
 - 1 -

Giano: The Two-Headed System Simulator

Alessandro Forin
Microsoft Research

Behnam Neekzad

University of Maryland

Nathaniel L. Lynch
Texas A&M University

September 2006

Technical Report
MSR-TR-2006-130

Microsoft Research
Microsoft Corporation

One Microsoft Way
Redmond, WA 98052

 - 2 -

Giano: The Two-Headed System Simulator

 Alessandro Forin Behnam Neekzad Nathaniel L. Lynch
 Microsoft Research University of Maryland Texas A&M University
 sandrof@microsoft.com behnam@umd.edu nathaniel-lee-lynch@neo.tamu.edu

Abstract

Giano is a simulation framework for the full-system
simulation of arbitrary computer systems, with special
emphasis on the hardware-software co-development of
system software and Real-Time embedded applications. It
allows the simultaneous execution of binary code on a
simulated microprocessor and of Verilog code on a
simulated FPGA, within a single target system capable of
interacting in real-time with the outside world. The
graphical user interface creates the interconnection
graph of the user-provided simulation modules in
PlatformXML, an XML-based platform description
language. Experience with several projects reveals that
the tool is effective in reducing the development and
maintenance time for system software and for embedded
applications. The most visible benefits are a shorter
modify-compile-test cycle, better support for performance
tuning and improved flaw detection. Giano is freely
available in source and binary form for non-commercial
use.

1 Introduction

A number of companies have introduced
microcontrollers that integrate a processor and some
amount of programmable logic in a single package. In
these “System on a Chip” (SoC) devices the I/O pins are
connected to the programmable logic side of the device
and it is the final user that defines how the
microcontroller interfaces to the external world, not the
manufacturer. The manufacturer provides libraries for
timers, counters, serial communication ports (UART, I2C,
IrDA, and SPI), CRC generators, amplifiers, ADCs and
DACs, filters, DTMF tone generators, PWM modulators,
LCD drivers. The user is then free to create more.

The SoC is but the natural evolution of a common
practice in the embedded space, namely the offloading of
the most demanding computations and I/O control
functions to a field-programmable gate array (FPGA). In
fact, FPGAs have become so powerful that they can
eliminate the microcontrollers as separate chips and

integrate them directly as “soft-cores”. Applications are
therefore built of two parts, one in C that executes on a
microcontroller and one in Verilog that “executes” on the
programmable logic.

The ultimate products of the two compilers for C
and Verilog are the binary code to execute on the CPU,
the binary file to configure the FPGA, and little
confidence that the two will actually work together.
Programming FPGAs is fairly complex; it requires
familiarity with an additional set of tools for coding,
verifying, synthesizing, placing and routing,
downloading, and testing the Verilog or VHDL
“programs”. These processes are time consuming and
testing is a challenge due to the growing imbalance
between a reduced I/O pin count and the ever growing
on-chip functionality

System integration and testing of the complete
product reveal functional and performance flaws, forcing
these processes to repeat. Notice that we could eliminate
this costly repetition if the functional development of
software was complete before the hardware design had
stabilized. Unfortunately, development and testing of
system software cannot even begin until a working
prototype of the hardware is available. One way to break
this impasse and to realize this ideal hardware-software
co-development is to use a full-system simulator, one
capable of realizing both the instruction level behaviors of
instruction set processors, and the behaviors of models
defined in a Hardware Description Language (HDL).

We have identified the following six necessary
requirements for such a tool: it should be capable (1) of
simulating hardware cores for an FPGA or other device,
(2) of executing large bodies of code, and (3) of
simulating a complete system including (4) a variety of
I/O devices and (5) communicating in real-time with the
outside world. We expect users to make changes and
extensions to the simulator, (6) the availability of source
code is essential. While a number of existing simulators
can match one or more of these six requirements, none is
able to match them all. For instance, Icarus Verilog [26]
is the only hardware simulator that is currently freely
available in source form, but it does not simulate a full-
system. Some commercial products allow extensive
system simulation, but none can interface in real-time
with the outside world. There are many CPU and full-

 - 3 -

system simulators available in source form but none of
them understands Verilog or any other HDL. We
therefore resolved to write a new hardware-software
simulator, which we named Giano1 [14].

In the rest of the paper we introduce the usage
scenarios that motivated the creation of the tool in Section
2, describe the design goals and challenges in Section 3,
the current status of our implementation in Section 4, the
practical use of the tool in a few case studies in Section 5,
and we report on our experiences using Giano over the
last few years in Section 6. Section 7 summarizes the
related work and our conclusions are found in Section 8.

2 Usage Scenarios

An extensible simulation system that can easily

leverage other existing tools, including HDL simulation
can adequately support many practical usage scenarios. In
this section we describe some of the scenarios where the
tool supports our own research. Section 3 shows how
these two goals of extensibility and leverage have guided
the design of Giano.

 [Prototypes] Research at the boundary of
Architecture and Operating Systems is hard to evaluate
when it is not supported by sufficient empirical evidence
[9]. But until a hardware prototype is available it is not
even possible to collect this evidence. Only a simulator
for a realizable model of the proposed hardware can break
this circularity. For instance, the Giano distribution
includes a novel Memory Management Unit (MMU) that
is fully synthesizable and allows full software evaluation.

 [Full-System prototyping] A number of embedded
systems are controlled by a microcontroller and an FPGA
that offloads some of the most demanding I/O control
functions [10]. Giano can prototype the entire control
section, and with the addition of tools like LabVIEW
[15,16] the whole system including stepper motors and
other external devices. Analog signals can be simulated
with MATLAB [36] or captured by an A/D converter. As
for individual peripherals, a manufacturer can provide
(the DLL of) a C model for software developers to work
with, in addition to the often unclear specifications in a
human language.

[Architectural simulations and benchmarking] Giano
can simulate two different CPUs within the same system
environment, possibly at the same time. This has rarely,
if ever, been achieved with real system implementations.
With a full-system simulator, the architect can compile
and execute large bodies of code and make meaningful
comparisons between different architectural solutions.

1 In the Roman mythology, Giano was the guardian god of doors and
temples; the two opposing faces on his head could stand watch
simultaneously in two opposite directions.

For instance, running the Doom [6] videogame with ARM
or MIPS processors within the same simulated
microcomputer produces only slightly different
instruction counts but remarkably different frame rates.
In a test run, the MIPS system uses 2,339 million
instructions to paint 1,514 frames, the ARM system 2,325
million instructions for 2,705 frames. Various factors
affect this result, and they can be accurately investigated
because the simulator improves the visibility of all
phenomena under study.

 [Hardware/Software Co-Design] Section 5.3 is a
case study illustrating precisely how Giano supports the
hardware-software co-design processes. In essence, when
using a co-simulator coding and formal verification can
proceed in parallel with functional simulation, system
integration, and testing. If the simulator is flexible enough
it is possible to explore alternate solutions before
committing to the final configuration.

 [Coprocessors] Some processor architectures
(MIPS, ARM) define a standard way to interface the on-
chip coprocessors. These might be new types of floating
point coprocessors, vector processors, multimedia
instructions extensions, DSP-like functionality, or
cryptographic functions. Giano can simulate these
coprocessors in Verilog, while the rest of the system is
simulated in C. Test programs and application code and
libraries are developed long before the actual device
becomes available. The performance implications for the
full system are accurately evaluated. A faster simulation
of the coprocessor in software can be used for validation
against very large test programs and/or to collect valuable
traces.

 [Rapid software development] Once the first Giano
implementation was available we found it surprisingly
effective in helping us develop software for our
embedded boards. There are three simple practical
reasons for Giano’s success with our users. In the first
place, the compilation times for FPGA devices are quite
long, in the order of tens of minutes if not hours. Giano’s
HDL interpreter might be slow, but it requires zero
compilation time. In the second place, downloading and
rewriting the FLASH devices in our ARM development
boards takes time because they are interfaced via a serial
line, like most other boards. A five-to-ten minute
reprogramming time goes to zero when using Giano: the
FLASH image is simply read into simulated memory and
executed. In the third place, a bad software error in the
new FLASH image can make the boards unusable and
impossible to re-FLASH in software. It becomes then
necessary to use a FLASH programmer or some other
time-consuming repair procedure. With Giano we can re-
FLASH an image to an actual board after we have already
tested it, eliminating the hazard.

 - 4 -

[Reconfigurable Computing] A desirable property
of an FPGA device is to be able to perform partial
reconfiguration while the chip is operational. Very few
existing devices have this property and none of their
simulators. With Giano we can modify the Verilog
interpreter to perform partial reconfiguration, at least at
the behavioral level.

3 Design Challenges

The simulator was designed with extensibility as its
primary goal. From the beginning we expected that we
would be using multiple CPU architectures, MMUs and
memory subsystems, different byte-orders, multiple
hardware cores, multiple I/O devices, busses and interrupt
controllers, and eventually multiple Hardware Description
Languages. This goal has affected both the design of the
structure of the system and the choice of implementing it
in a portable programming language.

Because of this goal Giano is more of a simulation
framework than a simulator properly. The core executable
is mainly devoted to parsing of the configuration graph
expressed in PlatformXML and creating and initializing
the graph in memory. The semantic of any given
simulation is actually provided by the nodes of the graph,
which are dynamically loaded DLLs written by the user.
Giano does expect all nodes to derive from a common
GianoModule class, which provides a method to notify
the node of its siblings in the graph and a method to start
and terminate the simulation. The core executable is also
a good repository for shared functionality and tools that a
module implementer would have to write anyways.

A second design goal was to leverage the
functionality provided by other (large) tools rather than
recreating it afresh. The user interface, HDL interpreter,
mathematical modeling, physical object simulation can all
be realized by separate tools that already exist and we
should just find a way to incorporate them in Giano. The
same principle applies to individual modules as well. A
lot of work has been done to simulate CPUs and caches
and their various properties with various degrees of
accuracy. Ideally we should be able to incorporate all this
work with minimal programming effort.

Selecting such an open-ended basic design for the
tool required us to answer a number of questions both at
design and implementation time. We will illustrate the
most relevant design problems and how these goals
guided our solutions in the rest of this section.

3.1 User Interface

The first problem for a tool that relies heavily on

configuration data is to create and manage the

configurations in a simple and intuitive way. Given that
the core structure is a graph it was natural to select a
graphing tool as the basic user interface. Rather than
creating a new one, we chose to leverage Visio, a
commercially available tool that is well established, easy
to use and is easy to customize. Figure 1 is a screenshot
of the resulting User Interface. We wrote a simple
function (a macro in Visio parlance) to parse the Visio
diagram and generate the PlatformXML file and
otherwise just relied on Visio to solve the management
problems for us. A second macro solved the problem of
starting the simulation, activating the core executable and
passing the configuration file name as argument. With
just these two macros we allow the user to create a graph
depicting an arbitrary computing system and to simulate
it.

Figure 1: A Screenshot of Giano

A second issue for the user interface was passing
arguments to the individual simulation modules. Some
options can be chosen at compile time but others are
better left for the users to select at run-time. A CPU
module might have a selectable byte-order for instance, or
a memory bank might have a selectable size. Clearly we
could not anticipate all of the options all of the modules
would define, and passing them all in a command line is
certainly possible but impractical for most configurations.
Our solution was to use Visio’s custom properties to
define a list of name-value pairs and to (visually)
associate one such list to each individual node in the
diagram. Selecting a different module automatically
updates the window of the custom properties, which
makes data entry and editing simple and natural. The CPU
module in Figure 1 is currently selected and the central
sub-window shows the list of its properties. These custom
properties are added into the PlatformXML file by the
parsing macro or manually with a text editor. At runtime,
each simulation module is passed a pointer to its own list
of name-value pairs, and it is also possible to retrieve the
argument list for sibling nodes.

 - 5 -

We expected that our users would often want to
override the values provided by the configuration file, for
instance to change the values of some options or to add
new options. We provided a simple mean to do this on the
command line by specifying pairs of the form
(NodeName::PropertyName Value). We were concerned
that the user interface might prove unpopular or too
inflexible. In actual use we found quite the opposite, very
few users know this command line feature even exists.

3.2 Configurations

The choice of using XML to describe Giano

configurations was based on two goals: we wanted to
propose a standard way to describe hardware platforms
for use by other simulators as well as ours, and we did not
want to restrict the ability to express unforeseen data or
any properties that might be required in the future. XML
[34] is widely understood and supported, and it is indeed
extensible and therefore a good match for our purposes.

A simple example of a PlatformXML configuration
file is given in Figure 2. The node tags we defined match
the basic classes found in Giano, namely CPU, BUS,
MEMORY and DEVICE but they do not actually differ in
their internal syntax. They all expect a Name and a list of
Property and ConnectsTo clauses. ConnectsTo is used to
link nodes by-name; Names must be unique.

3.3 Cycle-accurate?

Many users ask whether Giano simulations are

“cycle-accurate” or not. The simple answer to this simple
question is that Giano does not make any decision on this
issue; it actually depends on the choice of modules. The
basic framework provides the means for carrying a central
clock throughout the entire configuration, but it is then up
to the modules themselves to “run” this clock. It is also
possible to create multiple clocks and make them visible
system-wide, but again it is up to the modules to run and
synchronize them. A more complete answer is that a user
must identify the specific events she is interested in and to
make sure that they are reproduced with the correct
timing relationships, at the desired level of precision.
Section 3.7 describes in some detail how external events
can be handled with accuracy to realize a Real-Time
simulation system. Section 3.11 deals with collection of
traces and their analysis.

We have realized three different types of CPU
simulation modules, at different levels of precision. The
first type is intended as a functional simulator that trades
speed for accuracy. This is typically written in C++
and/or using dynamic code generation [19] and might, for
instance, assume that all instructions and all memory

accesses take a single unit of time. A second type of
module is realized leveraging SimpleScalar [5]. This is
believed to be a more accurate model, even though it does
not reflect any real implementation. Leveraging the
ARMulator [2] as a Giano CPU module might realize a
more accurate system, or at least one that is as accurate as
the manufacturer is willing to provide. A third type of
module is realized using an HDL simulation of the CPU
module. This approach trades accuracy for much lower
speed. Section 5.3 describes in some detail how one
project used this approach. Note that the accuracy is still
predicated on the HDL code being synthesizable for the
specific technology/target; a simple behavioral simulation
can be just as inaccurate as any C model.

Figure 2: A Simple Configuration

Similar considerations apply to the other simulation

models. For instance, an accurate cache module designed
with Cacti [33] could be interposed between the memory
bus and a CPU module.

3.4 Multiprocessors

We selected to provide multiprocessor support from

the beginning, even though most embedded systems are
single-processor and some CPU architectures have never
been realized in an actual multiprocessor system. The
motivations behind this decision were to be in line with
our extensibility goals and the hope that the tool might be
useful to perform scalability analysis of existing and/or
new software. The tool was indeed used to develop
system software for a new multiprocessor system (the
Xbox360 gaming platform), validating our choices. In
practice, this decision had limited effect on the structure
of the system but it did affect the implementation and the

 - 6 -

eventual performance of some CPU modules. For these,
we can use a compile-time conditional to generate a
separate uniprocessor version that is somewhat more
efficient but this option is not normally used. Consider for
instance the multiprocessor synchronization instructions
of the MIPS and of the PowerPC processors. Both
architectures provide a pair of instructions of the form
load-with-reservation and conditionally-store-to-memory.
Logically, the load instruction sets a flag to remember the
destination address and the store instruction checks that
the address is still valid, otherwise it does nothing. Any
store to the reserved address by any processor will cancel
the reservation and therefore must be monitored. This
potentially means serializing all stores to memory from all
processors, a serious scalability bottleneck and an
overhead on all store instructions. In practice,
reservations are rarely used and almost never contested, a
fact that we leveraged to eliminate the lock in most
instances and consequently improve performance.
Processor reservations are a shared class exported by the
core executable, which favors reuse. The class can be
used either by a cache module or directly by an integrated
CPU-cache module.

Notice that it is trivial to create a hybrid
multiprocessor system with Giano, the user simply selects
a different DLL for each CPU node in the configuration.
A hybrid built of the example modules for the PowerPC
and MIPS processors would be memory-coherent as well.

The inter-CPU clock synchronization is another
issue that strongly affects performance. Ideally, a faithful
simulation would dispatch instructions on the various
CPUs with the same timings as on the real system. In
practice, software is always written to be independent of
the relative speeds of the various processors because bus
contention, stalls and interrupts all contribute to make
such relative speed unpredictable. Taking advantage of
this fact, it is possible to ignore the synchronization issue
altogether and use independently scheduled threads to
simulate all CPUs in parallel. It is left to the simulated
software to take care of synchronizing them. This
approach provides best performance, especially on a
multiprocessor system with a number of real processors
matching or exceeding the number of simulated CPUs.
The downside of this approach is that the simulation is
imprecise and any performance data could be rather
misleading, especially when executed on a uniprocessor
where threads can easily get out of step.

One alternative is to use a single thread to simulate
all the CPUs, for instance by leveraging the work of the
PolyScalar project [32] and integrating it into Giano as a
CPU module. With this approach, one instruction each for
all cores is dispatched in the main loop and all cores are
therefore naturally synchronized. All CPUs collectively
look like a single CPU module to the configuration

system, which treats PolyScalar as a single entity. The
bus, memory subsystem and I/O peripherals can remain
separate modules.

An intermediate solution is to realize a “close
enough” simulation but with better performance. Rather
than synchronizing on each instruction the various CPUs
can execute a fixed number of instructions and then
synchronize. Notice that the deviation from reality is still
unbounded, even though the clock skew is now bounded.

3.5 Interfacing C and Verilog

When using Icarus Verilog we have the ability to

realize any desirable interface between C and hardware
models, because we can change the Verilog simulator
itself. This is not the case when using simulators for
which we do not have access to sources, e.g. all
commercial grade simulators. In addition, these
simulators require running as individual processes, not as
DLLs within our Giano process.

The IEEE 1364 standard Verilog Programming
Language Interface (PLI) [23] was defined to solve this
and other interface issues for hardware simulators. We
used it to interface Giano with a commercial Verilog
simulator, ModelSim v5.8c [13]. According to the
standard, we created a DLL to be loaded by ModelSim.
The DLL exports a Verilog runtime function that is
invoked by a Verilog module that desires to interface to
the other C model(s). While many other interfaces are
possible, we have provided as an example a Verilog
module that is based on a dual-ported memory
abstraction. We do not attach any semantics to the values
or particular locations of the dual-ported memory. They
can be used as the register file of a device, or a FIFO or as
packets for transactions over an asynchronous bus. A
VHDL model can interface to C models by leveraging the
Verilog module.

The PLI runtime function passes a handle to the
dual-ported memory array to the DLL code for later use.
This function is only called once at simulation start time
and does not otherwise affect the simulation timings.
Also at this time the DLL will attempt to connect to
Giano using a TCP connection, possibly on a separate
machine. Using two separate machines for the C and the
Verilog simulations is often desirable because ModelSim
uses the full CPU during simulation and can require large
amounts of system memory.

Once the connection is established, an asynchronous
read request is kept posted at all times to accept requests
from the CPU side. At the end of each simulated step
ModelSim invokes a function that quickly checks for
completion of the posted read. When data is available, it
contains the necessary parameters for performing either a

 - 7 -

read or a write access to the dual ported memory. A
second runtime function can be used to report cycle
counts back to the CPU model.

Although we have only tested this extensible
interface with ModelSim it should allow us to leverage all
the other hardware simulators that support PLI.

3.6 Asynchronous Events

Many simulation modules are passive and become
active only when the CPU issues a read or write reference
to their register file. At that point, they perform all the
operations necessary to complete the read or write access
in a synchronous manner, namely in the context of the
Fetch/Store method call on their object instance.
Memories, busses, frame buffers and other output-only
devices, and even permanent storage can possibly be
realized in this simple way.

Some devices are more active and a synchronous
simulation is not feasible. Consider the case of a serial
line with programmable baud rate. Not only is data
arrival an asynchronous event, but to be accurate the
individual bytes of data must be “received” by the
USART at a maximum frequency defined by the baud
rate. Another example is a programmable timer, a device
that generates interrupts at times defined only by the
simulated software. Even when it is feasible, synchronous
simulation might not be desirable if it is not accurate
enough for the user’s needs. For instance, a real disk
completes operations in times that have a large deviation
from any set average. If the behavior of the disk affects
the accuracy of the results it must be simulated with
greater accuracy.

To deal with these asynchronous modules Giano
provides an eventing facility linked to the core clock.
Modules can create events that are stamped with the
desired time of activation. When the clock reaches that
time a method is invoked to return the event to the
module. A serial line uses this asynchronous method
invocation to deliver the next character, a timer to
generate an interrupt to the CPU and a disk to complete
the I/O operations at the correct time.

The module that controls the clock is logically
responsible for triggering events as well. This is often a
CPU module, but it is not required. A simple way to
realize the control loop for a CPU thread is as follows:
- Check if any event has triggered and execute the

corresponding callback function;
- Check if the CPU has any pending interrupts; these

can be generated either synchronously during a
previous I/O access or during the callback, or
asynchronously by a separate thread simulating an
I/O device;

- If present and enabled, use the MMU to translate the
program counter’s virtual address to a physical
address;

- Access the memory bus to fetch the next instruction;
- Execute the instruction. Load and store instructions

again access the MMU and the memory (or I/O)
subsystem.

- An exception could be triggered by a failed MMU
translation, an access to non-existent memory, an
unaligned access, or some other arithmetic or
protection error.

The eventing facility supports our extensibility goal

by adding more flexibility to the implementations. It also
helps us leverage existing simulation codes that are rarely,
if ever, multi-threaded. Asynchronous events are usually
invoked by the CPU module and therefore never run in
parallel to other methods like Fetch/Store.

3.7 Real-Time Simulation

All existing simulators work on a best-effort basis.

Their designers assumed from the start that the simulator
would be slower than the real system and no thought was
given to matching the temporal behavior of the target
system. Many embedded and Real-Time systems operate
at relatively slow clock frequencies because cost and
power consumption is often a primary concern. Giano
already emulates an EB63 board at the correct speed on a
relatively slow 800 MHz PC. On more modern PCs it can
execute instructions much faster than the original board,
which is not at all a desirable property.

To address this issue we can rate-limit the speed of
the CPU module, but paying attention to realize a control
loop that can be fine-tuned to relatively small speed
differentials. A simple scheme is as follows.

• Every M thousands of instructions spin idle for
D microseconds;

• Every N millions of instructions check the
execution rate against the target rate and adjust
the delay D.

In this way, the effective delay on each instruction is
D/M, which can be as small as a few picoseconds and
therefore would be impossible to realize on a per-
instruction basis. The inevitable overhead is also spread
over a larger number of instructions. Checking the
execution rate involves reading the current time, which on
many Operating Systems is an expensive operation
compared to incrementing a counter and performing an
integer division. The adjustment of the delay value D is
based on a first-order filter, which seems sufficient to
provide quick convergence without excessive
fluctuations. Again, the cost of this computation is

 - 8 -

amortized over N million instructions. It is worth
mentioning that this type of feedback loop takes care, at
least in part, of the fluctuations in execution speed due to
multiprogramming on a general-purpose and non-Real-
Time commodity Operating System. The CPU module
executes at the target number of MIPS while the user can
continue with other activities.

There is a second aspect to Real-Time Simulation
that Giano uniquely supports. Real-Time programs are
defined correct not only with respect to their internal
behavior but also in relation to the timing of their
interactions with the external world. A simulator for
Real-Time programs must therefore be able to interact
with the external world and it must reproduce faithfully
the external behaviors of the programs being simulated.

There are two parts to this support: a calibration
phase and notification events. Using the rate-limiting
algorithm above, a CPU is able to generate a clock with
known frequency and to keep it stable (within the limits
in accuracy of a general-purpose commercial Operating
System). All things being equal, the CPU executes at the
same speed on the same system every time the simulator
is started. We can therefore record on disk what the clock
speed is the first time the simulator is used and reuse this
value as a first order estimate on each subsequent run.
This provides faster convergence and therefore better
accuracy even for short-running experiments. Modules
with Real-Time requirements can looktt

 - 9 -

all levels of the memory hierarchy; in this way all devices
are just one function call away from the root bus.

3.9 Debugging

We expected to use the tool for debugging software

programs too but we did not really expect that this would
be quite so popular. Initially we just provided support for
remote debugging via the simulated serial lines, or the
simulated Ethernet and IEEE 1394 Firewire NICs. This
was in line with our stated goals of leveraging existing
components without reinventing them. While that
worked, we frequently received complains that either the
debuggers were not available or that they were not able to
help in the most difficult cases. A more promising idea
was to attach a debugger over a simulated JTAG
connection, but we found that either the tools did not
support JTAG at all, or that the interface information was
not readily available.

We therefore built some debugging aids directly into
our CPU modules to provide symbolic tracing and
printing. Tracing can be turned on and off at selected
memory locations and it is a per-processor condition, one
processor can proceed at full speed while another is being
traced. This simple facility has proven quite valuable for
debugging interrupt routines, monitoring stores to
selected memory locations, and for race conditions that
are otherwise hard to capture and/or reproduce. While it is
not meant to replace a debugger but only to augment it in
corner cases, it nonetheless proves that leverage alone
does not always work.

We also built the Debug module, a generic module
that can be added to any configuration. It uses a
command-line window to interact with the user. It can
dynamically attach to any of the modules in the graph,
stop it, resume it, and read and write to it. This tool is
especially useful when there is no CPU module in the
simulated system; it still allows inspection of any
peripheral register, memory location, or bus control
register.

3.10 Testing with Oracles

The idea of a “JTAG connection” to the simulator

has actually been used in Giano, but for an entirely
different purpose. We wanted to test the instruction
simulators as extensively as possible, to gain trust that the
simulator is faithful to the real hardware. This is a
daunting task even for the relatively small number of
opcodes that constitutes the ARM instruction set. Doing
this manually is not only tedious but also error prone and

vulnerable to mistakes and/or misunderstandings in the
specifications.

The ARM CPU module creates a TCP socket where
we can feed “test-cases” that are automatically executed
and verified. In case of a discrepancy, the test case
contains all the information needed to reproduce the error
and it quickly leads us to the cause of the error. Test-
cases are automatically generated by a separate program,
which is executed on an “oracle” machine. Tests quite
often involve just a single instruction. The test generator
encodes the instruction with the desired flags and
registers, and specifies the processor state before
execution in terms of register values and the contents of
the relevant memory locations. The generated test is then
executed on the oracle machine and the oracle records the
resulting register state as well as the memory locations
that were modified by the instruction. This constitutes the
expected result of the test. All this information is sent off
to the target simulator and test generation continues.
Billions of tests can be generated, executed and verified
automatically in a 24-hour period when using two average
performance personal computers. To test the ARM CPU
simulator we used the ARM Ltd. ARMulator [2] as the
oracle machine and its limited speed turned out to be the
bottleneck of the resulting automated testing system. In
retrospect, we should have used a Pocket PC that can run
an actual ARM processor at a much higher speed.

3.11 Collecting Useful Traces

We had implemented two different tracing facilities

for Giano, both of which collect their data on every
instruction step. This had a noticeable negative effect on
performance and we found that the resulting information
was only of limited use to our software developers.
Number of accesses to SRAM, FLASH, cache, I/O and so
forth do explain the CPI but do not readily help locate the
source code most responsible for it.

Checking for the start of a basic block is more
efficient than invoking the tracing facility on every
instruction because it is only done on instructions that do
branch. We have therefore developed a simple set of tools
for performing code analysis and profiling at the basic
block level. These tools are available as part of the Giano
distribution. One of these tools analyzes an executable
image and generates a corresponding basic block database
file. Giano CPU modules can use this database during
execution and update the dynamic execution counts for
each basic block reached during actual execution.
Loading and unloading of executables inside the
simulated system is recognized using the standard
debugger interface that is provided by the executing
Operating System, e.g. some special trap or the invocation

 - 10 -

of a certain function. Therefore the disassembly and
profiling data that Giano generates is not limited to the
initial Operating System/runtime image but it is extensible
and covers dynamically loaded programs as well. This is a
feature that is not found in any other simulator. In a
similar fashion, the symbol tables for the executable can
be used to generate symbolic traces even for dynamically
loaded software programs.

After execution is complete, other tools sort and
inspect the updated databases to reveal the most
frequently executed basic blocks and their relationship to
the original source code. It is conceivable to use Giano
itself to identify the basic blocks using dynamic rather
than static analysis of the executable images, but their
relationships to the names of functions and methods is
only known when looking at the symbol tables contained
in the executable images.

3.12 Portability

The hardware simulation side should execute as

many “hardware programs” (hardware designs written in
HDL) as possible, just like the CPU simulation can
execute arbitrary “software programs”. In Giano the
hardware model is selected at run time and is not
compiled-in into Giano. Modifying the model and
restarting the simulation is a matter of seconds even for
large designs. According to our extensibility goals, the
hardware simulator is not linked statically into the
program; it is loaded dynamically at execution time. This
feature was particularly useful when we added support for
commercial simulators, for which we do not have source
code but we still can leverage (see Section 3.5).

Giano is coded in C++ and so are all the example
modules that are provided in the distribution. This does
not preclude a user from choosing a different
implementation language for a module, provided it
interfaces correctly to the other modules. We have
avoided making any design decisions that would hamper
portability. For instance, most existing CPU simulators
only simulate 32-bit target processors because this maps
efficiently to a 32-bit host processor. Giano supports full
64-bit addresses but it can be compiled for either a 32-bit
or a 64-bit IA86 processor. This benefits the 64-bit
PowerPC simulation when running on a 64-bit PC and
exacts only a limited performance penalty in other cases.

Even the inevitable dependencies on the underlying
Operating System are relatively benign. Using a separate
DLL for each simulation module gives maximum
flexibility but requires that the Operating System supports
shared libraries or a dynamic loader. Various modules use
separate threads, for instance the CPU modules and some
peripherals. This requires that the Operating System

supports multi-threading and it can result in much better
performance on a multiprocessor system than on a
uniprocessor system.

We expected that some of these decisions would
negatively affect performance, but we chose to solve that
problem separately and only once its relevance was
understood. Given the advances in clock frequencies and
the fact that the simulator spends all of its time in a
relative small section of code it was hard to predict just
how bad the performance would be. We measured about
20 MIPS on a 2 GHz Intel processor for an interpretive
C++ ARM CPU module, which is both terrible and
acceptable depending on the intended use. It is quite
acceptable and in fact faster than an Atmel EB63
evaluation board that runs at 25 MHz on a 16-bit memory
bus, resulting approximately in a 5 MIPS instruction
execution rate. It is terribly inefficient for a PowerPC
simulation of an Apple Macintosh G5. One way to boost
the CPU performance is to implement a CPU module that
uses dynamic code generation rather than pure
interpretation [19,4].

3.12.1 Testing Portability

To validate the portability of the resulting system we

have ported a subset of Giano to the Atmel EB63
development board, running under MIC. We dubbed this
version MicroGiano, to emphasize the challenge on a
board that supports at most 1 MB of SRAM memory.
Within this memory budget we had to fit the Operating
System, MicroGiano itself, and especially the simulated
SRAM and FLASH devices.

MicroGiano simulates a MIPS big-endian processor,
RAM and FLASH, a programmable timer, a serial line
and little more. It executes MIPS-2 instructions at about
1 MIPS on a 25 MHz ARM board with a 16-bit bus.
MicroGiano uses the second serial line connector on the
EB63 as its primary serial line. A client connecting to
this second serial line will talk to the simulated processor;
the primary serial line is still available for the ARM
processor. Section 5.3 describes how we leveraged
MicroGiano in a hardware project. Yes, we developed
MicroGiano using Giano on a PC to simulate an
ARM/EB63 board while it was running MicroGiano
simulating a MIPS/EB63 board.

4 Implementation

The main limiting factors while implementing Giano

modules is adequate virtualization support from the host
Operating Systems and exclusive-use of system devices.
Sometimes the mapping between simulated and real
devices is intuitive and easy to realize, as in the case of a

 - 11 -

graphic window for a frame buffer, or an audio mixer for
an ADC converter, or a file for a permanent storage
device. At times it can be less obvious; a simulated serial
line can map to a physical serial line but then it cannot be
used by multiple instances of the simulator because it is
an exclusive-use device. Giano can also map serial lines
to sockets, which are a more convenient software
abstraction and do not create exclusive-use problems. At
times the mapping is made impractical by the host
Operating System, for instance in the case of the
Universal Serial Bus (USB). We wanted to simulate a
Host Controller Interface (HCI) device, which is the
interface to the USB bus for the CPU. Unfortunately, this
device is neither virtualized by the Operating System nor
can it be accessed directly in exclusive-use mode like the
serial lines. One way for simulating an HCI is to use a
dedicated USB HCI card and to write a special kernel
mode driver for it, but this is neither easy nor portable.
The Ethernet creates a similar problem, but in this case
we can leverage the Virtual PC [12] kernel mode driver,
which solves both the virtualization and exclusive-use
problems. Using the Packet Filter [35] and a raw socket is
an alternative approach for the UNIX Operating System.

CPU 13
MMU 4
Bus 5
Memory 4
I/O Device 48
Interrupt Controller 4

Table 1: Component Counts

Besides being feasible, simulation requires minimal
levels of performance in certain cases. For instance, audio
should play without glitches. This is easy to achieve if we
simulate a device without any hardware mixers and/or
decoders, or if we can offload this task to the host audio
device. The Doom videogame does contain a software
mixer and when in use it reduces the frame rate by about
8%. Graphic performance can also be an issue. A simple
2D frame buffer simulation suffices for the graphical UIs
(if any!) found in most embedded Operating Systems, but
more modern graphics and 3D games require the
simulation of complex 3D GPUs. The DirectX or
OpenGL APIs can be used to realize the best
performance, mapping the device’s operations to higher-
level APIs and taking advantage of the host’s 3D graphic
support [24].

In Table 1 we break down the count of components
realized by our group into non-overlapping categories2.

2 Due to licensing constraints for third party software not all these
instances are included in the distribution.

I/O device is the largest category and the fastest growing
one. The count of CPU modules is somewhat inflated by
the many ways in which the four supported architectures
(MIPS, ARM, PowerPC and BlackFin) are realized.

 Workin

g Set
VM
Size

Simulated
Memory

Module
s

SPOT 1.2 5.8 3 15
EB63 5.6 5.8 2.25 33
ML401 4.3 77 73 20
Xbox360 7.6 528 524.5 22

Table 2: Memory Requirements

Giano is accurate enough to pass all the test
programs created by the manufacturer for the Atmel EB63
board. There are some thirty-three modules in this
configuration, including some unusual devices such as a
serial FLASH interfaced via parallel GPIO pins and a
power management controller. Table 2 shows Giano’s
memory requirements in megabytes of host memory
during simulation of this and three other selected systems.
All the modules in these configurations are C models and
the measurements were done using TaskManager under
Windows 2000 SP4. Counts are all-inclusive, for the
entire process. The virtual memory requirements match
closely those of the simulated system but the working set
remains limited even for the larger systems. There is some
correlation in working set size between Giano and the
simulated systems but the presence of graphic elements
such as buttons, LEDs and frame buffer memory causes
some strong variations.

5 Case studies

In this section we present first a short exercise in

hardware-software co-development using Giano. This
example is intended for readers not too familiar with
mixed-mode simulation, but it also shows in detail the
dual-ported memory interface described in Section 3.5,
and how Giano is used in practice during code
development.

In hardware-software co-development the designer
must decide which components are assigned to software
and which ones to hardware. The goal is to obtain a target
system performance while meeting all the implementation
constraints and cost budgets. It is not always clear which
components would benefit the most from being realized
in hardware in any given system. The case study
presented in Section 5.2 tests how well Giano supports
the assignment process via mixed-mode simulation.

Section 5.3 describes how Giano influenced the
development of the eMIPS computer [11] and its real-

 - 12 -

time software. This project’s final target is a Xilinx
ML401 development board, but in the intermediate stages
we use an EB63 board coupled with a Xilinx Spartan-3
FPGA board. In this case study, Giano is used for three
different purposes: to support the incremental
development of a complex hardware project, for
hardware-software co-development, and for testing and
validation. This example also shows components realized
both in hardware and in software, but for reasons other
than those illustrated in Section 5.2.

1. module test;
2. reg [31:0] mem[3 : 0]; // dual ported memory
3. integer counter;
4. reg clock = 0;
5.
6. initial
7. begin
8. //Initialize Giano interface
9. $PassMemHandle(mem);
10. // Initialize our state
11. mem[`Counter_Increment] = 5;
12. mem[`Counter_State] = `Disabled;
13. mem[`Counter_Reset] = `NotReset;
14. counter = 0;
15. end
16.
17. always @(posedge clock)
18. begin
19. case (mem[`Counter_State])
20. `Enabled:
21. begin
22. if (mem[`Counter_Reset] == `Reset)
23. begin
24. counter = 0;
25. end
26. else
27. counter = counter + mem[`Counter_Increment];
28. mem[`Counter_Value] = counter;
29. end
30. endcase
31. end
32.
33. endmodule

Table 3: Verilog code for the FRC

5.1 Co-simulation Basics

In this exercise we want to provide an elementary

timing facility for a system composed of a microcontroller
and an FPGA connected via a memory-mapped I/O bus.
A 32-bit free-running counter (FRC) shall be the basis of
this facility. Table 3 shows the Verilog source code for
the counter, to be realized on the FPGA. The dual-ported
memory array that is the interface to the microcontroller is
defined at line 2. The interface defines controls for
starting and stopping the counter and for setting the units
of time. The counter itself is declared at line 3. Line 6
starts the initialization block, which invokes the

PassMemHandle() function that is part of our PLI
interface DLL, described in Section 3.5. Line 17 starts
the code that is executed on every clock cycle. Iff the
counter’s State is Enabled the Value field is changed. At
line 27, the counter increments by the value of the
Increment field, except if it is being Reset.

The test code to be run on the microcontroller itself
is shown in Table 4. Note how the COUNTER structure
maps directly to the dual-ported memory array in the
Verilog code. After starting the counter at line 15 the
program engages in some computation in the procedure
Spin() not shown, then at line 17 reads the value of the
counter and prints the results.

1. typedef struct {
2. volatile UINT32 Increment;
3. volatile UINT32 State;
4. volatile UINT32 Reset;
5. volatile UINT32 Value;
6. } COUNTER, *PCOUNTER;
7.
8. #define TheCounter ((PCOUNTER)0xfff04000)
9.
10. int main()
11. {
12. UINT32 Elapsed;
13. int SpinCount = parse_args();
14.
15. TheCounter->State = ENABLED;
16. Spin(SpinCount);
17. Elapsed= TheCounter->Value;
18. printf("Spin(%d) took %d ns.\n", SpinTimes,Elapsed);
19. }

Table 4: C test code for the FRC

To execute this example we first start Giano and

instruct it to load and execute the embedded Operating
System’ FLASH image. The Operating System will
provide a simple command line interface or similar
facility to run programs such as the one shown in Table 4.
While the command line interpreter is waiting for input
we start the ModelSim Verilog simulator and instruct it to
load and run the Verilog model of Table 3. Once the
model has connected back to Giano and it is executing we
can run the C test and observe the results.

Notice that all of the familiar debugging tools are
still available to the user. A debugger can be attached to
the simulated microcontroller to debug the C code, and all
of the debugging facilities built into ModelSim/Icarus
Verilog are still available as well. Giano provides
additional debugging tools for the more difficult cases.

5.2 Component Mapping

The MIC software system [8] is based on the notion

of structuring software in components with clearly

 - 13 -

defined and controlled interfaces. As long as it
implements the same interface, one component
implementation is plug-compatible with any other. The
idea of this test is to take a software component, remap it
to hardware and measure the results within the same
system, with the same test data. One such component is
the ICipher interface for cryptographic cipher functions.
We have at our disposal two software implementations of
the AES cipher written in C and one hardware
implementation written in Verilog. As a first step we add
a dual-ported memory interface to the Verilog AES
module as per Section 5.1, and debug the resulting core in
isolation using Giano. The test vectors are simple
commands for the RTOS debugger to read/write the dual-
ported memory. The second step is to write a “proxy”
implementation of the ICipher interface that
communicates with the FPGA over the dual-ported
memory.

The third step is to simulate and test the complete

system with Giano, using the configuration illustrated in
Figure 3. During testing, one of the three ICipher
implementations is selected and loaded in memory at
runtime. It is the only part that differs between the
experiments; everything else is precisely the same. This
gives us an exact measure of the reduction in memory
utilization and an estimated speedup of 70x for the FPGA
implementation over the software implementations. The
final step is to synthesize the AES core for our FPGA,
which requires a few changes to the purely behavioral
portions of the original code. The new code is again
tested with Giano, then executed and tested on the real
system. The actual performance results are in line with
the original projections. We have reached those results in
a much shorter time and we have a more accurate
understanding of what the system does.

5.3 The eMIPS Computer

The development process of the eMIPS computer
[11] includes the five intermediate steps depicted in

Figure 4. At every step we first use Giano to debug the
code more quickly, then MicroGiano and an FPGA for
hardware synthesis. In the initial configuration (Figure
4.a) all the components are written in C and are simulated
by Giano; Verilog is not used. The modules are
instruction decoding and execution (INST), virtual
address translation (TLB), physical memory (MEM) and
I/O peripherals (I/O). Software development begins as
soon as the C models for the components are sufficiently
developed. Software developers will continue using
Giano through the whole project and abandon it only
when the real, faster hardware becomes available. By that
time, software is complete and its timing properties have
already been verified. In addition to the application code,
the software includes any software test programs
developed to test individual hardware components, or to
identify faults.

In the next step of Figure 4.b we used 4 MB of

DRAM memory attached to the FPGA board as backing
storage for MicroGiano’s simulated memory. The DRAM
memory interface is a Verilog module developed first
with Giano/ModelSim, then realized with
MicroGiano/FPGA. This module is augmented in Figure
4.c to include a TLB; at this point (Micro)Giano makes
I/O accesses to the FPGA’s dual ported memory to
perform address translation. The next step is to move
instruction execution onto hardware, Figure 4.d. Notice
that to help debugging the MEM module has been moved
back to a C model, which more easily allows us to collect
and verify traces. After this configuration is debugged
with Giano, MicroGiano can be replaced by a small

 Base RTOS

Test program
and data

 ICipher
implementation FPGA:

AES

Figure 3: Testing the AES Components

Figure 4: Stages of the eMIPS Computer

INST

TLB

MEM

 I/O
C

V

C

V

INST

TLB

MEM

 I/O

C

V

INST

TLB

MEM

 I/O
C

V

INST

TLB

MEM

 I/O

(a) (b) (c)

(d) (e)

C

V

INST

TLB

MEM

 I/O

 - 14 -

program that simply awaits read/write requests from the
FPGA side and performs them. In the next-to-final
configuration of Figure 4.e the DRAM memory interface
module is integrated back into the Verilog code. To move
to the final configuration (shown in the screenshot of
Figure 1) the I/O peripherals are changed to match the
ones on the ML401 board.

The most complex module in this project is the
INST module and testing it is a large task as well. We can
make use of Giano to accomplish this task, in two
different ways. Figure 5 shows a setting with two
instances of Giano running separate sets of C models and
sharing access to the Verilog model of the INST
component. The C models are identical except for the
CPU component.

Figure 5: Using Giano as a System Oracle

The Giano instance on the right side of Figure 5

(Oracle) uses a true C model of the CPU; the one on the
left uses an In-Circuit Emulator component acting as a
slave to the Verilog component (center). The Verilog
model performs the validation of its results at instruction
retirement time, by checking the data produced by the
Oracle model. This data includes the instruction’s
address and the values of all registers that are visible in
the ISA.

This approach allows us to test the Verilog model by
executing the final application software and any special
functional tests. It if therefore a good common testing
ground for the software and hardware engineers.
Unfortunately, it does neither measure the test code
coverage nor does it expressly cover any boundary cases.
The diagram in Figure 6 shows an alternate setting, this
time with a special TestGenerator Bus component that
acts as a test generator. Both the CPU Oracle component
and the Verilog component (FPGA) talk to this common
Bus to access memory... which is not in the picture
because there is none. The TestGenerator Bus will
programmatically (or by using traces) create the test

instruction sequences, provide the values for all memory
reads and verify that memory stores are for the same
addresses and with the same values.

Figure 6: Using Giano as a Test Generator

6 Other Practical Experiences

Giano has been in use inside our research group for

years and has been available to external parties now for
two years. In addition to helping us carry out our research
the tool has helped us and others in a variety of other
ways:
- Giano has all but replaced the EB63 development

boards for regular software development. Developers
appreciate both the speed and the simplicity of use.

- We will be able to continue using the simulated
boards long after the real ones are discontinued.

- In general, development boards for embedded
processors are not meant to be real products; their life
expectancy is limited. This creates a problem for
software developers, who must invest their time on
something of a moving target. Giano makes the
platform stable for an indefinite amount of time.

- We have not yet found a case where something
would work on Giano and not on the real hardware.

- With Giano we have found and fixed many subtle
(timing) errors that had eluded us on the real
hardware for some time.

- Regression testing with Giano is an automated part of
the compilation process for the MIC system. When
new changes are applied to the MIC software they
are automatically tested by the individual developer
with Giano before they are released to the rest of the
developer’s group.

- In at least two cases, the MIC real-time system was
ported to a previously unsupported CPU architecture
using Giano directly.

- Basic block profiling helps us make our software
more efficient, often with surprising findings.

ModelSim:
eMIPS RCPU

Giano:
Simulated

Board

Giano:
Oracle

 - 15 -

- All of our major technical demonstrations have used
Giano in some way, including a secure consumer
electronics system and a distributed real-time
planning and execution system. We often use a mix
of real and simulated boards; in one instance, we
used a simulated board to replace a real one that had
failed during the demonstration.

- The Xbox 360 software team used a simulator
derived from Giano to develop the system software in
advance of actual hardware availability. This has
given them a net six months advantage on the
software schedule and allowed them to meet an
extremely demanding timeline for delivering the
product on time for the Holiday season.

- The early versions of the Microsoft SPOT watches
were similarly developed using the Giano simulator.
System software was again ready well in advance of
actual hardware availability.

- Researchers at Portland State University are using
Giano for run-time verification of temporal logic
properties using the Property Specification Language
PSL [1], an IEEE standard. Giano can support PSL
both on the software and the hardware side. They
have also added support for mathematical modeling
of input signals, using MATLAB [36].

- At Texas A&M University Giano is used in teaching
a Microprocessor Design course at the senior
undergraduate level.

- Students at Texas A&M are using Giano to simulate
and test a complex add-on board cascading multiple-
busses, including the PCI and ISA busses. This setup
involves multiple cooperating instances of Giano, it
is cycle-accurate and does not involve any CPU
module.

7 Related work

Simulators are naturally CPU-intensive applications

that have benefited from the performance improvements
of the last decade. Full-system simulation is now possible
[20,21,12,18] and the implementations use different
approaches for best performance. In Giano performance
does not dominate the design, functionality does. For
instance, using the Virtual Machine approach to
simulation is limiting to the one architecture being
virtualized, namely the x86. With SimOS [20] it is
possible to simulate an entire Operating System, but only
if special device drivers are used; this prevents it from
being able to execute existing commercial Operating
System binaries and furthermore it cannot be used to test
or develop new peripherals and/or their device drivers.
None of these full-system simulators is easily extensible

or supports Real-Time; none supports HDL modules, only
SimOS is available in source form.

The SimpleScalar [5] simulator is used in computer
architecture education and research. It simulates a MIPS-
like processor, either in big-endian or in little-endian
mode. A simulation run under SimpleScalar is equivalent
to execution within a UNIX process and most UNIX
system call traps are supported, except for fork/exec.
Many commercial CPU simulators provide a similar level
of abstraction. SimpleScalar is neither synthesizable nor
does it allow simulation of the Operating System code
and of the I/O devices; consequently it cannot support
Real-Time. It has been extended in a number of ways, for
instance for power usage modeling [27] and for
multiprocessor simulation [32].

With ARMulator [2] and Simics [25] the user can
define programmatically the memory model, which
allows for I/O peripheral simulation. These simulators
keep an account of the cycles spent on each read/write
operation by the CPU, but do not support Verilog, do not
support multiprocessors and are not Real-Time. Their
sources are not available, but both are user-extensible.

ModelSim [13] is popular with hardware designers;
it has both a graphical and a command line UI. It can
simulate both behavioral and synthesized Verilog and
VHDL code. Fast CPU simulation is available for some
“soft-cores”. ModelSim is not a full-system simulator,
does not support Real-Time and it is not available in
source form. Giano similarly relies on a separate module
(Visio) to provide the graphical UI. Seamless [37]
improves on ModelSim by allowing full-system co-
simulation but it is not Real-Time and not available in
source form.

Atmel’s FPSLIC [3] is a development kit for an 8-bit
SoC that includes a CPU and a CPLD. The kit includes a
simulator, but only for the CPU side.

SIMH [22] is a project aimed at building simulators
for historical computers; it started with the PDP-11/23
“fuzzball” routers of the old ARPANET and now covers
many other retired computers. Some of the embedded
computers that Giano simulates have a similar long life
expectancy.

Games are interactive programs, they must provide
an adequate response time or they are just not playable.
Game consoles often use hardware solutions that are
difficult to reproduce in software, for instance for audio
and graphic effects. Many game consoles have a
simulator that can play their games [7], sometimes for the
love of the games and sometimes to cheat and pirate, but
always as a challenging engineering enterprise.

 - 16 -

8 Conclusions

Giano is a Real-Time, full-system, hardware-

software co-simulator that we have developed to support
our research in Embedded Systems and in Reconfigurable
Computing. We identified six necessary requirements for
such a tool: it should be capable (1) of simulating
hardware cores for an FPGA or other device, (2) of
executing large bodies of code, and (3) of simulating a
complete system including (4) a variety of I/O devices
and (5) communicating in real-time with the outside
world. To let users make fundamental changes to the
simulator in the future (6) the availability of source code
is essential. No existing simulator possessed all these
features.

Giano’s design was guided by the two goals of
maximizing the tool’s extensibility and to leverage other
existing tools to the maximum extent possible. These
goals were rarely at odds with our requirements and led to
some innovative solutions. Giano is the first simulator
that supports Real-Time Simulation and the symbolic
performance analysis of dynamically loaded software.
Practical experience has demonstrated that the tool is
effective in shortening the modify-compile-test cycle, in
supporting performance analysis and tuning, and to detect
flaws more quickly and more accurately.

References

[1] Accellera IEEE P1850 PSL.
[2] ARM Ltd. The ARMulator. ARM Ltd, Cambridge, UK.
[3] Atmel FPSLIC Programmable System-Level Integration Starter Kit

P/N ATSTK94.
[4] Bond, B. Windows CE Device Emulator available at

http://msdn.microsoft.com/mobility/windowsmobile/downloads/em
ulatorpreview/default.aspx

[5] Burger, D., Austin, T. M. The SimpleScalar Tool Set, Version 2.0.
Technical Report 1342, June 1997, University of Wisconsin-
Madison.

[6] Carmak, J. Doom source at http://www.doomworld.com
[7] See for instance http://www.emulator-zone.com
[8] Helander, J., Forin, A. MMLite: A Highly Componentized System

Architecture. Eight ACM SIGOPS European Workshop, Sintra,
Portugal, September 1998.
Download at http://research.microsoft.com/invisible/

[9] Koldinger, E. J., Chase, J., Eggers, S. J. Architectural Support for
Single Address Space Operating Systems. ASPLOS 1992, New
York, NY, pp. 175-186.

[10] Liu, S. et al. Marionettes
 at http://faculty.cs.tamu.edu/jcliu/web_462/marionette.mov
[11] Pittman, R. N., Lynch, N. L., Forin A. eMIPS, a Dynamically

Extensible Processor. Report no MSR-TR-2006-143, Microsoft
Research, WA.

[12] Mann, A. The Rational Guide to Microsoft Virtual PC 2004.
Rational Press, Rollinsford, NH, 2004.

[13] Mentor Graphics ModelSim at
http://www.mentor.com/products/fpga_pld/simulation/index.cfm

[14] Microsoft Giano at http://research.microsoft.com/downloads/ and
http://www.ece.umd.edu/~behnam/giano.html

[15] Morong, C. LabVIEW for Dummies
at http://www.iit.edu/~labview/Dummies.html

[16] National Instruments LabVIEW 8
at http://www.ni.com/labview/

[17] PCI SIG PCI Local Bus Specification Rev 2.2, December 1998.
[18] Pratt, I. Xen at http://www.xensource.com/
[19] Reshadi, M. et al. Instruction Set Compiled Simulation: A

Technique for Fast and Flexible Instruciton Set Simulation. DAC
2003, Anaheim CA.

[20] Rosenblum, M. et al. Complete Computer System Simulation: the
SimOS Approach. IEEE Parallel and Distributed Technology:
Systems and Applications, Vol 3.4, Winter 1995, pp. 34-43.

[21] Rosenblum, M. et al. VmWare Virtual Platform
at http://www.vmware.com/support/pubs/

[22] Supnik, B. The Computer History Simulation Project
at http://simh.trailing-edge.com/

[23] Sutherland, S. The Verilog PLI Handbook. Kluwer Academic
Publishers, Norwell, MA 2002.

[24] Tong, X. MSR Asia, personal communication.
[25] Virtutech Inc. Simics at http://www.virtutech.com
[26] Williams, S. Icarus Verilog at ftp://icarus.com/pub/eda/verilog/

/v0.7
[27] Ye, W. et al. The Design and Use of SimplePower: A Cycle-

Accurate Energy Estimation Tool. Proceedings of the 2000 Design
Automation Conference, pp. 340-345.

[28] Reshadi, M. et al. An Efficient Retargetable Framework for
Instruction-Set Simulation. CODES+ISS’03, October 2003.

[29] Engel, F. A Generic Tool Set for Application Specific Processor
Architectures. CODES’02, May 2000.

[30] Wieferink, A. et al. A Generic Tool-Set for SoC Multiprocessor
Debugging and Synchronization. ASAP’03.

[31] Braun, G. et al. A Universal Technique for Fast and Flexible
Instruction-Set Architecture Simulation. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, Vol
23-12, December 2004.

[32] Franklin, D. “PolyScalar” available at
 http://www.csc.calpoly.edu/~franklin/PolyScalar/Home.htm
[33] Shivakumar, P and Jouppi, N. P. CACTI 3.0: An Integrated Cache

Timing, Power, and Area Model. WRL Research Report 2001/2.
[34] Bray, T. et al. Extensible Markup Language (XML) 1.0. W3C

Recommendation, February 1998. Available at
http://www.w3.org/TR/REC-xml-20060816

[35] McCanne, S., Jacobson, V. The BSD Packet Filter: A New
Architecture for User-level Packet Capture. Proceedings of the
Winter’93 USENIX Conference.

[36] The Mathworks MATLAB. Natick, MA.
[37] Mentor Graphics Seamless. Wilsonville, OR.

