

 Automatic Head-Size
Equalization in Panorama Images

for Video Conferencing

Ya Chang, Ross Cutler, Zicheng Liu,
Zhengyou Zhang, Alex Acero, Matthew Turk

yachang@cs.ucsb.edu,
{rcutler,zliu,zhang,alexac}@microsoft.com

mturk@cs.ucsb.edu

May, 2005

 MSR-TR-2005-48

Microsoft Research
Microsoft Corporation

One Microsoft Way
Redmond, WA 98052

Automatic Head-size Equalization in Panorama Images for Video
Conferencing

Ya Chang, Ross Cutler, Zicheng Liu, Zhengyou Zhang, Alex Acero, Matthew Turk
 yachang@cs.ucsb.edu {rcutler,zliu,zhang,alexac}@microsoft.com mturk@cs.ucsb.edu
 University of California Microsoft Research University of California
 Santa Barbara, CA 93106 Redmond, WA 98052 Santa Barbara, CA 93106

Abstract

In panorama images captured by omni-directional cameras during video conferencing, the image sizes

of the people around the conference table are not uniform due to the varying distances to the camera.
Spatially-varying-uniform (SVU) scaling functions have been proposed to warp a panorama image
smoothly such that the participants have similar sizes on the image. To generate the SVU function, one
needs to segment the table boundaries, which was generated manually in the previous work. In this paper,
we propose a robust algorithm to automatically segment the table boundaries. To ensure the robustness, we
apply a symmetry voting scheme to filter out noisy points on the edge map. Trigonometry and quadratic
fitting methods are developed to fit a continuous curve to the remaining edge points. We report
experimental results on both synthetic and real images.

1. Introduction
In the past a few years, there has been a lot of interest in the use of omni-directional

cameras for video conferencing and meeting recording [1,3,4,5]. While a panoramic view
is capable of capturing every participant’s face, one drawback is that the image sizes of
the people around the meeting table are not uniform in size due to the varying distances
to the camera. Figure 1 shows a 360 degree panorama image of a meeting room. The
table size is 10x5 feet. The person in the middle of the image appears very small
compared to the other two people because he is further away from the camera.

Fig. 1-1: An image captured by an omni-directional camera
This has two consequences. First, it is difficult for the remote participants to see some

faces, thus negatively affecting the video conferencing experience. Second, it is a waste
of the screen space and network bandwidth because a lot of the pixels are used on the
background instead of on the meeting participants. As image sensor technology rapidly
advances, it is possible to design inexpensive high-resolution (more than 2000 horizontal
pixels) omni-directional video cameras [1]. But due to network bandwidth and user’s
screen space, only a smaller-sized image can be sent to the clients. Therefore how to
effectively use the pixels has become a critical problem in improving the video
conferencing experience.

Spatially-varying-uniform (SVU) scaling functions have been proposed [2] to address
this problem. A SVU scaling function warps a panorama image to equalize people’s head
sizes without creating discontinuities. Fig. 2 shows the result after head-size equalization.

 The generation of a SVU function, as described in [2], requires two curves: the bottom
curve specifies the table boundaries, and the top curve along people’s head top positions.
In the previous work, the two curves were created manually. The problem with the
manual segmentation is that whenever the camera is moved or rotated, the user has to
manually mark an image, thus making it difficult to use. In this paper, we describe a
technique to automatically segment the table boundaries and estimate the two curves. As
a result, the SVU function can be generated automatically.

Fig. 1-2: Result after head-size equalization

This paper will focus on the methods of automatic table edge detection. The whole

algorithm runs in the following way:

Uncluttered table (setup):
 Detect general edge points
 Extract table edge points
 Learn parametric table model
Cluttered table (normal usage):
 Detect general edge points
 Extract table edge points
 Fit parametric table model

There will be 8 sections in this paper. Section 1 is the introduction. Section 2 talks

about the general parametric model of the table edge in panorama images. Section 3
presents the symmetry voting and point filtering for extracting table edge points. Section
4 presents the quadratic edge fitting without table model. Section 5 presents trigonometry
fitting with table model and compares its performance with quadratic fitting in case of
partial table edges. Section 6 further provides an optional solution for real-time edge
detection by ICP during conference. Section 7 presents the intensive testing on synthetic
data. We will summarize in Section 8.

2. Basic Formulations

We talk about the formulation of the cylindrical projection of the table in this section.

2.1. Rectangular table with camera at canter

Fig. 2-1: Illustration of the cylindrical projection of the table edges.

We first consider the case that the Ring Camera is at the center of a rectangular table

of LW 2*2 . The projection center is),0,0(h . The radius of the cylindrical film is r .
The projection of the table edge from)0,,(LW to)0,,(LW − is the intersection of the

plane 1=+
h
z

W
x and cylindroid 222 ryx =+ . It is illustrated as a dash curve in Fig. 1-1.

The cylindroid in Cartesian coordinates can also be represented in cylindrical coordinate

as
⎩
⎨
⎧

=
=

θ
θ

sin
cos

ry
rx

. So the intersection curve becomes

)cos1(
W

rhz θ−= (2-1)

It begins from the intersection of the cylondroid and the yellow line
(),0,0()0,,(hLW >−−), and ends at the intersection of the cylondroid and the yellow line

(),0,0()0,,(hLW >−). That is 22

2

)],arccos(),arccos([
LW

Wttt
+

=−∈θ on curve (2-1).

In the same way, the project of the table edge from)0,,(LW to)0,,(LW− is

)sin1(
L

rhz θ−= , with 22

2

)],arccos(),[arccos(
LW

Wttt
+

=−∈ πθ (2-2)

the project of the table edge from)0,,(LW− to)0,,(LW −− is

)cos1(
W

rhz θ+= , with 22

2

)],arccos(),arccos([
LW

Wttt
+

=+−∈ ππθ (2-3)

the project of the table edge from)0,,(LW −− to)0,,(LW − is

)sin1(
L

rhz θ+= , with 22

2

)],arccos(2),arccos([
LW

Wttt
+

=−+∈ ππθ (2-4)

When we unfold the cylindroid film, the panorama image will be like Fig. 2-2.

Fig. 2-2: Perfect projected table edge on panorama images

Fig. 2-3: An example of the real images

2.2. Camera with position and orientation change

When the orientation of the Ringcam changes, the projected table edge will just shift
to left/right by the corresponding angle. It will not change the shape of the curve.

When the camera is not at the center of the table,),(lw ∆∆ . The intersection of the

plane 1)/1(1 =∆−+ z
h

Wwx
W

 and the cylindroid 222)()(rlywx =∆−+∆− (that is equal

to
⎩
⎨
⎧

+∆=
+∆=

θ
θ

sin
cos

rly
rwx

) is

))1(cos1()
)1(

cos1()cos1(
W

w
W

rh

W
wW

rh
wW

rhz ∆+−=∆−
−=

∆−
−= θθθ (2-5)

(we neglect high order taylor expansion here since LlWw <<∆<<∆ ,)

with)
)()(

arccos(),
)()(

arccos(

],,[

222221

21

lLwW
wW

lLwW
wW

∆++∆−
∆−=

∆−+∆−
∆−=

−∈

φφ

φφθ

Similarly, the projections of the other table edges are

))1(sin1(
L
l

L
rhz ∆+−= θ , with],[32 φπφθ −∈ (2-6)

)
)()(

arccos(
223

lLwW
wW

∆−+∆+
∆+=φ

))1(cos1()cos1(
W

w
W

rh
wW

rhz ∆−+=
∆+

+= θθ , with],[43 φπφπθ +−∈ (2-7)

)
)()(

arccos(
224

lLwW
wW

∆++∆+
∆+=φ

))1(sin1(
L
l

L
rhz ∆−+= θ , with]2,[14 φπφπθ −+∈ (2-8)

2.3. Model for Tilt Camera

In practical situations, there is usually small tilt for cameras. We model this kind of

situation in this section.
The focus of the camera tilt α degrees along direction ω . We can also see that the

table first tilt α− degrees around the axle xy)
2

tan(πω += (green line in Fig. 2-4).

Fig. 2-4. Table rotate illustration (top view)

A point (x,y,0) in X-Y plane rotate around axle xy)
2

tan(πω += degree α . Its

projection on the axle is (u,v). Without lost of generality, we can add constraint
0],2,0[>∈ απω .

);cos,(sin*)cossin(),(ωωωω −−= yxvu
Its coordinates after rotation is)',','(zyx where

),(yx

),(vu

ω

X

Y

;sin*)sincos('
;cos)cos1)(cossin(cos'

;cos)cos1)(cossin(sin'
;cos*)),(),((),()','(

αωω
ααωωω

ααωωω
α

yxz
yyxy

xyxx
vuyxvuyx

+=
+−−−=

+−−=
−+=

ααωω 2222222 cos)(sin)cossin('' yxyxyxd ++−=+= .

So the projection of the point on the cylindrical film is

;)
'
'arctan(hscond

x
y −+=θ

d
zhrhy)'(Im_ −−= ;

Where π=cond when 0'<x ; π2=cond ; when 0',0' >< xy .

θ is proportional to the x coordinate in panorama image coordinate, Im_y can be

transformed to y coordinates in panorama image coordinate by a simple vertical shift.

Fig. 2-5. Table rotate illustration (side view)

2.4. Various Table Shapes

2.4.1. Boat shape long table edges

The long table edge can be boat shape. We will analyze the error if we simulate this

kind of table shape using the rectangular shape. Assume the camera is at the center of the
table, and

d
'z

X

Z

h

r

yIm_

Fig. 2-6. Boat-shape table

We use four cubic splines connecting (W,-L), (P,-L/2), (M,0), (P,L/2),(W,L) to

simulate the boat-shape table edge. Usually, W<P<M, so we assume P=a*W, M=b*W.
The equations of the splines are

;2/)1(1;/ −−−== baKLyt

LyLtKtKtbaWx

LytabtbabWx

yLtbatabtbaWx

LyLtKtKtaWx

<<−+−−−−+=

<<+−+−−+=

<<−+−−+++−++−+=

−<<−+−+++−+=

2/);)
2
1(**8)

2
1(**8)

2
1(*)1((*

;2/0);*)
2
12

2
3(*8*)

2
1

2
53(*4(*

;02/);)
2
1(*)

2
1

2
32(*8)

2
1(*)132(*4)

2
1(*)1((*

;2/);)1(**8)1(**4)1(*)1(*21(*

32

32

32

32

The point),(vu will be mapped on the cylindrical film as
⎪⎩

⎪
⎨

⎧

+
−=

=

h
vu

rz

uv

*)1(

)/arctan(

22

θ
. So

when the point is moved to),(vu ∆+ , the projection is

⎪
⎩

⎪
⎨

⎧

+∆+
−=

∆+=

h
vu

rz

uv

*)
)(

1('

))/(arctan('

22

θ

. We can see that using Taylor extension,

;;
u
vR

u
k =∆=

)
1

1(*
1

*
*

*)
*

*arctan(' 222222 R
k

R
Rk

uvu
v

uvu
v

+
−

+
≈

∆++
∆≈

∆++
∆=−θθ

)
)1(*2)1(

1(*' 2

2

222 R
k

R
k

vu
hrzz

+
−

+
−

+
≈−

Now our question is what is the best approximation for this kind of table edges and

what is the maximum error in that case.

2.4.2. Round End Table

Fig. 2-7. Round end table

If the table end is a half circle, and the camera is at the center of the table, the half

circle in the upper part of Fig. 2-7 can be represented as],0[,
sin

cos
πα

α
α

∈
⎩
⎨
⎧

+=
=

WLv
Wu

. Its

projection on the cylindrical film is

⎪
⎪
⎩

⎪⎪
⎨

⎧

+
−

+
−∈

++
−=

−∈+=

]*)1(,*)1[(*)
sin***2

1(

]arctan,[arctan)arctan(

2222
h

LW
rh

LW
rh

WLLW
rz

W
L

W
Ltg

W
L

α

παθ

The closed form equation for the projected curve is

h

MLtg
MLtgWLLW

rz *)

)/(1
/***2

1(

2

22

−+
−++

−=

θ
θ

If we use a straight line to approximate it, the maximum error is

))*(
2
3*(

2
*

2

)1()1(
2

222222

22

LW
LW

LW
LW

LW
hr

h
LW

rh
LW

r

+
−

++
≈+

−−
+

−

2.4.3. Trapezoid End table

Fig. 2-8. Trapezoid end table

If the table shape is like Fig. 2-8, we need to consider the projection of the line from

(M,L) to (W, L+T). Assume everything else keeps unchanged, the projected curve is the
intersection of the plane

],[;*,*)(;1 MWx
MW
MTLb

T
LMWMawhere

h
z

b
y

a
x ∈

−
−=−−==++

And the cylindroid 222 ryx =+ .
Its closed form solution is

)))arctan(cos(11*1(*

))sincos(*1(*

22 WM
T

ba
rh

ba
rhz

−
++−=

+−=

θ

θθ

,],[arctan
W

TL
M
L +∈θ .

3. Symmetry Voting
We can use the symmetry property of the table to calculate better initialization for

camera position and orientation.
If we apply a general image segmentation algorithm such as EDISON [7], the result is

quite noisy. The edge points higher than the highest of all possible table edges can be

removed. The highest edge point is determined by (see Eq .2-1):)1(max
22 LW

rh
+

− .

Assume all conference table are smaller that 8 feet by 32 feet. The high threshold for all
edge points can be calculated offline.

3.1. Symmetry Voting

The key idea is that the conference tables usually have a dual bilateral symmetry as

shown in Fig. 3-1 and 3-2. We exploit this symmetry to estimate the RingCam orientation
hs (horizontal shift), vs (vertical shift) and offset w∆ and l∆ .

Fig. 3-1. RingCam on table (top view)

Fig. 3-2. RingCam on table (side view)

When the RingCam’s axis of symmetry is normal to the table plane, a point),(vu on

the table edge in panorama image has a one-to-one mapping on the point),(yx in world
coordinate as in Fig. 3-1.

;Im_ vsvy +=
By the similar triangles, we have

y
rd

h
d

Im_
−=

⎪
⎪
⎩

⎪⎪
⎨

⎧

+=

−−
=

hs
widthage

u
vsvh

hrd

_Im

*

φ
 (3-1)

By Fig. 3-1, we have

)sin,cos(),(1111 ldwdyx ∆+∆+= φφ (3-2)
)sin,cos(),(2222 ldwdyx ∆+∆+=− φφ
)sin,cos(),(3333 ldwdyx ∆+∆+=− φφ

)sin,cos(),(4444 ldwdyx ∆+∆+=−− φφ
Given),(yx ,

))arctan(,)()((),(22 cond
wx
lylywxd +

∆−
∆−∆−+∆−=φ (3-3)

Where π=cond when 0<∆− wx ;
π2=cond ; when 0,0 >∆−<∆− wxly .

h

r

d

yIm_

The basic algorithm is to detect edge points and do a voting scheme for the

parameters).,,(vshslw ∆∆ . The pseudo-code is:

Clear h[][][][]
For w∆ =-3; w∆ <= 3; w∆ ++
 For l∆ =-3; l∆ <= 3; l∆ ++
 For hs=30; hs <= 50; hs++
 For vs=183; vs <= 187; vs++
 For each edge point),(11 vu , find),(yx by Eq. (3-1)(3-2)
 Update(-x,y, w∆ , l∆ ,hs,vs);
 Update(x,-y, w∆ , l∆ ,hs,vs);
 Update(-x,-y, w∆ , l∆ ,hs,vs);
 End
 End
 End
 End
End

Function Update(x,y, w∆ , l∆ ,hs,vs)
Find),(vu given (x,y) by Eq. (3-3)
If an edge point (tu,tv) within a window of),(vu
 Then h[w∆][l∆][hs][vs]+=1/distance((tu,tv),),(vu);

The ideal value for vs is CameraHeight-ImageWidth/2. (exactly 185 in our synthetic
data).

When there is camera tilt and the camera is at the center of the table, we can us the tilt
camera model in Section 2.3. Without lost of generality, we can add constraints

0],2,0[>∈ απω .

;sin*)sincos('
;cos)cos1)(cossin(cos'

;cos)cos1)(cossin(sin'

αωω
ααωωω

ααωωω

yxz
yyxy

xyxx

+=
+−−−=

+−−=

Given edge point),(vu and tilt direction ω and tilt angle α , we want to solve),(yx .

)',','(zyx lies on the line determined by),0,0(h and)Im_,sin,cos(yrr φφ , so we
have 0);Im_,sin,cos(*)1(),0,0()',','(<−+= tyrrthtzyx φφ . That is

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
+−−−

−−+−

y
r
r

t
y
x

hy
r
r

Im_
sin
cos

*
Im_sinsinsincos

sincos)cos1(cos)cos1(cossin
cos)cos1(cossincos)cos1(sin

2

2

φ
φ

αωαω
φααωαωω
φαωωααω

 (3-4)
The mapping from),(yx− ,),(yx − ,),(yx −− to image coordinate is straightforward.
We can first voting for optimal).,,(vshslw ∆∆ , then vote for optimal tilt parameters

),(αω given the assumption that the tilt does not affect the orientation and position so
much. We can also vote all of them in a 6-layer loop with higher computational expense.

When the camera center is at),(lw ∆∆ , with the same tilt,)0,,(yx will move to

;sin*)sin*)(cos*)(('
;cos)cos1)(sincos)(sincos('
;cos)cos1)(cossin*)(cossin('

22

22

αωω
ααωωωω
ααωωωω

lywxz
ylywxy
xlywxx

∆−+∆−=
+−∆++∆−−=

+−∆−−∆+=

0);Im_,sin,cos(*)1(),,()',','(<−+∆∆= tyrrthlwtzyx φφ

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

∆+∆+
−∆+∆−
−∆+∆−

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
∆−+−−−
∆−−−+−

αωω
αωωωφ
αωωωφ

αωαω
φααωαωω
φαωωααω

sin)sincos(Im_
)cos1(sin)sincos(sin
)cos1(cos)sincos(cos

*
Im_sinsinsincos
sincos)cos1(cos)cos1(cossin
cos)cos1(cossincos)cos1(sin

2

2

lwy
lwr
lwr

t
y
x

hy
lr
wr

d
zhrhy

hscond
wx
ly

lywxd

)'(Im_

;)
'
'arctan(

)'()'(22

−−=

−+
∆−
∆−=

∆−+∆−=

φ

3.2. Point Filtering

We can use the result of the symmetry voting to filter some noisy points out. For an

edge point, we can find its three symmetrical points using the camera parameters. If there
are n window centered at its symmetry points that include other edge points (30 ≤≤ n),
we add this edge point into (n+1)-fold image. For an n-fold image, the remaining points
have higher confidence that belong to a true table edge, so we can further add all three
symmetrical points of all existing points and acquire an n-fold-flip image. Our following
fitting algorithm will be based on the 3-fold-flip image because generally n=3 can
achieve best tradeoff between noise elimination and table edge preservation.

Fig. 3-[3~8] is an example of a test image.

Fig. 3-3: Original Panorama Image

Fig. 3-4: Edge Image Extracted from original image

Fig. 3-5: 2-fold image after filtering

Fig. 3-6: 3-fold image after filtering

Fig. 3-7: 4-fold image after filtering

Fig. 3-8: 3-fold-flip image

4. Quadratic Fitting

4.1. Basic Algorithm

We can also use two quadratic lines to fit the 3-fold-flip image. Since this image is

bilateral symmetry, we only preserve the half of the points (Fig. 4-1), that is

]
2

3,
2

[
_Im

ππφ ∈+= hs
widthage

u , where u is x coordinate of an edge point.

Fig. 4-1: Half of 3-fold-flip edge image

Fig. 4-2: Half of 3-fold-flip edge image for quadratic fitting

The following are some definition in Fig. 4-2

;2/max)(min

);2/(_Im*)
2

3(max

);2/(_Im*)
2

(min

+=

−=

−=

middle

widthagehs

widthagehs

ππ

ππ

cut corresponds to the connecting point of the two quadratic curves. Physically, it
should be the projection of the table corner. cut’ is the symmetry point of cut. Since the
points between min and cut, cut’ and max, correspond to short table edge, and the points
between cut and cut’ correspond to long table edge. So]2/)(min[min, middlecut +∈ .

The idea is that fit quadratic curve 1 centered at min to points within [cut”, cut] and
the quadratic curve 2 centered at middle to points within [cut, cut’]. There are two
constraints: the two quadratic curves must be continuous at cut; quadratic curve 2 must
be convex.

Assume edge points are categorized into two kinds after flipping points within [cut’,
max] to [cut”, cut]:

.,...,1),,(nivu ii =],"[cutcutui ∈ . For fitting 2
21 min)(−+= xaay .

.,...,1),,(mjvu jj =]',[cutcutu j ∈ . For fitting 2
21)(middlexbby −+= .

We want to minimize

∑∑
==

−−−+−−−=
m

j
jj

n

i
ii middlevbbvuaavR

1

22
21

1

22
21))(()min)((w.r.t. 2,12,1 ,ba with

constraint 0)(min)(2
21

2
21 =−−−−+= middlecutbbcutaaS . (4-1)

By using Lagrange multiplier, we have

 .2,1,,0)(,0)(==
∂
−∂=

∂
−∂ ji

b
SR

a
SR

ji

λλ

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−

=

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−

−−−

−−

−−−

−

∑

∑

∑

∑

∑∑

∑

∑∑

∑

=

=

=

=

==

=

==

=

0

)(

min)(

*

0)(1min)(1

)()()(00

1)(00

min)(00min)(min)(

100min)(

1

2

1

1

2

1

2

1

2

1

22

2

1

4

1

2

1

2

2

1

4

1

2

1

2

m

j
jj

m

j
j

n

i
ii

n

i
i

m

j
j

m

j
j

m

j
j

n

i
i

n

i
i

n

i
i

middleuv

v

uv

v

b
b
a
a

middlecutcut

middlecutmiddleumiddleu

middleum

cutuu

un

λ

We calculate the median of square error: 22

21)min)((ii vuaa −−+ and
22

21))((jj vmiddleubb −−+ , .,...,1;,...1 mjni ==
We try all possible cut within]2/)(min[min, middle+ , the one with least median error

wins. Fig. 4-[3~6] are example of quadratic fitting with different level of losing edge
points. We can see there will be large error when we lose most of the points of the long
table edge. This problem may be fixed by trigonometry fitting which will be talked in
Section 5.

Fig. 4-3: Two quadratic curves fitting with least median square error

Fig. 4-4: Two quadratic curves fitting with least median square error for points above 200

Fig. 4-5: Two quadratic curves fitting with least median square error for points above 180

Fig. 4-6: Two quadratic curves fitting with least median square error for points above 160

4.2. Constraints of Quadratic Fitting

There are constraints in quadratic fitting that can help us tackle the fitting with partial
data. Let us consider the boundary of 2b in Section 4.1. Figure 4-7 illustrates that we use
five points on the projection of the long table edge to fit a quadratic curve.

Fig. 4-7: The Long table edge

)1(

2
1))2/)(cos(arccos1(

);1(

)2/(_Im*)arccos(

3

2

1

22

W
rthy

t
W
hrh

W
trhy

W
rhy

widthagetx

t
LW

W

−=

+−=−=

−=

=

=
+

π

The best quadratic fitting is 11
2

21 ; ybxbby =+=
We want to minimize

22

2

2
123

2

2

2
2

2
21

2
3

2
21

))(arccos(

4
2

15
*

)_(Im17
16

17
4*)54(

,0

)4/()(

t

tt

widthageW
hr

x
yyyb

b
R

yxbyyxbyR

−+−
=−+=

=
∂
∂

−++−+=

π

Since]3,5.1[),
2
2,

17
1(],

1
1,

4
1[feetfeetWt

L
W ∈∈< . We can get the boundary of 2b

easily. (Practically],[hblb =[0.9042e-3,1.9784e-3], when
305,1005_Im,160 === hwidthager).

The upper boundary of 2a can be estimated in a similar way.

)11()1(

))
2

1
2

1(
2

1()
)2/))arccos(

2
sin((

1(

);1(

)2/(_Im*)arcsin(

2

3

2

1

L
trh

W
rthy

tt
L

rh
L

tr
hy

L
rhy

widthagetx

−−=−=

−++−=
+

−=

−=

=

π

π

The best quadratic fitting is 11
2

21 ; yaxaay =+=
We want to minimize

2

2

2

2

2
123

2

2

2
2

2
21

2
3

2
21

))(arcsin(
2

11145
*

)_(Im17
16

17
4*)54(

,0

)4/()(

t

ttt

widthageL
hr

x
yyya

a
R

yxayyxayR

−++−−−
=−+==

=
∂
∂

−++−+=

π

Since]12,5.1[),
2
2,

17
1(],

1
1,

4
1[feetfeetWt

L
W ∈∈< . We can get the upper boundary

of 2a easily. (Practically ∈ha [2.4858e-4,2.0739e-3], when
305,1005_Im,160 === hwidthager).

Fig. 4-8: The round end short table edge

The estimation of the lower boundary of 2a need to consider various table shape. We
use the round end table (Section 2.4.2) to estimate the upper boundary of 2a (Fig. 4-8).

)1(

)
**2

1(

);1(

)2/(_Im*)arcsin(

3

222

1

W
rthy

LWLW
rhy

LW
rhy

widthagetx

−=

++
−=

+
−=

= π

The best quadratic fitting is 11
2

21 ; yaxaay =+=
We want to minimize

2

22

2

2

2

2
123

2

2

2
2

2
21

2
3

2
21

))(arcsin(

)11(21

145

*
)_(Im17

16
17

4*)54(

,0

)4/()(

t
tt

tt

widthageW
hr

x
yyya

a
R

yxayyxayR

−+

−−

=−+==

=
∂
∂

−++−+=

π

Since]3,5.1[),
2
2,

17
1(],

1
1,

4
1[feetfeetWt

L
W ∈∈< . We can get the lower boundary

of 2a easily. (Practically ∈la [-1.4479e-2,-7.5591e-4], when
305,1005_Im,160 === hwidthager).

So we combine the result and set the boundary of 2a as],[hala =[-1.4479e-2,
2.0739e-3].

4.3. Fitting with Constraints

Now we need to solve optimization problem Eq. 3-1 with constraints:],[2 halaa ∈

and],[2 hblbb ∈ .
We modify the fitting algorithm as following:
First, Search the 2,12,1 ,ba as the algorithm in Section 3.1.
If 2a or 2b are out of boundary, we need to consider the following four cases:
I. Set lbb =2 , the optimization becomes
We want to minimize

∑∑
==

−−−+−−−=
m

j
jj

n

i
ii middlevbbvuaavR

1

22
21

1

22
21))(()min)((w.r.t. 12,1 ,ba with

constraint 0)(min)(2
21

2
21 =−−−−+= middlecutbbcutaaS .

By using Lagrange multiplier, we have

;1;2,1,0)(,0)(===
∂
−∂=

∂
−∂ ji

b
SR

a
SR

ji

λλ

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−−

−
=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−
−

−−−

−

∑

∑

∑

∑∑

∑

=

=

=

==

=

2
2

1

2
2

1

2

1

1

2

1

2

2

1

4

1

2

1

2

)(

)(

min)(
*

01min)(1
100

min)(0min)(min)(

10min)(

middlecutb

middleubv

uv

v

b
a
a

cut
m

cutuu

un

m

j
jj

n

i
ii

n

i
i

n

i
i

n

i
i

n

i
i

λ

If 2a meets the constraints, we save the mean square error. Otherwise, we set laa =2
or ha . Then

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−+−−

−−

−−

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
− ∑

∑

=

=

2
2

2
2

1

2
2

1

2
2

1

1

)(min)(

)(

min)(

*
011
10

10

middlecutbcuta

middleubv

uav

b
a

m
n

m

j
jj

n

i
ii

λ

The selection of cut is the same with Section 3.1. We select the cut with least mean
square error and save it.

II. Same with case I, except that we set hbb =2 .

III. Set laa =2 , the optimization becomes
We want to minimize

∑∑
==

−−−+−−−=
m

j
jj

n

i
ii middlevbbvuaavR

1

22
21

1

22
21))(()min)((w.r.t. 2,11,ba with

constraint 0)(min)(2
21

2
21 =−−−−+= middlecutbbcutaaS .

By using Lagrange multiplier, we have

;2,1;1,0)(,0)(===
∂
−∂=

∂
−∂ ji

b
SR

a
SR

ji

λλ

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−−

−=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−
−

−−−

−

∑

∑

∑

∑∑

∑

=

=

=

==

=

2
2

1

2
2

1

2

1

1

2

1

2

2

1

4

1

2

1

2

min)(

min)(

)(*

01)(1
100

)(0)()(

10)(

cuta

uav

middleuv

v

a
b
b

middlecut
n

middlecutmiddleumiddleu

middleum

n

i
ii

m

j
jj

m

j
j

m

j
j

m

j
j

m

j
j

λ

If 2b meets the constraints, we save the mean square error. Otherwise, we set lbb =2
or hb . The selection of cut is the same with Section 3.1. We select the cut with least
mean square error and save it.

IV. Same with case III, except that we set haa =2 .

We compare the error in these four cases and choose the best one as our fitting result.

Fig. 4-[8~10] is the result of quadratic fitting with constraints. We can see that the

fitting improved a lot in the case of partial data.

Fig. 4-8: Constrained quadratic curves fitting with least mean square error

Fig. 4-9: Constrained quadratic curves fitting with least mean square error for points above 180

Fig. 4-10: Constrained quadratic curves fitting with least mean square error for points above 160

5. Trigonometry Fitting

5.1. Algorithm
The perfect edge of a triangular table is composed of four trigonometry curves. So we

can use trigonometry curves for fitting based on the similar idea in Section 4.
 The curve within [2*min-cut, min] is .],,[LyWWx =−∈

;sin*)sin*)(cos*)(('
;cos)cos1)(sincos)(sincos('
;cos)cos1)(cossin*)(cossin('

22

22

αωω
ααωωωω
ααωωωω

lywxz
ylywxy
xlywxx

∆−+∆−=
+−∆++∆−−=
+−∆−−∆+=

]arctan,[arctan

sin)cos()sin1()'(Im_

sin
)(sin)cos(sin))(sincos

sin
cos('

sin
)'()'(

);
'
'arctan(

;
_Im

Im_)
'
'arctan(

22

wW
lL

wW
lL

r
lL

rh
d

zhrhy

lLlLz

lLlywxd

wx
ly

widthage
xhscond

wx
ly

∆+
∆−−

∆−
∆−∈

−+
∆−

−=−−=

∆−−=∆−+=

∆−=∆−+∆−=

∆−
∆−=

=−+
∆−
∆−=

πγ

αωγγ
γ
αωγαωω

γ
γ

γ

γ

φ

yIm_,γ can be calculated from),(vu easily.
 The curve within [cut, cut’] is .],,[WxLLy −=−∈

],arctan,arctan[

sin)cos()cos1()'(Im_

cos
)(sin)cos(sin))(cossin

cos
sin('

cos
)'()'(22

wW
lL

wW
lL

r
wW

rh
d

zhrhy

wWwWz

wWlywxd

∆+
∆++

∆+
∆−−∈

−+
∆+

+=−−=

∆−−−=∆−−+=

∆−−=∆−+∆−=

ππγ

αωγγ
γ
αωγαωω

γ
γ

γ

Fig. 5-1. Half of 3-fold-flip edge image for trigonometry fitting

So in Fig. 5-1,

);2/(_Im*)(arctan''

);2/(_Im*)arctan('

);2/(_Im*)arctan(

;2/max)(min

);2/(_Im*)
2

3(max

);2/(_Im*)
2

(min

π

ππ

ππ

ππ

ππ

widthagehs
wW
lLcut

widthagehs
wW
lLcut

widthagehs
wW
lLcut

middle

widthagehs

widthagehs

−
∆−
∆−=

−
∆+
∆++=

−
∆+
∆−−=

+=

−=

−=

The differences between ;'maxmin;;''min 321 cutdcutdcutd −=−=−= are actually
small. So we just assume 321 ddd == in fitting.

2222232

2222212

2
)(

)(2arctanarctanarctan)(

2
)(

)(2arctanarctanarctan)(

;_Im/2

LW
lW

lLwW
wWl

wW
lL

wW
lLddk

LW
wL

lLwW
lLw

wW
lL

wW
lLddk

widthagek

+
∆≈

∆−+∆+
∆+∆=

∆+
∆−−

∆+
∆+=−

+
∆≈

∆−+∆−
∆−∆=

∆+
∆−−

∆−
∆−=−

= π

When we try all possible]2/)(min[min, middlecut +∈ ,

);*min)(
2

tan(kcut
wW
lLratio −−=

∆+
∆−= π

Assume edge points are categorized into two kinds after flipping points within [cut”,
cut’] :

.,...,1),,(nivu ii =],''[cutcutui ∈ . For fitting

 iii
i

i wW
hr

ratio
rhr

lL
rhy γαωγαωγγ sin

)(
*1sin)cos(sin)cos()sin1(Im_

∆+
−−+=−+

∆−
−= .

.,...,1),,(mjvu jj =]',[cutcutu j ∈ . For fitting

jjj
j

j wW
hrrhr

wW
r

hy γαωγαωγ
γ

cossin)cos(sin)cos()
cos

1(Im_
∆+

+−+=−+
∆+

+= .

Where
;Im_

;
_Im

yvsv

hs
widthage

u

=+

=+ γ

We want to minimize R w.r.t.
wW

hrt
∆+

=

∑ ∑

∑ ∑

∑∑

= =

= =

==

+

−−+−−−+
=

=
∂
∂

−+−++−−−+=

n

i

m

j
j

i

n

i

m

j
jjjii

i

m

j
jjj

n

i
iii

ratio

yrhyrh
ratio

t

t
R

ytrhy
ratio

trhR

1 1

2
2

2
1 1

2

11

2

cossin

)Im_sin)cos((cos)Im_sin)cos((sin

0

)Im_cossin)cos(()Im_sinsin)cos((

γγ

αωγγαωγγ

γαωγγαωγ

The cut with minimum least mean square error will be chosen as the best fitting. Fig.

5-(2~6) are some results. We can see the trigonometry fitting performs very well even
though most of the points at the bottom are removed.

Note that we use least mean square error instead of least median square error here for
more robust performance.

Fig. 5-2. Edge Image

Fig. 5-3. two trigonometry curves fitting with least mean square error

Fig. 5-4. two trigonometry curves fitting with least mean square error for points above 200

Fig. 5-5. two trigonometry curves fitting with least mean square error for points above 180

Fig. 5-6. two trigonometry curves fitting with least mean square error for points above 160

5.2. Comparison of quadratic and trigonometry fitting on real images

There are both advantage and disadvantages for the two kinds of fitting. Quadratic
fitting can handle various table shapes. But current quadratic fitting assumes horizontal
symmetry, so it will not have perfect fitting when there is large camera tilt. It may be
improved by a generic quadratic fitting after the current algorithm. Trigonometry fitting

works well on rectangular table when there is large camera tilt and data missing. But it
degrades when the table is not rectangular.

We have three sets of experiments on real data. The first is on a cluttered table. The
second is on a clean table. We learn the table width/length ratio and fix the cut position.
The third is on the clean table with manually added block noise. We will compare their
performance under different noise level.

Fig. 5-(7~11) is the results of experiment set #1. The outputs of symmetry voting are
oolw 6.2,252,3,0 ===∆=∆ αω . We can see the quadratic fitting cannot capture the

tilted edges. And both methods made error on table corner position because of the noise.

Fig. 5-7. Original image of cluttered table

Fig. 5-8. General edge image

Fig. 5-9. Filtered edge points after symmetry voting

Fig. 5-10. Trigonometry fitting

Fig. 5-11. Quadratic fitting

Fig. 5-(12~14) is the results of experiment set #2. We use the cut position learned

from quadratic fitting in Fig. 5-13 to fit the noisy image in experiment set #3.

Fig. 5-12: Original Image

Fig. 5-13: Quadratic fitting on original image

Fig. 5-14: Trigonometry fitting on original image

Fig. 5-(15~23) is the results of experiment set #3. We can see that the trigonometry

fitting keeps satisfying performance with learned table width/length ratio even though the
image is highly corrupted. The reason is that given camera height and focus , there
are only two parameters (W,L) needed to be estimated in the trigonometry fitting after we
apply the camera parameters (αω,,hs) from symmetry voting. But there are five
parameters (cutbbaa ,,,, 2121) for the quadratic fitting. After we fix the cut, we can get the
table width/length ratio directly. There is only one parameter left for the trigonometry
fitting. But there are still four parameters for the quadratic fitting. We have added
constraints on 22 ,ba based on rectangular table model. Based on the same knowledge,

)1(),1(11 W
rhb

L
rha −=−= . So we can add more constraints on quadratic fitting and

expect better.

Fig. 5-15: Original image with noise N=50

Fig. 5-16: Quadratic fitting on noise N=50

Fig. 5-17: Trigonometry fitting on noise N=50

Fig. 5-18: Original image with noise N=100

Fig. 5-19: Quadratic fitting on noise N=100

Fig. 5-20: Trigonometry fitting on noise N=100

Fig. 5-21: Original image with noise N=200

Fig. 5-22: Quadratic fitting on noise N=200

Fig. 5-23: Trigonometry fitting on noise N=200

6. During Conference: ICP

To determine the table edges, there are actually six parameters we need to estimate:
the table size),(LW ; the horizontal shift hs (determined by the camera orientation and
where we cut the cylinder); the vertical shift vs (determined by the camera height and
vertical fov); and the camera position),(lw ∆∆ . Fig. 6-1 is the fitting found manually.

Fig. 6-1: A match found manually

We talk about the algorithm for estimating table size and camera position in this
section. The details for ICP and function)(ROV will be presented in Section 5.1 and 5.2.

Goal: Estimate parameters),,,,,(lwvshsLW ∆∆
First Step: Forward mapping. We choose sizes of several common conference tables,

estimate),,,(lwvshs ∆∆ with initialization set .,...,1),,,,,,(nilwvshsLW iiiiii =∆∆ by using
the ICP on the long edges in Section 6. The ICP will converge to

.,...,1),,,,,,(****** nilwvshsLW iiiiii =∆∆
Second Step: Verification.
1.),,,,,(maxarg ******

iiiiii
i

lwvshsLWROVk ∆∆=

2. Fix W as *
kW .

3. Estimate),,,(lwvshs ∆∆ with initialization set),,,,,,(****
kkkkj lwvshsLW ∆∆

.,...,1 mj = by using the ICP on the long edges in Section 3. The ICP will converge to

.,...,1),,,,,,(**
,

**
,

**
,

**
,

* mjlwvshsLW jkjkjkjkj =∆∆

4.),,,,,(maxarg **
,

**
,

**
,

**
,

*
jkjkjkjkj

j
lwvshsLWROVs ∆∆= .

5. Fix L as *
sL . Return),,,,,(**

,
**

,
**

,
**

,
**

sksksksksk lwvshsLW ∆∆ .

6.1. Forward Mapping

The “Iterative Closest Point” (ICP) method [6] can be used for this problem. Each
time, we search the nearest points with proper orientation given some estimation. These
points are used to update the three parameters. In our implementation, we just use the
long table edges because the short edges are usually not accurate and occluded.

6.1.1. Camera at the center of table

Give a set of points .,...1),,(niyx ii = from the Eq. 2-1, and a set of points

.,...1),,(mjyx jj = from the Eq. 2-3. We have

DxcBxcA
vshsxchsxcvscale

vshsxcvscaleH
W

rhy

ii

ii

ii

++−=
+−−=

++−=+−=

)*sin(*)*cos(*
))sin()*sin()cos()*(cos(*

)*cos(*)cos1(θ

DxcBxcA
vshsxchsxcvscale

vshsxcvscale
W

rhy

jj

jj

jj

+−=

+−=

++=+=

)*sin(*)*cos(*
))sin()*sin()cos()*(cos(*

)*cos(*)cos1(θ

Where),(yx is the coordinates of table edges in images. c is a constant to scale
]2,0[πθ ∈ to]Im,0[ageWidthx ∈ . H is a constant related to panorama cropping.

);sin(*);cos(*
;;;/*

hsvscaleBhsvscaleA
vsDHhvsWhrvscale

==
=+==

We want to minimize the square error;
∑ ∑ −+−+−++−=

i j
jjjiii yDxcBxcAyDxcBxcAR 22))*sin(*)*cos(*())*sin(*)*cos(*(

So we need to solve the equations:

⎩
⎨
⎧ =

∂
∂=

∂
∂=

∂
∂ 0;0;0

D
R

B
R

A
R , that is

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+

−

+−

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

∑∑
∑∑
∑∑

j
j

i
i

j
jj

i
ii

j
jj

i
ii

yy

xcyxcy

xcyxcy

D
B

A

aaa
aaa
aaa

)*sin()*sin(*

)*cos()*cos(*

*

3,32,31,3

3,22,21,2

3,12,11,1

 (6-1)

Where

;)*sin()*sin(;)*cos()*cos(

;)*cos(*)*sin()*cos(*)*sin(

;;)*(sin)*(sin;)*(cos)*(cos

2,33,21,33,1

1,22,1

3,3
22

2,2
22

1,1

∑∑∑∑

∑ ∑

∑∑∑∑

−==+−==

+==

+=+=+=

j
j

i
i

j
j

i
i

i j
jjii

j
j

i
i

j
j

i
i

xcxcaaxcxcaa

xcxcxcxcaa

mnaxcxcaxcxca

 From Eq. 6-1 we can calculate the updated []TDBA , that can be easily
transformed into []vscalevshs .

After several iterations, we will be able to arrive at a local optimal result. Fig. 6-2 is
one example after ten iterations.

Fig. 6-2: Green lines are the original estimate. Blue lines are the search result. Spare red
points are the nearest edge points found in the first iteration.

6.1.2. Camera not at the center of table

When the camera is not at table center, but),(lw ∆∆ , the parameter estimation

becomes more complex. Similarly, we get

DxcVYxcZX

vshsxc
W

w
W
hrH

W
w

W
rhy

ii

ii

++++−=

++∆+−=+∆+−=

)*sin(*)()*cos(*)(

)*cos(*)1())1(cos1(θ

DxcVYxcZX

vshsxc
W

w
W
hrH

W
w

W
rhy

jj

jj

+−−−=

++∆−=+∆−+=

)*sin(*)()*cos(*)(

)*cos(*)1())1(cos1(θ

Where

;);sin(

);cos();sin();cos(

2

2

HhDhs
W

whrV

hs
W

whrZhs
W
hrYhs

W
hrX

+=∆=

∆===

We want to minimize the square error:

∑

∑
−+−−−+

−++++−=

j
jjj

i
iii

yDxcVYxcZX

yDxcVYxcZXR

2

2

))*sin(*)()*cos(*)((

))*sin(*)()*cos(*)((
 (6-2)

with constraint: 0** =− VXYZ .
Using Lagrange multiplier λ , we need to solve the equations:

⎪
⎪
⎩

⎪⎪
⎨

⎧

=
∂

−+∂=
∂

−+∂=
∂

−+∂

=
∂

−+∂=
∂

−+∂

0)**((;0)**((;0)**((

0)**((;0)**((

D
VXYZR

W
VXYZR

Z
VXYZR

Y
VXYZR

X
VXYZR

λλλ

λλ
,

That is Eq (3-3):

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
+

+
−

5

4

3

2

1

5,54,53,52,51,5

5,44,43,42,41,4

5,34,33,32,31,3

5,24,23,22,21,2

5,14,13,12,11,1

*

c
c
c
c
c

D
V
Y
Z
X

aaaaa
aaaaa
aaaaa
aaaaa
aaaaa

λ
λ

λ
λ

 (6-3)

Where

∑∑

∑∑

∑∑

∑∑

∑∑

∑∑∑∑

∑∑∑∑

∑∑∑∑

∑ ∑

∑ ∑

∑∑∑∑

+=

+=

−=

−−=

+−=

+=

+==−==

−==+==

−−==+−==

+−====

−−====

−==+==

j
j

i
i

j
jj

i
ii

j
jj

i
ii

j
jj

i
ii

j
jj

i
ii

j
j

i
i

j
j

i
i

j
j

i
i

j
j

i
i

j
j

i
i

j
j

i
i

i j
jjii

i j
jjii

j
j

i
i

j
j

i
i

yyc

xcyxcyc

xcyxcyc

xcyxcyc

xcyxcyc

mna

xcxcaaxcxcaa

xcxcaaxcxcaa

xcxcaaxcxcaa

xcxcxcxcaaaa

xcxcxcxcaaaa

xcxcaaxcxcaa

5

4

3

2

1

5,5

4,55,43,55,3

22
3,44,3

22
4,43,3

2,55,21,55,1

2,33,21,44,1

2,44,21,33,1

22
1,22,1

22
2,21,1

;)*sin()*sin(*

;)*sin()*sin(*

;)*cos()*cos(*

;)*cos()*cos(*

;

;)*sin()*sin(;)*sin()*sin(

;)*(sin)*(sin;)*(sin)*(sin

;)*cos()*cos(;)*cos()*cos(

;)*cos(*)*sin()*cos(*)*sin(

;)*cos(*)*sin()*cos(*)*sin(

;)*(cos)*(cos;)*(cos)*(cos

Eq. (6-2) and (6-3) are nonlinear, that can be solved by Newton’s method. We rewrite
Eq. (6-3) as

C

D
V
Y
Z
X

BA =

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+ *)(λ where ;

00000
00001
00010
00100
01000

;][;][1555,

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−

=== ×× BcCaA iji

Furthermore, we represent 15
5432154321 ,];,,,,[];,,,,[×∈== RBABBBBBBAAAAAA ji .

So the nonlinear equations become

YZVXDVYZXG
CDBAVBA

YBAZBAXBADVYZXF

**),,,,,(
;*)(*)(

)()(*)(),,,,,(

5544

332211

−=
−++++

+++++=

λ
λλ

λλλλ

All the partial derivatives of F(…) and G(…) are linear. So given some
seed),,,,,(000000 λDVYZX , the updating equations are also linear:

⎪
⎪
⎩

⎪
⎪
⎨

⎧

+−=−++−
+++++

=+++++
+++++++++

;***
;)*****(

*)*****(
)()(*)(*)(*)(

00000000

05040302010

0504030201

505404303202101

YZVXVXYZZYXV
CDBVBYBZBXB

DBVBYBZBXB
DBAVBAYBAZBAXBA

λ
λ

λλλλλ

That is one step in Newton’s algorithm:

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+−

−
+
+
−

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−

−

−

+

×
YZVX

c
Xc
Zc
Yc
Vc

D
V
Y
Z
X

XZYV

X
Z
Y
V

BA

000

5

001

001

002

001

660000

0

0

0

0

0

*
*
*
*

*

00
0

λ
λ
λ
λ

λ

λ
 (6-4)

Fig. 6-3 is an example for this kind of scenarios. The algorithm succeeds to converge

to the correct table edges after several iterations.

Fig. 6-3: Same setting with camera not at the center of the table.

But when the initialization shifts too much, the result can still be wrong. One possible
solution is to use multiple seeds since we will discard most of the candidates any way
during verification stage.

6.1.3. Short table edge detection

When the table is clear, we can detect the short table edge in the same way.

DxcVYxcZX

vshsxc
L
l

L
hrH

L
l

L
rhy

ii

ii

++++−=

++∆+−=+∆+−=

)*cos(*)()*sin(*)(

)*sin(*)1())1(sin1(θ

DxcVYxcZX

vshsxc
L
l

L
hrH

L
l

L
rhy

jj

jj

+−−−=

++∆−=+∆−+=

)*cos(*)()*sin(*)(

)*sin(*)1())1(cos1(θ

Where

;);sin(

);cos();sin();cos(

2

2

HhDhs
L

lhrV

hs
L

lhrZhs
L
hrYhs

L
hrX

+=∆=

∆===

We want to minimize the square error:

∑

∑
−+−−−+

−++++−=

j
jjj

i
iii

yDxcVYxcZX

yDxcVYxcZXR

2

2

))*cos(*)()*sin(*)((

))*cos(*)()*sin(*)((

with constraint: 0** =− VXYZ .

We can apply Lagrange multiplier and use Newton method to solve the problem as
well.

6.2. Verification

Form staple.com and officedepot.com, we collect eleven kinds of the common

conference table sizes. We apply the ICP algorithm in Section 2 with different table sizes
and compare the rate of overlapping (ROV), which is defined as

the number of the edge points within 1 pixel to the searched table edge
the number of pixels on the searched table edge

Since we only detect long edges in Section 3, we approximate the short edges by

connecting the end points of the long edges. The result is shown in table 6-1 and Fig 6-
[4~7].

Fig. 6-4. table size #2

Fig. 6-5. table size #4

Fig. 6-6. table size #8

Fig. 6-7. table size #10

Table 6-1: ROV comparison for different table size
Table Size L/W ratio ROV (long edges) ROV (short edges)
1 48"x144" (true) 3.5 64% 45%
2 48"x120" 2.5 65% 15%
3 48"x96" 2 48% 16%
4 36"x72" 2 41% 21%
5 36"x96" 2.67 38% 41%
6 42"x120" 2.85 60% 23%
7 36"x84" 2.3 39% 27%
8 30"x60" 2 30% 28%
9 44"x96" 2.18 59% 17%
10 24"x72" 3 25% 5%
11 45"x80" 1.78 57% 27%

Given camera height and focus, the “vertical” position of long edges is determined by

the width of the table; and the “horizontal” position of long edges is determined by
camera orientation. So with proper initialization, the table size with correct width will
have high ROV for long edges.
The verification stage can be performed in two steps: the first step is to search the best
match using table size #2, #4, #8, #10. Fix the width by the one with best ROV; the
second step is to tune the table length and camera orientation if possible.

7. Testing on Synthetic Data

We use Direct3D to generate synthetic data for five cameras in real RingCam. The

cameras’ focuses are set as the same point precisely and their view directions are
distributed around the center uniformly. The stitching from single perspective view to
cylindrical view can be inferred from Section 1.1 and Fig, 6-1. Note that we need to scale

the cylindrical view by
180/*72

)36sin(*2
π

o

 to keep the object have similar size in perspective

mapping.

Fig. 7-1: From perspective mapping to cylindrical mapping

We test the camera tilt model by using the synthetic data. The experimental results on

camera tilt model are in Table 6-1 and Fig. 6-(2~3). We set the step for ω is o2 , for α is
o2.0 . The average error for ω is o14.5 , for α is o0786.0 . (w∆ , l∆ also compensate for

the error to some extend). We can see that ω is prone to have large error when α is
small, while ω does not affect α that much. The symmetry voting works well for
camera tilt detection.

Table 7-1: Camera tilt detection results

Correct Tilt Parameter(w∆ = l∆ =0) Detected Camera parameters
ω (degree) α (degree) ω (degree) α (degree) w∆ (mm) l∆ (mm)

50 0.2 62 0.2 0 -3
100 0.2 120 0.2 0 -1
150 0.2 158 0.2 1 0
200 0.2 206 0.2 1 0
250 0.2 252 0.2 0 1
300 0.2 312 0.2 0 1
350 0.2 358 0.4 -3 0
50 0.4 44 0.6 -3 -3
100 0.4 106 0.4 0 -1
150 0.4 162 0.6 3 -3
200 0.4 208 0.6 3 3
250 0.4 252 0.4 0 1
300 0.4 308 0.4 -1 1
350 0.4 354 0.6 -3 0
50 0.6 48 0.6 -1 -1
100 0.6 98 0.6 0 -1
150 0.6 152 0.8 3 -3
200 0.6 202 0.8 3 1
250 0.6 250 0.6 0 1
300 0.6 304 0.6 -1 1
350 0.6 352 0.8 -3 1
50 1.4 48 1.4 -1 -1
100 1.4 106 1.4 3 -3
150 1.4 152 1.4 3 -2
200 1.4 200 1.6 3 1
250 1.4 246 1.6 3 3
300 1.4 298 1.4 0 0
350 1.4 350 1.6 -3 1

Fig. 7-2: error of α under different ω

 Fig. 7-3: error of ω under different α

We build the model for boat-shaped table (Section 2.4.1) and manually add random

blocks to simulate noise. The noise level is controlled by the number of the blocks N. The
results on camera tilt vs. noise vs. fitting methods are in Fig. 7-(4~16).

Fig. 7-4: Synthetic panorama image with N=50

Fig. 7-5: Synthetic panorama image with N=100

Fig. 7-6: Synthetic panorama image with N=200

Fig. 7-7: Synthetic panorama image with N=300

Fig. 7-8: quadratic fitting with N=50 (average error=1.9817 pixel)

Fig. 7-9: quadratic fitting with N=100 (average error=2.9376 pixel)

Fig. 7-10: quadratic fitting with N=200 (average error=5.2159 pixel)

Fig. 7-11: quadratic fitting with N=300 (average error=12.0025 pixel)

Fig. 7-12: trigonometry fitting with N=50 (average error=1.8649 pixel)

Fig. 7-13: trigonometry fitting with N=100 (average error=2.6267 pixel)

Fig. 7-14: trigonometry fitting with N=200 (average error=3.7321 pixel)

Fig. 7-15: trigonometry fitting with N=300 (average error=13.5782 pixel)

Fig. 7-16: Comparison of the average error

We can see that the quadratic fitting outperform trigonometry fitting on boat shaped

table. But quadratic fitting can not catch large camera tilt.
We also fix the camera tilt (oo 6.0,90 == αω) and noise level (N=150), but change

the table width/length ratio (1:2, 1;3, 1;4) of rectangular and boat shaped table. The
experimental results are in Fig. 7-(17~19). The results show that the quadratic fitting and
trigonometry fitting both work well (maximum error less than 2 pixels). The quadratic
fitting perform slightly better than trigonometry fitting on boat table, but on the contrary
on rectangular table with camera tilt.

Fig. 7-17: Boat table (1:4) with noise N=150

Fig. 7-18: Rectangular table (1:4) with noise N=150

Fig. 7-19: Error comparison

8. Summary
We have developed a novel technique to automatically detect table boundaries on

o360 panorama images in meeting rooms. As a result, we are able to automatically generate
SVU-scaling functions to equalize people’s head sizes resulting in better video
conferencing experience. We propose a first-learning-then-fitting scheme for robust
detection. The corner position is determined by table width/length ratio, which can be
learned more correctly when table is clean. In the fitting stage for normal usage, we set
the width/length ratio and just looking for table width in optimization. At that time, the
points from long table edge are more likely visible and can contribute to a correct
solution even though the corner and short edges are occluded.

Symmetry voting can detect camera parameters and extract the table edges reliably.
Both quadratic and trigonometry fitting work robustly under various camera/table
parameters, noise and missing data.

We test the algorithm intensively and compare the two fitting methods. The
experimental results on both real images and synthetic images support the effectiveness
of our algorithm under various situations. Quadratic fitting can handle arbitrary table
shapes. Trigonometry fitting is better at handling missing data and large camera tilt.

For future improvement, we may apply a generic quadratic fitting after the current
one to handle large camera tilt and add more constraints, and speed up the computation
for the real product.

Reference

[1] R. Cutler, Y. Rui, A. Gupta, JJ Cadiz, I. Tashev, L. He, A. Colburn, Z. Zhang, Z. Liu, S. Silverberg, “Distributed
Meetings: A Meeting Capture and Broadcasting System”, ACM Multimedia 2002.
[2] Z. Liu, M. Cohen, “Real-Time Warps for Improved Wide-Angle Viewing”, MSR Technical Report TR-2002-110.
[3] R. Stiefelhagen, X. Chen, J. Yang, “Capturing Interactions in Meetings with Omnidirectional Cameras,
International workshop on Multimedia Technologies in E-learning and Collaboration”. Nice, France, 2003.
[4] A. Waibel, T. Schultz, M. Bett, M. Denecke, R. Malkin, I. Rogina, R. Stiefelhagen, J. Yang, “SMaRT: The Smart
Meeting Room Task At ISL”, ICASSP 2003.
[5] F. Wallhoff, M. Zobl, G. Rigoll, I. Potucek, “Face Tracking in Meeting Room Scenarios Using Omnidirectional
Views”, IEEE International Conference on Pattern Recognition, 2004.
[6] http://www.research.microsoft.com/~zhang/
[7] P. Meer, B. Georgescu: "Edge detection with embedded confidence." IEEE Trans. Pattern Anal. Machine Intell., 23,
1351-1365, December 2001.

