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Abstract 

 
In panorama images captured by omni-directional cameras during video conferencing, the image sizes 

of the people around the conference table are not uniform due to the varying distances to the camera. 
Spatially-varying-uniform (SVU) scaling functions have been proposed to warp a panorama image 
smoothly such that the participants have similar sizes on the image. To generate the SVU function, one 
needs to segment the table boundaries, which was generated manually in the previous work. In this paper, 
we propose a robust algorithm to automatically segment the table boundaries. To ensure the robustness, we 
apply a symmetry voting scheme to filter out noisy points on the edge map. Trigonometry and quadratic 
fitting methods are developed to fit a continuous curve to the remaining edge points. We report 
experimental results on both synthetic and real images. 

 

1. Introduction 
In the past a few years, there has been a lot of interest in the use of omni-directional 

cameras for video conferencing and meeting recording [1,3,4,5]. While a panoramic view 
is capable of capturing every participant’s face, one drawback is that the image sizes of 
the people around the meeting table are not uniform in size due to the varying distances 
to the camera. Figure 1 shows a 360 degree panorama image of a meeting room. The 
table size is 10x5 feet. The person in the middle of the image appears very small 
compared to the other two people because he is further away from the camera. 

    
 

                                                             
 

Fig. 1-1: An image captured by an omni-directional camera  
This has two consequences. First, it is difficult for the remote participants to see some 

faces, thus negatively affecting the video conferencing experience. Second, it is a waste 
of the screen space and network bandwidth because a lot of the pixels are used on the 
background instead of on the meeting participants. As image sensor technology rapidly 
advances, it is possible to design inexpensive high-resolution (more than 2000 horizontal 
pixels) omni-directional video cameras [1]. But due to network bandwidth and user’s 
screen space, only a smaller-sized image can be sent to the clients. Therefore how to 
effectively use the pixels has become a critical problem in improving the video 
conferencing experience. 

Spatially-varying-uniform (SVU) scaling functions have been proposed [2] to address 
this problem. A SVU scaling function warps a panorama image to equalize people’s head 
sizes without creating discontinuities. Fig. 2 shows the result after head-size equalization. 



     The generation of a SVU function, as described in [2], requires two curves: the bottom 
curve specifies the table boundaries, and the top curve along people’s head top positions. 
In the previous work, the two curves were created manually.  The problem with the 
manual segmentation is that whenever the camera is moved or rotated, the user has to 
manually mark an image, thus making it difficult to use. In this paper, we describe a 
technique to automatically segment the table boundaries and estimate the two curves. As 
a result, the SVU function can be generated automatically. 
 

 
Fig. 1-2: Result after head-size equalization 

 
This paper will focus on the methods of automatic table edge detection. The whole 

algorithm runs in the following way: 
 
Uncluttered table (setup): 
 Detect general edge points 
  Extract table edge points 
 Learn parametric table model 
Cluttered table (normal usage): 
 Detect general edge points 
  Extract table edge points 
 Fit parametric table model 
 
There will be 8 sections in this paper. Section 1 is the introduction. Section 2 talks 

about the general parametric model of the table edge in panorama images. Section 3 
presents the symmetry voting and point filtering for extracting table edge points. Section 
4 presents the quadratic edge fitting without table model. Section 5 presents trigonometry 
fitting with table model and compares its performance with quadratic fitting in case of 
partial table edges. Section 6 further provides an optional solution for real-time edge 
detection by ICP during conference. Section 7 presents the intensive testing on synthetic 
data. We will summarize in Section 8. 

2. Basic Formulations 
 
We talk about the formulation of the cylindrical projection of the table in this section.  



2.1. Rectangular table with camera at canter 

 
Fig. 2-1: Illustration of the cylindrical projection of the table edges. 

 
We first consider the case that the Ring Camera is at the center of a rectangular table 

of LW 2*2 . The projection center is ),0,0( h . The radius of the cylindrical film is r .  
The projection of the table edge from )0,,( LW  to )0,,( LW −  is the intersection of the 

plane 1=+
h
z

W
x    and cylindroid 222 ryx =+ . It is illustrated as a dash curve in Fig. 1-1. 

The cylindroid in Cartesian coordinates can also be represented in cylindrical coordinate 

as 
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the project of the table edge from )0,,( LW−  to )0,,( LW −−  is 
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the project of the table edge from )0,,( LW −−  to )0,,( LW −  is 
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When we unfold the cylindroid film, the panorama image will be like Fig. 2-2. 
 

 
 

Fig. 2-2: Perfect projected table edge on panorama images 
 

 
 

Fig. 2-3: An example of the real images 
 

2.2. Camera with position and orientation change  
 

When the orientation of the Ringcam changes, the projected table edge will just shift 
to left/right by the corresponding angle. It will not change the shape of the curve.   

When the camera is not at the center of the table, ),( lw ∆∆ . The intersection of the 

plane 1)/1(1 =∆−+ z
h

Wwx
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Similarly, the projections of the other table edges are 
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2.3. Model for Tilt Camera 
 
In practical situations, there is usually small tilt for cameras. We model this kind of 

situation in this section.  
The focus of the camera tilt α degrees along direction ω . We can also see that the 

table first tilt α−  degrees around the axle xy )
2

tan( πω +=  (green line in Fig. 2-4).  

 
Fig. 2-4. Table rotate illustration (top view) 

 

A point (x,y,0) in X-Y plane rotate around axle xy )
2

tan( πω +=  degree α . Its 

projection on the axle is (u,v). Without lost of generality, we can add constraint  
0],2,0[ >∈ απω . 
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So the projection of the point on the cylindrical film is 
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'
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d
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Where π=cond  when 0'<x ; π2=cond ; when 0',0' >< xy . 
 
θ  is proportional to the x coordinate in panorama image coordinate, Im_y can be 

transformed to y coordinates in panorama image coordinate by a simple vertical shift. 

 
Fig. 2-5. Table rotate illustration (side view) 

2.4. Various Table Shapes 

2.4.1. Boat shape long table edges 
 
The long table edge can be boat shape. We will analyze the error if we simulate this 

kind of table shape using the rectangular shape. Assume the camera is at the center of the 
table, and  
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Fig. 2-6. Boat-shape table 

 
We use four cubic splines connecting (W,-L), (P,-L/2), (M,0), (P,L/2),(W,L) to 

simulate the boat-shape table edge. Usually, W<P<M, so we assume P=a*W, M=b*W. 
The equations of the splines are 

;2/)1(1;/ −−−== baKLyt  

 

LyLtKtKtbaWx

LytabtbabWx

yLtbatabtbaWx

LyLtKtKtaWx

<<−+−−−−+=

<<+−+−−+=

<<−+−−+++−++−+=

−<<−+−+++−+=

2/);)
2
1(**8)

2
1(**8)

2
1(*)1((*

;2/0);*)
2
12

2
3(*8*)

2
1

2
53(*4(*

;02/);)
2
1(*)

2
1

2
32(*8)

2
1(*)132(*4)

2
1(*)1((*

;2/);)1(**8)1(**4)1(*)1(*21(*

32

32

32

32

 

 

The point ),( vu  will be mapped on the cylindrical film as 
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Now our question is what is the best approximation for this kind of table edges and 

what is the maximum error in that case. 
 

2.4.2. Round End Table 

 
Fig. 2-7. Round end table 

 
If the table end is a half circle, and the camera is at the center of the table, the half 

circle in the upper part of Fig. 2-7 can be represented as ],0[,
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The closed form equation for the projected curve is 
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If we use a straight line to approximate it, the maximum error is  
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2.4.3. Trapezoid End table 

 
Fig. 2-8. Trapezoid end table 

 
If the table shape is like Fig. 2-8, we need to consider the projection of the line from 

(M,L) to (W, L+T). Assume everything else keeps unchanged, the projected curve is the 
intersection of the plane 
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Its closed form solution is 
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3. Symmetry Voting  
We can use the symmetry property of the table to calculate better initialization for 

camera position and orientation.  
If we apply a general image segmentation algorithm such as EDISON [7], the result is 

quite noisy. The edge points higher than the highest of all possible table edges can be 

removed. The highest edge point is determined by (see Eq .2-1): )1(max
22 LW

rh
+

− . 

Assume all conference table are smaller that 8 feet by 32 feet. The high threshold for all 
edge points can be calculated offline. 

3.1. Symmetry Voting 
 
The key idea is that the conference tables usually have a dual bilateral symmetry as 

shown in Fig. 3-1 and 3-2. We exploit this symmetry to estimate the RingCam orientation 
hs (horizontal shift), vs (vertical shift) and offset w∆ and l∆ . 

 
Fig. 3-1. RingCam on table (top view)  

 
 



 
Fig. 3-2. RingCam on table (side view) 

 
When the RingCam’s axis of symmetry is normal to the table plane, a point ),( vu  on 

the table edge in panorama image has a one-to-one mapping on the point ),( yx  in world 
coordinate as in Fig. 3-1.  
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By Fig. 3-1, we have 
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Where π=cond  when 0<∆− wx ; 
π2=cond ; when 0,0 >∆−<∆− wxly . 
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The basic algorithm is to detect edge points and do a voting scheme for the 

parameters ).,,( vshslw ∆∆ . The pseudo-code is: 
 
Clear h[][][][] 
For w∆ =-3; w∆  <= 3; w∆ ++ 
 For l∆ =-3; l∆ <= 3; l∆ ++ 
  For hs=30; hs <= 50; hs++ 
                              For vs=183; vs <= 187; vs++ 
   For each edge point ),( 11 vu , find ),( yx  by Eq. (3-1)(3-2) 
            Update(-x,y, w∆ , l∆ ,hs,vs);  
                                                Update(x,-y, w∆ , l∆ ,hs,vs);  
                                                Update(-x,-y, w∆ , l∆ ,hs,vs);  
   End 
                               End 
  End 
 End 
End 

 
Function  Update(x,y, w∆ , l∆ ,hs,vs) 
Find ),( vu  given (x,y) by Eq. (3-3) 
If an edge point (tu,tv) within a window of ),( vu          
           Then  h[ w∆ ][ l∆ ][hs][vs]+=1/distance((tu,tv), ),( vu ); 
 

The ideal value for vs is CameraHeight-ImageWidth/2. (exactly 185 in our synthetic 
data). 

When there is camera tilt and the camera is at the center of the table, we can us the tilt 
camera model in Section 2.3. Without lost of generality, we can add constraints  

0],2,0[ >∈ απω . 
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Given edge point ),( vu  and tilt direction ω  and tilt angle α , we want to solve ),( yx . 

)',','( zyx  lies on the line determined by ),0,0( h  and )Im_,sin,cos( yrr φφ , so we 
have 0);Im_,sin,cos(*)1(),0,0()',','( <−+= tyrrthtzyx φφ . That is 
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                                                                                                                                     (3-4) 
The mapping from ),( yx− , ),( yx − , ),( yx −−  to image coordinate is straightforward.  
We can first voting for optimal ).,,( vshslw ∆∆ , then vote for optimal tilt parameters 

),( αω  given the assumption that the tilt does not affect the orientation and position so 
much. We can also vote all of them in a 6-layer loop with higher computational expense.  



When the camera center is at  ),( lw ∆∆ , with the same tilt, )0,,( yx  will move to 
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3.2. Point Filtering 
 
We can use the result of the symmetry voting to filter some noisy points out. For an 

edge point, we can find its three symmetrical points using the camera parameters. If there 
are n window centered at its symmetry points that include other edge points ( 30 ≤≤ n ), 
we add this edge point into (n+1)-fold image. For an n-fold image, the remaining points 
have higher confidence that belong to a true table edge, so we can further add all three 
symmetrical points of all existing points and acquire an n-fold-flip image. Our following 
fitting algorithm will be based on the 3-fold-flip image because generally n=3 can 
achieve best tradeoff between noise elimination and table edge preservation. 

Fig. 3-[3~8] is an example of a test image. 
 

 
Fig. 3-3: Original Panorama Image 

 

 
Fig. 3-4: Edge Image Extracted from original image 

 



 
Fig. 3-5: 2-fold image after filtering 

 

 
Fig. 3-6: 3-fold image after filtering 

 

 
Fig. 3-7: 4-fold image after filtering 

 

 
Fig. 3-8: 3-fold-flip image 

4. Quadratic Fitting   

4.1. Basic Algorithm 
 
We can also use two quadratic lines to fit the 3-fold-flip image. Since this image is 

bilateral symmetry, we only preserve the half of the points (Fig. 4-1), that is  

]
2

3,
2

[
_Im

ππφ ∈+= hs
widthage

u  , where u is x coordinate of an edge point.  

   



 
Fig. 4-1: Half of 3-fold-flip edge image 

 

 
Fig. 4-2: Half of 3-fold-flip edge image for quadratic fitting 

 
The following are some definition in Fig. 4-2 
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cut corresponds to the connecting point of the two quadratic curves. Physically, it 
should be the projection of the table corner. cut’ is the symmetry point of cut. Since the 
points between min and cut, cut’ and max, correspond to short table edge, and the points 
between cut and cut’ correspond to long table edge. So ]2/)(min[min, middlecut +∈ .  

The idea is that fit quadratic curve 1 centered at min to points within [cut”, cut] and 
the quadratic curve 2 centered at middle to points within [cut, cut’]. There are two 
constraints: the two quadratic curves must be continuous at cut; quadratic curve 2 must 
be convex.  

Assume edge points are categorized into two kinds after flipping points within [cut’, 
max] to [cut”, cut]: 
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By using Lagrange multiplier, we have 
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We calculate the median of square error: 22

21 )min)(( ii vuaa −−+  and 
22

21 ))(( jj vmiddleubb −−+ , .,...,1;,...1 mjni ==  
We try all possible cut within ]2/)(min[min, middle+ , the one with least median error 

wins. Fig. 4-[3~6] are example of quadratic fitting with different level of losing edge 
points. We can see there will be large error when we lose most of the points of the long 
table edge. This problem may be fixed by trigonometry fitting which will be talked in 
Section 5. 

 

 
Fig. 4-3: Two quadratic curves fitting with least median square error 

 

 
Fig. 4-4: Two quadratic curves fitting with least median square error for points above 200 

 

 
Fig. 4-5: Two quadratic curves fitting with least median square error for points above 180 

 



 
Fig. 4-6: Two quadratic curves fitting with least median square error for points above 160 

4.2. Constraints of Quadratic Fitting 
 

There are constraints in quadratic fitting that can help us tackle the fitting with partial 
data. Let us consider the boundary of 2b  in Section 4.1. Figure 4-7 illustrates that we use 
five points on the projection of the long table edge to fit a quadratic curve.  

   
Fig. 4-7: The Long table edge  
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Since ]3,5.1[),
2
2,

17
1(],

1
1,

4
1[ feetfeetWt

L
W ∈∈< . We can get the boundary of 2b  

easily. (Practically ],[ hblb =[0.9042e-3,1.9784e-3], when 
305,1005_Im,160 === hwidthager  ). 

The upper boundary of 2a  can be estimated in a similar way. 
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Since ]12,5.1[),
2
2,

17
1(],

1
1,

4
1[ feetfeetWt

L
W ∈∈< . We can get the upper boundary 

of 2a  easily. (Practically ∈ha [2.4858e-4,2.0739e-3], when 
305,1005_Im,160 === hwidthager  ). 

 
Fig. 4-8: The round end short table edge 

The estimation of the lower boundary of 2a  need to consider various table shape. We 
use the round end table (Section 2.4.2 ) to estimate the upper boundary of  2a (Fig. 4-8). 
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Since ]3,5.1[),
2
2,

17
1(],

1
1,

4
1[ feetfeetWt

L
W ∈∈< . We can get the lower boundary 

of 2a  easily. (Practically ∈la [-1.4479e-2,-7.5591e-4], when 
305,1005_Im,160 === hwidthager  ). 

So we combine the result and set the boundary of  2a  as ],[ hala =[-1.4479e-2, 
2.0739e-3]. 

4.3. Fitting with Constraints 
 
Now we need to solve optimization problem Eq. 3-1 with constraints: ],[2 halaa ∈  

and  ],[2 hblbb ∈ . 
We modify the fitting algorithm as following: 
First, Search the 2,12,1 ,ba  as the algorithm in Section 3.1.  
If 2a  or 2b  are out of boundary, we need to consider the following four cases: 
I. Set  lbb =2 , the optimization becomes 
We want to minimize  
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If 2a  meets the constraints, we save the mean square error. Otherwise, we set  laa =2  
or ha . Then  
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The selection of cut is the same with Section 3.1. We select the cut with least mean 
square error and save it. 

 
II. Same with case I, except that we set hbb =2 . 
 
III. Set  laa =2 , the optimization becomes 
We want to minimize  
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If 2b  meets the constraints, we save the mean square error. Otherwise, we set  lbb =2  
or hb . The selection of cut is the same with Section 3.1. We select the cut with least 
mean square error and save it. 

 
IV. Same with case III, except that we set haa =2 . 
 
We compare the error in these four cases and choose the best one as our fitting result. 



 
Fig. 4-[8~10] is the result of quadratic fitting with constraints. We can see that the 

fitting improved a lot in the case of partial data. 
 

 
Fig. 4-8: Constrained quadratic curves fitting with least mean square error 

 

 
Fig. 4-9: Constrained quadratic curves fitting with least mean square error for points above 180 

 

 
Fig. 4-10: Constrained quadratic curves fitting with least mean square error for points above 160 

 

5. Trigonometry Fitting  

5.1. Algorithm 
The perfect edge of a triangular table is composed of four trigonometry curves. So we 

can use trigonometry curves for fitting based on the similar idea in Section 4.  
 The curve within [2*min-cut, min] is .],,[ LyWWx =−∈  
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yIm_,γ  can be calculated from ),( vu  easily. 
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Fig. 5-1. Half of 3-fold-flip edge image for trigonometry fitting 

 
So in Fig. 5-1, 
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The differences between ;'maxmin;;''min 321 cutdcutdcutd −=−=−= are actually 
small. So we just assume 321 ddd ==  in fitting. 
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The cut with minimum least mean square error will be chosen as the best fitting. Fig. 

5-(2~6) are some results. We can see the trigonometry fitting performs very well even 
though most of the points at the bottom are removed.  

Note that we use least mean square error instead of least median square error here for 
more robust performance. 

 



 
Fig. 5-2. Edge Image 

 

 
Fig. 5-3. two trigonometry curves fitting with least mean square error 

 

 
Fig. 5-4. two trigonometry curves fitting with least mean square error for points above 200 

 

 
Fig. 5-5. two trigonometry curves fitting with least mean square error for points above 180 

 

 
Fig. 5-6. two trigonometry curves fitting with least mean square error for points above 160 

 

5.2. Comparison of quadratic and trigonometry fitting on real images 
 

There are both advantage and disadvantages for the two kinds of fitting. Quadratic 
fitting can handle various table shapes. But current quadratic fitting assumes horizontal 
symmetry, so it will not have perfect fitting when there is large camera tilt. It may be 
improved by a generic quadratic fitting after the current algorithm. Trigonometry fitting 



works well on rectangular table when there is large camera tilt and data missing. But it 
degrades when the table is not rectangular.  

We have three sets of experiments on real data. The first is on a cluttered table. The 
second is on a clean table. We learn the table width/length ratio and fix the cut position. 
The third is on the clean table with manually added block noise. We will compare their 
performance under different noise level. 

Fig. 5-(7~11) is the results of experiment set #1. The outputs of symmetry voting are 
oolw 6.2,252,3,0 ===∆=∆ αω .  We can see the quadratic fitting cannot capture the 

tilted edges. And both methods made error on table corner position because of the noise. 
 

 
Fig. 5-7. Original image of cluttered table 

 

 
Fig. 5-8. General edge image 

  

 
Fig. 5-9. Filtered edge points after symmetry voting 

 

 
Fig. 5-10. Trigonometry fitting 

 



 
Fig. 5-11. Quadratic fitting 

 
Fig. 5-(12~14) is the results of experiment set #2. We use the cut position learned 

from quadratic fitting in Fig. 5-13 to fit the noisy image in experiment set #3. 
 

 
Fig. 5-12: Original Image 

 

 
Fig. 5-13: Quadratic fitting on original image 

 

 
Fig. 5-14: Trigonometry fitting on original image 

 
Fig. 5-(15~23) is the results of experiment set #3. We can see that the trigonometry 

fitting keeps satisfying performance with learned table width/length ratio even though the 
image is highly corrupted. The reason is that given camera height  and focus , there 
are only two parameters (W,L) needed to be estimated in the trigonometry fitting after we 
apply the camera parameters ( αω,,hs ) from symmetry voting. But there are five 
parameters ( cutbbaa ,,,, 2121 ) for the quadratic fitting. After we fix the cut, we can get the 
table width/length ratio directly. There is only one parameter left for the trigonometry 
fitting. But there are still four parameters for the quadratic fitting. We have added 
constraints on 22 ,ba based on rectangular table model. Based on the same knowledge, 



)1(),1( 11 W
rhb

L
rha −=−= . So we can add more constraints on quadratic fitting and 

expect better.       
 

 
Fig. 5-15: Original image with noise N=50 

 

 
Fig. 5-16: Quadratic fitting on noise N=50 

 

 
Fig. 5-17: Trigonometry fitting on noise N=50 

 

 
Fig. 5-18: Original image with noise N=100 

 

 
Fig. 5-19: Quadratic fitting on noise N=100 

 



 
Fig. 5-20: Trigonometry fitting on noise N=100 

 

 
Fig. 5-21: Original image with noise N=200 

 

 
Fig. 5-22: Quadratic fitting on noise N=200 

 

 
Fig. 5-23: Trigonometry fitting on noise N=200 

6. During Conference: ICP 
 

To determine the table edges, there are actually six parameters we need to estimate: 
the table size ),( LW ; the horizontal shift hs (determined by the camera orientation and 
where we cut the cylinder); the vertical shift vs (determined by the camera height and 
vertical fov); and the camera position ),( lw ∆∆ . Fig. 6-1 is the fitting found manually.  

 

 



Fig. 6-1: A match found manually 
 

We talk about the algorithm for estimating table size and camera position in this 
section. The details for ICP and function )(ROV will be presented in Section 5.1 and 5.2. 

 
 
Goal: Estimate parameters ),,,,,( lwvshsLW ∆∆  
First Step: Forward mapping. We choose sizes of several common conference tables, 

estimate ),,,( lwvshs ∆∆  with initialization set .,...,1),,,,,,( nilwvshsLW iiiiii =∆∆ by using 
the ICP on the long edges in Section 6. The ICP will converge to 

.,...,1),,,,,,( ****** nilwvshsLW iiiiii =∆∆  
Second Step: Verification.  
1. ),,,,,(maxarg ******

iiiiii
i

lwvshsLWROVk ∆∆=  

2. Fix W  as *
kW .  
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sksksksksk lwvshsLW ∆∆ . 
 

6.1. Forward Mapping 
 

The “Iterative Closest Point” (ICP) method [6] can be used for this problem. Each 
time, we search the nearest points with proper orientation given some estimation. These 
points are used to update the three parameters. In our implementation, we just use the 
long table edges because the short edges are usually not accurate and occluded. 

6.1.1. Camera at the center of table 
 
Give a set of points .,...1),,( niyx ii = from the Eq. 2-1, and a set of points 

.,...1),,( mjyx jj = from the Eq. 2-3. We have  
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Where ),( yx  is the coordinates of table edges in images. c  is a constant to scale 
]2,0[ πθ ∈  to ]Im,0[ ageWidthx ∈ . H  is a constant related to panorama cropping.  
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 From Eq. 6-1 we can calculate the updated [ ]TDBA , that can be easily 
transformed into [ ]vscalevshs . 

After several iterations, we will be able to arrive at a local optimal result. Fig. 6-2 is 
one example after ten iterations. 

 

 
 

Fig. 6-2: Green lines are the original estimate. Blue lines are the search result. Spare red 
points are the nearest edge points found in the first iteration. 

 



6.1.2. Camera not at the center of table 
 
When the camera is not at table center, but ),( lw ∆∆ , the parameter estimation 

becomes more complex. Similarly, we get 
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We want to minimize the square error: 
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with constraint: 0** =− VXYZ .                                                                                 
Using Lagrange multiplier λ , we need to solve the equations: 
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That is Eq (3-3): 
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Eq. (6-2) and (6-3) are nonlinear, that can be solved by Newton’s method. We rewrite 
Eq. (6-3) as 
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All the partial derivatives of F(…) and G(…) are linear. So given some 
seed ),,,,,( 000000 λDVYZX , the updating equations are also linear: 
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That is one step in Newton’s algorithm: 
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Fig. 6-3 is an example for this kind of scenarios. The algorithm succeeds to converge 

to the correct table edges after several iterations. 
 

 
 

Fig. 6-3: Same setting with camera not at the center of the table. 
 

But when the initialization shifts too much, the result can still be wrong. One possible 
solution is to use multiple seeds since we will discard most of the candidates any way 
during verification stage.  

6.1.3. Short table edge detection 
 
When the table is clear, we can detect the short table edge in the same way.   
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We want to minimize the square error: 
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with constraint: 0** =− VXYZ .                                                                                 



We can apply Lagrange multiplier and use Newton method to solve the problem as 
well.  

6.2. Verification 
 
Form staple.com and officedepot.com, we collect eleven kinds of the common 

conference table sizes. We apply the ICP algorithm in Section 2 with different table sizes 
and compare the rate of overlapping (ROV), which is defined as 

the number of the edge points within 1 pixel to the searched table edge 
the number of pixels on the searched table edge 

 
Since we only detect long edges in Section 3, we approximate the short edges by 

connecting the end points of the long edges. The result is shown in table 6-1 and Fig 6-
[4~7].  

 

 
Fig. 6-4. table size #2 

 

 
Fig. 6-5. table size #4 

 

 
Fig. 6-6. table size #8 

 

 
Fig. 6-7. table size #10 

 



Table 6-1: ROV comparison for different table size 
# Table Size L/W ratio ROV (long edges) ROV (short edges) 
1 48"x144" (true) 3.5 64% 45% 
2 48"x120" 2.5 65% 15% 
3 48"x96" 2 48% 16% 
4 36"x72" 2 41% 21% 
5 36"x96" 2.67 38% 41% 
6 42"x120" 2.85 60% 23% 
7 36"x84" 2.3 39% 27% 
8 30"x60" 2 30% 28% 
9 44"x96" 2.18 59% 17% 
10 24"x72" 3 25% 5% 
11 45"x80" 1.78 57% 27% 

  
Given camera height and focus, the “vertical” position of long edges is determined by 

the width of the table; and the “horizontal” position of long edges is determined by 
camera orientation. So with proper initialization, the table size with correct width will 
have high ROV for long edges.  
The verification stage can be performed in two steps: the first step is to search the best 
match using table size #2, #4, #8, #10. Fix the width by the one with best ROV; the 
second step is to tune the table length and camera orientation if possible. 

7. Testing on Synthetic Data 
 
We use Direct3D to generate synthetic data for five cameras in real RingCam. The 

cameras’ focuses are set as the same point precisely and their view directions are 
distributed around the center uniformly. The stitching from single perspective view to 
cylindrical view can be inferred from Section 1.1 and Fig, 6-1. Note that we need to scale 

the cylindrical view by 
180/*72

)36sin(*2
π

o

 to keep the object have similar size in perspective 

mapping. 

 
Fig. 7-1: From perspective mapping to cylindrical mapping 

 
We test the camera tilt model by using the synthetic data. The experimental results on 

camera tilt model are in Table 6-1 and Fig. 6-(2~3). We set the step for ω  is o2 , for α  is 
o2.0 . The average error for ω  is o14.5 , for α is o0786.0 . ( w∆ , l∆  also compensate for 

the error to some extend). We can see that ω  is prone to have large error when α  is 
small, while ω  does not affect α  that much. The symmetry voting works well for 
camera tilt detection. 

 
Table 7-1: Camera tilt detection results 



Correct Tilt Parameter( w∆ = l∆ =0) Detected Camera parameters 
ω  (degree) α (degree) ω (degree) α (degree) w∆ (mm) l∆ (mm) 

50 0.2 62 0.2 0 -3 
100 0.2 120 0.2 0 -1 
150 0.2 158 0.2 1 0 
200 0.2 206 0.2 1 0 
250 0.2 252 0.2 0 1 
300 0.2 312 0.2 0 1 
350 0.2 358 0.4 -3 0 
50 0.4 44 0.6 -3 -3 
100 0.4 106 0.4 0 -1 
150 0.4 162 0.6 3 -3 
200 0.4 208 0.6 3 3 
250 0.4 252 0.4 0 1 
300 0.4 308 0.4 -1 1 
350 0.4 354 0.6 -3 0 
50 0.6 48 0.6 -1 -1 
100 0.6 98 0.6 0 -1 
150 0.6 152 0.8 3 -3 
200 0.6 202 0.8 3 1 
250 0.6 250 0.6 0 1 
300 0.6 304 0.6 -1 1 
350 0.6 352 0.8 -3 1 
50 1.4 48 1.4 -1 -1 
100 1.4 106 1.4 3 -3 
150 1.4 152 1.4 3 -2 
200 1.4 200 1.6 3 1 
250 1.4 246 1.6 3 3 
300 1.4 298 1.4 0 0 
350 1.4 350 1.6 -3 1 

 
Fig. 7-2: error of α  under different ω  



 
 Fig. 7-3: error of ω  under different α  

 
We build the model for boat-shaped table (Section 2.4.1) and manually add random 

blocks to simulate noise. The noise level is controlled by the number of the blocks N. The 
results on camera tilt vs. noise vs. fitting methods are in Fig. 7-(4~16).  

 

 
Fig. 7-4: Synthetic panorama image with N=50 

 

 
Fig. 7-5: Synthetic panorama image with N=100 

 

 
Fig. 7-6: Synthetic panorama image with N=200 

 



 
Fig. 7-7: Synthetic panorama image with N=300 

 

 
Fig. 7-8: quadratic fitting with N=50 (average error=1.9817 pixel) 

 

 
Fig. 7-9: quadratic fitting with N=100 (average error=2.9376 pixel) 

 

 
Fig. 7-10: quadratic fitting with N=200 (average error=5.2159 pixel) 

 

 
Fig. 7-11: quadratic fitting with N=300 (average error=12.0025 pixel) 

 



 
Fig. 7-12: trigonometry fitting with N=50 (average error=1.8649 pixel) 

 

 
Fig. 7-13: trigonometry fitting with N=100 (average error=2.6267 pixel) 

 

 
Fig. 7-14: trigonometry fitting with N=200 (average error=3.7321 pixel) 

 

 
Fig. 7-15: trigonometry fitting with N=300 (average error=13.5782 pixel) 



 
Fig. 7-16: Comparison of the average error 

 
We can see that the quadratic fitting outperform trigonometry fitting on boat shaped 

table. But quadratic fitting can not catch large camera tilt. 
We also fix the camera tilt ( oo 6.0,90 == αω ) and noise level (N=150), but change 

the table width/length ratio (1:2, 1;3, 1;4) of rectangular and boat shaped table. The 
experimental results are in Fig. 7-(17~19). The results show that the quadratic fitting and 
trigonometry fitting both work well (maximum error less than 2 pixels). The quadratic 
fitting perform slightly better than trigonometry fitting on boat table, but on the contrary 
on rectangular table with camera tilt.  

 

 
Fig. 7-17: Boat table (1:4) with noise N=150 

 

 
Fig. 7-18: Rectangular table (1:4) with noise N=150 



 
 

Fig. 7-19: Error comparison 

8. Summary 
We have developed a novel technique to automatically detect table boundaries on 

o360 panorama images in meeting rooms. As a result, we are able to automatically generate 
SVU-scaling functions to equalize people’s head sizes resulting in better video 
conferencing experience. We propose a first-learning-then-fitting scheme for robust 
detection. The corner position is determined by table width/length ratio, which can be 
learned more correctly when table is clean. In the fitting stage for normal usage, we set 
the width/length ratio and just looking for table width in optimization. At that time, the 
points from long table edge are more likely visible and can contribute to a correct 
solution even though the corner and short edges are occluded. 

Symmetry voting can detect camera parameters and extract the table edges reliably. 
Both quadratic and trigonometry fitting work robustly under various camera/table 
parameters, noise and missing data.  

We test the algorithm intensively and compare the two fitting methods. The 
experimental results on both real images and synthetic images support the effectiveness 
of our algorithm under various situations. Quadratic fitting can handle arbitrary table 
shapes. Trigonometry fitting is better at handling missing data and large camera tilt.  

For future improvement, we may apply a generic quadratic fitting after the current 
one to handle large camera tilt and add more constraints, and speed up the computation 
for the real product.     
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