
Local Training and Belief Propagation

Charles Sutton and Tom Minka

Microsoft Research Ltd.

MSR-TR-2006-121

10 August 2006

Abstract

Because maximum-likelihood training is intractable for general factor graphs, an appealing

alternative is local training, which approximates the likelihood gradient without performing global

propagation on the graph. We discuss two new local training methods: shared-unary piecewise,

in which unary factors are shared among every higher-way factor that they neighbor, and the

one-step cutout method, which computes exact marginals on overlapping subgraphs. Comparing

them to naive piecewise training, we show that just as piecewise training corresponds to using

the Bethe pseudomarginals after zero BP iterations, shared-unary piecewise corresponds to the

pseudomarginals after one parallel iteration, and the one-step cutout method corresponds to the

beliefs after two iterations. We show in simulations that this point of view illuminates the errors

made by shared-unary piecewise.

1 Introduction

One approach for approximate parameter estimation in loopy factor graphs is local training, as in
pseudolikelihood [2] and piecewise training [6]. Another intuitive approach is to compute approximate
marginal distributions using a global propagation algorithm like BP, and simply substitute the resulting
beliefs into the exact gradient. These approaches are actually closely related, because stopping after
the first few iterations of BP will yield messages that depend only on local information in the graph. In
this note, we introduce two new local training algorithms, and show that they can be viewed either as
performing local training, or as computing approximate marginals using messages from early iterations
of BP.

The new algorithms are shared-unary piecewise, which is standard piecewise with unary factors
shared among the pieces, and one-step cutout, which computes exact marginals in overlapping sub-
graphs of the original graph. In order to see how these algorithms arise from BP, we need to make a
distinction that is not always clear in the literature—the distinction between beliefs and pseudomar-
ginals. By the belief of a node i, we mean its normalized product of messages, just as one ordinarily
computes beliefs after running BP. By the pseudomarginal, on the other hand, we mean the derivative
of the free energy with respect to the unary parameters of the model. Although when BP has converged
the beliefs and pseudomarginals are equal, they are in general distinct, and we can obtain insight by
examining algorithms from both of these viewpoints.

Each of the local training algorithms can then be interpreted in three ways: as performing maximum-
likelihood training on a modified graph, which we call the neighborhood graph view ; as maximizing the
Bethe energy at a particular message setting, which we call the pseudomarginal view ; or as approxi-
mating the ML gradient using beliefs at a particular message setting of BP, which we call the belief
view. These viewpoints are listed in Table 2, which summarizes much of this note. In particular, just
as standard piecewise corresponds to zero iterations of BP, shared-unary piecewise corresponds to one

1

iteration, and one-step cutout under certain conditions corresponds to two iterations. (For reference,
the messages after zero, one, and two BP iterations are given in Table 1.)

Thus, the contributions of this note are as follows. First, we explain the local training, pseudomar-
ginal, and belief perspectives of these algorithms (Section 3). Then we present shared-unary piecewise
(Sections 4 and 5) and one-step cutout (Section 6), explaining them both from the local training and
BP perspectives. By taking the BP viewpoint, we show how the pseudomarginals of shared unary can
be viewed as an approximation to the one-step cutout beliefs (Section 7). This viewpoint provides an
explanation of the approximation error made by shared-unary piecewise in simulated data (Section 8).

2 Background

Consider a CRF p(y|x) with parameters θ and terms ta(ya,x, θ), where a denotes a factor, and ya an
assignment to the variables in a. We assume that p is weakly canonical form, by which we mean that
every variable i has a unary term ti(yi,x, θ), and for every non-unary factor a and variable i ∈ a, the
sum

∑

ya\yi
ta(ya,x, θ) is uniform over yi. For fixed x, this transformation is always possible, and it

means intuitively that none of the unary information is hidden within higher-way factors. Note that
this is a weaker condition than the canonical form used in the Hammersley-Clifford theorem [1], in
that we allow k-way factors (k > 2) to contain (k−1)-way information; for example, a three-way factor
may contain two-way information. We assume that the unary factors are parameterized as

ti(yi,x, θ) = exp{θi(yi)}. (1)

BP approximates the CRF partition function as (using the dual Bethe energy introduced in [3]):

ZBP(x, θ) = max
t̃a(ya)

∏

a

(

∑

ya

ta(ya,x, θ)

t̃a(ya)
q(ya)

)

∏

i

(

∑

yi

q(yi)

)1−di

, (2)

where we define the unnormalized beliefs as

q(y) =
∏

a

t̃a(ya) =
∏

a

∏

i

mai(yi), (3)

with q(ya) =
∑

y\ya
q(y) and q(yi) =

∑

y\yi
q(y). We define the normalized beliefs as ba(ya) ∝ q(ya).

If we set the t̃a to 1, as if we had performed zero iterations of BP, then we get the piecewise
approximation [6] (up to a constant):

ZPW(x, θ) =
∏

a

(

∑

ya

ta(ya,x, θ)

)

∏

i

(

∑

yi

1

)1−di

. (4)

To incorporate unary factors, one way is to train the unary factors separately, like any other piece, but
sometimes this leads to a bad approximation. In previous work on piecewise training [6], the models
contained no unary factors, using instead fully-parameterized pairwise factors. This sidestepped the
question of how to deal with unary factors. In Sections 4 and 6, we discuss alternative approximations
that approximate log Z better.

For more information on CRFs and approximate likelihoods, see [4, 7].

3 Pseudomarginals, Beliefs, and Neighborhood Graphs

In this section, we explain the subgraph and BP viewpoints on local training algorithms. First, many
local training algorithms are straightforwardly viewed as performing exact inference on a transformed
graph that cuts the global dependencies in the model. For example, standard piecewise performs

2

maximum-likelihood training in a node-split graph in which variables are duplicated so that each
factor is in its own connected component [5]. We refer to this viewpoint as the neighborhood graph
view of a training algorithm.

Second, many local training algorithms can be interpreted as approximating log Z by the Bethe
energy log ZBP at a particular message setting. We call this the pseudomarginal view, because under this
view, the estimated parameters are chosen to match the pseudomarginals to the empirical marginals.

Finally, any approximate inference algorithm can be used to perform approximate ML training, by
substituting the approximate beliefs for the exact marginals in the ML gradient. We call this the belief
view of an approximate training algorithm. For example, this is the standard way of implementing ap-
proximate training using BP. So any method for computing approximate beliefs yields an approximate
gradient. Interestingly, not all such approximations to the gradient can themselves be obtained as the
exact gradient of any single approximate objective function. An example of an approximate gradient
that has no objective function is the one-step cutout method (Section 6). Recently, training methods
that have a pseudomarginal interpretation have received much attention, but it is not clear if training
methods that have a pseudomarginal interpretation should be preferred over ones that do not.

The pseudomarginal and belief viewpoints are distinct. To explain this, we need to make a distinc-
tion that is not always clear in the literature, between beliefs and pseudomarginals. By the belief of a
node i, we mean its normalized product of messages, which is proportial to q(yi). By pseudomarginal,
on the other hand, we mean the derivative of log Z̃ with respect to θi. These quantities are distinct.
For example, in standard piecewise, the pseudomarginal ∂ log ZPW/∂θi(yi) equals pi(yi), but the belief
is proportional to q(yi) =

∑

y\yi
q(yi) = 1.

This point may be confusing for several reasons. First, when the messages t̃ are a fixed point of
BP, then the pseudomarginal always equals the belief. But this does not hold before convergence, and
we shall be concerned in this note with intermediate message settings, before BP has converged. A
second potential confusion arises because we define ZBP using the dual Bethe energy [3] rather than the
primal. In the primal Bethe energy [9], the pseudomarginal equals the belief at all message settings,
but this is not true of the dual energy. We use the dual energy rather than the primal not only because
it helps in interpreting local training algorithms, but also because at intermediate message settings it
tends to be a better approximation to log Z.

Finally, when calculating pseudomarginals ∂ log Z̃/∂θi, we must recognize that the message setting
is often itself a function of θ. For example, suppose we stop BP after one iteration, that is, we
take Z̃(θ) = ZBP(θ, t̃(1)(θ)), where t̃(1) are the messages after one BP iteration. Then, because the
message setting is clearly a function of θ, we need to take ∂t̃(1)/∂θi into account when computing the
pseudomarginals of Z̃.

4 Shared-Unary Piecewise

One idea for improving the piecewise estimate of the unary gradient is to duplicate the unary factors
over every non-unary piece that they neighbor. This yields shared-unary piecewise. Recall that the
standard piecewise ZPW arises from ZBP when all t̃a = 1. In shared-unary piecewise, rather than
approximating the unary factors by t̃i = 1, we incorporate them exactly, that is, we take t̃i(yi) =
ti(yi,x, θ) for the unary factors, and t̃a = 1 otherwise. These messages are the result of one parallel
BP iteration from uniform messages, so we call them parallel BP(1) messages. These messages yield
the approximate partition function:

ZPWU =
∏

a∈NU

(

∑

ya

ta(ya,x, θ)
∏

i∈a

ti(yi,x, θ)

)

∏

i

(

∑

yi

ti(yi,x, θ)

)2−di

, (5)

3

Iterations

0 t̃a = 1 for all a

1 t̃a = 1 for nonunary a; t̃i = ti for variables i

2 t̃a =
∏

i∈a m
(2)
ai (yi), where

m
(2)
ai (yi) =

∑

y\yi
ta(ya,x, θ)

∏

j∈N(a)\i tj(yj ,x, θ)

Table 1: Message settings after zero, one, and two parallel iterations of BP. Recall that the nonunary
factors are assumed to be weakly canonical.

where NU is the set of nonunary factors in the model. We can distribute terms in ZPWU to yield a
form similar to standard piecewise. First, we define a normalized version of the unary factors as

pi(yi) =
ti(yi,x, θ)

∑

y′

i

ti(y′
i,x, θ)

. (6)

Then we can distribute terms in (5) to obtain

ZPWU =
∏

a∈NU

∑

ya

ta(ya,x, θ)
∏

i∈N(a)

pi(yi)

∏

i

∑

yi

ti(yi,x, θ). (7)

So shared-unary piecewise is the same as regular piecewise, except that we share normalized unary
factors among all of the higher-way pieces that they neighbor. By normalizing the unary factors before
spreading them across all the pieces, intuitively we avoid overcounting their sum.

5 Shared-Unary Pseudomarginals

In this section, we derive the pseudomarginals for shared-unary piecewise. Taking the derivative of
log ZPWU yields

∂ log ZPWU

∂θi(y′)
=

∑

a∈NU(i)

∑

ya
ta(ya,x, θ)

(

∏

j∈N(a)\i pj(yj)
)

· ∂pi(yi)
∂θi(y′)

∑

ya
ta(ya,x, θ)

(

∏

j∈N(a) pj(yj)
) + pi(y

′), (8)

where NU(i) is set of all nonunary factors that neighbor variable i. Then substituting in

∂pi(yi)

∂θi(y′)
= p(yi)[1{y′=yi} − pi(y

′)] (9)

yields

∂ log ZPWU

∂θi(y′)
= pi(y

′) +

∑

a∈NU(i)

∑

ya\y′ ta(ya,x, θ)
(

∏

j∈N(a) pj(yj)
)

∑

ya
ta(ya,x, θ)

(

∏

j∈N(a) pj(yj)
) − pi(y

′)

 (10)

= pi(y
′)

1 +

∑

a∈NU(i)

Cam
(2)
ai (y′) − 1

 , (11)

where m
(2)
ai are the unnormalized BP messages after two parallel updates. We introduce the notation

Ca to represent the denominator in (10), which is not the normalizing constant of m
(2)
ai .

4

Standard piecewise

Neighborhood graph node-split graph [5]

Pseudomarginal view Messages at zero iterations

Belief view ba(ya) ∝ ta(ya,x, θ)

Shared-unary piecewise

Neighborhood graph node-split graph with pieces ti for each variable i, and
{ta} ∪ {pi | i ∈ a} for each nonunary a

Pseudomarginal view Messages after one parallel iteration

Belief view Summation-hack approximation to BP beliefs after two
parallel iterations.

Cutout (one-step)

Neighborhood graph node-split graph with pieces Ga for each factor a, where
Ga defined as in (14)

Pseudomarginal view none

Belief view BP beliefs after two parallel iterations

Table 2: Viewpoints on local training algorithms discussed in this note. For each method, “Neigh-
borhood graph” means the graph on which the method can be viewed as performing exact maximum
likelihood training. “Pseudomarginal view” lists the message setting with which the method approx-
imates log Z by log ZBP. “Belief view” gives the beliefs with which the method can be viewed as
approximating the gradient of the true likelihood. For reference, the BP messages after zero, one, and
two parallel iterations are given in Table 1.

5

6 Cutout Method

The cutout method approximates the true gradient by performing exact inference on a subgraph. Each
parameter is assigned a its own subgraph, but the subgraphs are allowed to overlap. Given a subgraph
Ga for each factor a, we define the subgraph likelihood `a as the exact likelihood over the graph Ga.
Let A be the set of factors in Ga and tA =

∏

b∈A tb. Then the subgraph likelihood can be written

`a(θa) =
tA(yA,x, θ)

∑

y′

A

tA(y′
A,x, θ)

=
tA(yA,x, θ)

ZA

. (12)

Then the parameter vector θ is selected to solve the system of equations ∂`a/∂θa = 0 for all a. In
general, there does not exist a single objective function `(θ) whose partial derivatives match all of the
∂`a/∂θa, because the vector field defined by ∂`a/∂θa has nonzero curl. In two dimensions, the curl of
a vector field F (x1, x2) = [f1(x1, x2) f2(x1, x2)] is given by

curl F =
∂f2

∂x1
−

∂f1

∂x2
. (13)

It is a standard theorem of vector calculus that a piecewise continuous vector field over R
n is the

gradient of a function if and only if it has zero curl. To see this, observe that if F has nonzero curl, it
is the gradient of a function f only if ∂f/∂x1x2 6= ∂f/∂x2x1, which is impossible. The cutout vector
field has nonzero curl essentialy because each θa is used in many `b, but only one `a is used to compute
its approximate gradient.

In this note, we focus on a special case of the cutout method, the one-step cutout method. In
one-step cutout, we choose Ga to be all of the neighboring factors of fa, plus their unaries. That is,
Ga is a factor graph with factors

A = {tb | factor tb is distance 2 or less from factor ta}. (14)

(When counting distance between factors, we do not count variables, so that a path a − i − b in the
factor graph counts as one step.) In many situations, the cutout graph Ga is a tree, even when the
original graph G is not, for example when G is a grid. If Ga is a tree, then we can compute ∂`a/∂θa

exactly using two parallel iterations of BP on the original graph G. To see this, observe that because
Ga is a tree of diameter 4, we can exactly compute ZA by performing two parallel BP iterations on
Ga. But the two-iteration messages on Ga are the same as the two-iteration messages on the original
graph, which are given in Table 1.

The beliefs at the parallel BP(2) message setting are

b(2)
a (ya) ∝ ta(ya,x, θ)

∏

i∈N(i)

m
(2)
ai (yi). (15)

So from the belief viewpoint, one-step cutout approximates the ML gradient by substituting the beliefs
(15) for the marginal probabilities.

7 Shared Unary as an Approximation to Cutout

Shared-unary piecewise can be viewed as an approximation to the cutout method. A general way of
approximating a product of terms is the “summation hack”:

∏

i

εi =
∏

i

1 + (εi − 1) ≈ 1 +

(

∑

i

εi − 1

)

, (16)

where the approximation arises from a first-order Taylor expansion around ~ε = 1.

6

0 2 4 6 8 10

−1.5

−1

−0.5

0

0.5

equality strength

lo
gZ

exact
piece
pieceU

0 2 4 6 8 10

−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

equality strength

dl
og

Z

exact
piece
pieceU

Figure 1: Comparison of piecewise and shared-unary piecewise approximations as a function of the
equality strength s. Left, approximation to log Z; right, approximation to its derivative.

0 2 4 6 8 10

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

unary strength

lo
gZ

exact
piece
pieceU

0 2 4 6 8 10

−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

unary strength

dl
og

Z

exact
piece
pieceU

Figure 2: Approximation to log Z by piecewise and shared-unary piecewise as a function of the unary
strength u.

Applying the summation hack to the one-step cutout beliefs (15), we obtain

b
(2)
i (yi) ∝ ti(yi,x, θ)

∏

a∈NU(i)

Cam
(2)
ai (yi) (17)

≈ ti(yi,x, θ)

1 +

∑

a∈NU(i)

Cam
(2)
ai (yi) − 1

 , (18)

which are the same as the pseudomarginals (11) of ZPWU, up to the proportionality constant of pi. So
we can view the shared-unary pseudomarginals either as the pseudomarginals after one BP iteration,
or as an approximation to the beliefs after two iterations. This leads us to expect two sources of error
in shared-unary piecewise: error may arise either from the summation hack, or because the model has
long-distance interactions that cannot be propagated in two parallel BP iterations.

7

−4 −2 0 2 4
−6

−4

−2

0

2

4

6

u1
m

21
+

m
41

Absolute Gradient Error (PW)

6.8e−006

0.023

0.086

0.3

0.92

Figure 3: Absolute gradient error of standard piecewise as a function of the unary parameter and the
sum of its incoming message strengths.

−4 −2 0 2 4
−6

−4

−2

0

2

4

6

u1

m
21

+
m

41

Error(pu) − Error(pw)

−0.73

−0.26

−0.11

−0.038

−0.011

0.0011

0.087

0.61

Figure 4: Difference in absolute gradient error between shared-unary piecewise and standard piecewise.

0 0.05 0.1 0.15 0.2 0.25
−1

0

1

|dp
1
/du

3
|

E
rr

or
 d

iff
er

en
ce

Error(pu) − Error(pw)

Figure 5: Difference in gradient error between shared-unary and standard piecewise. At left, when
the magnitude of ∂p(y1)/∂u3 is small, then shared-unary is superior. At right, where this derivative
is large, shared-unary and standard piecewise are equivalent.

8

−4 −2 0 2 4
−4

−2

0

2

4

m21

m
41

Error (cutout − pwu)

−0.43

−0.019

−0.0008

0.0029

0.02

0.061

0.14

0.44

−5 0 5
−5

0

5

5

10

15

20

Figure 6: Difference in gradient error between cutout method and shared-unary piecewise as a function
of the message strengths (left). At right, contours of the error of the “summation hack” Taylor
expansion.

8 Simulations

These intuitions can be validated by simulation on a simple network. This data is generated from a
three-node network of binary variables with pairwise factors

ta(ya) =

1 e−s

e−s 1

 (19)

and unary factors ti(yi) = [1 e−u]. We transform the pairwise factors into a three-variable exclusive-or
factor times a unary factor, so that from the perspective of the learning algorithm, all the factors are
unary. We focus on how the approximations to log Z and its derivatives change as a function of the
model parameters. This is useful to study because the log likelihood equals log Z plus a linear function
of the parameters, so examining log Z alone gives insight into how the approximation performs for any
data set [8].

First, we look at single-dimensional plots of the approximate gradients, in which all of the unary
parameters are tied, and we vary either the unary strength u or the equality strength s. As we vary
the equality strength, for a fixed, strong unary strength of e−u = 0.2, then shared-unary piecewise
provides a much better approximation to log Z as a function of the equality strength s (Figure 1). As
s approaches 0, the pairwise factors drop out, so that both the piecewise approximations are exact. In
both Figures 1 and 2, we subtract log Z(0) from log ZPW. Without that correction, ZPW is an upper
bound but a strong overestimate. Also, in both figures, the plotted derivative is the negative of the
pseudomarginal, because of the parameterization we use.

When we vary the unary strengths, on the other hand, shared unary has less desirable behavior
(Figure 2). This figure shows the approximations to log Z and its derivative for a fixed equality
strength e−s = 0.2. Of course, as u approaches 0, the unary factors drop out, so that shared unary
becomes equivalent to standard piecewise. Elsewhere, however, we see that shared-unary piecewise
is no longer convex, because of the per-node normalization, and in fact we see a large regime where
ZPWU is increasing while the true Z is decreasing. Consequently, the derivative of ZPWU crosses zero at
several points when the exact objective does not, which is undesirable in an approximation. In other
words, the piecewise pseudomarginal is sometimes negative.

We can get a more precise sense of when the piecewise approximations break down by examining
their approximation error as a function of the incoming messages from the rest of the network. To do

9

this, we use a four-node Potts network of the form above, which is easier to interpret because there
are no odd-length cycles. Also, it is helpful to leave the unary parameters untied, so that the model
has five parameters [s, u1, u2, u3, u4]. We generate models by sampling uniformly over all parameter
values in the range [−4, 4]. We measure the error in the pseudomarginal of y1 for both standard and
shared-unary piecewise. We plot the error in the pseudomarginal as a function of the message strengths
m21 and m41 of the incoming messages to y1 from its neighbors y2 and y4. By message strength, we
mean the log ratio of the message value at 0 over the message value at 1.

For standard piecewise (Figure 3), we see as expected that the approximation error is greatest
when the incoming messages are both strong and in disagreement with the local unary parameter.
For shared unary, on the other hand, we report the difference in gradient error between shared-unary
and standard piecewise (Figure 4). First, shared unary improves greatly over standard piecewise in
the areas where piecewise performs worst, that is, when the incoming messages disagree strongly with
the local unary. But shared unary is not always better than standard piecewise, especially when the
messages are weak. This may be surprising because shared-unary performs an extra iteration of BP.
However, the BP view of shared unary suggests two possible sources of error. First, one BP iteration
can actually be worse than zero iterations, if nearby potentials contradict stronger factors elsewhere
in the network. Second, shared unary may be a bad approximation to the two-iteration BP beliefs
because of the summation hack.

We can isolate these two sources of error. First, to see where one iteration of BP might actually
hurt, we look at the derivative of p(y1), the exact marginal probability of variable y1, taken with respect
to u3, the unary parameter opposite y1 in the graph. If this derivative has large magnitude, then we
expect that the parameter u3 has a large impact on the marginal p(y1), so that one iteration can make
the beliefs worse if y2 and y4 have an effect in the opposite direction as y3. In Figure 5, we show the error
difference between shared-unary and standard piecewise as a function of |∂p(y1)/∂u3|. As this argument
predicts, when this derivative has large magnitude, then the information from u3, which neither method
considers, is most important, so that neither method dominates. When this derivative has small
magnitude, then the local information is more important, so shared-unary piecewise dominates.

Second, we can examine the effects of the summation hack by plotting the difference in gradient
error between shared unary and cutout. The summation hack is accurate near the axes, so if both
messages are strong, we expect shared unary to have high error. In Figure 6 it can be seen that shared
unary performs worse than one-step cutout at exactly the places where the summation hack predicts.

An interesting observation here is that the cutout method is itself not always better than shared-
unary piecewise, even though cutout performs an extra iteration of BP. This happens in cases when u3

has large magnitude, so neither method can do well. In these cases, it can happen that the summation
hack error pushes the shared-unary marginal in the direction of the correct marginal, so that shared
unary performs better.

In summary, we have seen that in many situtions, shared-unary piecewise provides a better approx-
imation to log Z and its derivatives than standard piecewise. The occasions when standard piecewise
performs better than shared unary occur when there is strong influence from outside the pieces, in
which case neither piecewise method is probably advisable. We have also demonstrated in simulation
two potential sources of error in shared-unary piecewise: strong iteractions from outside the piece,
and the summation hack. A potentially serious drawback to shared-unary piecewise, however, it is not
convex in the parameters. Indeed, an important limitation of these simulations is that we have looked
only at error in the gradient, not error in the optimal parameter settings, so we cannot assess to what
extent the loss of convexity makes it harder to find good parameters.

Acknowledgements

We thank Martin Szummer for helpful conversations.

10

References

[1] J. Besag. Spatial interaction and the statistical analysis of lattice systems. J. Roy. Statist. Soc.
Ser. B, 36:192–236, 1974.

[2] J. Besag. Statistical analysis of non-lattice data. The Statistician, (24):179–195, 1975.

[3] Tom Minka. Divergence measures and message passing. Technical Report MSR-TR-2005-173,
Microsoft Research, 2005.

[4] Tom Minka. A survey of approximate CRF likelihoods. Microsoft Research Internal Memo, 2005.

[5] Charles Sutton. Node splitting view of piecewise training. Technical report, Microsoft Research,
2006.

[6] Charles Sutton and Andrew McCallum. Piecewise training of undirected models. In 21st Conference
on Uncertainty in Artificial Intelligence, 2005.

[7] Charles Sutton and Andrew McCallum. An introduction to conditional random fields for relational
learning. In Lise Getoor and Ben Taskar, editors, Introduction to Statistical Relational Learning.
MIT Press, 2006. To appear.

[8] Martin Szummer and Tom Minka. Analysis of extensions to piecewise training. Microsoft Research
Internal Memo, in preparation, 2006.

[9] J.S. Yedidia, W.T. Freeman, and Y. Weiss. Constructing free-energy approximations and general-
ized belief propagation algorithms. IEEE Transactions on Information Theory, 51(7):2282–2312,
2005.

11

