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Abstract 
 

Giano is a simulation framework for the full-system 
simulation of arbitrary computer systems, with special 
emphasis on the hardware-software co-development of 
system software and Real-Time embedded applications. It 
allows the simultaneous execution of binary code on a 
simulated microprocessor and of Verilog code on a 
simulated FPGA, within a single target system capable of 
interacting in real-time with the outside world. The 
graphical user interface creates the interconnection 
graph of the user-provided simulation modules in 
PlatformXML, an XML-based platform description 
language. Experience with several projects reveals that 
the tool is effective in reducing the development and 
maintenance time for system software and for embedded 
applications. The most visible benefits are a shorter 
modify-compile-test cycle, better support for performance 
tuning and improved flaw detection. Giano is freely 
available in source and binary form for non-commercial 
use. 

 

1 Introduction 
 

A number of companies have introduced 
microcontrollers that integrate a processor and some 
amount of programmable logic in a single package.  In 
these “System on a Chip” (SoC) devices the I/O pins are 
connected to the programmable logic side of the device 
and it is the final user that defines how the 
microcontroller interfaces to the external world, not the 
manufacturer. The manufacturer provides libraries for 
timers, counters, serial communication ports (UART, I2C, 
IrDA, and SPI), CRC generators, amplifiers, ADCs and 
DACs, filters, DTMF tone generators, PWM modulators, 
LCD drivers.  The user is then free to create more. 

The SoC is but the natural evolution of a common 
practice in the embedded space, namely the offloading of 
the most demanding computations and I/O control 
functions to a field-programmable gate array (FPGA).  In 
fact, FPGAs have become so powerful that they can 
eliminate the microcontrollers as separate chips and 

integrate them directly as “soft-cores”. Applications are 
therefore built of two parts, one in C that executes on a 
microcontroller and one in Verilog that “executes” on the 
programmable logic.  

The ultimate products of the two compilers for C 
and Verilog are the binary code to execute on the CPU, 
the binary file to configure the FPGA, and little 
confidence that the two will actually work together. 
Programming FPGAs is fairly complex; it requires 
familiarity with an additional set of tools for coding, 
verifying, synthesizing, placing and routing, 
downloading, and testing the Verilog or VHDL 
“programs”. These processes are time consuming and 
testing is a challenge due to the growing imbalance 
between a reduced I/O pin count and the ever growing 
on-chip functionality 

System integration and testing of the complete 
product reveal functional and performance flaws, forcing 
these processes to repeat. Notice that we could eliminate 
this costly repetition if the functional development of 
software was complete before the hardware design had 
stabilized. Unfortunately, development and testing of 
system software cannot even begin until a working 
prototype of the hardware is available. One way to break 
this impasse and to realize this ideal hardware-software 
co-development is to use a full-system simulator, one 
capable of realizing both the instruction level behaviors of 
instruction set processors, and the behaviors of models 
defined in a Hardware Description Language (HDL).   

We have identified the following six necessary 
requirements for such a tool: it should be capable (1) of 
simulating hardware cores for an FPGA or other device, 
(2) of executing large bodies of code, and (3) of 
simulating a complete system including (4) a variety of 
I/O devices and (5) communicating in real-time with the 
outside world. We expect users to make changes and 
extensions to the simulator, (6) the availability of source 
code is essential. While a number of existing simulators 
can match one or more of these six requirements, none is 
able to match them all.  For instance, Icarus Verilog [26] 
is the only hardware simulator that is currently freely 
available in source form, but it does not simulate a full-
system. Some commercial products allow extensive 
system simulation, but none can interface in real-time 
with the outside world. There are many CPU and full-
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system simulators available in source form but none of 
them understands Verilog or any other HDL. We 
therefore resolved to write a new hardware-software 
simulator, which we named Giano1 [14].   

In the rest of the paper we introduce the usage 
scenarios that motivated the creation of the tool in Section 
2, describe the design goals and challenges in Section 3, 
the current status of our implementation in Section 4, the 
practical use of the tool in a few case studies in Section 5, 
and we report on our experiences using Giano over the 
last few years in Section 6. Section 7 summarizes the 
related work and our conclusions are found in Section 8. 

 

2 Usage Scenarios 
 
An extensible simulation system that can easily 

leverage other existing tools, including HDL simulation 
can adequately support many practical usage scenarios. In 
this section we describe some of the scenarios where the 
tool supports our own research. Section 3 shows how 
these two goals of extensibility and leverage have guided 
the design of Giano. 

 [Prototypes] Research at the boundary of 
Architecture and Operating Systems is hard to evaluate 
when it is not supported by sufficient empirical evidence 
[9]. But until a hardware prototype is available it is not 
even possible to collect this evidence. Only a simulator 
for a realizable model of the proposed hardware can break 
this circularity. For instance, the Giano distribution 
includes a novel Memory Management Unit (MMU) that 
is fully synthesizable and allows full software evaluation. 

 [Full-System prototyping]  A number of embedded 
systems are controlled by a microcontroller and an FPGA 
that offloads some of the most demanding I/O control 
functions [10].  Giano can prototype the entire control 
section, and with the addition of tools like LabVIEW 
[15,16] the whole system including stepper motors and 
other external devices. Analog signals can be simulated 
with MATLAB [36] or captured by an A/D converter. As 
for individual peripherals, a manufacturer can provide 
(the DLL of) a C model for software developers to work 
with, in addition to the often unclear specifications in a 
human language. 

[Architectural simulations and benchmarking] Giano 
can simulate two different CPUs within the same system 
environment, possibly at the same time.  This has rarely, 
if ever, been achieved with real system implementations. 
With a full-system simulator, the architect can compile 
and execute large bodies of code and make meaningful 
comparisons between different architectural solutions.  
                                                           
1 In the Roman mythology, Giano was the guardian god of doors and 
temples; the two opposing faces on his head could stand watch 
simultaneously in two opposite directions. 

For instance, running the Doom [6] videogame with ARM 
or MIPS processors within the same simulated 
microcomputer produces only slightly different 
instruction counts but remarkably different frame rates.  
In a test run, the MIPS system uses 2,339 million 
instructions to paint 1,514 frames, the ARM system 2,325 
million instructions for 2,705 frames.  Various factors 
affect this result, and they can be accurately investigated 
because the simulator improves the visibility of all 
phenomena under study. 

  [Hardware/Software Co-Design] Section 5.3 is a 
case study illustrating precisely how Giano supports the 
hardware-software co-design processes. In essence, when 
using a co-simulator coding and formal verification can 
proceed in parallel with functional simulation, system 
integration, and testing. If the simulator is flexible enough 
it is possible to explore alternate solutions before 
committing to the final configuration. 

 [Coprocessors] Some processor architectures 
(MIPS, ARM) define a standard way to interface the on-
chip coprocessors.  These might be new types of floating 
point coprocessors, vector processors, multimedia 
instructions extensions, DSP-like functionality, or 
cryptographic functions.  Giano can simulate these 
coprocessors in Verilog, while the rest of the system is 
simulated in C.  Test programs and application code and 
libraries are developed long before the actual device 
becomes available. The performance implications for the 
full system are accurately evaluated. A faster simulation 
of the coprocessor in software can be used for validation 
against very large test programs and/or to collect valuable 
traces.  

 [Rapid software development]  Once the first Giano 
implementation was available we found it surprisingly 
effective in helping us develop software for our 
embedded boards. There are three simple practical 
reasons for Giano’s success with our users.  In the first 
place, the compilation times for FPGA devices are quite 
long, in the order of tens of minutes if not hours.  Giano’s 
HDL interpreter might be slow, but it requires zero 
compilation time. In the second place, downloading and 
rewriting the FLASH devices in our ARM development 
boards takes time because they are interfaced via a serial 
line, like most other boards.  A five-to-ten minute 
reprogramming time goes to zero when using Giano: the 
FLASH image is simply read into simulated memory and 
executed.  In the third place, a bad software error in the 
new FLASH image can make the boards unusable and 
impossible to re-FLASH in software.  It becomes then 
necessary to use a FLASH programmer or some other 
time-consuming repair procedure.  With Giano we can re-
FLASH an image to an actual board after we have already 
tested it, eliminating the hazard. 
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[Reconfigurable Computing]   A desirable property 
of an FPGA device is to be able to perform partial 
reconfiguration while the chip is operational. Very few 
existing devices have this property and none of their 
simulators.  With Giano we can modify the Verilog 
interpreter to perform partial reconfiguration, at least at 
the behavioral level. 

 

3 Design Challenges 
 

The simulator was designed with extensibility as its 
primary goal. From the beginning we expected that we 
would be using multiple CPU architectures, MMUs and 
memory subsystems, different byte-orders, multiple 
hardware cores, multiple I/O devices, busses and interrupt 
controllers, and eventually multiple Hardware Description 
Languages.  This goal has affected both the design of the 
structure of the system and the choice of implementing it 
in a portable programming language.   

Because of this goal Giano is more of a simulation 
framework than a simulator properly. The core executable 
is mainly devoted to parsing of the configuration graph 
expressed in PlatformXML and creating and initializing 
the graph in memory.  The semantic of any given 
simulation is actually provided by the nodes of the graph, 
which are dynamically loaded DLLs written by the user.  
Giano does expect all nodes to derive from a common 
GianoModule class, which provides a method to notify 
the node of its siblings in the graph and a method to start 
and terminate the simulation.  The core executable is also 
a good repository for shared functionality and tools that a 
module implementer would have to write anyways.  

A second design goal was to leverage the 
functionality provided by other (large) tools rather than 
recreating it afresh.  The user interface, HDL interpreter, 
mathematical modeling, physical object simulation can all 
be realized by separate tools that already exist and we 
should just find a way to incorporate them in Giano. The 
same principle applies to individual modules as well. A 
lot of work has been done to simulate CPUs and caches 
and their various properties with various degrees of 
accuracy. Ideally we should be able to incorporate all this 
work with minimal programming effort. 

Selecting such an open-ended basic design for the 
tool required us to answer a number of questions both at 
design and implementation time. We will illustrate the 
most relevant design problems and how these goals 
guided our solutions in the rest of this section. 

 

3.1 User Interface  
 
The first problem for a tool that relies heavily on 

configuration data is to create and manage the 

configurations in a simple and intuitive way.  Given that 
the core structure is a graph it was natural to select a 
graphing tool as the basic user interface. Rather than 
creating a new one, we chose to leverage Visio, a 
commercially available tool that is well established, easy 
to use and is easy to customize.  Figure 1 is a screenshot 
of the resulting User Interface. We wrote a simple 
function (a macro in Visio parlance) to parse the Visio 
diagram and generate the PlatformXML file and 
otherwise just relied on Visio to solve the management 
problems for us.  A second macro solved the problem of 
starting the simulation, activating the core executable and 
passing the configuration file name as argument. With 
just these two macros we allow the user to create a graph 
depicting an arbitrary computing system and to simulate 
it. 

 

 
Figure 1: A Screenshot of Giano 

A second issue for the user interface was passing 
arguments to the individual simulation modules.  Some 
options can be chosen at compile time but others are 
better left for the users to select at run-time. A CPU 
module might have a selectable byte-order for instance, or 
a memory bank might have a selectable size. Clearly we 
could not anticipate all of the options all of the modules 
would define, and passing them all in a command line is 
certainly possible but impractical for most configurations.  
Our solution was to use Visio’s custom properties to 
define a list of name-value pairs and to (visually) 
associate one such list to each individual node in the 
diagram. Selecting a different module automatically 
updates the window of the custom properties, which 
makes data entry and editing simple and natural. The CPU 
module in Figure 1 is currently selected and the central 
sub-window shows the list of its properties. These custom 
properties are added into the PlatformXML file by the 
parsing macro or manually with a text editor.  At runtime, 
each simulation module is passed a pointer to its own list 
of name-value pairs, and it is also possible to retrieve the 
argument list for sibling nodes. 



 - 5 - 

We expected that our users would often want to 
override the values provided by the configuration file, for 
instance to change the values of some options or to add 
new options. We provided a simple mean to do this on the 
command line by specifying pairs of the form 
(NodeName::PropertyName Value).   We were concerned 
that the user interface might prove unpopular or too 
inflexible.  In actual use we found quite the opposite, very 
few users know this command line feature even exists. 

 

3.2 Configurations 
 
The choice of using XML to describe Giano 

configurations was based on two goals: we wanted to 
propose a standard way to describe hardware platforms 
for use by other simulators as well as ours, and we did not 
want to restrict the ability to express unforeseen data or 
any properties that might be required in the future.  XML 
[34] is widely understood and supported, and it is indeed 
extensible and therefore a good match for our purposes. 

A simple example of a PlatformXML configuration 
file is given in Figure 2. The node tags we defined match 
the basic classes found in Giano, namely CPU, BUS, 
MEMORY and DEVICE but they do not actually differ in 
their internal syntax. They all expect a Name and a list of 
Property and ConnectsTo clauses. ConnectsTo is used to 
link nodes by-name; Names must be unique. 

 

3.3 Cycle-accurate? 
 
Many users ask whether Giano simulations are 

“cycle-accurate” or not. The simple answer to this simple 
question is that Giano does not make any decision on this 
issue; it actually depends on the choice of modules. The 
basic framework provides the means for carrying a central 
clock throughout the entire configuration, but it is then up 
to the modules themselves to “run” this clock. It is also 
possible to create multiple clocks and make them visible 
system-wide, but again it is up to the modules to run and 
synchronize them. A more complete answer is that a user 
must identify the specific events she is interested in and to 
make sure that they are reproduced with the correct 
timing relationships, at the desired level of precision. 
Section 3.7 describes in some detail how external events 
can be handled with accuracy to realize a Real-Time 
simulation system. Section 3.11 deals with collection of 
traces and their analysis. 

We have realized three different types of CPU 
simulation modules, at different levels of precision.  The 
first type is intended as a functional simulator that trades 
speed for accuracy.  This is typically written in C++ 
and/or using dynamic code generation [19] and might, for 
instance, assume that all instructions and all memory 

accesses take a single unit of time. A second type of 
module is realized leveraging SimpleScalar [5].  This is 
believed to be a more accurate model, even though it does 
not reflect any real implementation. Leveraging the 
ARMulator [2] as a Giano CPU module might realize a 
more accurate system, or at least one that is as accurate as 
the manufacturer is willing to provide.  A third type of 
module is realized using an HDL simulation of the CPU 
module. This approach trades accuracy for much lower 
speed. Section 5.3 describes in some detail how one 
project used this approach. Note that the accuracy is still 
predicated on the HDL code being synthesizable for the 
specific technology/target; a simple behavioral simulation 
can be just as inaccurate as any C model. 

 
Figure 2: A Simple Configuration 

 
Similar considerations apply to the other simulation 

models. For instance, an accurate cache module designed 
with Cacti [33] could be interposed between the memory 
bus and a CPU module. 

 

3.4 Multiprocessors 
 
We selected to provide multiprocessor support from 

the beginning, even though most embedded systems are 
single-processor and some CPU architectures have never 
been realized in an actual multiprocessor system. The 
motivations behind this decision were to be in line with 
our extensibility goals and the hope that the tool might be 
useful to perform scalability analysis of existing and/or 
new software. The tool was indeed used to develop 
system software for a new multiprocessor system (the 
Xbox360 gaming platform), validating our choices. In 
practice, this decision had limited effect on the structure 
of the system but it did affect the implementation and the 
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eventual performance of some CPU modules.  For these, 
we can use a compile-time conditional to generate a 
separate uniprocessor version that is somewhat more 
efficient but this option is not normally used. Consider for 
instance the multiprocessor synchronization instructions 
of the MIPS and of the PowerPC processors. Both 
architectures provide a pair of instructions of the form 
load-with-reservation and conditionally-store-to-memory. 
Logically, the load instruction sets a flag to remember the 
destination address and the store instruction checks that 
the address is still valid, otherwise it does nothing.  Any 
store to the reserved address by any processor will cancel 
the reservation and therefore must be monitored.  This 
potentially means serializing all stores to memory from all 
processors, a serious scalability bottleneck and an 
overhead on all store instructions. In practice, 
reservations are rarely used and almost never contested, a 
fact that we leveraged to eliminate the lock in most 
instances and consequently improve performance.  
Processor reservations are a shared class exported by the 
core executable, which favors reuse.  The class can be 
used either by a cache module or directly by an integrated 
CPU-cache module.    

Notice that it is trivial to create a hybrid 
multiprocessor system with Giano, the user simply selects 
a different DLL for each CPU node in the configuration. 
A hybrid built of the example modules for the PowerPC 
and MIPS processors would be memory-coherent as well. 

The inter-CPU clock synchronization is another 
issue that strongly affects performance.  Ideally, a faithful 
simulation would dispatch instructions on the various 
CPUs with the same timings as on the real system. In 
practice, software is always written to be independent of 
the relative speeds of the various processors because bus 
contention, stalls and interrupts all contribute to make 
such relative speed unpredictable. Taking advantage of 
this fact, it is possible to ignore the synchronization issue 
altogether and use independently scheduled threads to 
simulate all CPUs in parallel. It is left to the simulated 
software to take care of synchronizing them. This 
approach provides best performance, especially on a 
multiprocessor system with a number of real processors 
matching or exceeding the number of simulated CPUs.  
The downside of this approach is that the simulation is 
imprecise and any performance data could be rather 
misleading, especially when executed on a uniprocessor 
where threads can easily get out of step.   

One alternative is to use a single thread to simulate 
all the CPUs, for instance by leveraging the work of the 
PolyScalar project [32] and integrating it into Giano as a 
CPU module. With this approach, one instruction each for 
all cores is dispatched in the main loop and all cores are 
therefore naturally synchronized. All CPUs collectively 
look like a single CPU module to the configuration 

system, which treats PolyScalar as a single entity. The 
bus, memory subsystem and I/O peripherals can remain 
separate modules. 

An intermediate solution is to realize a “close 
enough” simulation but with better performance.  Rather 
than synchronizing on each instruction the various CPUs 
can execute a fixed number of instructions and then 
synchronize. Notice that the deviation from reality is still 
unbounded, even though the clock skew is now bounded. 

 

3.5 Interfacing C and Verilog 
 
When using Icarus Verilog we have the ability to 

realize any desirable interface between C and hardware 
models, because we can change the Verilog simulator 
itself.  This is not the case when using simulators for 
which we do not have access to sources, e.g. all 
commercial grade simulators.  In addition, these 
simulators require running as individual processes, not as 
DLLs within our Giano process. 

The IEEE 1364 standard Verilog Programming 
Language Interface (PLI) [23] was defined to solve this 
and other interface issues for hardware simulators. We 
used it to interface Giano with a commercial Verilog 
simulator, ModelSim v5.8c [13].  According to the 
standard, we created a DLL to be loaded by ModelSim. 
The DLL exports a Verilog runtime function that is 
invoked by a Verilog module that desires to interface to 
the other C model(s).  While many other interfaces are 
possible, we have provided as an example a Verilog 
module that is based on a dual-ported memory 
abstraction. We do not attach any semantics to the values 
or particular locations of the dual-ported memory. They 
can be used as the register file of a device, or a FIFO or as 
packets for transactions over an asynchronous bus. A 
VHDL model can interface to C models by leveraging the 
Verilog module.  

The PLI runtime function passes a handle to the 
dual-ported memory array to the DLL code for later use.  
This function is only called once at simulation start time 
and does not otherwise affect the simulation timings.  
Also at this time the DLL will attempt to connect to 
Giano using a TCP connection, possibly on a separate 
machine.  Using two separate machines for the C and the 
Verilog simulations is often desirable because ModelSim 
uses the full CPU during simulation and can require large 
amounts of system memory.  

Once the connection is established, an asynchronous 
read request is kept posted at all times to accept requests 
from the CPU side.  At the end of each simulated step 
ModelSim invokes a function that quickly checks for 
completion of the posted read.  When data is available, it 
contains the necessary parameters for performing either a 
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read or a write access to the dual ported memory.  A 
second runtime function can be used to report cycle 
counts back to the CPU model. 

Although we have only tested this extensible 
interface with ModelSim it should allow us to leverage all 
the other hardware simulators that support PLI. 

 

3.6 Asynchronous Events 
 

Many simulation modules are passive and become 
active only when the CPU issues a read or write reference 
to their register file. At that point, they perform all the 
operations necessary to complete the read or write access 
in a synchronous manner, namely in the context of the 
Fetch/Store method call on their object instance. 
Memories, busses, frame buffers and other output-only 
devices, and even permanent storage can possibly be 
realized in this simple way. 

Some devices are more active and a synchronous 
simulation is not feasible. Consider the case of a serial 
line with programmable baud rate.  Not only is data 
arrival an asynchronous event, but to be accurate the 
individual bytes of data must be “received” by the 
USART at a maximum frequency defined by the baud 
rate. Another example is a programmable timer, a device 
that generates interrupts at times defined only by the 
simulated software. Even when it is feasible, synchronous 
simulation might not be desirable if it is not accurate 
enough for the user’s needs. For instance, a real disk 
completes operations in times that have a large deviation 
from any set average. If the behavior of the disk affects 
the accuracy of the results it must be simulated with 
greater accuracy. 

To deal with these asynchronous modules Giano 
provides an eventing facility linked to the core clock.  
Modules can create events that are stamped with the 
desired time of activation. When the clock reaches that 
time a method is invoked to return the event to the 
module. A serial line uses this asynchronous method 
invocation to deliver the next character, a timer to 
generate an interrupt to the CPU and a disk to complete 
the I/O operations at the correct time. 

The module that controls the clock is logically 
responsible for triggering events as well. This is often a 
CPU module, but it is not required. A simple way to 
realize the control loop for a CPU thread is as follows: 
- Check if any event has triggered and execute the 

corresponding callback function; 
- Check if the CPU has any pending interrupts; these 

can be generated either synchronously during a 
previous I/O access or during the callback, or 
asynchronously by a separate thread simulating an 
I/O device; 

- If present and enabled, use the MMU to translate the 
program counter’s virtual address to a physical 
address; 

- Access the memory bus to fetch the next instruction; 
- Execute the instruction. Load and store instructions 

again access the MMU and the memory (or I/O) 
subsystem. 

- An exception could be triggered by a failed MMU 
translation, an access to non-existent memory, an 
unaligned access, or some other arithmetic or 
protection error. 

 
The eventing facility supports our extensibility goal 

by adding more flexibility to the implementations. It also 
helps us leverage existing simulation codes that are rarely, 
if ever, multi-threaded. Asynchronous events are usually 
invoked by the CPU module and therefore never run in 
parallel to other methods like Fetch/Store. 

 

3.7 Real-Time Simulation 
 
All existing simulators work on a best-effort basis. 

Their designers assumed from the start that the simulator 
would be slower than the real system and no thought was 
given to matching the temporal behavior of the target 
system. Many embedded and Real-Time systems operate 
at relatively slow clock frequencies because cost and 
power consumption is often a primary concern. Giano 
already emulates an EB63 board at the correct speed on a 
relatively slow 800 MHz PC. On more modern PCs it can 
execute instructions much faster than the original board, 
which is not at all a desirable property. 

To address this issue we can rate-limit the speed of 
the CPU module, but paying attention to realize a control 
loop that can be fine-tuned to relatively small speed 
differentials. A simple scheme is as follows. 

• Every M thousands of instructions spin idle for 
D microseconds; 

• Every N millions of instructions check the 
execution rate against the target rate and adjust 
the delay D. 

In this way, the effective delay on each instruction is 
D/M, which can be as small as a few picoseconds and 
therefore would be impossible to realize on a per-
instruction basis. The inevitable overhead is also spread 
over a larger number of instructions. Checking the 
execution rate involves reading the current time, which on 
many Operating Systems is an expensive operation 
compared to incrementing a counter and performing an 
integer division.  The adjustment of the delay value D is 
based on a first-order filter, which seems sufficient to 
provide quick convergence without excessive 
fluctuations. Again, the cost of this computation is 
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amortized over N million instructions.  It is worth 
mentioning that this type of feedback loop takes care, at 
least in part, of the fluctuations in execution speed due to 
multiprogramming on a general-purpose and non-Real-
Time commodity Operating System. The CPU module 
executes at the target number of MIPS while the user can 
continue with other activities. 

There is a second aspect to Real-Time Simulation 
that Giano uniquely supports.  Real-Time programs are 
defined correct not only with respect to their internal 
behavior but also in relation to the timing of their 
interactions with the external world.  A simulator for 
Real-Time programs must therefore be able to interact 
with the external world and it must reproduce faithfully 
the external behaviors of the programs being simulated. 

There are two parts to this support: a calibration 
phase and notification events.  Using the rate-limiting 
algorithm above, a CPU is able to generate a clock with 
known frequency and to keep it stable (within the limits 
in accuracy of a general-purpose commercial Operating 
System).  All things being equal, the CPU executes at the 
same speed on the same system every time the simulator 
is started. We can therefore record on disk what the clock 
speed is the first time the simulator is used and reuse this 
value as a first order estimate on each subsequent run. 
This provides faster convergence and therefore better 
accuracy even for short-running experiments. Modules 
with Real-Time requirements can looktt
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all levels of the memory hierarchy; in this way all devices 
are just one function call away from the root bus. 

 

3.9 Debugging 
 
We expected to use the tool for debugging software 

programs too but we did not really expect that this would 
be quite so popular. Initially we just provided support for 
remote debugging via the simulated serial lines, or the 
simulated Ethernet and IEEE 1394 Firewire NICs. This 
was in line with our stated goals of leveraging existing 
components without reinventing them. While that 
worked, we frequently received complains that either the 
debuggers were not available or that they were not able to 
help in the most difficult cases. A more promising idea 
was to attach a debugger over a simulated JTAG 
connection, but we found that either the tools did not 
support JTAG at all, or that the interface information was 
not readily available. 

We therefore built some debugging aids directly into 
our CPU modules to provide symbolic tracing and 
printing.  Tracing can be turned on and off at selected 
memory locations and it is a per-processor condition, one 
processor can proceed at full speed while another is being 
traced. This simple facility has proven quite valuable for 
debugging interrupt routines, monitoring stores to 
selected memory locations, and for race conditions that 
are otherwise hard to capture and/or reproduce. While it is 
not meant to replace a debugger but only to augment it in 
corner cases, it nonetheless proves that leverage alone 
does not always work. 

We also built the Debug module, a generic module 
that can be added to any configuration. It uses a 
command-line window to interact with the user. It can 
dynamically attach to any of the modules in the graph, 
stop it, resume it, and read and write to it.  This tool is 
especially useful when there is no CPU module in the 
simulated system; it still allows inspection of any 
peripheral register, memory location, or bus control 
register. 

 

3.10 Testing with Oracles 
 
The idea of a “JTAG connection” to the simulator 

has actually been used in Giano, but for an entirely 
different purpose.  We wanted to test the instruction 
simulators as extensively as possible, to gain trust that the 
simulator is faithful to the real hardware. This is a 
daunting task even for the relatively small number of 
opcodes that constitutes the ARM instruction set.  Doing 
this manually is not only tedious but also error prone and 

vulnerable to mistakes and/or misunderstandings in the 
specifications.   

The ARM CPU module creates a TCP socket where 
we can feed “test-cases” that are automatically executed 
and verified.  In case of a discrepancy, the test case 
contains all the information needed to reproduce the error 
and it quickly leads us to the cause of the error.  Test-
cases are automatically generated by a separate program, 
which is executed on an “oracle” machine.  Tests quite 
often involve just a single instruction.  The test generator 
encodes the instruction with the desired flags and 
registers, and specifies the processor state before 
execution in terms of register values and the contents of 
the relevant memory locations.  The generated test is then 
executed on the oracle machine and the oracle records the 
resulting register state as well as the memory locations 
that were modified by the instruction.  This constitutes the 
expected result of the test. All this information is sent off 
to the target simulator and test generation continues.  
Billions of tests can be generated, executed and verified 
automatically in a 24-hour period when using two average 
performance personal computers.  To test the ARM CPU 
simulator we used the ARM Ltd. ARMulator [2] as the 
oracle machine and its limited speed turned out to be the 
bottleneck of the resulting automated testing system.  In 
retrospect, we should have used a Pocket PC that can run 
an actual ARM processor at a much higher speed. 

 

3.11 Collecting Useful Traces 
 
We had implemented two different tracing facilities 

for Giano, both of which collect their data on every 
instruction step.  This had a noticeable negative effect on 
performance and we found that the resulting information 
was only of limited use to our software developers.  
Number of accesses to SRAM, FLASH, cache, I/O and so 
forth do explain the CPI but do not readily help locate the 
source code most responsible for it.  

Checking for the start of a basic block is more 
efficient than invoking the tracing facility on every 
instruction because it is only done on instructions that do 
branch. We have therefore developed a simple set of tools 
for performing code analysis and profiling at the basic 
block level.  These tools are available as part of the Giano 
distribution. One of these tools analyzes an executable 
image and generates a corresponding basic block database 
file. Giano CPU modules can use this database during 
execution and update the dynamic execution counts for 
each basic block reached during actual execution. 
Loading and unloading of executables inside the 
simulated system is recognized using the standard 
debugger interface that is provided by the executing 
Operating System, e.g. some special trap or the invocation 
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of a certain function. Therefore the disassembly and 
profiling data that Giano generates is not limited to the 
initial Operating System/runtime image but it is extensible 
and covers dynamically loaded programs as well. This is a 
feature that is not found in any other simulator. In a 
similar fashion, the symbol tables for the executable can 
be used to generate symbolic traces even for dynamically 
loaded software programs. 

After execution is complete, other tools sort and 
inspect the updated databases to reveal the most 
frequently executed basic blocks and their relationship to 
the original source code.  It is conceivable to use Giano 
itself to identify the basic blocks using dynamic rather 
than static analysis of the executable images, but their 
relationships to the names of functions and methods is 
only known when looking at the symbol tables contained 
in the executable images. 

 

3.12  Portability 
 
The hardware simulation side should execute as 

many “hardware programs” (hardware designs written in 
HDL) as possible, just like the CPU simulation can 
execute arbitrary “software programs”.  In Giano the 
hardware model is selected at run time and is not 
compiled-in into Giano. Modifying the model and 
restarting the simulation is a matter of seconds even for 
large designs.  According to our extensibility goals, the 
hardware simulator is not linked statically into the 
program; it is loaded dynamically at execution time.  This 
feature was particularly useful when we added support for 
commercial simulators, for which we do not have source 
code but we still can leverage (see Section 3.5). 

Giano is coded in C++ and so are all the example 
modules that are provided in the distribution. This does 
not preclude a user from choosing a different 
implementation language for a module, provided it 
interfaces correctly to the other modules. We have 
avoided making any design decisions that would hamper 
portability.  For instance, most existing CPU simulators 
only simulate 32-bit target processors because this maps 
efficiently to a 32-bit host processor. Giano supports full 
64-bit addresses but it can be compiled for either a 32-bit 
or a 64-bit IA86 processor.  This benefits the 64-bit 
PowerPC simulation when running on a 64-bit PC and 
exacts only a limited performance penalty in other cases. 

Even the inevitable dependencies on the underlying 
Operating System are relatively benign. Using a separate 
DLL for each simulation module gives maximum 
flexibility but requires that the Operating System supports 
shared libraries or a dynamic loader. Various modules use 
separate threads, for instance the CPU modules and some 
peripherals.  This requires that the Operating System 

supports multi-threading and it can result in much better 
performance on a multiprocessor system than on a 
uniprocessor system. 

We expected that some of these decisions would 
negatively affect performance, but we chose to solve that 
problem separately and only once its relevance was 
understood.  Given the advances in clock frequencies and 
the fact that the simulator spends all of its time in a 
relative small section of code it was hard to predict just 
how bad the performance would be.  We measured about 
20 MIPS on a 2 GHz Intel processor for an interpretive 
C++ ARM CPU module, which is both terrible and 
acceptable depending on the intended use.  It is quite 
acceptable and in fact faster than an Atmel EB63 
evaluation board that runs at 25 MHz on a 16-bit memory 
bus, resulting approximately in a 5 MIPS instruction 
execution rate.  It is terribly inefficient for a PowerPC 
simulation of an Apple Macintosh G5. One way to boost 
the CPU performance is to implement a CPU module that 
uses dynamic code generation rather than pure 
interpretation [19,4]. 

 
3.12.1 Testing Portability 

 
To validate the portability of the resulting system we 

have ported a subset of Giano to the Atmel EB63 
development board, running under MIC. We dubbed this 
version MicroGiano, to emphasize the challenge on a 
board that supports at most 1 MB of SRAM memory.  
Within this memory budget we had to fit the Operating 
System, MicroGiano itself, and especially the simulated 
SRAM and FLASH devices. 

MicroGiano simulates a MIPS big-endian processor, 
RAM and FLASH, a programmable timer, a serial line 
and little more.  It executes MIPS-2 instructions at about 
1 MIPS on a 25 MHz ARM board with a 16-bit bus. 
MicroGiano uses the second serial line connector on the 
EB63 as its primary serial line.  A client connecting to 
this second serial line will talk to the simulated processor; 
the primary serial line is still available for the ARM 
processor.  Section 5.3 describes how we leveraged 
MicroGiano in a hardware project.  Yes, we developed 
MicroGiano using Giano on a PC to simulate an 
ARM/EB63 board while it was running MicroGiano 
simulating a MIPS/EB63 board. 

 

4 Implementation 
 
The main limiting factors while implementing Giano 

modules is adequate virtualization support from the host 
Operating Systems and exclusive-use of system devices. 
Sometimes the mapping between simulated and real 
devices is intuitive and easy to realize, as in the case of a 
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graphic window for a frame buffer, or an audio mixer for 
an ADC converter, or a file for a permanent storage 
device. At times it can be less obvious; a simulated serial 
line can map to a physical serial line but then it cannot be 
used by multiple instances of the simulator because it is 
an exclusive-use device. Giano can also map serial lines 
to sockets, which are a more convenient software 
abstraction and do not create exclusive-use problems.  At 
times the mapping is made impractical by the host 
Operating System, for instance in the case of the 
Universal Serial Bus (USB). We wanted to simulate a 
Host Controller Interface (HCI) device, which is the 
interface to the USB bus for the CPU. Unfortunately, this 
device is neither virtualized by the Operating System nor 
can it be accessed directly in exclusive-use mode like the 
serial lines. One way for simulating an HCI is to use a 
dedicated USB HCI card and to write a special kernel 
mode driver for it, but this is neither easy nor portable. 
The Ethernet creates a similar problem, but in this case 
we can leverage the Virtual PC [12] kernel mode driver, 
which solves both the virtualization and exclusive-use 
problems. Using the Packet Filter [35] and a raw socket is 
an alternative approach for the UNIX Operating System. 

 
CPU 13 
MMU 4 
Bus 5 
Memory 4 
I/O Device 48 
Interrupt Controller 4 

Table 1: Component Counts 

Besides being feasible, simulation requires minimal 
levels of performance in certain cases. For instance, audio 
should play without glitches. This is easy to achieve if we 
simulate a device without any hardware mixers and/or 
decoders, or if we can offload this task to the host audio 
device.   The Doom videogame does contain a software 
mixer and when in use it reduces the frame rate by about 
8%.  Graphic performance can also be an issue. A simple 
2D frame buffer simulation suffices for the graphical UIs 
(if any!) found in most embedded Operating Systems, but 
more modern graphics and 3D games require the 
simulation of complex 3D GPUs. The DirectX or 
OpenGL APIs can be used to realize the best 
performance, mapping the device’s operations to higher-
level APIs and taking advantage of the host’s 3D graphic 
support [24]. 

In Table 1 we break down the count of components 
realized by our group into non-overlapping categories2. 

                                                           
2 Due to licensing constraints for third party software not all these 
instances are included in the distribution. 

I/O device is the largest category and the fastest growing 
one. The count of CPU modules is somewhat inflated by 
the many ways in which the four supported architectures 
(MIPS, ARM, PowerPC and BlackFin) are realized. 

 
 Workin

g Set 
VM 
Size 

Simulated 
Memory 

Module
s 

SPOT  1.2 5.8 3 15 
EB63 5.6 5.8 2.25 33 
ML401 4.3 77 73 20 
Xbox360 7.6 528 524.5 22 

Table 2: Memory Requirements 

Giano is accurate enough to pass all the test 
programs created by the manufacturer for the Atmel EB63 
board. There are some thirty-three modules in this 
configuration, including some unusual devices such as a 
serial FLASH interfaced via parallel GPIO pins and a 
power management controller.  Table 2 shows Giano’s 
memory requirements in megabytes of host memory 
during simulation of this and three other selected systems. 
All the modules in these configurations are C models and 
the measurements were done using TaskManager under 
Windows 2000 SP4.  Counts are all-inclusive, for the 
entire process. The virtual memory requirements match 
closely those of the simulated system but the working set 
remains limited even for the larger systems. There is some 
correlation in working set size between Giano and the 
simulated systems but the presence of graphic elements 
such as buttons, LEDs and frame buffer memory causes 
some strong variations. 

 

5 Case studies 
 
In this section we present first a short exercise in 

hardware-software co-development using Giano. This 
example is intended for readers not too familiar with 
mixed-mode simulation, but it also shows in detail the 
dual-ported memory interface described in Section 3.5, 
and how Giano is used in practice during code 
development.  

In hardware-software co-development the designer 
must decide which components are assigned to software 
and which ones to hardware. The goal is to obtain a target 
system performance while meeting all the implementation 
constraints and cost budgets. It is not always clear which 
components would benefit the most from being realized 
in hardware in any given system.  The case study 
presented in Section 5.2 tests how well Giano supports 
the assignment process via mixed-mode simulation. 

Section 5.3 describes how Giano influenced the 
development of the eMIPS computer [11] and its real-
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time software. This project’s final target is a Xilinx 
ML401 development board, but in the intermediate stages 
we use an EB63 board coupled with a Xilinx Spartan-3 
FPGA board. In this case study, Giano is used for three 
different purposes: to support the incremental 
development of a complex hardware project, for 
hardware-software co-development, and for testing and 
validation. This example also shows components realized 
both in hardware and in software, but for reasons other 
than those illustrated in Section 5.2.  

 
1. module test; 
2. reg  [31:0] mem[3 : 0];  // dual ported memory 
3. integer counter; 
4. reg clock = 0; 
5.  
6. initial 
7.   begin 
8.      //Initialize Giano interface 
9.      $PassMemHandle(mem); 
10.      // Initialize our state 
11.      mem[`Counter_Increment] = 5; 
12.      mem[`Counter_State]     = `Disabled; 
13.      mem[`Counter_Reset]     = `NotReset; 
14.      counter = 0; 
15.   end 
16.  
17.   always @(posedge clock) 
18.   begin 
19.       case (mem[`Counter_State]) 
20.       `Enabled: 
21.          begin 
22.             if (mem[`Counter_Reset] == `Reset) 
23.             begin 
24.                 counter = 0; 
25.             end 
26.             else 
27.                 counter = counter + mem[`Counter_Increment]; 
28.             mem[`Counter_Value] = counter; 
29.          end 
30.       endcase 
31.   end 
32.  
33. endmodule 

Table 3: Verilog code for the FRC 

 

5.1 Co-simulation Basics 
 
In this exercise we want to provide an elementary 

timing facility for a system composed of a microcontroller 
and an FPGA connected via a memory-mapped I/O bus. 
A 32-bit free-running counter (FRC) shall be the basis of 
this facility.  Table 3 shows the Verilog source code for 
the counter, to be realized on the FPGA.  The dual-ported 
memory array that is the interface to the microcontroller is 
defined at line 2. The interface defines controls for 
starting and stopping the counter and for setting the units 
of time. The counter itself is declared at line 3.  Line 6 
starts the initialization block, which invokes the 

PassMemHandle() function that is part of our PLI 
interface DLL, described in Section 3.5.  Line 17 starts 
the code that is executed on every clock cycle.  Iff the 
counter’s State is Enabled the Value field is changed.  At 
line 27, the counter increments by the value of the 
Increment field, except if it is being Reset. 

The test code to be run on the microcontroller itself 
is shown in Table 4.  Note how the COUNTER structure 
maps directly to the dual-ported memory array in the 
Verilog code. After starting the counter at line 15 the 
program engages in some computation in the procedure 
Spin() not shown, then at line 17 reads the value of the 
counter and prints the results.  

 
1. typedef struct { 
2.     volatile UINT32 Increment; 
3.     volatile UINT32 State; 
4.     volatile UINT32 Reset; 
5.     volatile UINT32 Value; 
6. } COUNTER, *PCOUNTER; 
7.  
8. #define TheCounter  ((PCOUNTER)0xfff04000) 
9.   
10. int main() 
11. { 
12.     UINT32 Elapsed; 
13.     int SpinCount = parse_args(); 
14.  
15.     TheCounter->State = ENABLED; 
16.     Spin(SpinCount); 
17.     Elapsed= TheCounter->Value; 
18.     printf("Spin(%d) took %d ns.\n", SpinTimes,Elapsed); 
19. } 

Table 4: C test code for the FRC 

 
To execute this example we first start Giano and 

instruct it to load and execute the embedded Operating 
System’ FLASH image.  The Operating System will 
provide a simple command line interface or similar 
facility to run programs such as the one shown in Table 4.  
While the command line interpreter is waiting for input 
we start the ModelSim Verilog simulator and instruct it to 
load and run the Verilog model of Table 3.  Once the 
model has connected back to Giano and it is executing we 
can run the C test and observe the results. 

Notice that all of the familiar debugging tools are 
still available to the user. A debugger can be attached to 
the simulated microcontroller to debug the C code, and all 
of the debugging facilities built into ModelSim/Icarus 
Verilog are still available as well. Giano provides 
additional debugging tools for the more difficult cases. 

 

5.2 Component Mapping 
 
The MIC software system [8] is based on the notion 

of structuring software in components with clearly 
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defined and controlled interfaces.  As long as it 
implements the same interface, one component 
implementation is plug-compatible with any other. The 
idea of this test is to take a software component, remap it 
to hardware and measure the results within the same 
system, with the same test data.  One such component is 
the ICipher interface for cryptographic cipher functions. 
We have at our disposal two software implementations of 
the AES cipher written in C and one hardware 
implementation written in Verilog.  As a first step we add 
a dual-ported memory interface to the Verilog AES 
module as per Section 5.1, and debug the resulting core in 
isolation using Giano. The test vectors are simple 
commands for the RTOS debugger to read/write the dual-
ported memory. The second step is to write a “proxy” 
implementation of the ICipher interface that 
communicates with the FPGA over the dual-ported 
memory. 

 
The third step is to simulate and test the complete 

system with Giano, using the configuration illustrated in 
Figure 3. During testing, one of the three ICipher 
implementations is selected and loaded in memory at 
runtime. It is the only part that differs between the 
experiments; everything else is precisely the same. This 
gives us an exact measure of the reduction in memory 
utilization and an estimated speedup of 70x for the FPGA 
implementation over the software implementations.  The 
final step is to synthesize the AES core for our FPGA, 
which requires a few changes to the purely behavioral 
portions of the original code.  The new code is again 
tested with Giano, then executed and tested on the real 
system.  The actual performance results are in line with 
the original projections. We have reached those results in 
a much shorter time and we have a more accurate 
understanding of what the system does. 

 

5.3 The eMIPS Computer 
 

The development process of the eMIPS computer 
[11] includes the five intermediate steps depicted in 

Figure 4. At every step we first use Giano to debug the 
code more quickly, then MicroGiano and an FPGA for 
hardware synthesis. In the initial configuration (Figure 
4.a) all the components are written in C and are simulated 
by Giano; Verilog is not used. The modules are 
instruction decoding and execution (INST), virtual 
address translation (TLB), physical memory (MEM) and 
I/O peripherals (I/O).  Software development begins as 
soon as the C models for the components are sufficiently 
developed.  Software developers will continue using 
Giano through the whole project and abandon it only 
when the real, faster hardware becomes available. By that 
time, software is complete and its timing properties have 
already been verified. In addition to the application code, 
the software includes any software test programs 
developed to test individual hardware components, or to 
identify faults. 

 
In the next step of Figure 4.b we used 4 MB of 

DRAM memory attached to the FPGA board as backing 
storage for MicroGiano’s simulated memory. The DRAM 
memory interface is a Verilog module developed first 
with Giano/ModelSim, then realized with 
MicroGiano/FPGA.  This module is augmented in Figure 
4.c to include a TLB; at this point (Micro)Giano makes 
I/O accesses to the FPGA’s dual ported memory to 
perform address translation.  The next step is to move 
instruction execution onto hardware, Figure 4.d. Notice 
that to help debugging the MEM module has been moved 
back to a C model, which more easily allows us to collect 
and verify traces. After this configuration is debugged 
with Giano, MicroGiano can be replaced by a small 
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Figure 3: Testing the AES Components 

Figure 4: Stages of the eMIPS Computer 
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program that simply awaits read/write requests from the 
FPGA side and performs them.  In the next-to-final 
configuration of Figure 4.e the DRAM memory interface 
module is integrated back into the Verilog code. To move 
to the final configuration (shown in the screenshot of 
Figure 1) the I/O peripherals are changed to match the 
ones on the ML401 board. 

The most complex module in this project is the 
INST module and testing it is a large task as well. We can 
make use of Giano to accomplish this task, in two 
different ways. Figure 5 shows a setting with two 
instances of Giano running separate sets of C models and 
sharing access to the Verilog model of the INST 
component.  The C models are identical except for the 
CPU component. 

 

 
 

Figure 5: Using Giano as a System Oracle 

 
The Giano instance on the right side of Figure 5 

(Oracle) uses a true C model of the CPU; the one on the 
left uses an In-Circuit Emulator component acting as a 
slave to the Verilog component (center). The Verilog 
model performs the validation of its results at instruction 
retirement time, by checking the data produced by the 
Oracle model.  This data includes the instruction’s 
address and the values of all registers that are visible in 
the ISA.  

This approach allows us to test the Verilog model by 
executing the final application software and any special 
functional tests. It if therefore a good common testing 
ground for the software and hardware engineers. 
Unfortunately, it does neither measure the test code 
coverage nor does it expressly cover any boundary cases. 
The diagram in Figure 6 shows an alternate setting, this 
time with a special TestGenerator Bus component that 
acts as a test generator. Both the CPU Oracle component 
and the Verilog component (FPGA) talk to this common 
Bus to access memory... which is not in the picture 
because there is none. The TestGenerator Bus will 
programmatically (or by using traces) create the test 

instruction sequences, provide the values for all memory 
reads and verify that memory stores are for the same 
addresses and with the same values. 

Figure 6: Using Giano as a Test Generator 

 

6 Other Practical Experiences 
 
Giano has been in use inside our research group for 

years and has been available to external parties now for 
two years. In addition to helping us carry out our research 
the tool has helped us and others in a variety of other 
ways: 
- Giano has all but replaced the EB63 development 

boards for regular software development. Developers 
appreciate both the speed and the simplicity of use. 

- We will be able to continue using the simulated 
boards long after the real ones are discontinued. 

- In general, development boards for embedded 
processors are not meant to be real products; their life 
expectancy is limited. This creates a problem for 
software developers, who must invest their time on 
something of a moving target. Giano makes the 
platform stable for an indefinite amount of time. 

- We have not yet found a case where something 
would work on Giano and not on the real hardware.   

- With Giano we have found and fixed many subtle 
(timing) errors that had eluded us on the real 
hardware for some time.  

- Regression testing with Giano is an automated part of 
the compilation process for the MIC system. When 
new changes are applied to the MIC software they 
are automatically tested by the individual developer 
with Giano before they are released to the rest of the 
developer’s group. 

- In at least two cases, the MIC real-time system was 
ported to a previously unsupported CPU architecture 
using Giano directly. 

- Basic block profiling helps us make our software 
more efficient, often with surprising findings. 

ModelSim: 
eMIPS RCPU 

Giano: 
Simulated 

Board 

Giano: 
Oracle 
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- All of our major technical demonstrations have used 
Giano in some way, including a secure consumer 
electronics system and a distributed real-time 
planning and execution system. We often use a mix 
of real and simulated boards; in one instance, we 
used a simulated board to replace a real one that had 
failed during the demonstration. 

- The Xbox 360 software team used a simulator 
derived from Giano to develop the system software in 
advance of actual hardware availability. This has 
given them a net six months advantage on the 
software schedule and allowed them to meet an 
extremely demanding timeline for delivering the 
product on time for the Holiday season. 

- The early versions of the Microsoft SPOT watches 
were similarly developed using the Giano simulator. 
System software was again ready well in advance of 
actual hardware availability. 

- Researchers at Portland State University are using 
Giano for run-time verification of temporal logic 
properties using the Property Specification Language 
PSL [1], an IEEE standard. Giano can support PSL 
both on the software and the hardware side. They 
have also added support for mathematical modeling 
of input signals, using MATLAB [36]. 

- At Texas A&M University Giano is used in teaching 
a Microprocessor Design course at the senior 
undergraduate level.  

- Students at Texas A&M are using Giano to simulate 
and test a complex add-on board cascading multiple-
busses, including the PCI and ISA busses. This setup 
involves multiple cooperating instances of Giano, it 
is cycle-accurate and does not involve any CPU 
module. 

 

7 Related work 
 
Simulators are naturally CPU-intensive applications 

that have benefited from the performance improvements 
of the last decade. Full-system simulation is now possible 
[20,21,12,18] and the implementations use different 
approaches for best performance.  In Giano performance 
does not dominate the design, functionality does. For 
instance, using the Virtual Machine approach to 
simulation is limiting to the one architecture being 
virtualized, namely the x86.  With SimOS [20] it is 
possible to simulate an entire Operating System, but only 
if special device drivers are used; this prevents it from 
being able to execute existing commercial Operating 
System binaries and furthermore it cannot be used to test 
or develop new peripherals and/or their device drivers.  
None of these full-system simulators is easily extensible 

or supports Real-Time; none supports HDL modules, only 
SimOS is available in source form. 

The SimpleScalar [5] simulator is used in computer 
architecture education and research.  It simulates a MIPS-
like processor, either in big-endian or in little-endian 
mode.  A simulation run under SimpleScalar is equivalent 
to execution within a UNIX process and most UNIX 
system call traps are supported, except for fork/exec. 
Many commercial CPU simulators provide a similar level 
of abstraction. SimpleScalar is neither synthesizable nor 
does it allow simulation of the Operating System code 
and of the I/O devices; consequently it cannot support 
Real-Time. It has been extended in a number of ways, for 
instance for power usage modeling [27] and for 
multiprocessor simulation [32]. 

With ARMulator [2] and Simics [25] the user can 
define programmatically the memory model, which 
allows for I/O peripheral simulation.  These simulators 
keep an account of the cycles spent on each read/write 
operation by the CPU, but do not support Verilog, do not 
support multiprocessors and are not Real-Time. Their 
sources are not available, but both are user-extensible.  

ModelSim [13] is popular with hardware designers; 
it has both a graphical and a command line UI.  It can 
simulate both behavioral and synthesized Verilog and 
VHDL code. Fast CPU simulation is available for some 
“soft-cores”.  ModelSim is not a full-system simulator, 
does not support Real-Time and it is not available in 
source form. Giano similarly relies on a separate module 
(Visio) to provide the graphical UI. Seamless [37] 
improves on ModelSim by allowing full-system co-
simulation but it is not Real-Time and not available in 
source form. 

Atmel’s FPSLIC [3] is a development kit for an 8-bit 
SoC that includes a CPU and a CPLD. The kit includes a 
simulator, but only for the CPU side. 

SIMH [22] is a project aimed at building simulators 
for historical computers; it started with the PDP-11/23 
“fuzzball” routers of the old ARPANET and now covers 
many other retired computers. Some of the embedded 
computers that Giano simulates have a similar long life 
expectancy. 

Games are interactive programs, they must provide 
an adequate response time or they are just not playable. 
Game consoles often use hardware solutions that are 
difficult to reproduce in software, for instance for audio 
and graphic effects. Many game consoles have a 
simulator that can play their games [7], sometimes for the 
love of the games and sometimes to cheat and pirate, but 
always as a challenging engineering enterprise.  
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8 Conclusions 
 
Giano is a Real-Time, full-system, hardware-

software co-simulator that we have developed to support 
our research in Embedded Systems and in Reconfigurable 
Computing. We identified six necessary requirements for 
such a tool: it should be capable (1) of simulating 
hardware cores for an FPGA or other device, (2) of 
executing large bodies of code, and (3) of simulating a 
complete system including (4) a variety of I/O devices 
and (5) communicating in real-time with the outside 
world. To let users make fundamental changes to the 
simulator in the future (6) the availability of source code 
is essential. No existing simulator possessed all these 
features. 

Giano’s design was guided by the two goals of 
maximizing the tool’s extensibility and to leverage other 
existing tools to the maximum extent possible. These 
goals were rarely at odds with our requirements and led to 
some innovative solutions. Giano is the first simulator 
that supports Real-Time Simulation and the symbolic 
performance analysis of dynamically loaded software. 
Practical experience has demonstrated that the tool is 
effective in shortening the modify-compile-test cycle, in 
supporting performance analysis and tuning, and to detect 
flaws more quickly and more accurately. 
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