3, g5, l4) and TG(t, g5, l1, g3, l2).
Again by the deterministic nature of TG we have g5 = g4 and we are done.

Lemma 2 says that the mover status of a transition of thread u does not
change when a left mover transition of thread t is commuted past the transition
of thread u.

Lemma 2. If TG(u, g1, l1, g2, l2) and LM (t, g2, l3, g3, l4), then there exists g4

such that

1. TG(u, g4, l1, g3, l2)
2. RM (u, g4, l1, g3, l2) ⇔ RM (u, g1, l1, g2, l2)
3. LM (u, g4, l1, g3, l2) ⇔ LM (u, g1, l1, g2, l2)

Proof. We will prove each item separately.

1. Follows immediately from Assumption 3 on RM and LM .
2. For the ⇒ direction, assume RM (u, g4, l1, g3, l2). We have LM (t, g1, l3, g4, l4)

and RM (u, g4, l1, g3, l2). By Assumption 2 on RM and LM we can con-
clude RM (u, g1, l1, g2, l2). For the ⇐ direction, assume RM (u, g1, l1, g2, l2).
We have RM (u, g1, l1, g2, l2) and LM (t, g2, l3, g3, l4). By Assumption 1
on RM and LM there exists some g5 such that TG(t, g1, l3, g5, l4) and
RM (u, g5, l1, g3, l2). We have assumed that RM ,LM ⊆ TG. We have also
assumed that for any state (g, s̀) there is at most one state (g′, s̀′) such that
TG(t, g, s̀(t), g′, s̀′(t)). Therefore we know that TG(t, g1, l3, g5, l4) is the only
transition enabled for t at (g1, l3). Therefore g5 = g4 and we are done.

3. For the ⇒ direction, assume LM (u, g4, l1, g3, l2). We have LM (t, g1, l3, g4, l4)
and LM (u, g4, l1, g3, l2). By Assumption 3 on RM and LM there exists some
g5 such that LM (u, g1, l1, g5, l2) and TG(t, g5, l3, g3, l4). From the determin-
istic nature of TG we have g5 = g2 and LM (u, g1, l1, g2, l2). For the ⇐
direction, assume LM (u, g1, l1, g2, l2). By Assumption 3 on RM and LM we
have LM (t, g1, l3, g4, l4) and TG(u, g4, l1, g3, l2). Assumption 4 on RM and
LM gives us that there exists a g5 such that LM (u, g4, l1, g5, l2). From the
deterministic nature of TG we have g5 = g3 and LM (u, g4, l1, g3, l2).

Theorem 5 shows that our construction satisfies the antecedents of Theo-
rem 1.

Theorem 5. Let P = (g0, s̀0, T
#) be the instrumented multithreaded program.

For all t ∈ Tid, let (R(t), L(t) and N (t)) be the partition obtained from P as

defined above. For all t ∈ Tid, let W(t) = {(g, s̀) | ∃p. s̀(t) = 〈wrong , p〉}. Then,

the antecedents of Theorem 1 are satisfied. Moreover, for any state (g′, s̀′) ∈
W(t) that is reachable from (g0, s̀0), there is another state (g′′, s̀′′) ∈ W(t) that

is reachable from (g0, s̀0) by a sequence of transactions.

Proof. We proceed by showing our construction satisfies the antecedents for
Theorem 1.

1. For all t, R(t), L(t), and W(t) are pairwise disjoint. We note that W(t) ⊆
N (t) so it is sufficient to show that R(t), L(t), and N (t) are pairwise disjoint.

– L(t) ∩ R(t) = ∅ Suppose p ∈ L(t) then s̀(t) = 〈l, false〉. Therefore
p 6∈ R(t). Suppose p ∈ R(t) then s̀(t) = 〈l, true〉. Therefore p 6∈ L(t).

– L(t) ∩N (t) = ∅ By the definition of N (t).
– R(t) ∩N (t) = ∅ As above.

2. For all t, (L(t)/→t\R(t)) is false. Suppose (g, s̀(t)) →t (g′, s̀′(t)) by some
transition x where (g, s̀(t)) ∈ L(t) and (g′, s̀′(t)) ∈ R(t). Then s̀(t) =
〈l, false〉 and s̀′(t) = 〈l′, true〉. For the phase to change from false to true we
must execute x ∈ RM \ LM . However a state at which x is enabled cannot
exist in L(t), thus we have a contradiction.

3. For all u 6= t, (→t\R(t)) right-commutes with →u. For all states
(g1, s̀1), (g2, s̀2) such that (g1, s̀1(t)) →t (g2, s̀2(t)) and (g2, s̀2) ∈ R(t),
we have ((g1, s̀1), (g2, s̀2)) ∈ (→t\R(t)). By the definition of R(t),
we have RM (t, g1, s̀1(t), g2, s̀2(t)). Now for all states (g3, s̀3) such that
(g2, s̀2(u)) →u (g3, s̀3(u)), by Assumption 1 of RM and LM we have that
RM (t, g1, s̀1(t), g2, s̀2(t)) and TG(u, g2, s̀2(u), g3, s̀3(u)). Therefore there
exists g4 such that TG(u, g1, s̀1(u), g4, s̀2(u)) and RM (t, g4, s̀2(t), g3, s̀3(t)).
What remains to be shown is that the phase of thread u does not change
by commuting the actions of t and u. Only thread u may access s̀i(u)
for any i. By Lemma 1 we have that that a transition in RM or LM

that is enabled at (g2, s̀2) will also be enabled at (g1, s̀1). Therefore
if RM (t, g1, s̀1(t), g2, s̀2(t)) and T #(u, g2, s̀2(u) = 〈l3, pu〉, i, g3, s̀3(u) =
〈l4, p′u〉), there exists g4 such that T #(u, g1, s̀1(u) = 〈l3, pu〉, i, g4, s̀2(u) =
〈l4, p′u〉) and RM (t, g4, s̀2(t), g3, s̀3(t)) Therefore (→t\R(t)) ◦ →u ⊆ →u

◦ (→t\R(t)) which is our definition of right-commutes.
4. For all u 6= t, (L(t)/→t) left-commutes with →u. For all states

(g2, s̀2), (g3, s̀3) such that (g2, s̀2) ∈ L(t) and (g2, s̀2(t)) →t (g3, s̀3(t))
then ((g2, s̀2), (g3, s̀3)) ∈ (L(t)/→t). By the definition of L(t) we
have LM (t, g2, s̀2(t), g3, s̀3(t)). Now for all states (g1, s̀1) such that
(g1, s̀1(u)) →u (g2, s̀2(u)) from Assumption 2 of RM and LM we have
that if TG(u, g1, s̀1(u), g2, s̀2(u)) and LM (t, g2, s̀2(t), g3, s̀3(t)) then there
exists g4 such that LM (t, g1, s̀1(t), g4, s̀2(t)) and TG(u, g4, s̀2(u), g3, s̀3(u)).
Again it remains to be shown that the phase of thread u does not change by
commuting the actions of t and u. Only thread u may access s̀(u). By Lemma
2 we have that a transition in RM or LM that is enabled at (g1, s̀1) will also
be enabled at (g4, s̀2). Therefore if T #(u, g1, s̀1(u) = 〈l3, pu〉, i, g2, s̀2(u) =
〈l4, p′u〉) and LM (t, g2, s̀2(t), g3, s̀3(t)) then there exists g4 such that
LM (t, g1, s̀1(t), g4, s̀2(t)) and T #(u, g4, s̀22(u) = 〈l3, pu〉, i, g3, s̀3(u) =

〈l4, p′u〉). Therefore →u ◦ (L(t)/→t) ⊆ (L(t)/→t) ◦ →u which is
our definition of left-commutes.

5. For all u 6= t, if (g, s̀) →t (g′, s̀′), then (g, s̀) ∈ R(u) ⇔ (g′, s̀′) ∈ R(u),
(g, s̀) ∈ L(u) ⇔ (g′, s̀′) ∈ L(u), and (g, s̀) ∈ W(u) ⇔ (g′, s̀′) ∈ W(u).
We will consider each case individually. The following observation will be
useful in each of the cases: Since thread t cannot modify the local store or
phase of thread u, we have s̀(u) = 〈l, p〉 ⇔ s̀′(u) = 〈l, p〉 for all l, p. Suppose
s̀(u) = 〈l, p〉. Then s̀′(u) = 〈l, p〉.

– (g, s̀) ∈ R(u) ⇔ (g′, s̀′) ∈ R(u). This case is easily proved from the
definition of R(u) and the fact that s̀(u) = 〈l, p〉 = s̀′(u).

– (g, s̀) ∈ W(u) ⇔ (g′, s̀′) ∈ W(u). This case is easily proved from the
definition of W(u) and the fact that s̀(u) = 〈l, p〉 = s̀′(u).

– (g, s̀) ∈ L(u) ⇔ (g′, s̀′) ∈ L(u). This case is proved from the def-
inition of L(u), the fact that s̀(u) = 〈l, p〉 = s̀′(u), and from the
following observation about LM derived from Assumptions 3 and 4:
(∃g′′, l′′. LM (u, g, l, g′′, l′′)) ⇔ (∃g′′, l′′. LM (u, g′, l, g′′, l′′)).

We substitute our concrete transition relation for the abstract relation of
Theorem 1 and the state partition sets as defined. We use the consequents
of Theorem 1 to get that if a state (g′, s̀′) is reachable from (g0, s̀0) where
(g′, s̀′) ∈ W(t), there is another state (g′′, s̀′′) that is reachable from (g0, s̀0)
by a transaction sequence and (g′′, s̀′′) ∈ W(t).

(init)

Σ(g0, s̀0)

(step)

∀u 6= t. (g, s̀) ∈ N (u) Σ(g, ls) T#(t, g, s̀(t), i, g′, `′)

Σ(g′

, s̀[t := `
′])

Fig. 5. Model checking with unsound reduction.

Using the values of N (t) for all t ∈ Tid , we model check the multithreaded
program by computing the least fixpoint of the set of rules in Figure 5. This
model checking algorithm schedules a thread only when no other thread is exe-
cuting inside a transaction. This algorithm is potentially unsound for the follow-
ing reason. If a transaction in thread t commits but never finishes, the shared
variables modified by this transaction become visible to other threads. However,
the algorithm does not explore transitions of other threads from any state af-
ter the transaction commits. Section 4 presents a more sophisticated algorithm
which ensures that all threads are explored from some state in the post-commit
phase of every transaction.

4 Commit Point Completion

record TraversalInfo {
state : State

tid : Tid

numTids : Tid

choice : int

LM : Boolean

RM : Boolean

Xend : Boolean

CPC : Boolean

}

Fig. 6. TraversalInfo declaration.

This section presents the CPC algorithm and its soundness proof, which
are the core new technical contributions of this paper. The algorithm uses
Depth First Search (DFS). Each state in the DFS stack is encapsulated us-
ing a TraversalInfo record shown in Figure 6. In addition to the state, the
TraversalInfo records: (1) tid, the id of the thread used to to reach the state,
(2) numTids, the number of threads active in the state, (3) choice, the current
index among the nondeterministic choices executable by thread tid in this state,
(4) LM, a boolean which is set to true iff the action used to reach this state is a
left mover, (5) RM, a boolean which is set to true iff the action used to reach this
state is a right mover, (6) Xend, a boolean which is set to true iff the algorithm
decides to schedule other threads at this state, and (7) CPC, a boolean which
is relevant for only states with phase equal to false, and is set to true by the
algorithm if there exists a path of transitions of the thread generating the state
to a state where all threads are scheduled.

The helper functions for the CPC algorithm perform the following actions.
Enabled determines whether the current thread has a transition enabled at a
given state. Execute applies the transition relation T # to the current state.
Update schedules the next thread to run.

Figure 8 gives two variants of the CPC algorithm. We will discuss first the
variant with line L19 commented out, then motivate and discuss the addition of
the optimization.

The statement at L4 peeks at the TraversalInfo q on top of the stack and
explores all successors of the state using actions from thread q.tid. If the phase
of q is false, then for each such successor q′, if the action used to generate q′

is not a left-mover, then we update q.Xend to true at label L7. The invariant
associated with the CPC flag is the following: If q is about to be popped from
the stack and q.CPC is true and Phase(q.tid, q.state) is false then there exists
a path to a state where Xend is true. Thus, at label L8 we set q.CPC to true if
q.Xend is true. The Xend and CPC fields are also updated when a TraversalInfo is

Boolean Enabled(TraversalInfo q) {
let (g, s̀) = q.state in

return (∃ g′, `′. T#(q.tid, g, s̀(q.tid), q.choice, g′, `′))

}

TraversalInfo Execute(TraversalInfo q) {
let (g, s̀) = q.state in

let (g′, `′) = T#(q.tid, g, s̀(q.tid), q.choice) in

State succ = (g′, s̀[q.tid := `′])

q.choice = q.choice + 1;

return { state = succ,

tid = q.tid,

numTids = 1,

choice = 1,

CPC = false,

Xend= false,

LM = LM(q.tid, q.state, succ)

RM = RM(q.tid, q.state, succ) }
}

TraversalInfo Update(TraversalInfo q) {
Tid nextTid = ite((q.tid == |Tid|), 1, q.tid + 1)

return { state = q.state,

tid = nextTid,

numTids = q.numTids + 1,

choice = 1,

CPC = q.CPC,

Xend= q.Xend,

LM = q.LM,

RM = q.RM }
}

Fig. 7. Helper procedures for the CPC algorithm.

Hashtable table;

Stack stack;

TraversalInfo q, q’, q’’, pred;

stack = new Stack

table = new Hashtable

L0: q’ = { state = (g0, s̀0),
tid = 1,

numTids = 1,

choice = 1,

CPC = true,

Xend = true,

LM = false,

RM = false }

L1: table.Add(q’.state, q’)

L2: stack.Push(q’)

L3: while (stack.Count > 0)

L4: q = stack.Peek()

L5: if (Enabled(q))

L6: q’ = Execute(q)

L7: q.Xend = q.Xend || (¬Phase(q.tid, q.state) && ¬q’.LM)
L8: q.CPC = q.CPC || q.Xend

L9: if (IsMember(table, q’.state))

L10: q’’ = Lookup(table, q’.state)

L11: q.CPC = q.CPC || q’’.CPC

L12: else /* undiscovered state */

L13: table.Add(q’.state, q’)

L14: stack.Push(q’)

L15: end if

L16: q.choice = q.choice + 1

L17: else

L18: q.Xend = q.Xend || (¬Phase(q.tid, q.state) && ¬q.CPC
L19: (* && ¬q.RM *))

L20: q.CPC = q.CPC || q.Xend

L21: stack.Pop()

L22: pred = stack.Peek()

L23: pred.CPC = pred.CPC || q.CPC

L24: if (q.Xend && q.numTids < |Tid|)

L25: q’ = Update(q)

L26: stack.Push(q’)

L27: end if

L28: end if

L29:end while

Fig. 8. CPC algorithm for sound reduction.

popped from the stack. In particular, at label L18, when q is about to be popped
from the stack, if its phase is false and q.CPC is false, then we set q.Xend to
true and force scheduling of all threads at q. If q.Xend is true, then at label
L24 we ensure that all threads are scheduled from q. Figure 7 contains helper
procedures for the CPC algorithm.

We want to show that if a TraversalInfo record q exists on the stack such
that q.CPC is true then there is a sequence of left-mover transitions to a state
represented in some TraversalInfo record q′ such that q′.Xend is true. To show
this we will argue by induction on the order in which TraversalInfo records
are popped from the stack. However we will require an auxilary lemma about
the stack to complete the induction. The auxilary lemma assumes that Lemma
4 holds for states that have been popped from the stack and is invoked within
Lemma 4 in two cases: (1) the base case where nothing has been popped from
the stack and (2) the inductive case where we assume that Lemma 4 holds for
all TraversalInfo records that have been popped from the stack. We proceed
with the auxilary lemma.

Lemma 3. Suppose Lemma 4 holds for all TraversalInfo records q not on the

stack such that q.CPC is true and Phase(q.tid, q.state) is false. Suppose there

exists a stack of TraversalInfo records such that for all TraversalInfo records

q on the stack such that q.CPC is true and Phase(q.tid, q.state) is false, there

exists a sequence of left-mover transitions of thread q.tid such that every state in

the sequence is represented in a TraversalInfo record q′ and q′.CPC is true and

Phase(q′.tid, q′.state) is false and the final TraversalInfo q′, where q′.state
is the final state in the sequence, q′.Xend is true.

Proof. We will proceed by induction on the size of the stack. For the base case,
let the stack be size 1. Then q is the initial state and q.CPC is true and q.Xend
is true as set on line L0.

For the inductive case, suppose the stack depth is i. If q.Xend is true then we
are done. If q.Xend is false then q.CPC could only have been set at line L11 or L23.
Suppose q.CPC is set by a successor that is not represented on the stack at line L11
or L23. If the transition were not a left-mover then q.Xend would be true (we have
assumed it is false so there would be a contradiction). If Phase(q′.tid, q′.state)
were true then the action executed could not have been a left-mover. We have
shown that there is a left-mover transition to a state that is not represented
on the stack such that the CPC flag of the associated TraversalInfo is true
and the phase is false. Since the successor state is not represented on the stack
and we have assumed the property holds for such states we are done. Oth-
erwise the successor state that was revisited must also be represented on the
stack. Since q is about to be popped from the stack, all other states on the
stack must be represented at some depth l < i. If the transition executed by
thread q.tid were not a left-mover then q.Xend would be true and we would
have a contradiction. Therefore a left-mover transition exists from q.state to
a state represented in a TraversalInfo q′ such that q′ is lower in the stack
than q. If Phase(q′.tid, q′.state) were true then it would be different than

Phase(q.tid, q.state) and we would have a contradiction (as we have shown
that q′.LM was true and in order for the phase to change from false to true, q′.LM
must be false). We have assumed that q.CPC is true and set at line L10. This
could only result from q′.CPC also being true. Therefore we have assumed that
the sequence exists for all states on the stack with such properties and shown
that the last state on the stack extends the sequence.

Lemma 4 (CPC). Let q be a TraversalInfo record such that q.CPC is true.

Then there exists a sequence of left-mover transitions to another state held in a

TraversalInfo record q′ such that q′.Xend is true and for every intermediate

TraversalInfo record q′′ where q′′.state is in the sequence, q′′.CPC is true.

Proof. If q.Xend is true then we are done. Suppose q.Xend is false. q.CPC is set
to true in exactly four places:

1. L8 when q.Xend is true. In this case, let q = q′.
2. L11 when a successor is discovered to be in the hash table and the successor’s

CPC field is true.
3. L20 when q.Xend is true. In this case, let q = q′.
4. L23 when a successor’s CPC bit is true and the successor is about to be

popped from the stack.

Suppose q is about to be popped from the stack at line L21. We will proceed by
induction on the order that TraversalInfo records are popped from the stack.
For the base case let q be the first traversal info record to be popped from the
stack. We know that there are no states that are represented in the hash table
that are not also on the stack. If q.CPC is true then it was set at (1) L8 or L20 as a
result of q.Xend also being true or (2) L11 when a TraversalInfo q′′ was found
to be represented in the hash table such that q′′.CPC is true and q′′.state is a
successor of q.state. If case (1) holds then we are done. Suppose case (2) holds.

Let q̂′′ be the successor generated by the algorithm and q′′ the TraversalInfo

record in the hash table. We know that q′′ is on the stack at a depth less than q.

We also know that q̂′′.LM must be true otherwise q.Xend would be true. Therefore
a left-mover transition exists from q.state to q′′.state. From this we conclude
that Phase(q′′.tid, q′′.state) is false. From Lemma 3 a sequence of left-mover
transitions exists to a state represented in a TraversalInfo record q′ such that
q′.Xend is true. This concludes the base case.

For the inductive case let q be the TraversalInfo record be record n + 1 to
be popped from the stack. We assume that the Lemma holds for all n of those
TraversalInfo records already popped from the stack. Again if q.CPC is true it
was set at (1) L8 or L20 as a result of q.Xend also being true or (2) L23 when
a successor’s CPC bit is true and the successor is about to be popped from the
stack or (3) L11 when a TraversalInfo q′′ was found to be represented in the
hash table such that q′′.CPC is true and q′′.state is a successor of q.state. If case
(1) holds then we are done. Suppose case (2) holds. If the action executed was not
a left-mover then q.Xend would be true. As the successor has been popped before
q we assume the induction hypothesis holds. Suppose case (3) holds. Again there

are two cases. Suppose the successor is represented in a TraversalInfo record
that is not on the stack. As in (2) we see that a left-mover action was executed
and we can apply the induction hypothesis. Suppose the successor is represented
in a TraversalInfo record that is currently held in the stack. Let q̂′′ be the
successor generated by the algorithm and q′′ the TraversalInfo record in the

hash table. We know that q̂′′.LM must be true otherwise q.Xend would be true.
Therefore a left-mover transition exists from q.state to q′′.state. From this
we conclude that Phase(q′′.tid, q′′.state) is false. So a successor exists and is
represented in TraversalInfo q′′ at a depth lower than q such that q′′.CPC is
true, q′′.LM is true, and Phase(q′′.tid, q′′.state) is false. By Lemma 3 a sequence
of left-mover transitions exists to a state represented in a TraversalInfo record
such that the Xend field is true. We also note that if any state in the sequence
is not represented in the stack then the property holds by the application of the
inductive hypothesis. This concludes the inductive case.

4.1 L19

Without line L19, the algorithm of figure 8 produces maximal length sequences.
The optimization of line L19 schedules other threads at the last commit point
on a branch resulting in a shorter but still sound sequence. A commit point
is associated with the execution of every action a 6∈ RM . The default commit
point is the state where the phase changes. Commit points are only examined
when in the post commit phase of a transaction. Thus every transaction has at
least one commit point and may have more than one. Along any branch in the
post-commit phase of a transaction it is necessary that there exists a path from
the last commit point to a state where other threads are scheduled to retain
soundness.

Motivation for the addition of line L19 is not immediately obvious. It is the
case however that without this optimization, the proposed algorithm performs a
selective cycle detection. Consider the following case analysis on the post-commit
phase of a transaction.

1. The transaction completes along every branch. Then the transaction begins
and ends in a state in N (t) for thread t. Cycle detection is not needed in
this case.

2. The transaction does not branch, contains no actions a ∈ LM \ RM and
does not terminate. In this case cycle detection performs as well as the CPC
algorithm, except for the existence of assume(false) and similar statements.

3. The transaction does not branch, contains one or more actions a ∈ LM \RM
and does not terminate. This is similar to the previous case.

4. The transaction contains n > 1 branches, contains no actions a ∈ LM \RM
and does not terminate along any branch. Here there are n cycles in the post-
commit phase of the transaction. If other threads are scheduled as required
by L18 then this is equivalent to cycle detection and introduces n interleaving
points. By adding in L19 the algorithm schedules threads above all cycles in
the post-commit phase, thereby introducing only one interleaving point.

5. The transaction contains n > 1 branches, contains no actions a ∈ LM \RM
and terminates along one or more branches. Without line L19 the algorithm
will introduce an interleaving point for every branch that does not terminate
before the terminating branch is discovered and will introduce an interleav-
ing point for every branch that revisits a state that is on the stack where
the CPC flag is not set. Thus without line L19 the algorithm performs cycle
detection and ignores a subset of the cycles. However with L19 exactly one
interleaving point is introduced.

6. The transaction contains n > 1 branches, contains m > 1 actions am ∈
LM \RM and does not terminate along any branch. Here each branch that
contains am will introduce an interleaving point. However if for all m, am is
on the same branch then exactly one interleaving point will be introduced.

7. The transaction contains n > 1 branches, contains m > 1 actions am ∈ LM \
RM and terminates along l ≤ n of the branches. In this case each branch that
contains am that does not terminate will introduce exactly one interleaving
point. Thus in the worst case n− l interleaving points are introduced, which
is the same as without L19. However if m < l then at most m+1 interleaving
points are introduced in the worst case. In the best case there could be as
few as one interleaving point.

4.2 Soundness proof

Theorem 6. Let q be a TraversalInfo constructed during the execution of the

CPC algorithm such that q.RM = false. Then at line L21 there exists a sequence

of left-mover transitions of thread q.tid from q.state to (g′, s̀′) and all threads

are explored from (g′, s̀′).

Proof. Phase(q.tid, q.state) must be false as we have assumed that q.RM is
false. If q.CPC is true at line L18 then it remains true as on line L20 the value
is updated to true || q.Xend. Suppose q.CPC is false at line L18. Therefore
at line L18 q.Xend is set to true. At L20, q.CPC is set to true. Therefore at
L21, q.CPC is true. As q.CPC is true and Phase(q.tid, q.state) is false we can
apply Lemma 4 directly and conclude that there exists a sequence of left-mover
transitions of thread q.tid from q.state to (g′, s̀′) and all threads are explored
from (g′, s̀′).

Lemma 5. Suppose we have a sequence of n committed transactions from p to

q such that at q thread t(n) goes wrong. Then there exists another sequence of

committed transactions from p to q′ such that at q′ thread t(n) goes wrong and

each committed transaction p′i →
+
t(i) p′i+1 such that p′i+1 ∈ L(t(i)) has no postfix

of both-mover transitions.

Proof. Let t be an indexing function from transaction indices to thread ids. Let
the sequence of transactions from p to q be σ. For any sequence of committed
transactions there is a fixed number n transactions where k ≤ n of those trans-
actions end in a state in L(t(i)) for some thread t(i). We will proceed by creating

a series of transaction sequences α1.β1, α2.β2, · · ·αk.βk where each transaction
sequence αj .βj , 0 ≤ j ≤ k, ends in a state q′ where thread t(n) is wrong. Let
α0.β0 = σ where α0 is the maximal prefix of σ such that for each thread u that
executes the transaction of thread u ends in a state in N (u) and β0 the remain-
der of the sequence. Now, for each j, 0 ≤ j ≤ k, βj begins with a transaction
pi →

+
t(i) pi+1 such that pi+1 ∈ L(t(i)). Let β′

j be the remainder of the transition

sequence βj after pi+1. We know that thread t(i) does not go wrong, nor does
it move again in the remainder of the transaction sequence. We also know that
at some point in the transaction thread t(i) executed a transition in LM \ RM

causing the transaction to commit. From the commit transition to the end of the
sequence all transitions of thread t(i) have been in LM although some may have
also been in RM . Let p′i+1 be the first state such that there is a subsequence
from p′i+1 →∗

t(i) pi+1 and every transition in the subsequence is a both-mover.
Since these transitions are all both-movers they can be postponed beyond the
end of the sequence without any effect on other threads (i.e., if we postpone
their execution, or schedule another thread at p′i+1 and don’t schedule thread
t(i) again, thread t(n) is still wrong at the end of the sequence). Let β′

a.β′

b = β′

j

where β′

a is the maximal prefix of β′

j where every transaction of some thread u

ends in a state in N (u). Let αj+1 = αj .pi →
+
t(i) p′i+1.β

′

a and βj+1 = β′

b. When

j = k + 1, there are no more transactions that end in a state in L(u) for some
thread u so the final sequence is αk+1.βk+1 and we are done.

Theorem 7 concludes that if there is a state in the multithreaded program
where a thread goes wrong that is reachable from the initial state the CPC
algorithm will find a state that is reachable from the initial state where that
thread goes wrong.

Theorem 7. If there is an execution of the multithreaded program from (g0, s̀0)
to (g, s̀) and a thread t such that s̀(t) = wrong, then there is another state

(g′, s̀′) where the CPC algorithm visits (g′, s̀′) and s̀′(t) = wrong.

Proof. By Lemma 5 we know that there exists a sequence of committed trans-
actions from (g0, s̀0) to (g′, s̀′) such that s̀′(t) = wrong. We will assume that
every state in the sequence is unique. Let t be a function from transaction indices
to thread ids. Also, let k be the number of transactions in the sequence and i
be the number of the currently explored transaction and n be the number of
transitions in the sequence.

We will transform the sequence from Lemma 5 to a sequence that is explored
by the CPC algorithm by an iterative process such the final sequence is explored
by the CPC algorithm and in the final state s̀(t) = wrong.

We will maintain the invariants (1) that for all 0 ≤ m ≤ n, αm is explored
by the CPC algorithm and (2) in the final state, s̀(t) = wrong. The initial state
is explored by the CPC algorithm as shown on line L0. Let α0 be the sequence
containing the initial state and β0 be the sequence containing the remainder of
the sequence from Lemma 5.

For state m + 1 in the sequence suppose the CPC algorithm explores αm

such that the m states are represented in TraversalInfo records on the stack

and βm is the remainder of the sequence. Let t(i) be the thread that executed to
generate (g, s̀) by executing the mth transition and q the TraversalInfo record
such that q.state = (g, s̀) and q.tid = t(i). We will do a case analysis on the
state (g, s̀).

– (g, s̀) ∈ N (t). If (g, s̀) ∈ N (t) then it could be the case that s̀(t) = wrong
and we are done. Otherwise, Phase(q.tid, q.state) was false and q.LM was
also false. In which case at line L7 q.Xend is set to true. For all threads t(j) in
a state in N (t(j)) thread t(j) is scheduled from q.state at line L25. Therefore
thread t(i+1) will also be scheduled at q.state. Suppose thread t(i+1) is the
next thread scheduled by the algorithm. Since the transition relation is such
that there exists at most one g′, l′ such that T #(t(i+1), g, s̀(t(i+1)), j, g′, l′)
the state represented in TraversalInfo q′ by executing thread t(i + 1) at
line L6 must be the next state in the transaction sequence. As the transition
executed was from the same transition relation used to obtain the transaction
sequence, the transition executed by the CPC algorithm would have the same
mover status and therefore be in the same partition. Let β′

m be the remainder
of the sequence where (g, s̀) →t(i+1) (g′, s̀′).β′

m = βm.

Suppose (g′, s̀′) is represented in the hash table at line L9 then the state must
have been visited before. There are two cases. Suppose (g′, s̀′) is represented
in the stack. Then there exists two states in the sequence that are equivalent.
Suppose (g′, s̀′) is not represented in the stack. Since it has been popped
from the stack all successors of that state generated by the CPC algorithm
have already been visited. Let αm+1 be the execution sequence used when
(g′, s̀′) was visited for the first time. Then let βm+1 = β′

m. Otherwise the
state is new and would be pushed onto the stack at line L14. In this case we
will let αm+1 = αm.(g, s̀) →t(i+1) (g′, s̀′) and βm+1 = β′

m.

– (g, s̀) ∈ L(t) and thread t(i + 1) is the next thread scheduled in βm. If
(g, s̀) ∈ L(t) then Phase(q.tid, q.state) is false. Since this is the last state
in the transition sequence for this transaction we also know that q.RM must be
false from Lemma 5. We have assumed that TG is deterministic so there was
at most one transition enabled for q.tid from the predecessor of q.state.
If q.LM was false there would be a contradiction as (g, s̀) 6∈ N (q.tid). If
q.RM were true then there would be two transitions enabled for q.tid from
the predecessor of q.state or the CPC algorithm would have to apply a
different transition relation. Therefore q.RM is indeed false. If there are any
transitions enabled in thread t(i) then the CPC algorithm will continue to
execute transitions of thread t(i) until all successors that are reachable by
transitions of thread t(i) have been explored. Suppose the CPC algorithm is
about to execute line L18 (i.e., all successors of reachable by thread t(i) have
been explored). By Theorem 6 there exists a sequence of left-mover transi-
tions to another state contained in TraversalInfo q′ where all threads are
scheduled. Call this sequence α′

m. Suppose thread t(i+1) is the next thread
to be scheduled. By Lemma 2 the transitions of thread t(i+1) are enabled at
q′.state. Moreover every transition that was enabled before executing the
sequence α′

m remains enabled at q′.state. As the transition relation is deter-

ministic the first transition in βm is the enabled transition for thread t(i+1)
at q′.state. We execute the transition relation for thread t(i + 1) to get a
new state (g′, s̀′). Let β′

m be the remainder of βm after the transition from
q′.state →t(i+1) (g′, s̀′). Suppose (g′, s̀′) is represented in the hash table at
line L9 then the state must have been visited before. There are two cases.
Suppose (g′, s̀′) is represented in the stack. Then there exists two states in
the sequence that are equivalent. Suppose (g′, s̀′) is not represented in the
stack. Since it has been popped from the stack all successors of that state
generated by the CPC algorithm have already been visited. Let αm+1 be the
execution sequence used when (g′, s̀′) was visited for the first time. Then let
βm+1 = β′

m. Otherwise the state is new and would be pushed onto the stack
at line L14. In this case we will let αm+1 = αm.α′

m.q.state →t(i+1) (g′, s̀′)
and βm+1 = β′

m.

– (g, s̀) ∈ L(t) and t(i) is the next thread scheduled in βm. If (g, s̀) ∈ L(t)
then Phase(q.tid, q.state) is false. We know this state is not the last in
the transaction. Since the transition relation is such that there exists at
most one g′, l′ such that T #(t(i), g, s̀(t(i)), i, g′, l′) the state represented in
TraversalInfo q′ and q′.state must be the next state in the transaction
sequence. Suppose (g′, s̀′) is represented in the hash table at line L9 then the
state must have been visited before. There are two cases. Suppose (g′, s̀′)
is represented in the stack. Then there exists two states in the sequence
that are equivalent. Suppose (g′, s̀′) is not represented in the stack. Since
it has been popped from the stack all successors of that state generated by
the CPC algorithm have already been visited. Let αm+1 be the execution
sequence used when (g′, s̀′) was visited for the first time. Then let βm+1 =
β′

m. Otherwise the state is new and would be pushed onto the stack at line
L14. In this case we will let αm+1 = αm.(g, s̀) →q.tid (g′, s̀′) and βm+1 =
β′

m.

– (g, s̀) ∈ R(t). If (g, s̀) ∈ R(t) then Phase(q.tid, q.state) must be true.
Since all transactions in the sequence are committed, we know this state is
not the last state in the transaction. Since the transition relation is such
that there exists at most one g′, l′ such that T #(t(i), g, s̀(t(i)), i, g′, l′) the
state represented in TraversalInfo q′ and q′.state must be the next state
in the transaction sequence. Suppose (g′, s̀′) is represented in the hash table
at line L9 then the state must have been visited before. There are two cases.
Suppose (g′, s̀′) is represented in the stack. Then there exists two states in
the sequence that are equivalent. Suppose (g′, s̀′) is not represented in the
stack. Since it has been popped from the stack all successors of that state
generated by the CPC algorithm have already been visited. Let αm+1 be the
execution sequence used when (g′, s̀′) was visited for the first time. Then
let βm+1 = β′

m. Otherwise the state is new and would be pushed onto the
stack at line L14. In this case we will let αm+1 = αm.(g, s̀) →q.tid (g′, s̀′)
and βm+1 = β′

m.

When m = n αm is explored by the CPC algorithm and βm is empty. The final
state of αn differs only as a result of left-mover transitions of threads t(i) 6= t(k).

Example Loc Unsound Reduction CPC Cycle Detection

AuctionHouse 798 108 108 108
FlowTest 485 4656 4656 4656
Shipping 1844 206 206 222

Conc 392 512 512 2063
Peterson 793 1080 1213 3427
Bluetooth 2768 48109 52092 116559

TransactionManager 6927 1220517 1264894 1268571

AlternatingBit 130 1180 1180 1349
Philosophers 76 87399 87399 428896

Bakery 104 10221 14935 14254

Table 1. Number of states visited by Unsound Reduction, CPC and Cycle Detection
algorithms.

Theorem 5 which satisfies the antecedents of Theorem 1 guarantees that the final
state (g′, s̀′) is such that s̀′(t) = wrong.

5 Experimental results

We implemented the CPC algorithm in Zing, which is a software model checker
being developed in Microsoft Research. Table 1 gives the number of states ex-
plored by Zing on various example programs using three variants of the reduction
algorithm. The column labeled “Loc” gives the number of lines of code in the
Zing program. The column labeled “Unsound Reduction” gives the number of
states explored by a reduction algorithm which does not solve the ignoring prob-
lem. This gives a lower bound on the number of states that need to be explored
by any sound algorithm. The column labeled “CPC” gives the number of states
explored by the CPC algorithm. The column labeled “Cycle Detection” gives the
number of states explored by a sound algorithm which forcibly ends a transac-
tion whenever a cycle is encountered in the post-commit part of the transaction.
The number of states explored is a measure of the running time of the algorithm.
The smaller the number of states explored by a sound algorithm, the faster the
tool is.

The programs are classified into four groups. The first 3 programs,
AuctionHouse, FlowTest and Shipping programs were produced by translat-
ing to Zing from a process co-ordination language called BPEL. They represent
workflows for business processes, and have mostly acyclic state spaces. In these
examples, the number of states explored by the all three algorithm are almost
identical.

The next 3 programs Conc, Peterson and Bluetoothwere produced by auto-
matic abstraction refinement from concurrent C programs. We have adapted the
SLAM toolkit [12] to concurrent programs by using Zing as a back-end model
checker instead of Bebop. These examples all have loops that terminate non-
deterministically in the abstraction. Thus, the cycle detection algorithm forces

interleaving of all threads in these loops whereas the CPC algorithm avoids
interleaving all threads in the loops without losing soundness. The CPC algo-
rithm really shines in comparison with the Cycle Detection algorithm on these
examples.

The TransactionManager program was obtained from a product group in
Microsoft. It was automatically translated to Zing from C#, after a few man-
ual abstractions and manually closing the environment. It is one of the larger
Zing examples we currently have. Since the manual abstraction did not result
in non-deterministically terminating loops, the CPC algorithm performs only
marginally better than the Cycle Detection algorithm.

The final 3 programs, AlternatingBit, Philosophers and Bakery are stan-
dard toy examples used by the formal verification community. In the first two
examples, CPC performs better than Cycle Detection. In the Bakery example
we find that the Cycle Detection algorithm performs slightly better than the
CPC algorithm. This is possible, since the total number of states is counted over
all transactions, and the CPC algorithm gives optimality only within a single
transaction. Heuristically, this should translate to smaller number of states ex-
plored over all the transactions, but this example shows that this is not always
the case.

Overall, the results clearly demonstrate that CPC is a good algorithm for
making reduction sound, without forcing the interleaving of other threads in all
loops. It generally explores fewer states than Cycle Detection, and out-performs
Cycle Detection in examples with nondeterministic loops. Such examples arise
commonly from automatic abstraction refinement.

6 Related work

Partial order reduction has numerous variants. The most commonly used ones
are stubborn sets of Valmari [2], ample sets [4, 1], and sleep sets [5]. Most of these
approaches handle the ignoring problem by using some variant of cycle detection.
In another paper, Valmari proposes detecting Strongly Connected Components
(SCCs) to solve the ignoring problem [13]. This algorithm from [13] involves de-
tecting terminal strongly connected components, and forces scheduling of other
threads from at least one state in each of the terminal strongly connected com-
ponents (see Algorithm 1.28, Section 5 in [13]). In contrast, the CPC algorithm
does not directly compute any strongly connected components. Also the CPC
algorithm terminates transactions at fewer points than Valmari’s algorithm. Con-
sider the example from Figure 9. In this example, a transaction commits at the
state after executing line L0, followed by a non-deterministic branch at line L2.
Each of the branches produce terminal SCCs in the state space. Valmari’s algo-
rithm appears to force scheduling T2 at each of these terminal SCCs, whereas
the CPC algorithm forces scheduling T2 only once, at the commit-point (label
L1).

Transaction based reduction was originally developed by Lipton [7]. Work
by Stoller and Cohen [10] uses a locking discipline to aggregate transitions into

int g = 0;

void T1() {

L0: g = 1;

L1: skip;

L2: if (*) {

L2: while(true){

L3: skip;

L4: }

}

else {

L5: while(true){

L6: skip;

L7: }

}

L8: return;

}

void T2() {

M0: assert(g == 0);

M1: return;

}

P = { T1() } || { T2() }

Fig. 9. Distinction between CPC algorithm and SCC-based algorithms

a sequence of transitions that may be viewed atomically. Flanagan and Qadeer
augment this approach with right movers to get further reduction [9]. This idea
is combined with procedure summarization by Qadeer, Rajamani, and Rehof
in [8]. As mentioned earlier, all of these papers address the ignoring problem
only indirectly by disallowing certain types of infinite executions, such as those
consisting of only internal hidden actions, within each thread (see Condition C
from Section 4.2 in [9] which forbids the transaction from having infinite execu-
tions after committing, but without completing, and well-formedness assumption
Wf-ifinite-invis from Section 4 in [10]). It is not clear how these assumptions
are enforced. Two of the above papers [9, 8] do not have any accompanying
implementation, and it is unclear how the ignoring problem is solved in the im-
plementation associated with [10]. Our guess is that they use some form of cycle
detection.

The Verisoft [6] implementation does not use the detection of cycles or
strongly connected components, rather a timeout is used to detect an infinite
execution that is local to a particular process. Other cycles are broken by limit-
ing the search depth or using a driver that generates a finite number of external
events. Dwyer et al [14] use the notion of a locking discipline is used to increase
the number of transitions that can form an ample set for a process. The algo-
rithms presented use the standard cycle detection technique to insure soundness.

7 Conclusion

Partial order reduction methods with ample sets usually use Cycle Detection to
solve the ignoring problem. In the context of transaction based reduction, we
propose a new technique called Commit Point Completion (CPC) to solve the
ignoring problem. We have proved that this algorithm is correct, and have imple-
mented it in the Zing model checker. Our experimental results demonstrate that
with transaction based reduction, the CPC algorithm performs better than Cy-
cle Detection. Though the CPC algorithm was presented using the terminology
of Lipton’s transactions, we believe that the idea is applicable to other vari-
ants of partial order reduction as well. Exploration of this idea is left to future
work. The ignoring problem also arises when we attempt to build summaries
for multithreaded programs[8]. Though not mentioned here, our implementation
of summaries in Zing also uses the core idea of the CPC algorithm to ensure
soundness.

References

1. Clarke, E., Grumberg, O., Peled, D.: Model Checking. MIT Press (1999)
2. Valmari, A.: A stubborn attack on state explosion. In: CAV 91: Computer Aided

Verification, Springer-Verlag (1991) 156–165
3. Holzmann, G., Peled, D.: An improvement in formal verification. In: FORTE 94:

Formal Description Techniques, Chapman & Hall (1994) 197–211
4. Peled, D.: Partial order reduction: Model-checking using representatives. In: MFCS

96: Mathematical Foundations of Computer Science, Springer-Verlag (1996) 93–112
5. Godefroid, P.: Partial-Order Methods for the Verification of Concurrent Systems:

An Approach to the State-Explosion Problem. LNCS 1032. Springer-Verlag (1996)
6. Godefroid, P.: Model checking for programming languages using Verisoft. In:

POPL 97: Principles of Programming Languages. (1997) 174–186
7. Lipton, R.J.: Reduction: A method of proving properties of parallel programs. In:

Communications of the ACM. Volume 18:12. (1975) 717–721
8. Qadeer, S., Rajamani, S.K., Rehof, J.: Summarizing procedures in concurrent

programs. In: Principles of Programming Languages, ACM (2004) 245–255
9. Flanagan, C., Qadeer, S.: Transactions for software model checking. In: SoftMC

03: Software Model Checking Workshop. (2003)
10. Stoller, S.D., Cohen, E.: Optimistic synchronization-based state-space reduction.

In: TACAS 03. LNCS 2619, Springer-Verlag (2003) 489–504
11. Flanagan, C., Qadeer, S.: Types for atomicity. In: TLDI 03: Types in Language

Design and Implementation, ACM (2003) 1–12
12. Ball, T., Rajamani, S.K.: The SLAM project: Debugging system software via static

analysis. In: POPL 02: Principles of Programming Languages, ACM (2002) 1–3
13. Valmari, A.: Stubborn sets for reduced state space generation. In: Advances in

Petrinets. LNCS 483, Springer-Verlag (1990)
14. Dwyer, M.B., Hatcliff, J., Robby, Ranganath, V.P.: Exploiting object excape and

locking information in partial-order reducitons for concurrent object-oriented pro-
grams. Formal Methods in System Design 25 (2004) 199–240

