
Some Things Algorithms Cannot Do

Dean Rosenzweig12 and Davor Runje2

1 Microsoft Research
2 University of Zagreb

Abstract. A new, `behavioral' theory of algorithms, intending to cap-
ture algorithms at their intended abstraction level, has been developed
in this century in a series of papers by Y.Gurevich, A.Blass and others,
motivated initially by the goal of establishing the ASM thesis. A viable
theory of algorithms must have its limitative results, algorithms, how-
ever abstract, cannot do just anything. We establish some nonclassical
limitative results for the behavioral theory:
{ algorithms cannot distinguish some distinct structures;
{ algorithms cannot reach some existing states;
{ algorithms cannot access some existing objects.

The algorithms studied are interactive, querying an environment, small{
step, operating over di�erent background classes. Since our primary mo-
tivation is abstract analysis of cryptographic algorithms, our examples
come from this �eld { we believe however that the potential application
�eld is much broader.

Introduction

Within the framework of the \behavioral theory of algorithms" [Gur00,BG03,BG04a,BG04b],
we look into some limitations of principle:

{ no algorithm can distinguish some structures;
{ no algorithm can access some objects;
{ no algorithm can reach some states.

The primary application area we have in mind is abstract cryptography|we feel
that the behavioral framework is the right framework for its study, though we
believe that the results are of broader interest.

States of an algorithm at a �xed abstraction level can be viewed as (�rst{
order) structures of �xed vocabulary. What is the natural notion of equivalence
of such states? One might argue it is isomorphism, claiming that everything
relevant for algorithm execution in a state is expressed in terms of a class of
structures isomorphic to it. After all, this is the intuition behind the postulates.

We show that isomorphism is too �ne{grained for some applications, not re-
lating states that are (in any practical way) behaviorally indistinguishable by
algorithms. Following the rich tradition of seeing the objects indistinguishable
by a class of algorithms as equal, we introduce the dynamic notion of indistin-
guishability by algorithms and show its equivalence with the static notion of

similarity of structures. This equivalence survives generalization to the case of
algorithms which interact with the environment within a step.

In order to make this paper reasonably self-contained, we also list several
results which are not new, and which can be found scattered, sometimes inlined
in proofs, sometimes without an explicit statement, in the behavioral theory
literature. We attempt to attribute such results properly.

We thank Andreas Blass and Yuri Gurevich for very helpful comments on an
earlier version of the paper.

1 Non-Interactive Small{Step Algorithms

We take over many notions, notations and conventions on vocabularies, struc-
tures and sequential algorithms from [Gur00] without further ado. In particular,
we assume the following:

{ all structures we consider are purely functional (algebras);
{ all vocabularies have distinguished nullary symbols True;False and Undef,
with the interpretation of True distinct from interpretations of False and
Undef in all structures considered;

{ all vocabularies have the binary function symbol =, interpreted as equal-
ity in all structures, as well as the usual Boolean connectives under their
usual interpretations. If one of the arguments of a Boolean connective is not
Boolean, the connective takes the default value of False.

Symbols True;False;Undef, = and the connectives are the logical constants.

1.1 Coincidence and Similarity

The following de�nitions are taken from [Gur00].

De�nition 1. Let � be a vocabulary and T a set of � -terms. �{structures X
and Y are said to coincide over T , denoted with X =T Y , if every term in T

has the same value in X and Y .

A structure X induces an equivalence relation EX on T : (t1; t2) 2 EX if and
only if Val(t1; X) = Val(t2; X).

De�nition 2. Let � be a vocabulary and T a set of � -terms. �{structures X
and Y are T{similar, written as X �T Y , if they induce the same equivalence
relation over T .

Both relations are equivalence relations over �{structures for any choice of T .
For any �xed set of terms T , coincidence is contained in similarity: if X =T Y ,
then X �T Y . Isomorphic structures are also similar: if X �= Y , then X �T Y .

When T is the set of all �{terms, we suppress it, and speak of coincident
and similar structures.

2

1.2 Factorization

The following theorem reveals the connection between the equivalence relations
on structures just mentioned. It is implicit in the proof of one of the key lemmas
of [Gur00]|it is actually proved there, although not explicitly stated.

Proposition 1 (Factorization). Let X and Y be structures of a vocabulary � ,
T a set of � -terms. Then X;Y are T -similar if and only if there is a structure
Z isomorphic to Y which coincides with X over T .

Proof. One direction is obvious: both coincidence and isomorphism are contained
in (transitive) similarity.

To see the other direction, it su�ces to consider the special case when base
sets of X and Y are disjoint (if not, replace Y below by an isomorphic copy
disjoint from X).

We de�ne a map � de�ned on Y as:

�(y) =

�
Val(t;X) if y = Val(t; Y) for some t 2 T

y otherwise

By similarity, � is well de�ned and injective on Y .
Since � is a total injection respecting the values of all terms, there is a struc-

ture Z isomorphic to Y whose base set is the codomain of �. For all �{terms t,
we have: Val(t; Z) = �(Val(t; Y)): Notice that �(Val(t; Y)) = Val(t;X) for all
t 2 T by the de�nition of �. Hence, Val(t; Z) = Val(t;X) for all t 2 T , meaning
that X and Z coincide over T . ut

A useful way to apply factorization is the following technique: to show that
X;Y are T -similar, tweak an isomorphic copy Z of Y so as to coincide with X

over T while preserving isomorphism to Y . It follows immediately that similarity
is the joint transitive closure of isomorphism and coincidence:

Corollary 1. Let T be a set of �{terms. Similarity �T is the smallest transitive
(and equivalence) relation over � -structures containing both coincidence =T and
isomorphism �=.

1.3 Postulates

[Gur00] de�nes a sequential algorithm as an object A satisfying a few postulates
(see [Gur00,BG03] for extended discussion and motivation). For reference, we
list the postulates as refactored in [BG04a].

Postulate 1 (State) Every algorithm A determines

{ a nonempty collection S(A), called states of A;
{ a nonempty collection I(A) � S(A), called initial states; and
{ a �nite vocabulary � such that every X 2 S(A) is an � -structure.

3

The base set of a state remains invariant under the operation of the algorithm;
this is a technical choice of convenience. The di�erence of states X;Y 2 S(A)
with the same carrier can be explicitly represented as the update set

Y �X = f(f; (a1; : : : ; an); a0) j fY (a1; : : : ; an) = a0 6= fX(a1; : : : ; an); f 2 �ng:

The change the algorithm e�ects on a state X, turning it into successor state
X 0, is then explicitly represented by the update set of A at X:

�A(X) = X 0 �X:

One{step transformation X 0 = �A(X) and the update set �A(X) determine
each other: we can write

�A(X) = X +�A(X)

with the obvious de�nition of +, in the sense of `unless overruled by'3.

Postulate 2 (Updates) For any state X the algorithm provides an update set
�A(X). If the update set is contradictory, the algorithm fails; otherwise it pro-
duces the next state �A(X). If there is a next state X 0, then it

{ has the same base set as X,

{ has fX0(a) = b if hf;a; bi 2 �A(X), and
{ otherwise interprets function symbols as in X.

States are abstract, in the sense that everything must be preserved by isomor-
phism: if your algorithm can distinguish red integers from green integers, then it
is not about integers. This requirement can also be seen as prescriptive: every-
thing relevant to the algorithm must be explicitly represented in the structure.
Isomorphism extends to updates pointwise.

Postulate 3 (Isomorphism) { Any structure isomorphic to a state is a state.

{ Any structure isomorphic to an initial state is an initial state.

{ If i : X �= Y is an isomorphism of states, then i[�A(X)] = �A(Y).

The work performed by an algorithm in a step is bounded and de�ned by
some �nite text:

Postulate 4 (Bounded Exploration) There is a �nite set of terms T such
that �A(X) = �A(Y) whenever X and Y coincide over T .

3 In the ASM literature [Gur95] it is usual to speak of pairs (f; (a1; : : : ; an)), where
f 2 �n; ai 2 X, as locations of X, in the `structures{as{memories' metaphor. Then
both the structure X and the update set �A(X) can be seen as (partial) functions of
locations to values, and the above usage of + literally means overriding one partial
function by another.

4

Such a set of terms is a bounded exploration witness for A. Notice that a
bounded exploration witness is not uniquely determined, eg. any �nite superset
of a witness would do. Whenever we refer to a bounded exploration witness T ,
we assume that for a given algorithm we have chosen an arbitrary but �xed
set of terms satisfying the postulate. We shall also call terms in T critical or
observable.

Since many tend to understand a sequential algorithm as an object satisfying
the other postulates, and something in general weaker then stringent Bounded
Exploration, [BG04a] suggest a confusion{preventing shift in terminology: an ob-
ject satisfying the above postulates could be aptly called a small{step algorithm.
We will adhere to that here.

An element a 2 X is critical at X if it is the value of a critical term, given
an algorithm A and its �xed bounded exploration witness T . For reference, we
list the following lemma, proved in [Gur00]:

Lemma 1. If (f; (a1; : : : ; an); a0) 2 �A(X), then every ai; i = 0; : : : n; is critical
at X.

Proof. If some ai is not critical, obtain a contradiction by constructing an iso-
morphic structure Y by replacing ai by a fresh element: by Bounded Work, the
algorithm should a�ect a non-element of Y , contradicting Updates. ut

By the above lemma (and Bounded Exploration postulate), the update set
of a small{step algorithm is (uniformly) �nite at any state.

1.4 Next Value

The main result of this section is preservation of coincidence and similarity over
the set of all terms by a step of a small{step algorithm, proved as consequences
of the Next Value theorem: all elements representable by terms in the successor
state to X were already so representable at X, uniformly with respect to sim-
ilarity. We will also show how the Next Value theorem can be used to derive
some known results like Linear Speedup.

Fix an algorithm A and its state X. By Lemma 1, every element of an update
set in X is critical. For an arbitrary bounded exploration witness T and a term t,
we can generate a larger set of terms by adding to T all instances of t with some
subterms replaced with elements of T|this is a syntactic simulation of possible
updates (not necessarily the most e�cient one). The value of t in �A(X) must
be a value of some term from the generated set in X. In general, for di�erent
states, di�erent terms picked up from the generated set will have this property.
However, if two states coincide over the larger set of terms, then the same term
works for both states.

Let T be a set of terms and t a term of the same vocabulary. We de�ne a set
of terms T t inductively over the structure of t as

T f(t1;:::;tn) = T [
�
f(t01; : : : ; t

0

n) j t
0

i 2 T ti
	
[
[�

T ti j i = 1; : : : n
	
:

5

In the ground case of 0-ary f we have T f = T [ffg. Obviously, if T is �nite, T t

is �nite as well.

Theorem 1 (Next Value). Let A be a small{step algorithm, X its state, and
T one of its exploration witnesses. Then for every term t of its vocabulary there
is a term
A

Xt 2 T t such that

{ Val(
A
Xt;X) = Val(t; �A(X)), moreover,

{ whenever Y =T t X we have Val(t; �A(Y)) = Val(t; �A(X)).

Proof. We construct the term
A
Xt and prove the statements by induction on

the structure of t. Suppose that t = f(t1; : : : ; tn) and Val(ti; �A(X)) = ai, and,
for the second statement, by induction hypothesis
A

Xti 2 T t and whenever
Y =T t X then also Val(ti; �A(Y)) = ai for i = 1; : : : ; n.

1. Assume (f; (a1; : : : ; an); a0)) 2 �A(X) for some a0. By Lemma 1, a0 is crit-
ical in X and there is a term
A

Xt 2 T such that Val(
A
Xt;X) = a0 =

Val(t; �A(X)).
Suppose Y =T t X. Then Y =T X an thus (f; (a1; : : : ; an); a0) 2 �A(Y), so

Val(t; �A(Y)) = f�A(Y)(Val(t1; �A(Y)) : : : ;Val(tn; �A(Y)))

= f�A(Y)(a1; : : : ; an)

= a0

= f�A(X)(a1; : : : ; an)

= Val(t; �A(X))

2. Otherwise, we set
A
Xt = f(
A

Xt1; : : : ;

A
Xtn) 2 T t by construction of T t

(subterms of
A
Xti are subterms of
A

Xt), and we have

Val(t; �A(X)) = f�A(X)(a1; : : : ; an) = fX(a1; : : : ; an)

Suppose Y =T t X. Then (f; (a1; : : : ; an); a0) 62 �A(Y) for any a0, thus

Val(t; �A(Y)) = fY (a1; : : : ; an) = fX(a1; : : : ; an)

= Val(t; �A(X))
ut

Corollary 2 (Preserving coincidence). Let A be a small{step algorithm and
X and Y coincident states. Then �A(X) and �A(Y) coincide.

Theorem 2. Let A be a small-step algorithm. If states X and Y are T t{similar,
then Val(
A

Xt; Y) = Val(t; �A(Y)).

Proof. Use Factorization (proposition 1), Abstract State postulate and Next
State (theorem 1). ut

Corollary 3 (Preserving similarity). Let A be a small{step algorithm and
X and Y similar states. Then �A(X) and �A(Y) are similar.

6

The following statement, quoted in [Gur00] and proved for interactive algo-
rithms in [BG04b] (also proved by syntactic means in di�erent places for di�erent
kinds of textual programs), states that whatever a small{step algorithm can do
in two steps, could be done in one step by another small{step algorithm. By
induction the same holds for any �nite number of steps | the small steps can
be enlarged by any �xed factor. We obtain it as a simple consequence of Next
Value.

Proposition 2 (Linear Speedup). Let A be a small{step algorithm, with as-
sociated S(A); I(A) and �A. Then there is a small{step algorithm B, such that
S(B) = S(A), I(B) = I(A), and �B(X) = �A(�A(X)) for all X 2 S(B).

Proof. It su�ces to demonstrate a bounded exploration witness for B. Let T be
a bounded exploration witness for A, and X and Y be its states. We have

�B(X) = �A(�A(X))�X = �A(�A(X)) [(�A(X) n �A(�A(X))):

IfX and Y coincide over T , we have�A(X) = �A(Y). If they also coincide over a
�nite set TT =

S
fT t j t 2 Tg extending T , then, by Next Value theorem, �A(X)

coincides with �A(Y) over T . Hence, �A(�A(X)) = �A(�A(Y)) and �B(X) =
�B(Y). Thus T

T is a bounded exploration witness for B. ut

The similarity relation over a �nite set of terms T partitions �{structures to
�nitely many equivalence classes | there is a �nite set of structures fX1; : : : ; Xng
such that every structure is T{similar to some Xi. For each Xi there is a Boolean
term 'Xi such that 'Xi holds in Y if and only if Y is T{similar to Xi.

This was the crucial observation behind the proof of the sequential thesis
[Gur00] { it allowed uniformization of local update sets into a �nite program. It
also allows us to uniformize the
A

Xt construction into a �nite set of possible
terms for all states, given an additional construct on terms.

Let conditional terms be terms closed under the ternary if-then-else construct,
with the usual interpretation.

Corollary 4. Let A be a small{step algorithm and t term of its vocabulary.
Then there is a conditional term
At such that Val(
At;X) = Val(t; �A(X))
for every state X.

Remark 1. Using conditional terms is not a serious extension|it is easy (though
somewhat tedious, in view of the number of cases) to prove that any ASM pro-
gram written with conditional terms can be also equivalently rewritten without
them, by pushing conditionals to rules.

Di�erent versions of the next-value construction, restricted to Boolean terms
(logical formul�, for which the if-then-else construct is de�nable), and proved
over textual programs, have been around in the literature in the form of a `next-
state' modality [GR93,BGS99,SN01].

7

1.5 Indistinguishability, Accessibility and Reachability

This section introduces the main contribution of this paper | the notions of
indistinguishability, accessibility and reachability and their properties|in the
context of non{interactive small{step algorithms. However simple, these notions
have not been studied in the literature (though related to the notions of ac-
tive objects of [BGS99] and exposed objects of [BG00], they are not the same).
In subsequent sections we will extend these notions and prove the correspond-
ing results for algorithms with intrastep interaction in general, and algorithms
creating fresh objects over background structures in particular.

The notion of indistinguishability by a class of algorithms is a well known tool
for analyzing behavioral equivalence of objects. The notion of indistinguishabil-
ity by small{step algorithms, given here, is unashamedly in
uenced by similar
notions widely used in process calculi and probabilistic complexity theory.

The intuition is that an algorithm can distinguish state X from state Y if it
can determine in which of them it has executed a step. What does to determine
mean here? Taking a behavioral view, we can require an algorithm to take dif-
ferent actions depending on whether it is in X or in Y , say by writing TrueX
into a speci�c location if it is in X and FalseY if it is in Y .

De�nition 3 (Indistinguishability). Let A be a small{step algorithm of the
vocabulary � , whose states include X and Y . We say that A distinguishes X

from Y if there is a �{term t taking the value TrueX in �A(X), and not taking
the value TrueY in �A(Y). Structures X and Y of the same vocabulary are
indistinguishable by small-step algorithms if no such algorithm can distinguish
them.

This is at �rst glance weaker than requiring of t to take the value of FalseY
in �A(Y), but only at �rst glance: if t satis�es our requirement, then the term
t = True will satisfy the seemingly stronger requirement. The wording of In-
distinguishability de�nition has been chosen so as to work smoothly also in an
interactive situation, where terms can have no value. In spite of the asymmetric
wording, it is easy to verify the following

Corollary 5. Indistinguishability is an equivalence relation on structures of the
same vocabulary.

The dynamic notion of indistinguishability coincides with the static notion
of similarity:

Theorem 3. Structures X and Y of the same vocabulary � are indistinguishable
by small{step algorithms if and only if they are similar.

Proof. Suppose that X and Y are not similar. Then there are � -terms t1 and
t2 having the same value in X and di�erent values in Y . But then a do-nothing
algorithm distinguishes them by term t1 = t2.

Now suppose that X and Y are similar. By Factorization proposition 1 there
is an � -structure Z such that X =T Z �= Y , where T is the set of all � -terms.
No algorithm can distinguish Z from either X or Y . ut

8

By Corollary 3, similarity is equivalent to indistinguishability in any number
of steps. An element of a structure can be, in the small-step case, accessible to
an algorithm only if it is the value of some term.

Remark 2. The reader familiar with logic should have in mind that we are speak-
ing about indistinguishability by algorithms, and not about indistinguishability
by logic: similar (indistinguishable) structures need not be elementarily equiv-
alent. In all our examples of indistinguishable structures below it will be easy
to �nd simple quanti�ed sentences which distinguish them. But small-step algo-
rithms are typically not capable of evaluating quanti�ers over their states, unless
such a capability is explicitly built in|if an algorithm has states of unbounded
size, this capability would contradict Bounded Work.

De�nition 4 (Accessibility). An element a is accessible in a structure X of
a vocabulary � if there is a �{term t such that Val(t;X) = a.

A straightforward consequence of Next Value is

Corollary 6. Let A be a small{step algorithm and a an element of its state X.
If a is accessible in �A(X), then it is accessible in X.

Thus in a sense algorithms cannot learn anything by execution: they cannot
learn how to make �ner distinctions, and they cannot learn how to access more
elements (but they can lose both kinds of knowledge). The only possibility of
learning open to algorithms seems to be interaction with the environment, but
this is the subject of subsequent sections. What states can algorithms reach?

De�nition 5 (Reachability). A structure Y is reachable from a structure X
of the same vocabulary and same base set by small{step algorithms if there is a
small{step algorithm A such that X;Y 2 S(A) and Y = �A(X).

By Linear Speedup, reachability in � n steps is the same as reachability in
one step, for any n. The notion of accessibility su�ces to analyze reachability:

Theorem 4. Let X;Y be structures of a vocabulary � with the same base set.
Then Y is reachable from X by small{step algorithms if and only if

{ Y �X is �nite, and
{ all objects in the common base set, occurring in Y �X, are accessible in X.

Proof. If Y is reachable from X by A, it follows from Lemma 1 that �A(X) is
�nite, and that all objects occurring there are critical at X, hence also accessible.

To see that the other direction holds, let, by the assumption,

Y �X = f(fj ; (a
j
1; : : : ; a

j
nj
); aj0) j j = 1; : : : kg

and, by assumption of accessibility, let tji be �{terms such that Val(tji ; X) = a
j
i ,

for j = 1; : : : ; k; i = 0; : : : ; nj . Fix I(A) so as to satisfy the postulates and to

9

include X, and S(A) so as to satisfy the postulates and to be closed under �A
as de�ned below. Set, for any Z 2 S(A),

�A(Z) = f(fj ; (Val(t
j
1; Z); : : : ;Val(t

j
nj
; Z));Val(tj0; Z)) j j = 1; : : : ; kg:

Then the set ftji j j = 1; : : : ; k; i = 0; : : : ; njg is a bounded exploration witness
for A, and A is a small{step algorithm reaching Y from X. ut

Example 1 (Indistinguishable Structures). Let X;Y be two structures of the
same nonlogical vocabulary fd, fst, snd, op, c, kg over the same carrier

fk;K; c; p; n;TrueX = TrueY ;FalseX = FalseY ;UndefX = UndefY g

with the interpretation of function symbols as given in the table,

� X Y

d K; c! p K; c! n

fst p! TrueX p! TrueY
snd p! FalseX p! FalseY
op K ! k K ! k

c c c

k k k

understanding that non-nullary functions take the value Undef on all arguments
not shown in the table. X and Y are far from being isomorphic, yet they are sim-
ilar (even coincident) for all terms of the vocabulary, and hence indistinguishable
by small-step algorithms.

If element K became accessible, say through interaction with environment,
they would be easily be distinguished by say term fst(d(tK ; c)), where tK is the
term denoting K.

The function symbols snd, op, k and their interpretations play no role here,
and they could easily be dropped without spoiling the example. We include them
to make the transition to further examples below smoother.

Notice that the �rst-order sentence 9x: fst(d(x; c)) = True would distinguish
X from Y .

2 Ordinary Interactive Small{Step Algorithms

In [BG04a,BG04b] the theory was extended to algorithms interacting with the
environment, also within a step. Algorithms might toss coins, consult oracles
or databases, send/receive messages. . . also within a step. We refer the reader
to [BG04a] for full explication and motivation|it will have to su�ce here to
say that the essential goal of behavioral theory, that of capturing algorithms at
arbitrary levels of abstraction, cannot be smoothly achieved if interaction with
the environment is con�ned to happen only between the steps of the algorithm.
The \step" is in the eye of beholder: what is say from socket abstraction seen
as a single act of sending a byte-array may on a lower layer of TCP/IP look

10

as a sequence of steps of sending and resending individual packets until an ac-
knowledgment for each individual packet has arrived. In order to sail smoothly
between levels of abstraction, we need the freedom to view several lower-level
steps as compressed into one higher-level step when this is natural, even if the
lower-level steps are punctured with external interaction. The Bounded Work
postulate serves as a guard ensuring that this freedom is not misused.

The syntax of interaction can be, without loss in generality, given by a �-
nite number of query-templates f̂ #1 : : :#n, each coming with a �xed arity. If
b1; : : : ; bn are elements of a state X, a potential query f̂ [b1; : : : ; bn] is obtained by
instantiating the template positions #i by bi

4. The environment behavior can
be, for the class of \ordinary" interactive algorithms, represented by an answer
function over X: a partial function mapping potential queries to elements of X,
see [BG04a,BG04b] for extensive discussion and motivation.

All algorithms in the rest of this paper are small-step ordinary interactive
algorithms in this sense|in the sequel, we shall skip all these adjectives except
possibly for \interactive", to stress the di�erence with respect to algorithms of
the previous section.

The interactive behavior of an algorithm is abstractly represented by a causal-
ity relation, between �nite answer functions and potential queries. We have the
following additional postulate:

Postulate 5 (Interaction) The algorithm determines, for each state X, a causal-
ity relation `X between �nite answer functions and potential queries.

The intuition of � `X q is: if the environment, in state X, behaves according
to �, then the algorithm will issue q. A context for an algorithm is a minimal
answer function that saturates the algorithm, in the sense that it would issue no
more queries: � is a context if it is a minimal answer function with the following
property: if � `X q for some � � �, then q 2 Dom(�).

The Updates Postulate is modi�ed by

{ associating either failure or an update set �+
A to pairs X;�, where � is a

context over X;

{ the update set�+
A(X;�) may also include trivial updates | in an interactive

multi{algorithm situation trivial updates may express con
ict with another
component.

The Isomorphism Postulate is extended to preservation of causality, failure and
updates, where i : X �= Y is extended to \extended states" X;� as i : X;� �=
Y; i � � � i�1.

We can access elements of \extended states"X;� by \extended terms", allow-
ing also query-templates in the formation rules (the extended terms correspond
to \e-tags" of [BG04b]). Given vocabularies � of function symbols, and E of

4 The sole purpose of the f̂ [b1; : : : ; bn] notation is to be optically distinct from notation
for function value f(b1; : : : ; bn) when f 2 � .

11

query-templates disjoint from � , we can (partially) evaluate extended terms as

Val(f(t1; : : : ; tn); X; �) = fX(Val(t1; X; �); : : : ;Val(tn; X; �)) if f 2 �

Val(f̂(t1; : : : ; tn); X; �) = �(f̂ [Val(t1; X; �); : : : ;Val(tn; X; �)]) if f 2 E

under the condition that Val(ti; X; �) are all de�ned, and, in the latter case, also

f̂ [Val(t1; X; �); : : : ;Val(tn; X; �)] 2 Dom(�).
Thus the value of an extended term containing query templates can be un-

de�ned at X;�, which is di�erent than being de�ned with the value UndefX .
We shall in the sequel use equality of partially de�ned expressions in the usual
Kleene-sense: either both sides are unde�ned, or they are both de�ned and equal.

Remark 3 (Kleene Equality). This means that we lose something of the tight
correspondence that the meta-statement Val(t1) = Val(t2) and the Boolean term
t1 = t2 had in the noninteractive case: the former was true if and only if the
latter had the (same) value (as) True. Now if say Val(t1; �) is unde�ned, then also
Val(t1 = t2; �) will be unde�ned, and the meta-statement Val(t1; �) = Val(t2; �)
will be either true or false, depending on whether Val(t2; �) is also unde�ned.
The reader should be aware of this when parsing the meta-statements about
coincidence and similarity below.

The Bounded Work Postulate can be (equivalently to the formulation of
[BG04a,BG04b]) formulated as before, applying to extended terms, see[BG04b]
for extended discussion of \e-tags".

2.1 Coincidence and Similarity

In this subsection, we will extend the notions of coincidence and similarity of
extended terms to structures equipped with answer functions.

De�nition 6 (Coincidence and Similarity). Let X;Y be � -structures, �; �
answer functions for X;Y , respectively, and T a set of extended terms. We say
that

{ X;� and Y; � coincide over T , and write X;� =T Y; �, if Val(t;X; �) =
Val(t; Y; �) for every t 2 T ;

{ X;� and Y; � are T -similar, written as X;� �T Y; �, if they induce the
same equivalence relation on T : Val(t1; X; �) = Val(t2; X; �) if and only if
Val(t1; Y; �) = Val(t2; Y; �) for all t1; t2 2 T .

In illustration of Kleene Equality remark 3 above, note that if X;Y coincide/are
similar for the set T of all � -terms, then X; ; and Y; ; coincide/are similar for
the set of all extended terms (since the extended terms proper will be unde�ned
under the empty answer function ;).

Proposition 3 (Factorization for Speci�c Interactions). Let X;Y be � -
structures, �; � answer functions for X;Y , respectively, and T a set of extended
terms. Then X;� �T Y; � if and only if there is a structure Z and answer
function
 for it such that X;� =T Z;
 �= Y; �.

12

Proof. De�ne the map � as:

�(y) =

�
Val(t;X; �) if y = Val(t; Y; �) for some t 2 T

y otherwise

and proceed as in the proof of the proposition 1. ut

Reasoning about what an algorithm can do in a state, we will have to take
into account all possible behaviors of the environment. Typically we will assume
some contract with the environment, there will be assumptions on possible en-
vironment behaviors. Thus we de�ne what it means for two structures to be
similar for given sets of possible answer functions.

De�nition 7 (Similarity under a Contract). LetX;Y be � -structures,A;B
sets of answer functions for X;Y respectively, and T a set of extended terms.
We say that X;A and Y;B are T -similar, writing X;A �T Y;B, if

{ for every � 2 A there is a � 2 B such that X;� �T Y; �, and
{ for every � 2 B there is � 2 A such that X;� �T Y; �.

The idea is again that, by testing terms for equality, an algorithm cannot deter-
mine whether it is operating with X;� for some � 2 A or with Y; � for some
� 2 B. If A resp. B are seen as representing the degree of freedom that the envi-
ronment has in ful�llment of its contract, similarity to the notion of bisimulation
of transition systems need not be surprising.

Corollary 7 (Factorization under a Contract). Let X;Y be � -structures,
A;B sets of answer functions for X;Y respectively, and T a set of extended
terms. Then X;A �T Y;B if and only if

{ for every � 2 A there is � 2 B, � -structure Z and answer function
 over
Z such that X;� =T Z;
 �= Y; �, and

{ for every � 2 B there is � 2 A, � -structure Z and answer function
 over
Z such that Y; � =T Z;
 �= A;�.

Proof. Use de�nitions and proposition 3.

Remark 4 (Contracts). We use a notion of contract heuristically here, we did
not de�ne contracts. A proper de�nition should certainly require that contracts
are abstract : it should associate a set of answer functions AX to any state X

in an isomorphism-invariant way. But our results would certainly carry over to
such a de�nition. We are not going to pursue a theory of contracts in this paper.

2.2 Indistinguishability

The notion of indistinguishable states splits here to two notions: states indis-
tinguishable under speci�c environment behaviors, and states indistinguishable
under classes of environment behaviors. We need the former notion in order to
formulate the latter.

13

De�nition 8 (Indistinguishability under Speci�c Interactions). LetX;Y

be � structures, and �; � answer functions over X;Y respectively, given query
templates from E. We say that

{ an interactive algorithm A distinguishes X;� from Y; � if there is an � -term
t such that one of the following holds (but not both):

� either � is a context for A over X and Val(t; �A(X;�)) = TrueX , or if
this is not true,

� � is a context for A over Y and Val(t; �A(Y; �)) = TrueY .

{ X;� and Y; � are indistinguishable if there is no algorithm distinguishing
them.

This de�nition requires an algorithm, if it is to distinguish X;� from Y; �,
to complete its step with at least one of them. Weaker requirements might be
argued for, but the intuition that we wish to maintain here is that, in order to
distinguish two candidate situations, an algorithm should be able to determine
that it is running in one of them and not in the other|but in order to deter-
mine anything an algorithm must complete its step. Anyway, the choice of this
de�nition is con�rmed by the connection to similarity established below. The
following corollary is as simple as it was in the previous section:

Corollary 8. Indistinguishability is an equivalence relation on � -structures equipped
with E-answer functions.

Theorem 5. X;� and Y; � are indistinguishable by interactive algorithms if and
only if they are similar, X;� � Y; �.

Proof. Suppose that X;� and Y; � are not similar. Without loss of general-
ity, then there are terms t1; t2 such that Val(t1; Y; �) 6= Val(t2; Y; �), whereas
Val(t1; X; �) = Val(t2; X; �), and Val(t1; Y; �) is de�ned. If Val(t2; Y; �) is also
de�ned, then an algorithm computing t1; t2 and then completing the step dis-
tinguishes Y; � from X;� by term t1 6= t2. If Val(t2; Y; �) is not de�ned, we have
two distinct cases:

1. Both Val(t1; X; �) and Val(t2; X; �) are unde�ned. In that case, an algorithm
evaluating the term t1 and then concluding the step distinguishes Y; � from
X;� by term True.

2. Both Val(t1; X; �) and Val(t2; X; �) are de�ned and equal. Then proceed
like in proof of theorem 3.

Supposing that X;� and Y; � are similar, proceed like in proof of theorem 3
to show that they cannot be distinguished. ut

Indistinguishability of states for concrete answer functions is thus equivalent
to their similarity under the same answer functions. But what we are really
interested in is indistinguishability of states for all possible reactions of the en-
vironment. The following de�nition re
ects this consideration.

14

De�nition 9 (Indistinguishability under a Contract). Let X and Y be � -
structures and let A and B be sets of answer functions for X and Y , respectively.

{ An algorithm A distinguishes X;A from Y;B if either

� there is � 2 A such that A distinguishes X;� from Y; � for all � 2 B, or
� there is � 2 B such that A distinguishes Y; � from X;� for all � 2 A.

{ X;A and Y;B are indistinguishable if there is no algorithm distinguishing
them.

The intuition here is again that, for an algorithm to distinguish X;A from
Y;B it must be possible to detect that it is operating in one of them and not
in the other. Indistinguishability means here that this is not at all possible, an
algorithm can never tell for sure in which of the two worlds it is. It is easy to see
that indistinguishability is an equivalence relation on pairs X;A, where X is an
� -structure and A a set of E-answer functions over X.

Corollary 9. Let X;A and Y;B be structures of the same vocabulary, equipped
with sets of possible answer functions over the same vocabulary of query-templates.
Then they are indistinguishable by interactive ordinary small{step algorithms if
and only if they are similar, X;A � Y;B.

Proof. Use the de�nitions and theorem 5. ut

2.3 Accessibility and Reachability

De�nition 10 (Accessibility and Reachability under Interaction).
Let x be an element of a state X, Y another state of the same vocabulary

with the same carrier, A a set of answer functions for X and � 2 A. We say that

{ x is accessible for X;� if there is an extended term t denoting it at X;�;
{ x is accessible for X;A if there is � 2 A such that x is accessible for X;�;
{ Y is reachable from X;� if there is an algorithm A such that �A(X;�) = Y ;
{ Y is reachable from X;A if there is � 2 A such that Y is reachable from
X;�.

Corollary 10 (Accessibility). If X is a structure and A a set of answer func-
tions over it, any element of X in the range of an � 2 A is accessible for X;A.

Theorem 6. Let X;Y be structures of a vocabulary � with the same base sets
and A be a set of possible answer functions for X. Then Y is reachable from
X;A by ordinary interactive small{step algorithms if and only if

{ Y �X is �nite, and
{ there is an � 2 A such that all objects in the common base set occurring in
Y �X are also accessible for X;�.

Proof. Proceed as in the proof of Theorem 4. ut

15

2.4 Algorithms with Import

The idea of modelling creation of new objects, often needed for algorithms, by
importing fresh objects from a reserve of naked, amorphous objects devoid of
nontrivial properties, has been present in the ASM literature since [Gur91].

We need the notions and results of the previous sections in particular for
algorithms which import new elements, over a background structure [BG00].
This case is special, since nondeterminism introduced by a choice of reserve
element to be imported is inessential up to isomorphism; see [Gur95] for import
from a naked set and [BG00] for import over a background structure.

The reserve of a state was originally de�ned to be a naked set. In applications,
it is usually convenient, and sometimes even necessary, to have some structure
like tuples, sets, lists etc. prede�ned on all elements of a state, including the ones
in the reserve. The notion of background structure [BG00] makes precise what
sort of structure can exist above a set of atoms without imposing any properties
on the atoms themselves, except for their identity.

In this section, we assume that each vocabulary contains a unary predicate
Atomic. This predicate and the logical constants are called obligatory and all
other symbols are called non-obligatory. The set of atoms of a state X, denoted
with Atoms(X), are elements of X for which Atomic holds.

De�nition 11. A class K of structures over a �xed vocabulary is called a back-
ground class if the following requirements are satis�ed:
BC0 K is closed under isomorphisms.
BC1 For every set U , there is a X 2 K with Atoms(X) = U .
BC2 For all X;Y 2 K and every embedding (of sets) � : Atoms(X) !
Atoms(Y), there is a unique embedding (of structures) � of X into Y that
extends �.
BC3 For all X 2 K and every x 2 Base(X), there is a smallest K{substructure
Y of X that contains x.

Suppose that K is a background class. Let S be a subset of a base set of
structure X 2 K. If there is a smallest K{substructure of X containing S, then
it is called the envelope EX(S) of S in X and the set of its atoms is called
the support SupX(S) of S in X. In every X 2 K, every S � Base(X) has an
envelope [BG00].

De�nition 12 (Backgrounds of Algorithms). We say that a background
class K with vocabulary �0 is the background of an algorithm A over � if

{ vocabulary �0 is included in � and every symbol in �0 is static in � ;
{ for every X 2 S(A), the �0{reduct of X is in K.

The vocabulary �0 is the background vocabulary of A, and the vocabulary � ��0
is the foreground vocabulary of A. We say that an element of a state is exposed,
if it is in a range of a foreground function, or if it occurs in a tuple in domain of
a foreground function. The active part of a state is the envelope of the set of its
exposed elements and the reserve of a state is the set of non-active atoms.

16

The freedom the environment has in choice of reserve elements to import
induces inessential nondeterminism, resulting in isomorphic states [BG00]:

Proposition 4. Every permutation of the reserve of a state can be uniquely
extended to an automorphism that is the identity on the active part of the state.

Intuitively, this means that whatever an algorithm could learn by importing
new elements from the reserve does not depend on a particular choice of ele-
ments imported. Similarly, one may conjecture that an algorithm cannot learn
by importing at all, but this is in general not the case:

Example 2. Up to isomorphism, the non-logical part of a background structure
X consists of hereditarily �nite sets over its atoms. The only non-obligatory
functions are the containment relation 2 and a binary relation P : P (x; y) holds
in X if rankX(x) = rankX(y) + 1, where rankX is de�ned as:

rankX(x) =

�
0 if x 2 Atoms(X)
maxfrank(y) j y 2 xg+ 1 if x is a set

:

The foreground vocabulary contains only one nullary function symbol f , denot-
ing fag in X and ffagg in Y for some atom a (for simplicity, we assume that
X and Y have the same reduct over the background vocabulary). Structures X
and Y are similar, but X;� and Y; � are not, since V al(P (f; g); X; �) = True

and V al(P (f; g); Y; �) = False, for all answer functions �; � evaluating the query
ĝ to a reserve element.

By theorem 3 and corollary 9, structures X and Y are indistinguishable by
non-interactive small-step algorithms, but distinguishable by small-step algo-
rithm importing from the reserve. Somewhat surprisingly, it follows that import
of a reserve element can increase the \knowledge" of an algorithm.

In many common background classes, such as sets, sequences and lists, al-
gorithms cannot learn by creation. It is important to have in mind that this
property is not guaranteed by the postulates of background classes, and that it
must be proved for a concrete background class.

Example 3. We de�ne a background class which can serve as an abstract model
of public key cryptography. We do not argue here for naturality of this model, or
its appropriateness for any purpose|we will to this elsewhere. The only role this
model has here is as a source of examples for things even abstract algorithms
cannot do.

Take CoinsX as synonymous with Atoms(X). The non-logical part of the
background vocabulary contains

{ constructors binary h ; i, unary nonce, privateKey and publicKey, and ternary
encrypt,

{ unary predicates Nonce, PrivateKey, PublicKey, Encryption and Pair,
{ selectors unary fst; snd and binary decrypt.

All structures of the background class further satisfy the following constraints:

17

{ the constructors are injective (in all arguments) with pairwise disjoint codomains;
{ the predicates Pair;Nonce;PrivateKey;PublicKey;Encryption hold exactly on
the codomains of h ; i; nonce; privateKey; publicKey; encrypt respectively;

{ domains of the functions are restricted as follows (in the sense that they take
value Undef elsewhere):

nonce : Coins �! Nonce

privateKey : Coins �! PrivateKey

publicKey : PrivateKey �! PublicKey

encrypt : PublicKey�Msg� Coins �! Encryption

whereMsg is used as shorthand for Nonce[PrivateKey[PublicKey[Encryption[
(Msg�Msg) [Boole, but it is not explicitly represented in the structure;

{ the selectors are the least partial functions satisfying the constraints
� hfst(z); snd(z)i = z for each Pair z;
� decrypt(e; k) = m if and only if e = encrypt(publicKey(privateKey(r1));m; r2)
for some message m and coins r1 and r2.

By de�nition, the predicates and the selectors are determined given the base
set, the atoms and the constructors; thus by BC2 the base set of the structure
is freely generated from Coins by the above constructors: it is a minimal set
containing Coins and closed under the functions.

This background class will be denoted with BCpub in the following examples.
We will consider algorithms working with answer functions which, over a state
X, return only reserve atoms, \fresh coins" of X. Let us, for state X, denote the
set of such answer functions with CX .

Example 4. We will reconsider the situation from example 1 once again, embed-
ding it in BCpub. To recall, we have states X and Y over BCpub with the same
base set. Only c; k are accessible by nullary foreground terms c,k respectively.
Functions d,op of example 1 are just respective aliases for background functions
decrypt,publicKey of BCpub.

According to the table of example 1, the element p must be the value of the
(background) term hTrue;Falsei in both states, while k = publicKey(K) must be
a PublicKey, whereas K must be a PrivateKey, which means that it must be the
value of prikey(rK) for some coin rK . We can easily assume rK to be the same
in both states. Since decrypt(K; c) should have a value distinct from Undef in
both states, c must be a Encryption:

{ in state X we have c = encryptX(k; p; rc) for some coin rc;
{ in state Y we have c = encryptY (k; n; rc), where we can assume that rc is
the same in both states.

We further assume the element n to be a Nonce in both states, which means
n = nonce(rn), where again we can assume rn to be the same in both states.

The status of element n in the two states is di�erent. Consider the support
of exposed object c in the two states:

SupX(fcg) = frk; rcg; SupY (fcg) = frk; rn; rcg

18

which means that n; rn are active in Y , but not in X.
Like in example 1, n is not exposed in either state, which also means not

accessible by any foreground term. But in state X an answer function from CX
is free respond to a query with the reserve atom rn, which means that n is
accessible|since it is inactive, we say that n can be created in X. In Y on the
other hand rn is not reserve, and an answer function form CY is not free to return
rn. This means that n is not accessible in Y at all. For the same reason no fresh
(di�erent from c) encryption with n as subject can be created (accessed) in Y .

This is something algorithms just cannot do.

Example 5. But are background structures needed here at all? Why would the
functions encrypt; decrypt be needed in the background, could we not just con-
sider them as dynamic functions in the ASM tradition, to be updated as needed,
i.e. as encryptions get created? This way we might, in example 1, obtain isomor-
phism of X;Y , instead of just similarity. Of course, requirement of isomorphism
would exclude a background containing encrypt; decrypt.

Such an approach, suggested by some studies in (statics of) abstract cryp-
tography, involves a problem arising only in the dynamics: assume that in such
a model an algorithm learns the private key K say by environment interaction.
ThenX and Y must become distinguishable by term decrypt(tK ; c), which means
we would have to create the distinction by updating decrypt. A technical problem
arises with public key encryption: the act of encrypting involves updating both
encrypt and decrypt, but in order to update decrypt we would need to access the
private key, which is de�nitely not allowed by the usual assumptions on public
key cryptography.

With background structures learning new information does not change any-
thing, we might just uncover di�erences which were there all the time. The
natural interpretation of indistinguishability (similarity) of two states is then:
information available to algorithms is not su�cient to distinguish them.

References

[BG00] Andreas Blass and Yuri Gurevich. Background, reserve, and Gandy ma-
chines. In Proceedings of CSL '00, volume 1862 of LNCS, 2000.

[BG03] Andreas Blass and Yuri Gurevich. Algorithms: A quest for absolute def-
initions. Bulletin of the European Association for Theoretical Computer

Science, (81):195{225, October 2003.
[BG04a] Andreas Blass and Yuri Gurevich. Ordinary interactive small{step algo-

rithms I. Technical Report MSR-TR-2004-16, Microsoft Research, 2004.
[BG04b] Andreas Blass and Yuri Gurevich. Ordinary interactive small{step algo-

rithms II. Technical Report MSR-TR-2004-88, Microsoft Research, 2004.
[BGS99] A. Blass, Y. Gurevich, and S. Shelah. Choiceless polynomial time. Annals

of Pure and Applied Logic, 100(1-3), 1999.
[GR93] Paola Glavan and Dean Rosenzweig. Communicating Evolving Algebras. In

Computer Science Logic, volume 702 of LNCS, pages 182{215. 1993.
[Gur91] Yuri Gurevich. Evolving Algebras. A Tutorial Introduction. Bulletin of the

European Association for Theoretical Computer Science, 43:264{284, 1991.

19

[Gur95] Yuri Gurevich. Evolving Algebras 1993: Lipari Guide. In Speci�cation and

Validation Methods, pages 9{36. Oxford University Press, 1995.
[Gur00] Yuri Gurevich. Sequential abstract state machines capture sequential algo-

rithms. ACM Transactions on Computational Logic, 1(1):77{111, 2000.
[SN01] Robert Staerk and Stanislas Nanchen. A logic for Abstract State Machines.

Universal Journal of Computer Science, 11(7):981{1006, 2001.

20

