

A C-language binding for PSL

Ping Hang Cheung, Alessandro Forin
Microsoft Research

September 2006

Technical Report
MSR-TR-2006-131

Microsoft Research
Microsoft Corporation

One Microsoft Way
Redmond, WA 98052

- 2 -

A C-language binding for PSL
Ping Hang Cheung, Alessandro Forin

Microsoft Research, One Microsoft Way, Redmond, WA, USA
cheung@cecs.pdx.edu, sandrof@microsoft.com

Abstract. In recent years we have seen an increase in the complexity of em-
bedded system design and in the difficulties of their verification. As a result,
engineers have been trying to verify the specifications at a higher level of ab-
straction. In this paper we present an automated tool which is able to perform
runtime verification of a program’s logical properties asserted by the program-
mer. The idea is to leverage the Assertion Based Verification language PSL,
which is widely used by hardware engineers, extending it to the software verifi-
cation of C language programs. The properties expressed in a simple subset of
PSL are evaluated by the tool during full-system simulation. Like in hardware
Assertion Based Verification, the tool can handle both safety properties (ab-
sence of bad events) and liveness properties (good events eventually happen).
The liveness property is not widely supported in existing verification tools.

Keywords: Property Specification Language, C, Assertion Based Verification

1. Introduction

Assertions Based Verification (ABV) is an approach that is used by hardware design
engineers to specify the functional properties of logic designs. Two popular lan-
guages based on ABV are the Property Specification Language PSL and the System-
Verilog Assertion system SVA [1]. PSL is now an IEEE standard – P1850 [2]. PSL
specifications can be used both for the design and for the verification processes. A
single language can be used first for the functional specification of the design and
later on as an input to the tools that verify the implementation. The backbone of PSL
is Temporal Logic [3], [4]. Temporal Logic can describe the execution of systems in
terms of logic formulas augmented by time-sequencing operators.

In this paper, we introduce a binding of PSL to the C programming language. A
programmer can write PSL statements about her C program and the properties are
verified during execution. Our initial work has shown that the approach is feasible;
we have defined a simple subset of PSL (sPSL) and realized a few tools with which
we can perform ABV of C programs using Linear Temporal Logic (LTL). The sPSL
LTL operators are provided for describing events along a single computation path.

sPSL is implemented using the Giano simulator [5] as the execution platform.
Giano is a dual-headed hardware-software simulator. It is capable of performing the
full-system simulations of CPUs and hardware peripherals as well as the behavioral
simulation of hardware designs written in Verilog. The sPSL engine is realized modi-
fying an existing ARM CPU simulation module from Giano.

- 3 -

The rest of the paper is structured as follows. Related work in the verification field
is discussed in Section 2. Section 3 introduces the sPSL language. The architecture of
the sPSL execution engine is described in Section 4 and Section 5 provides some
simple examples. Section 6 concludes with a discussion of improvements we have
planned for further assessments of the sPSL capabilities.

2. Related Work

LTL properties can be translated into code that is added to the target program to
monitor it during execution, as with the Temporal Rover and DBRover tools [6, 7].
Temporal Rover is a code generator which accepts source code from Java, C, C++,
Verilog or VHDL. The LTL assertions are expressed as comments embedded in the
source code. With the aid of a parser, the assertions are inserted in the source code
that is then compiled and executed.

Java-MaC [8] is a more limited system, restricted only to Java programs. It con-
tains a static phase and a run-time phase. At program analysis time, it uses the Primi-
tive Event Definition Language (PEDL) to define events and their desired relation-
ships. At run-time, it continuously monitors and checks the executing program with
respect to the defined formal specifications. An even simpler approach to detect soft-
ware faults at runtime is to use a pre-processor and assertions, as with ASAP [9].
ASAP is a pre-processor for C programs, it extends the usage of assertions in C pro-
grams by using partial functions and first order logic. Inevitability, these assertions
are embedded in the program source code.

Rosu [10] suggests re-writing techniques to evaluate LTL formulas. The execution
of an instrumented program creates traces of interesting events and the rewriter oper-
ates on such traces. Some algorithms assume the entire trace is available for (back-
ward) analysis, others can process each event as it arrives. Rosu’s algorithms make it
possible to generate very efficient monitors that can be used by practical tools such as
the Java PathExplorer (JPaX) [11].

In Design by Contract, a class specification is augmented with behavioral specifi-
cations. The user (client) must agree both to the syntactic requirements and to the be-
havioral requirements in order to invoke a method specified by such a class. One in-
stance is the Java Modeling Language (JML) [12]. JML is a behavioral interface
specification language for Java modules. The JML Compiler (jmlc) compiles JML
code into runtime checks of the class contracts. In [13], the jmlc compiler is used in
conjunction with an Extended Static Checker for Java version2 (ESC/Java2). In [14]
this approach is used to perform verification of a full compiler. ESC/Java2 makes ad-
ditional use of static analysis, a technique that does not require actually executing the
program for fault detection. Another instance is Spec# [15]. The Spec# programming
language is a superset of C# which provides method contracts in the form of pre-
conditions and post-conditions, as well as object invariants. The Spec# compiler pro-
vides run-time checking for method contracts and object invariants. A Spec# static
program verifier generates the logical verification for Spec# program and an auto-
mated theorem prover analyzes the verification directives to prove the program’s cor-
rectness.

- 4 -

SLIC [16] is a language for specifying the low level temporal safety properties of
Application Program Interfaces (APIs) defined in the C programming language. It can
be used along with the companion tool SLAM [17] to perform validation. Our ap-
proach is similar, we also use a specification language and a verification tool as the
two key components for validation. In our case, sPSL is the language for specifying
the program properties and the Giano simulator augmented with the sPSL evaluation
engine is the verification tool.

All of these systems insert instrumentation code into the executing program to
monitor and check events and therefore introduce some execution overhead that can
potentially modify the program’s temporal behavior. This is not acceptable for Real-
Time programs and even a limited overhead is poorly received by developers. In our
approach the program binary is not modified in any way, the monitoring is performed
entirely by the execution engine (the Giano simulator).

3. sPSL

There are two layers supported by the current implementation of sPSL: the Temporal
Layer and the Verification Layer. The complete PSL specification includes also a
Modeling layer which we did not implement in sPSL. The Modeling layer is typically
used for modeling external inputs.

3.1 Temporal Layer

A program can be described by temporal expressions. A temporal expression involves
events that are ordered by timing relationships. With the aid of temporal expressions,
we can define properties that describe the behavior of a program in a machine read-
able form.

3.2 Verification Layer

sPSL is described in an external file rather than being embedded in the C source file.
A verification unit, or vunit, in PSL links the scope of function and variable names
back to the C program. A vunit is also the syntactic container for the sPSL properties.
A vunit is checked at runtime when the corresponding basic blocks in the C program
are activated. A vunit takes an argument that identifies the lexical scope where local
variable names are bound. The argument is in the form shown in equation (1)

vuint_argument == filename [:: function_name [block]];
block == { [block] } [block];

(1)

- 5 -

Specifying only the filename makes visible all functions and global variables visible
during the compilation of that specific source file (global scope). Specifying the
function name adds to the global scope the parameters of that function, but none of
the local variables. Notice that according to the C rules a parameter will overrule a
global variable of the same name. Specifying a left-bracket adds to the scope all vari-
ables at the outmost lexical scoping level within that function. Specifying more than
one left-bracket identifies blocks that are further indented. Numbers can be used to
shorten a block identifier.

Properties in the temporal layer are expressed as declarations in the PSL language.
In order to validate the system we need to use verification directives that specify
how/when those properties hold true. Since we are considering simulation based veri-
fication, formal verification flavored units like assume are not currently covered. As-
sume statements specify the values of input variables for use by a formal verification
tool. Assert is the only verification unit currently supported by sPSL. It tells the veri-
fication engine to check whether the assertion of a property holds. If a property fails
to meet the requirements, an error will be reported to the user.

In the sPSL shown below, the fragments vunit check_foo (foo.c::baz) and assert
always_foo represent the verification layer while the property always_foo = always
(foo=1) represents the temporal layer. The verification directive assert guarantees that
always_foo holds valid for the life of the block, which in this case includes the whole
program. The syntax for the declarations and the functionality of each operator are
described in the following.

vunit check_foo(foo.c)

{

 property always_foo = always (foo=1);

 assert always_foo;

}

3.3 Declarations

Each sPSL property declaration is introduced by an identifier for that property, such
as always_foo. The property is then followed by an expression involving one or more
operators. Time advances monotonically along a single path, left to right through the
expression. Only a subset of the PSL operators is included in sPSL, taken from the
Foundational Language (FL) subset. Valid sPSL operators are always, never, eventu-
ally, until, before and next. Each operator belongs to an operator class. For instance,
always and never are the FL invariance operators, eventually and until are the FL oc-
currence operators, before and next are the bounding operators. In order to express the
liveness properties we also support the operators eventually!, until!, before! and next!.

- 6 -

3.4 Operators

The operator always guarantees that a temporal expression will hold true. In the prop-
erty shown in (2), the variable const is required to always hold the value “1”. Assum-
ing that const is a global variable always in this case means for the entire life of the
program. If the expression instead refers to local variables then the property will be
checked only while those variables are in scope, meaning for the duration of the func-
tion call.

property check_always = always (const = 1); (2)

The operator never guarantees that the expression will never become true. In (3), the
specified assignment of “0” to the variable const must not happen during the life of
the program.

property check_never = never (const = 0); (3)

The operator until guarantees that an expression is true until a second expression be-
comes true.

(arg1 until arg2) (4)

(arg1 until! Arg2) (5)

Let us illustrate the execution diagram in Figure 1 and the properties shown in (4). In
the execution depicted in Figure 1, the property is validated because arg1 is true until
arg2 becomes true at time t=x. There are two variations of this operator, until! and un-
til. The operator until! shown in (5) is a strong operator used to indicate that arg2
must eventually become true in order to satisfy the property and it is an error if this
never happens. The operator until is a weak operator used to indicate that arg2 can
satisfy the property. If arg2 is never true this is not an error, provided that arg1 is
true.

Figure 1 Timing for until

- 7 -

The operator before guarantees that an expression is true before a second expression
becomes true.

(arg1 before arg2) (6)
(arg1 before! arg2)

(7)

The execution diagram in Figure 2 shows that the property of (6) is validated be-
cause arg1 is true before arg2 becomes true. In contrast to the previous examples for
the until operator, arg1 here is not required to hold at all times, but only at least once
before arg2 becomes true at time t=y.

Again there are two variations of this operator - before and before!. The strong
operator before! shown in (7) requires that the expression arg1 (rather than arg2) will
eventually become true and it is an error if this never happens. This is not an error in-
stead for the operator before. For both operators, it is a violation if arg1 is never as-
serted before arg2.

arg1 before arg2 = not(arg2) until not(arg1)

(8)

Note that while the operator before and until are equivalent according to the relation
of (8), this does not hold for the operators before! and until!.

t=0 t=x t=Terminate

arg1=0

arg2=0

t=y

Figure 2 Timing for before

The operator next guarantees that an expression will hold true in the next execution
cycle. The existing prototype supports the use of the next and next! variants.

always (arg1 ->next arg2) (9)

This operator is slightly different from the original PSL definition, which referred to a
concept of system clocks and cycle counts that is not directly applicable to software.
In sPSL the “next execution cycle” means rather “the next event”. We use next to re-
quire that if arg1 becomes true then in next assignment that affects any of the logic
properties it will be arg2 that becomes true, or in other words that the next interesting
event is that arg2 becomes true at t=x. The operator next! is used in the same way as

- 8 -

PSL, to require that if arg1 becomes true then arg2 will eventually become true as
well. This operator can be useful when dealing with critical sections of code where
the processor cannot be interrupted.
Figure 3 and (9) illustrate the use of next, with the assumption arg1=0 and arg2=0 ini-
tially.

Figure 3 Timing for next

The operator eventually! guarantees that “something good” eventually happens. In
(10), if the expression arg1 becomes true then there must be an execution path which
leads to arg2 also becoming true sometimes in the future. Consider the diagram de-
scribed in Figure 4, where time advances to the right. The shaded area in the figure
represents “don’t care” values, the variable could be either 0 or 1. Assume the pro-
gram starts the execution at t=0 and terminates at t=Terminate with the initial condi-
tion arg1=0 and arg2=0. At time t=x “arg1” becomes true. If at time t=y, arg2 be-
comes true we can claim that the “check_evenutally” property is valid, even if arg1
should become false between t=x and t=y. It is indeed a violation of the property if
arg2 never becomes true after time t=x and before t=Terminate.

always (arg1 ->eventually! arg2) (10)

Note that always is also part of this property specification; we require checking for
the entire life of the program.

Figure 4 Timing for eventually

4. Evaluation

There are two separate components that make up our implementation, namely the data
model generator and the evaluation engine. The data model generator is responsible
for processing data from the sPSL source, C source file, and from a textual dump of
the debugging information contained-in/related-to the executable image and collect it
into a single file for later use by the evaluation engine.

- 9 -

The evaluation engine has two interfaces, one to the execution processor and one
to the data model. It retrieves from the execution processor such information as mem-
ory addresses, instructions, and register contents. It uses the data generated by the
data model generator to realize the desired property checking. Figure 5 depicts the ar-
chitecture of the prototype.

4.1 Data Model Generation

The sPSL source is processed first by a script to create one entry for each property
declared in the sPSL source file. After processing the C source file the model will also
contain a tag for each of the variables and functions found in the C source. The C
source is compiled and the compiler is instructed to generate maximum debugging in-
formation. This information is extracted into a text file by compiler tools such as
OBJDUMP or similar. The data model generator reads that information and adds to
the data model the addressees and offsets of functions and variables, register alloca-
tion information and the values of some individual instructions. The data model also
contains the start and end addresses of the basic blocks, which are needed to recog-
nize the entering and exiting of the scope of local variables. If the image is actually
executed at a different load address (runtime relocation) an offset is added to the stati-
cally identified information. Some additional information is needed for sPSL opera-
tors with two operands, for these operators the data model will identify their insertion
points and release points. An insertion point is the set of execution addresses that af-
fect the left-side operand of the operator, for instance the point at which all variables
are in scope and the property is live or when a specific variable is modified. Con-
versely, the release point is the set of execution addresses that affect the right-hand
operand, for instance when a function returns and some variables are no longer in
scope.

The data model itself is a human-readable text file, the evaluation engine will later
parse it to create a more efficient representation in the form of individual decision tree
(PTree).

4.2 Evaluation engine

The sPSL evaluation engine is a module that is physically part of the Giano simulator
and monitors the instruction addresses, memory references, and registers accesses
during program execution. Every time a new program is launched during execution,
the runtime system notifies the Giano simulator of the program name and the address
at which it was loaded. The evaluation engine uses the program name to look for a
corresponding data model file, if it finds it it parses it and creates the corresponding
PTree. When a specific property is live, the engine creates and initializes an evalua-
tion tree for that individual property (ETree) and the monitoring task is started.

For instance, assume that some property is defined by the operator never and that
the expression refers to a single global variable. The evaluation engine will monitor
all memory references looking for stores to that specific memory location. If the new

- 10 -

value assigned to the variable violates any property an error is immediately reported
in the Giano execution window. In general, weak operator report errors immediately
and strong operators report errors when the scope exits. Program termination is a case
of exiting scope and it also affects all global variables.

Figure 5 Architecture of the Prototype

4.3 Tree Evaluation

The evaluation of the ETree is performed with a depth-first, left-first traversal.. Each
branch/sub-branch corresponds up to 2 leaves. These leaves contain either a value or
an operator. We use ternary logic during the evaluation, with the values true (T), false
(F) and undefined (Z). An example of a property and the corresponding ETree is
shown in Figure 6.

In Figure 6, the node a=1 is the first insertion point for the property. Assume that this
expression becomes true at time t. The parent node is a next operator, we need to wait

- 11 -

until the next event to be able to decide whether the operator is satisfied or not, there-
fore we return Z. If the next event is indeed an assignment of “1” to the variable b the
next operator can return T. If instead the variable is “0” an F is returned. Either way
the operator next can now return a defined value.
Once the parent node until receives a “T” from the left-side subtree it can monitor the
release point for the right-hand subtree, namely c=1. Until the c=1 is satisfied we re-
turn Z. Once c=1 and provided that a=1 next b=1 still hold, the until can return T to
the parent node always.

Figure 6 A Property and its Evaluation Tree

The invariance operator always cannot return a definite value until termination,

which is either the exiting of the scope or program termination. The event of its oper-
and becoming true does have an effect though, logically the property is satisfied and
immediately re-instated. Evaluation restarts then from the initial state.
Notice that when a subtree reports an F this is not cause for failure, only if this hap-
pens at the top of the tree. A simple counter-example is “not (a=1)”.

In the following, we will describe how the various operators are implemented.

- 12 -

 Variable Function invocation

 Left-op Right-op Left-op Right-op

eventually! Yes Yes Yes Yes

until/until! Yes Yes No Yes

before/before! Yes Yes No Yes

next/next! Yes Yes Yes Yes

Table 1

Not all combinations of function invocations and variable references are allowed in
expressions, as indicated in Table 1. Specifically, all types of until and before opera-
tors do not allow a function invocation as a first argument. Unlike variables, a func-
tion invocation doesn't hold onto a value for any set period of time

EVENTUALLY!
Every function invocation and every store to variables that appear in arg1 are inser-
tion points for the eventually! operator. Variables and functions in arg2 are release
points. When a function invocation occurs, the stack frame determines the addresses
of local variables and can make a property live. This activates the insertion points and
release points. The engine is invoked at insertion points and checks to see if the new
value makes the expression true. Once that happens, further insertion points are ig-
nored and only release points are monitored. Once a release point is reached that ren-
ders true the expression arg2 the property is satisfied and no further monitoring is re-
quired. If the release point is never reached before the end of the scope an error is
generated.

UNTIL/UNTIL!
The operator until is similar to eventually as far as insertion and release points are
concerned. However, once arg1 is satisfied for the first time the insertion points are
not released, they are still used to verify that arg1 holds until the release point is
reached or the scope is exited. An assignment that renders arg1 false before the re-
lease point is a violation of the property. Once a release point is reached that renders
true the expression arg2 the property is satisfied and no further monitoring is re-
quired. If the release point is not reached when exiting the scope the property is vio-
lated, but only for the strong operator until!.

BEFORE/BEFORE!
The operator before is similar to the operator until, except the roles of the expressions
arg1 and arg2 are swapped and negated. Notice however that the before! operator re-
quires that arg2 eventually holds, which is not the case for arg1 in until!.

- 13 -

NEXT/NEXT!
The operator next is very similar to the operator eventually!. The insertion points are
the same. The release points however are only evaluated in a specific moment in time
and then released, not constantly as is the case for eventually!.

5. Examples

1: int main()

2:{

3: UINT32 addr1 = 1;

4: UINT32 addr2 = 2;

5: UINT32 INTR = 0;

6: UINT32 op = 0;

7:

8: send_to_HW(addr2,0x0,0x3);

9:

10: while(1)

11: {

12: INTR=TheBCTRL->GCTRL_out;

13: if(INTR == 1)

14: {

15: op=5;

16: send_to_HW(addr1, addr2, op);

17: break;

18: }

19: }

20: return(0);

21:}

The partial code shown above is a Real-Time C program with two simple steps. On
line 8 the function call to send_to_HW(addr2,0x0,0x3) affects a certain peripheral
hardware, which is expected to trigger an interrupt in return. On line 13, if INTR is 1
it means that the interrupt has indeed happened.
vunit check_intr(example.c::main)

{

- 14 -

property intr_event = always (send_to_HW(addr2,0x0,0x3)
->eventually! INTR=1)

assert intr_event;

}

In the above code, we create a property intr_event to monitor that INTR eventually
happens. The left operand send_to_HW(addr2,0x0,0x3) is marked as insertion point
and INTR=1 is marked as release point. When the insertion point is satisfied, the
evaluation engine will monitor the release point. Before the release point holds, the
eventually! node returns a “Z”. It returns a T only once the right operand holds. Iff the
right operand does not hold until the scope exits the property fails.

1: int i=0;

2: char buffer[10];

3:

4: int main()

5:{

6: while(1)

7: {

8: i++;

9: buffer[i]=1;

10: }

11: return 0;

12:}

The partial code shown above is a general purpose C program. On line 9, a buffer
overflow error will occur if the index into the buffer exceeds 10.
vunit check_overflow(example.c)

{

property overflow = never((i>10) OR (i < 0));

assert overflow;

}

The above sPSL code shown the property “overflow” monitors the increment of i.
The operator never holds the value “T” if 0<i<10. Otherwise, “F” is returned.

- 15 -

6. Conclusion and Future Work

The first prototype of sPSL shows that it is possible to use a simple subset of the
Property Specification Language PSL to perform assertion based verification of C
language programs. To our knowledge, this is the first time that PSL, an IEEE-
standard language widely used for hardware verification, has been applied to software
programs.

The approach we used, namely to use a modified full-system simulator to execute
the program, has not been used before for the verification of software programs. The
main advantage of this approach is that no modifications are made to the executable
program and no additional instrumentation code is required, thereby increasing the
confidence in the verification process itself.

The prototype generates execution traces in terms of function calls and variable
changes that are useful to the programmer to understand the reason for the erroneous
behavior. The traces could also be used by other tools for further analysis, such as
performance analysis and assessment of execution time boundaries.
The tool already supports real-time specification and this could be used for perform-
ance verification as well.
The sPSL language and the evaluation engine do not depend on the particular pro-
gramming language we used, they would apply just as well to any block-structured
language implemented by a stack-register architecture. It should therefore be possible
to extend sPSL to other languages like C# or even FORTRAN simply by creating the
corresponding programming language parser. Similarly for a different processor like
the PowerPC or the MIPS.

The current prototype does not provide support for the Sequential Extended Regu-
lar Expressions (SERE). Within the FL operators, suffix implication and partial logi-
cal implication will be implemented for the next prototype.
The current prototype supports only the equality operator in Boolean expressions, and
furthermore expressions can only refer to a single variable.

We have made no attempt at this point to quantify and/or minimize the overhead
in execution time due to the sPSL engine.
One possible extension of this work is to attack the problem of mixed software-
hardware verification. Giano would appear to be a promising tool in this regard. Fei
Xie’s xPSL [18] is one project that is trying to find a unified solution to the problem.

References

[1] Accellera and I. 1364, "SystemVerilog."
[2] Accellera, "IEEE P1850 PSL."
[3] A. N. Prior, Past, Present and Future: Oxford University Press, 1967.
[4] A. Pnueli, "The temporal logic of programs," Proceedings of the 18th IEEE Symposium on

the Foundations of Computer Science (FOCS-77), pp. 46-57, 1977.
[5] A. Forin, B. Neekzad, and N. L. Lynch, "Giano: The Two-Headed System Simulator," Mi-

crosoft Research Technical Report, vol. MSR-TR-2006-130, 2006.
[6] D. Drusinsky, "The Temporal Rover and the ATG Rover," Proc. of SPIN'00: SPIN Model

Checking and Software Verification, vol. 1885, pp. 323-330, 2000.

- 16 -

[7] D. Drusinsky, "Monitoring Temporal Rules Combined with Time Series.," Proc. of CAV'03:
Computer Aided Verification, vol. 2725, pp. 114-118, 2003.

[8] I. Lee, S. Kannan, M. Kim, O. Sokolsky, and M. Viswanathan, "Runtime assurance based
on formal specifications," Proceedings of the International Conference on Parallel and Dis-
tributed Processing Techniques and Applications, 1999.

[9] I. D. D. Curcio, "A Simple Assertion Pre-processor," SIGPLAN, vol. 33, pp. 44-51, 1998.
[10]G. Rosu and K. Havelund, "Rewriting-based Techniques for Runtime Verification," J. of

ASE, vol. 12, pp. 151-197, 2005.
[11]K. Havelund and G. Rosu, "Java PathExplorer --- A runtime verification tool," Proceedings

6th International Symposium on Artificial Intelligence, Robotics and Automation in Space,
ISAIRAS'01, Montreal, Canada, 2001.

[12]G. T. Leavens, E. Poll, C. Clifton, Y. Cheon, C. Ruby, D. Cok, P. Muller, J. Kiniry, and P.
Chalin, "JML Reference Manual," 2006.

[13]P. Chalin and P. James, "Cross-Verification of JML Tools: An ESC/Java2 Case Study,"
Microsoft Research Technical Report, vol. MSR-TR-2006-117, 2006.

[14]P. Chalin, C. Hurlin, and J. Kiniry, "Integrating Static Checking and Interactive Verifica-
tion: Supporting Multiple Theories and Provers in Verification," in VSTTE 2005, 2005.

[15]K. R. M. L. Mike Barnett, Wolfram Schulte, "The Spec# programming system: An over-
view," CASSIS 2004, LNCS vol. 3362, 2004.

[16]T. Ball and S. K. Rajamani, "SLIC: A Specification Language for Interface Checking (of
C)," Microsoft Research Technical Report, vol. MSR-TR-2001-21, 2001.

[17]T. Ball and S. K. Rajamani, "The SLAM Project: Debugging System Software via Static
Analysis," in POPL 2002, 2002.

[18]F. Xie, X. Song, H. Chung, and R. Nandi, "Translation-based co-verification," 3rd ACM
IEEE International Conference on Formal Methods and Models for Co-Design
(MEMOCODE 2005), pp. 111-120, 2005.

Appendix
This Appendix describes the semantic of the sPSL operators. Each operator is for-
mally described by a LTL Temporal Logic formula, a sPSL property, an event dia-
gram and an action table. Event diagrams depict events inside nodes and arrows indi-
cating the flow of time. A solid arrow represents an “immediately follows”
relationship, whereby events must be separated exactly by the indicated units of time.
A dashed arrow indicates that an unspecified, possibly zero number of time units
separates the two events. A dark node indicates that the operator is satisfied. A clear
node indicates that the operator is not satisfied. The action table describes the sPSL
engine actions at Scope entry and exit, insertion and release points, and repeated oc-
currences, e.g. within the always operator.

Operator: until
LTL Formula: aWb
sPSL Formula: a until b
sPSL type: FL bounding operator

- 17 -

Condition sPSL Engine Actions
Scope entry Wait until all variables are initialized then create the

insertion/release points. Evaluate both operands
against these initial values.

Insertion point Evaluate the left operand against the new value.
Once it becomes true the operator is satisfied.

Release point Evaluate the right operand against the new value.
Once it becomes true the operator is satisfied iff the
left operand is false. Otherwise the property is vio-
lated.

Repetition Either the left or the right operand shall be true, but
not both.

Scope exit If the operator was never satisfied it is not a viola-
tion. Remove all insertion/release points.

Operator: until!
LTL Formula: aUb
sPSL Formula: a until! b
sPSL type: FL bounding operator

Condition sPSL Engine Actions
Scope entry Wait until all variables are initialized then create

the insertion/release points. Evaluate both operands

A until! B

A=0 B=1 A=1

B==0 A==0

A until B

A=0 A=1 B=1

B==0 A==0

- 18 -

against these initial values.
Insertion point Evaluate the left operand against the new value.
Release point Evaluate the right operand against the new

value. Once it becomes true the operator is satisfied
iff the left operand is false. Otherwise the property
is violated.

Repetition Either the left or the right operand shall be true,
but not both.

Scope exit If the operator was never satisfied report viola-
tion. Remove all insertion/release points.

Operator: before
LTL Formula: aRb
sPSL Formula: a before b
sPSL type: FL bounding operator

Condition sPSL Engine Actions
Scope entry Wait until all variables are initialized then create

the insertion/release points. Evaluate both operands
against these initial values.

Insertion point Evaluate the left operand against the new value.
Once it becomes true the operator is satisfied iff the
right operand is false.

Release point Evaluate the right operand against the new
value. Once it becomes true the operator is satisfied
iff the left operand is true. Otherwise the property
is violated. Being false is not a violation.

Repetition The right operand can only transition to true
while the left operand is true.

Scope exit If the operator was never satisfied it is not a vio-
lation. Remove all insertion/release points.

Operator: before!
LTL Formula: aRb

A before B

A=1 B=1 B=1 B=0

A==0

- 19 -

sPSL Formula: a before! b
sPSL type: FL bounding operator

Condition sPSL Engine Actions
Scope entry Wait until all variables are initialized then create

the insertion/release points. Evaluate both operands
against these initial values.

Insertion point Evaluate the left operand against the new value.
Once it becomes true the operator is satisfied iff the
right operand is false.

Release point Evaluate the right operand against the new
value. Once it becomes true the operator is satisfied
iff the left operand is true. Otherwise the property
is violated.

Repetition The right operand can only transition to true
while the left operand is true.

Scope exit If the operator was never satisfied report viola-
tion. Remove all insertion/release points.

Operator: next
LTL Formula: aXb
sPSL Formula: a next b
sPSL type: FL occurrence operator

Condition sPSL Engine Actions

A next B

A=0 A=1 B=1

A before! B

A=1 B=1 B=1

A==0

B=0

- 20 -

Scope entry Wait until all variables are initialized then create
the insertion/release points. Evaluate the left oper-
and against these initial values.

Insertion point Evaluate the left operand against the new value.
Once it becomes true the operator is satisfied. Mark
the release points with a counter=1.

Release point Evaluate the right operand against the new
value. Once it becomes true the operator is satisfied
iff the release points are marked with counter=1.
Otherwise the property is violated. Unmark the re-
lease points.

Repetition Every time the left operand is true the very next
event must be the right operand becoming true, or
scope exit.

Scope exit If the operator was never satisfied it is not a vio-
lation. Remove all insertion/release points.

Operator: next!
LTL Formula: a X! b
sPSL Formula: a next! b
sPSL type: FL occurrence operator

Condition sPSL Engine Actions
Scope entry Wait until all variables are initialized then create

the insertion/release points. Evaluate the left oper-
and against these initial values.

Insertion point Evaluate the left operand against the new value.
Once it becomes true mark the release points with a
counter=1.

Release point Evaluate the right operand against the new
value. Once it becomes true the operator is satisfied
iff the release point is marked with counter=1. Oth-
erwise the property is violated. Unmark the release
points.

Repetition Every time the left operand is true the very next
event must be the right operand becoming true.

A next! B

A=1 B=1

- 21 -

Scope exit If the release points are still marked with
counter=1 report a violation. Remove all inser-
tion/release points.

Operator: eventually!
LTL Formula: Fb
sPSL Formula: eventually! b
sPSL type: FL occurrence operator

Condition sPSL Engine Actions
Scope entry Wait until all variables are initialized then create

the release points. Evaluate the right operand
against these initial values.

Release point Evaluate the right operand against the new
value. Once it becomes true the operator is satis-
fied, remove all release points.

Repetition For every instance where the right operand does
not hold, the release point is marked as fail. If the
right operand holds at least once, it will ignore the
following right operand regardless it holds or not.

Scope exit If there are still release points report a violation.

Operator: ->
Boolean Formula: if a then b
sPSL Formula: a -> b
sPSL type: Logical IF implication

The logical implications are:

a b a->b
F F T
F T T
T F F
T T T

Condition sPSL Engine Actions

eventually! B

B=1

- 22 -

Scope entry Wait until all variables are initialized then create
the insertion/release points. Evaluate both operands
against these initial values.

Insertion point Evaluate the left operand against the new value.
Once it becomes true, proceed to release point.

Release point Evaluate the right operand against the new
value. Once it becomes true the operator is satis-
fied. Notice that this operator has to nest with the
occurrence operator. The left operand is the starting
condition for the nested occurrence operator.

Repetition The right operand (occurrence operator) can
only transition to true while the left operand is true.

Scope exit Depends on the operator in the right operand.

