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ABSTRACT

In this paper we consider the problem of broadcasting information from a source
node to a set of receiver nodes. In the context of edge-capacitated networks, we
consider the “random useful” packet forwarding algorithm. We prove that it yields
a stable system, provided the data injection rate at the source node is less than the
(min(min-cut)) of the graph. As a corollary we retrieve a famous theorem of Edmonds.

We next consider node-capacitated networks. In this context we introduce the “ran-
dom useful to most deprived neighbour” packet forwarding scheme. We show that it
yields a stable system in the particular case where the network graph is the complete
graph, whenever the node capacities are large enough for centralised schemes to
achieve successful broadcast of the data injection rate.

|. INTRODUCTION

The broadcast problem consists in relaying data to a set of nodes (or users) consti-
tuting a system. The present work deals with the case where data is made available
at some given rate at a single source node. In this context we want to determine
distributed data forwarding algorithms such that data is eventually received by all
system nodes. We consider two distinct scenarios.

In the context of edge-capacitated networks, we consider the “random useful” packet
forwarding algorithm. We prove that it yields a stable system, provided the data
injection rate at the source node is less than the (min(min-cut)) of the graph. As
a corollary we retrieve a famous theorem of Edmonds.

We next consider node-capacitated networks. In this context we introduce the “ran-
dom useful to most deprived neighbour” packet forwarding scheme. We show that it
yields a stable system in the particular case where the network graph is the complete
graph, whenever the node capacities are large enough for centralised schemes to
achieve successful broadcast of the data injection rate.

The paper is organised as follows. Section Il describes the model of an edge-
capacitated network, as well as the “random useful” packet forwarding algorithm.
Section Il contains the main result for edge capacitated networks, while Section IV
deals with node capacitated networks.

[I. EDGE CAPACITATED NETWORKS MODEL AND ALGORITHM
A. System model

A directed, edge-capacitated graph= (V, E) is given. Source node wants to
send data to all other nodes, i.e. broadcast. Data transfers consist of packet replication
from some node: to a nodev such that(u,v) € E. Theinjection rateat the source
is denoted by\, and is bey definition the rate at which the source gets new packets.
Once injected at the source, a packetan be in a number of different states. It can
be replicated at all nodes in the system, hence successfully broadcast. Alternatively,
it can beidle, that is not actively transferred, and replicated at nod@&s some set



S c V1 The subsets over which packets can be replicated is not arbitrary: it must
contain a spanning tree rootedsatand hence in particular it must containWe shall
denote byS the collection of strict subsets &f that contain the source node

Alternatively, it can be replicated at some nodeg S, for some subsef € S,
but also actively transferred along some edgesF’, for some subsef’ C E.

We shall adopt the following description of the system state: forSa#t S, X
denotes the number of idle packets, that are replicated exactly at the m@dgs In
addition, an unordered list of subgrapAs= {G; = (W1, F1),...,Gpn = Wi, Fin)}
is maintained, describing the “active packet®l’; is the set of nodes at which the
i-th active packet is currently replicated; is the set of edges along which theh
active packet is currently transferred.

We shall assume that at any given time, at most one packet is transferred along a
given edge. Thus, the total number of active packets is at nig)stWe shall further
assume that the following constraints are met: for an active packet with description
(W, F), for each(u,v) € F, thenu € W, v ¢ W, and there is no other edgec F
that points towards.

Introduce the notation:

X+u—v = Z Xg.

SeS:ueSv¢S

This counts the number of idle packets that are present at m@ohel absent at node
V.
Let also X¢,_, denote the number of active packets that could possibly be for-

warded along edgéu, v), given the above constraints. That is to say, let
X—(&l-u—v = Z 1u6W]-v¢W1Vu’EV,(u’,v)§ZF~
(W,F)eA
The following activity condition will be enforced at all times: for any edde, v),
either there is an active packet that is actively transferred along edg¢, or:
Xiuvw=0andX?,  =0.

In words, if there is no ongoing transfer along some e@ige’), then necessarily no
packet present in the system could be transferred along this edge.
The system evolution is determined by the following transition mechanism.

B. The scheduling algorithm

a) Primary transitions: The first type of primary transitions is due to a fresh
packet arrival at the source. After such a transition, the state varigjleis updated
to Xyo + 1.

1In this paper the symbat is used to denote strict subsets; the symbdk used to denote non strict subsets.



The second type of primary transitions is due to completion of transfer of an active
packet along some edge. Let this packet be represent@d’hy), and lete = (u,v) €
F' be the edge along which replication has just completed. Theims updated to
W U {v}, and F' is updated tal" \ e.

b) Secondary transitionsThese happen subsequently to primary transitions, to
ensure that the activity condition is met. If, after a primary transition, there is an edge
(u,v) for which the activity condition is not met, this means that this edge is not
actively used, while the number of packets, , + X¢, , which could potentially

+u—v

be transferred along that edge is positive. In this case, one of thiege, + X

+u—v

packets will be selected uniformly at random, and start being replicated along edge
uU,V).
( M())re precisely, for eacly € S such thatu € S, v ¢ S, with probability
Xs
Xiwmo + XG0y

the following state updates are made:

)(S‘_')(S‘_ L

A—AU(S, (u,v)).
For each active packétV, F') such thatu € W, v ¢ W, and for allu’ € V, (u/,v) ¢
F, then with probabilityl /(X,,_, + X4, ,), the active set is updated as follows:

+u—v
A—A\(W,F)U (W, FU  (u,v)).
Note that all these transition probabilities sum to 1, as required.

This secondary transition mechanism corresponds to what we shall call the “random
useful” packet forwarding strategy: when a new useful packet transfer along a given
edge(u,v) can start, the packet that is actually transferred is selected uniformly at
random from the total collection of packets present and not aty, and not currently
transferred towards.

C. A Markovian special case

A general version of the model would assume that the time intervals between fresh
packet arrivals at the source are i.i.d. random variables, and that packet transfer times
along a given edge are also i.i.d. random variables. Under these assumptions, the model
we just described is a Markov process, provided we augment the state space to keep
track of the residual times till (i) arrival of the next fresh packet, and (ii) completion
of transmission along a given edge. Of particular interest is the case where these i.i.d.
random variables are in fact deterministic.

A treatment of the general i.i.d. case will be considered in future work. In the
present work, we focus on the special case where the i.i.d. random variables involved
are Exponential random variables, where the mean inter-packet arrival at the source
equals\—!, and the mean packet transfer time along edge) is c;,!. In this particular
case, the evolution of the state variables described above is Markovian, without the
adjunction of residual time variables. In the sequel we focus on this particular setup.



[11. EDGE CAPACITIES MAIN RESULT

The main result in the present context is the following
Theorem 1:The Markov process(Xs)ses, A) corresponding to random useful
packet forwarding is ergodic under the condition

A< glggZZcuv ()

This result will be established by usiﬁé vtﬁsé so-called “fluid limits” approach, in-
troduced and popularised by [4] and [1]. Informally, the approach consists in first
establishing that trajectories of the original Markov process, after joint rescaling of
both time and space, evolve according to some simpler, “fluid” dynamics, and then
to prove that trajectories of the fluid dynamics converge to zero in finite time.

A. Fluid dynamics: characterization and convergence

Let us introduce the following definition.
Definition 1: The real-valued non-negative functions— ys(t), S € S, are called
fluid trajectories of the above Markov process if they satisfy the following conditions.
ForallS € S,allu c S, allv ¢ S, there exist non-negative functions— ¢g, () (t)
such that

Yisr(t) = ys(0) + A = 32 e 1) Plshisn (B)
S# st ys(t) = ys(0) + D ey Dves fuy P\ o (ur) (£) )
- Zues ngéS ¢S,(uv) (t);
and that are non-decreasing, Lipschitz continuous with Lipschitz constgantsn
addition, for all(u,v) € FE, it holds that:

Z b3, (v IS Cup-Lipschitz.

SeS:uesSvgS

Moreover at almost every poirtf the functiongg (.. is differentiable, and the fol-
lowing holds:
ys(t)

Vrun (D) 3)

d
Yu—o(t) > 0= E(ﬁsv(“v) () = cu

where we have used the notation

Yruo(t) = D ys(t). 4

S'eS:ueS wgS!

O
The following result shows in what sense such fluid trajectories describe the dy-
namics of the original Markov process after spatial and temporal rescaling:
Theorem 2:Consider a sequence of initial conditiod&x ™ (0), A¥(0)), N > 0,
such that 1

lim NngV(O) =125(0), S €S.

N—oo



Introduce the rescaled process
1
Y() == S XE (VD).
whereX Y (t) represents the state of the Markov process with initial conditiai$(0), A (0))
at timet. Then for any subsequence of indicEs there exists a further subsequence,
denotedN’, such that, for some fluid trajectorys) as per Definition 1, with initial
conditions(z5(0)), the following uniform convergence takes place:
Nl/lm sup Y1) —ys(t)| =0, SeS, TeR,. (5)
—>()o 6[ _
Proof: It will be more convenient to work with the state variabl&s, which
count the total number of packets, active or idle, present at nodes. That is:

XS = Xg+ Z 1w—g.
(W,F)eA
We shall thus consider the rescaled processes
YNt = XN (Nt
=YN(t) + § Zweav Lw=s.
Since they differ front’' by at most{ E|/N, the processes agree in the limit— oo.
Let P,,, (u,v) € E, be independent unit rate Poisson processes. The Poisson process

P,, will be used to determine the instants at which packet transfers along(edge
complete. Introduce the notation:

t
(I)N(uv)( ) = Puw Cuv/ Z ]-W:S,(u,v)eFdS
O (W, F)eAN (s—)
This process keeps track of the number of completions of packet transfers along edge

(u,v), for packets that were previously present at nodeSset
We thus have the following, for al¥ € S, S # {s}'

ueS,weS\{u} ueSvg¢S

In the particular case wherg = {s}, we use another unit rate Poisson procEss$o
count fresh arrivals at the source, and write:

SN
X{5(8) = X{5(0) + Po(At) = D &%) (o (1
VF£S
We now show that, for any subsequence, there exists a further subseduealoang
which the rescaled processes— -, @N'( )(N’ ) converge uniformly on any com-
pact interval|0, 7] to a non- decreasmg functiop (..), that is moreover Lipschitz-
continuous with Lipschitz constant,,?.

2Similar arguments can be used to establish thgiV) Py (Ant) converges uniformly orf0, 7] to Mt, and are
thus omitted.



To this end, fix somd” > 0, and write

1
— P (Nt) — t‘ .

1
sup NqDN / Z lw—s (uverds| < sup N
0

te[0,7 (W,F)eAN (Ns—) te[0,cuuT]

Using for instance the following lemma, which is a classical result on the maximal
deviation of a Poisson process from its mean, in conjunction with Borel-Cantelli’'s
lemma, it can be shown that the right-hand side of the last display converges almost
surely to zero asV — oc.

Lemma 1:Let = be a unit rate Poisson process. Then for7al- 0, N > 0, and
all e > 0, it holds that

P (supo<i<r|Z(Nt) — Nt| > eNT) < e NTMe) 4 o= NTh(=¢) (6)

where
h(A\) :== (1+ A)log(1+A)— A @)

is the Cramér transform of a unit mean, centered Poisson random variable. In the
above formula, it is understood that—\) = +oco if A > 1.

To establish the claimed convergence of the rescaled procg{gﬁg Nt) to
Lipschitz-continuous, non-decreasing functiens..., along subsequences |t is there-
fore sufficient to establish that such convergence holds for the functions:

L — Cuw / Z 1W:S,(u,v)EFdS- (8)

(W,F)eAN (Ns—)

To this end, we use the following lemma, taken from Ye et al. [6]:

Lemma 2:(Lemma 6.3, Ye et al. [6]) Suppose that a sequence of functfpns
[0,7] — R has the following properties:

() {fx(0)}x>0 is bounded,;

(ii) there is a constant/ > 0, and a sequence of positive numbeys with o, — 0
ask — oo, such that

1f() = fe(s)| < M(t —s) + 0, k>0, s,t€(0,T].

Then the sequence admits a subsequence that converges unifornily7dnto a
Lipschitz continuous functiorf : [0, 7] — R with Lipschitz constant/.
Clearly the conditions of the Lemma are met for the functions (8), with as a Lipschitz
constantM = c¢,,. Moreover, any limiting function must be non-decreasing since the
functions (8) are all non-decreasing.

Note now that fort < ¢/,

Z / Z Ly =g (up)erds < cup(t' —1).
t

SeS:ueS ¢S (W,F)eAN (Ns—)



This readily implies that for any givew,v) € E, the limiting functions¢g,,.)
summed ovelS € S such thatu € S andv ¢ S are c,,-Lipschitz.

It now remains to establish the last property in the definition of fluid trajectories, that
is: at almost every, the functiongg (.. (t) is differentiable, and provideg, ., (t) >

0, then: p 0
ys(t

n uv t) = w T N

205 (t) = ¢ oD

By Rademacher’s theorem, a Lipschitz-continuous function is differentiable almost
everywhere. Let thus be a point wherebg .., (t) is differentiable. Consider first the
case wheregys(t) > 0. Fix someh > 0. We want to evaluate the following quantity:

1 t+h
Ecuv / Z 1W:S,(u,v)€Fd5-
t

(W,F)eAN (Ns—)

Note that on the intervat € [t,t+h], N’ X2 (N'7) equalsys(t)+0(h)+exs, Where
env — 0 as N’ — oo, by convergence of the rescaled trajectories, and by Lipschitz
continuity of the limiting trajectories.

Thus, after each completion of a transfer along e@dge)) during the interval
[Nt, N(t + h)|, the probability that the next packet selected for transmission along
edge(u,v) is a previously idle packet, replicated at nodesc S is asymptotic to
ys(t)/y+u—v(t) + 0(h). Furthermore, once such a transfer is started, the probability
that the packet under consideration is elected for transmission along another edge
converges to zero a8 — oo, since there are close t&ys(t) other idle packets
that could alternatively have been selected for such a transmission. Together these
arguments ensure that

lim / " o1 d us()_ o)
1M —Cyy =5, (u,v S=Cywo ’
h t WEsuner y+u7v(t)

N—oo
(W,F)eAN (Ns—)
However, the left-hand side of this expression also reads

1
E (¢S,(uv) (t + h) - ¢S,(uv) (t)) 5

and thus the derivative afg ) att must equak,, yfj_(?(t) as announced.

Finally, consider the case whege(t) = 0, and choose a particulaat which all S’
with uw € §’, v ¢ S are such thabs (., (t) are differentiable. We know that almost
everywhere, the sum of these derivatives can not exeggdecause it is a Lipschitz
constant for the sum of these functions. However, the sum of the derivatives for those
S" such thatys/(t) > 0 equalsc,,, therefore the derivatives for those such that

ys(t) = 0 must equal zero. -



B. Fluid dynamics: stability

In the present section, we establish that any fluid trajectories as per Definition 1
satisfy a suitable stability property:

Theorem 3:Assume that Condition (1) holds. LéJs)scs denote fluid trajectories
as per Definition 1. For alb c V, define:

5'€8,5'CS

Then there exist positive parametets. .., 51, ande > 0 such that the function
L({ys}ses) := sup Bis|ycs
ScV

verifies:
L(y(t)) < max (0, L(y(0)) — et). )
Denote byK the total number of nodes, that I§ = |V|. The proof will rely on the
following lemma:
Lemma 3:Let o > 0 be fixed. For givery, A > 0, define:

€K1 = 0;
EKflfiz(SA(l—FA)i_l, Zzl,K—Q,
Br-1=1; (10)

B =1 (), =2 K= 1,

Then A andé can be chosen so that the following properties hold for @ayscs €
RS, (ys)ses #0. ForallScV,allue S, v¢S:

Ytu—v < €51Ycs = Bis|—1Ycs\(u} > Bis|ycs- (11)

Moreover for all. S ¢ V such that, for allu € S, all v & S, yru— > €gycs,
assuming there exist € S andv ¢ S such that for somé&’ Z S: uw € S’, v ¢ S’ and
Ys' > alYyu_e, then it holds that:

Bisusiiycsus: > Bis|ycs. (12)
Proof: (of Lemma 3) Let us first establish sufficient conditions on the parameters
€;, (3; for the conclusions of the Lemma to hold. Consider the first requirement (11),
and let thusS be such that for some € S andv ¢ S, one has

Ytu—v < €5|YCS-
Write now:
Yycs = Ycs\{u} + ZS’GS:uGS’,S’QS Ysr
< Ycs\fu} T Yru—v
< Ycs\{u} T €5)Ycs-
It thus follows that
Ycs\fuy > (1= €s))ycs-



Thus the desired conclusion (11) will follow provided:
Bii(l—e€)>p;, i=2,...,K—1 (13)

Clearly, this condition will be satisfied with the particular choice of coefficights
as in (10), provided the; lie in the interval(0, 1), which will be ensured by taking
0 > 0 sufficiently small.

Let us now turn to Condition (12). Let thus C V' be such that for all. € S and
v &S, €sycs < Yyu—v. ASSUMe moreover the existencewk S, v ¢ S, andS’ S
such thatu € S’, v ¢ S’, and satisfying moreover:

Ys' > QYqy—v-

Then necessarily, one has:
Ysr > Oé€|5|ygs.

The left-hand side of Condition (12) then verifies:
Bisusycsus: = Bisus| (Ysr + ycs)
> Bisus (1 + a€gs))ycs.
Therefore, (12) will hold provided

Bisus|(1 + aejs)) = Bisy.

For sufficiently smalld > 0, the coefficients; as in (10) will be strictly less than 1,
and hence the coefficient$ as in (10) will be decreasing with Thus, the above
condition will be satisfied provided:

5K—1(1+ael) Zﬁzu Zzl)vK_2 (14)

For i = K — 2, this condition reads + aex_5 > 1/(1 — €x_1). Recalling from (10)
thatex_; = 9, the right-hand side reads+ 0 + o(9), while the left-hand side reads
14 adA. Thus, this particular condition is met providedy > 1, andé > 0 is small
enough.

Let us now considef € {1,..., K — 3}. Note that the right-hand side of (14) is
equivalent to, for smalb > 0:

K-1
g =105 ()

=1+ 250 € +old) |

=140+ 002 AL+ A)K=27 + o(9)

=1+6+0AY 7T (L + AY +o(6)

=140+ AT L o(5)

=141+ A)K27 4 0(0).
On the other hand, the left-hand side of (14) equals adA(1 + A)X~27J. Thus,
providedaA > 1, and§ > 0 is small enough, the announced properties hold. ®
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Proof: (of Theorem 3) Consider the particular parametérs:; as in Lemma 3.
Clearly, for a vectory € RS that is non-zero, any sét* C V achieving the maximum
in maxgcy fsjycs is such thatcs- > 0. Moreover, for allu € 5%, v ¢ S*, one must
have:

Ytru—v > €|5*|Ycs* > 07

for otherwise optimality of the se$* would be contradicted by Condition (11). In
addition, for allu € S*, v ¢ S*, and allS" Z S* such that, € S', v ¢ S’, necessarily
ys < ay.,_,, fOr otherwise optimality ofS* would be contradicted by (12).

One thus has the following evaluation:

d _ d
nycs = ngs* s .
=A- ZueS*,vQ}S* ESCS*,ueS E¢Sv(uv)

Ygr

— _ _ S
= A Z1L€S*,v§£5‘* Cuv |1 ZS'QS*,ueS',vgéS/ Ttu—v

—v
<A-— Zues*,vgs* Cuvy + Zues*,vgs* C“”};S’ZS*,UES’,”L)%S’ Q@
<)\ — ZueS*,v¢S* Cup + MaXecp co|E|2% a.

In the above, we have used the expression (3) for the derivative of the fungtions
and the bound ofv on the ratioys//y,._. previously established.
Furthermore, the conditions (13) and (14) used in the proof of Lemma 3 can be
shown to imply the following. For a s&t such thatsjycs > (1 —r)5s+ycs-, where
r > 0 is some small positive constant, necessarily foruadl S, v ¢ S,

1-— E‘S‘
Y+u—v >(1- 1—»r Yycs-

In addition, foru € S, v ¢ S andS’ Z S such thatu € S, v ¢ S’, then one has:

1+ Q€5 1
Ysr < (ﬁ -1 1_—1:‘5‘%%1] = (@ +0(r)) Ytu-v-

Thus, for suchS, one has the similar evaluation
d K
TYcs A= €;¢Scuv +maxc,|E[2%a (1 +0(r)). (15)

Note that the choice o > 0 in Lemma 3 was arbitrary. For definiteness, set

1 minSCV ZuéS,ngS Cuv — A
a = —

2 |E|25 maxecp c.

This is positive, under the stability condition (1). Then from the above evaluation (15),
it follows that necessarily, almost everywhere the Lipschitz continuous funktigft))
must satisfy:

d

SL() < —eLyz0,
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where

The result of Theorem 3 follows. [ |

C. Proof of Theorem 1

The proof of Theorem 1 will require to combine Theorems 2, 3 and the follow-
ing ergodicity criterion, which is a direct consequence of Theorem 8.13, p.224 in
Robert [3]:

Theorem 4:Let Z(t) be a Markov jump process on a countable state sp&ce
Assume there exists a functidn: Z — R, and constant3/, ¢, 7 > 0 such that for
all z € Z:

L(z) > M = E.L(Z(L(2)T)) <1—e (16)

1
L(z)
If in addition the sef{z : L(z) < M} is finite, andE,L(Z(1)) < +oo for all z € Z,
then the procesg(¢) is ergodic.

Let us show how this result applies in the present context. Here we héje=
(X(t), A(t)), and our candidate Lyapunov function takes as argumenttecemponent
only, and reads

L(Z) = zuEB‘S‘XQS.
C

Let us setr = 1, wheree is as in Theorem 3, and establish that (16) holds by
contradiction. Assuming it fails, there must exist a sequence of initial conditions
ZN(0) such thatZL(Z™(0)) — oo, and such that
. 1 N N
lim. WEL (ZM(L(ZY(0)7)) > 1—e. (17)
However, by Theorem 1, any accumulation point of the sequence
1
L(Z™(0))
must be equal tg)(7) for some fluid trajectoryy issued from an initial condition
y(0) such thatL(y(0)) = 1. Furthermore, this family of random vectors is uniformly
integrable: indeed, writing
1 X¥(0) 1
XY (L(ZV(0))7) < =2 + P.(L(Z™(0))ce.T),
L(ZN(O)) S( ( ( )) )— B\S|Xév(0) L(ZN(O)) ; ( ( ( )) )

where theP, are the Poisson processes previously introduced, uniform integrability
can be readily checked. Since the functibigrows not faster than linearly, the family
of random variables 1

L(Z7(0))

XN(L(ZY(0))r)

L (XN(L(27(0))7))
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is also uniformly integrable. Since the functidnis continuous, accumulation points
of this sequence must be of the forby (7)), for some fluid trajectory issued from
an initial conditiony(0) such thaty(0) = 1. By Theorem 3, all such accumulation
points are less than, or equalte- ¢. This together with uniform integrability ensures
that

lim sup EL (Z¥(L(ZY(0))7)) <1—¢,

1
N—oo L(ZN(0))
which contradicts (17). The proof is concluded by verifying the other assumptions
of Theorem 4, i.e. thaf{z : L(z) < M} is finite for sufficiently large). This
holds trivially, because for anx -component the humber of potentidlcomponents
is bounded (say byF| times the number of subgraphs Gj.
Finally, one must check th&,L(Z(1)) < +oo for all z; this is easily verified, once
more by boundingXs(1) by its initial value plus increments of Poisson processes.

IV. NODE-CAPACITATED NETWORKS
A. Model and Algorithm

c) Neighbour selectionHere, the system is also described by a a graphk
(V, E). However, the capacities are now associated with nodes rather than with edges.
We shall denote by, the capacity of node, and assume that each node devotes its
capacity to one of its “most deprived neighbours”. By this, the following is meant.
For each of its neighbours, node« evaluates the numbef ., , of packets that it
could usefully forward to node. Using the same notation as before, this reads:

Z+ufv = X+u7v + Xiu,v-

It then elects one neighbourfor which the corresponding quantigy, ,_,, is maximal.
Ties can be broken either at random, or in a systematic manner. Once the target
neighbourv is chosen, then one of th&,, , packets held by, and useful tov is
chosen, and forwarded fromto v, at ratec,.
d) Packet selectionWe now describe how packets are elected for transmission

once a node’s capacity becomes available. For non-source moed® have chosen
to transmit to some most deprived neighbeurtthen the packet to be transmitted is
selected at random among all the possifle, ., possible choices.

For the source node, having chosen to transmit to some most deprived neighbour
v, the following strategy is used: if the source has a packet that it has not sent to
anyone before (dresh packet), that is ifX(s} > 0, then one such fresh packet is
forwarded to nodev; if no such fresh packets are available, then the packet to be
forwarded is selected uniformly at random from the, , possible choices.

As in the edge capacitated case, the state space consists in the collection of variables
Xg, forall S € S, and the collection of active packet states= (W4, F1), ..., Wi, Fin)).
The constraints on these active packet states are different though: we now assume that
each node forwards a packet to only one of its neighbours at a given time. Thus for
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each node, there is at most one edde, w) appearing in the setg;, i = 1,...,m.
Otherwise the same constraints apply: for a given active padket’), and each
edge(u,v) € F, necessarilyy € W andv ¢ W; also, there is no other edde’, v)
pointing towardsv in F'.

We shall assume that packet transmissions are not preempted, even if a neighbour
of some nodeu becomes more deprived than the neighbouo which nodeu is
currently transmitting.

As in the edge-capacitated case, in the present work we focus on the case where
completion of a packet transmission by nodds an Exponential random variable
with mean1/c,, and where fresh packets arrive at the source nodethe instants
of a Poisson process with rate

B. Fluid limits

We first define the candidate fluid trajectories for the system under consideration:
Definition 2: The real-valued, non-negative functio(is;)scs are called fluid trajec-
tories of the node-capacitated system if the following properties hold.

Forall S € S, u e S, v¢ S such that(u,v) € E, there exist non-decreasing,
Lipschitz-continuous functiongg .,y with Lipschitz constant,, such that Equa-
tions (2) hold. Furthermore, using notation

Yru—v = § Ys,
SeSueS,vESs

for all S € S, u € S, the functions{¢s, () }ves,ww)er are differentiable at almost
everyt, and if }° ., cp Yru—u(t) > 0, their derivatives satisfy:

d .
EQSS,(W) (t> =0 if ?/+u—v(t) < U,:(IEE},))(GE (y+u—v/ (t)) ) (18)
d
- =c,. 1
Z Z dt ¢S,(uv) (t) Cy, ( 9)

vi(uwv)€eE SwueSvgs

If u # s, that is for a non-source node, one also has, fowaluch that(uv) € £
and assuming the condition

d
Z Egbs,(uv) (t) >0

SwueSwgSsS
holds, the following equation:
d ys(?) d
VS/u € S,v ¢ S, —bs ) (t) = — 05 () (1) (20)
at > 2sruestwgs Y5 (t) S/:uesz’,véés' >

For the source node, one has the following:

d
Yisy > 0= Z a@s},(sv)(t) = Cs. (21)
v#£s
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In the case wherg,, = 0, one then has for alb such that(sv) € E, assuming the

condition p
Z %Qbs,(sv) (t) >0
SeS:S#{s},v¢S

holds, the following:

d ys(?) d
VS € S/S 7£ {S}7U ¢ S _¢S, sv (t) = _¢S’, sv (t)
> Dsresist{syogs Ys (1) yes;sg{:s},vw >

(22)
O
We now establish the following
Theorem 5:Consider a sequence of initial conditiof& ™ (0), AV (0)), N > 0,
such that the limit
lim — XN (0) = y(0) € RS
Noso N - +
exists, withy(0) # 0. Then for any subsequence, there exists a further subsequence,
that we denote byV’, and a fluid trajectory with initial condition(0), such that for
al T >0,all Ses,

1 /
lim sup |—X& (Nt)—y t‘:(). (23)
Jim_ s |5 X (V) — st

Proof: Introduce the functions

t
DY () = Py | o / > lw—saerds |,
O (W,F)eAN (s—)

where P, are independent, unit rate Poisson processes. The existence of functions
¢,y that are non-increasing and Lipschitz continuous with Lipschitz constant
and such that for functiong given by (2), the above uniform convergence (23) holds,
is established exactly as in the proof of Theorem 2, and hence the detailed argument
is omitted.

It only remains to establish properties (18-22) of the derivat&&@,(w) (t). Fix
thush > 0, and consider the quantity

1 /1 1
(08 V(e ) = 23 (V) ) (24)
Assume that the node is such that the limiting processég) satisfy
> Yrumw(t) > 0. (25)

v'#u
Then, providedy.,_,(t) < max, ., y+.—v(t), by Lipschitz continuity of the limiting
trajectories, the same inequality holds throughout the intétvak h|. Thus, by con-
vergence of the rescaled trajectories to the fluid limits, for large endugheighbour
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v is never selected for transmission by nadever the whole intervalN¢, N (t + h)].
It then follows that the term (24) converges to 0/ds— oo. This establishes (18).
Note next that, when (25) holds, for large enouglone has the following equality:

1/1 1 1
v#U,SESuES,vES

This is because nodeés capacity is always used when there are packets that mode
can usefully transmit. This identity guarantees that

) 1 /1 1
i S 1 (SR ) - 08,0 ) — e

N—oo
v#£u,SES:UESvES

from which (19) follows.
Assume now that for non-source nodenodewv is such that

d
= s () (t) > 0.
>, 705 () >

SwueS,vgS

Then for allS such thatu € S, v ¢ S, of all the instants during the intervaVt¢, N (t+

h)] at which nodeu chooses to send a packet to nadea fractionys(t)/y..—.(t) +

0(h) + 0(1/N) of these choices is towards an idle packet previously replicated at all
nodes inS. Furthermore, once transfer of such previously idle packets has started,
such a packet is elected for transmission by some other node with probability ).

This thus shows that

lim % [@{gv’(w)(N(t +h)) — ®§(uv)(Nt)] = (Awt) + 0(h)) Z (057 (o) (E + B) — D7 ()

N Yru—( S'ueS gt s’

Dividing by h and lettingh tend to zero establishes (20).

Equation (21) follows by similar arguments, relying on the fact that the source
node s forwards fresh packets, whenever there are some available. Equation (22) is
also established by similar arguments, now relying on the fact that the source, when
sending non-fresh packets, selects such packets uniformly at random. [ |

C. Stability for the complete graph

The main result we shall establish is in the case of the complete graph, that is all
edges(u,v), u # v, are present irt’. We then have the following
Theorem 6:Assume that the grap = (V, ) is complete, and that the injection

rate \ verifies:
A <min | c ey 2 Cu (26)
S5 K 1 5

where K = |V|. Then the Markov process keeping track of the system state under
“random useful to most deprived neighbour” scheduling strategy is ergodic.



16

The proof of Theorem 6 parallels exactly that of Theorem 1, relying on a combination
of Theorem 4 with Theorem 5 (taking the role played by Theorem 2 in the proof of
Theorem 1) and of Theorem 7 below (taking the role played by Theorem 3 in the
proof of Theorem 1). We shall not reproduce the whole argument, but shall instead
only detail the proof of the following result on stability of fluid trajectories:

Theorem 7:For anyy = (ys)ses € RS, define theworkload function w(y) as:

= ys (K —18]), (27)
ses
where K = |V|. Under the assumption (26), when the grapls complete, any fluid
trajectoryy as per Definition 2 is such that, for some- 0,

w(y(t)) < max(0, w(y(0)) — et). (28)
Proof: To establish (28), it suffices to show that, for all fluid trajectgryat a
point ¢t wherey(t) is differentiable and,(¢) # 0, one has

Suy(t) < —e

This is true because the function— w(y(¢)) is Lipschitz-continuous, which follows

from Lipschitz continuity of the individual functions— ys(t).
We distinguish two cases. First, consider the case whetefat all © € V, one

has
S iumu(t) > 0. (29)
v#u

Write then, using (2):

awy(t) = ses(K —1S)gus(t)
= AK—1) - ZSES Zuesvgs dt¢5 (uv)( )
=AMK-1) - Zuev Z (w)€E ZS u€S, v s dt¢5 (uv) (t)
= )‘(K - 1) - Zue\/ Cu,
where the last equality follows from (19), which is applicable in view of Assump-
tion (29). Thus in the present case, under Assumption (26), the time deri @t w (y(t))
decreases at a constant speed as desired.
Consider now the case where for a non-empty$etall © € S* are such that

Zy+u v —0

vFEU

Equivalently, for allS € S such that € S, one hagys(t) = 0. It readily follows that
for any nodeu € V, the set of most deprived neighbours consists precisely of those
nodesv € S*.

Distinguish now according to whetheg,,(t) = 0 or not. In the first case where
y(s1(t) = 0, necessarily there must exi$t ¢ S, T # {s} for which yp(t) > 0,
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by the assumption thaj(t) # 0. Note now that, by non-negativity of the function
t — y¢s(t), one must necessarily have:

d

Ey{S}(ﬂ =0, (30)
and by the same argument, for &llsuch thatS N S* # (), one also has
d
— =0. 1
dt!/s(t) 0 (31)

On the other hand, it follows from Equation (18) that the left-hand side of (30) also

reads J
A=Y 7 Ptshisn (1)

vES*
It thus follows from (19) that

d
Z Z E¢S,(sv)<t) =cs—A>0.
SES,S#{s} vES*
Using (30-31), write then
%w(y(t)) = ZSES:S;&{S},SHS*:@(K - |S|)%y5(t)

- ZSES:S;&{S},SOS*:@(K —|S)) des,ves** %%,(uv) (t)
— > sesisns —o (B = [S) D vese 595,50 (t)

—(cs — A

[IA

In the above, we have used the fact that the most deprived nodes are titsand
hence by (18), for all5 such thatS N.S* =0, all u € S, v € S\ {u}, necessarily

d
el 1) =
o D5\ [o},(uv) (1) = 0,

for the capacity of node is fully targeted towards nodes is*.
The last case to consider is whep, () > 0. Then in view of (21),

d
%y{s}(t) =\ —cs.

This entails that

Sw(y(t) =—(K—=1)(cs =)+ D 5es:54{s},5ns—o (K — |S1) s (t)
=—(K—1)(cs —A) — Zseszs#s},SmS*:@(K —151) ZuES,UES* %qb&(uv)(t)
< —(es — A) (K —1).

Thus, it follows that (28) holds, witlh = min(c, — A, >,y cu — (K = 1)A). [
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