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Abstract— Modern embedded processors have the flexibility
of dynamic switching between power operation modes, such as
using voltage and frequency scaling. Platforms with heteroge-
neous processors and reconfigurable buses further extend the
energy/timing trade-off flexibility and provide the opport unity to
fine tune resource usage for particular applications. This paper
gives a resource model for heterogeneous multi-processor em-
bedded platforms and formulates power-aware real-time resource
scheduling problems as integer linear programming problems. In
particular, we take the time and energy costs of mode switching
into account, which considerably improves the accuracy of the
model. We apply the resource model to a stackable multi-
processor embedded platform, calledmPlatform, and present a
case study of scheduling a sound source localization application
in a stack of four MSP430-based sensing boards and one ARM7-
based processing board.

I. I NTRODUCTION

Computing platforms that feature multiple processors inter-
connected via high-speed buses have a number of advantages:
flexibility in scheduling and executing concurrent applications
to meet deadlines and reconfigurability to mitigate local fail-
ures or respond to changes in processing or communication re-
sources. Examples include the multi-core/many-core systems,
systems-on-a-chip (SoC), as well as extensible embedded
platforms that comprise multiple stackable boards[19], [8],
[12]. Resources here refer to the available processing or
communication components which in turn consume power in
order to operate. In many settings, especially in the embedded
or real-time applications, it is important to minimize the power
consumption for a longer battery life or minimize the latency
in carrying out time-sensitive tasks.

Power savings when using heterogeneous platforms can be
significant. There are large families of embedded processors
with very different power and speed characteristics, ranging
from 8-bit microcontrollers that consume several milliwatts to
32-bit microprocessors that consume several watts. As em-
bedded applications become more complex, their application
requirements may vary dramatically from time to time. Take
embedded sensing, such as patient monitoring, as an example.
When there is no interesting event happening, one wants to use
minimum power in sensing and processing for event detection
so that the system life time is long. However, when there

is an interesting event, one may need orders of magnitude
more processing power to quickly analyze and react to it.
Having low-end, power efficient microcontroller dedicatedfor
the “quiet” time can lead to significant power saving.

Processors such as the ARM or MSP430 can be pro-
grammed to operate in one of the several power modes of
operation, by software-controlled voltage (DVS), or oper-
ating frequency (DPM), or both. The flexibility to choose
which processor and which operation mode to use opens
up a possibility of a fine-grained resource management in
heterogeneous multi-processor systems by trading power with
speeds for the various operating components. However, beside
timing constraints, a scheduler has to take into a consideration
properties of different power modes. Analytical optimization
is often not an option due to complex or unknown power
consumption models.

The problem becomes more challenging when the cost of
mode switching is taken into account. In the most aggressive
power saving mode, called standby mode (STBY ), almost
all components inside the CPU are turned off, including
the internal oscillator. As a consequence, when waking up
from a STBY mode by an external interrupt, the processor
must wait until the internal oscillator stabilizes before it can
start computing. Moreover, the time and energy cost for the
transition depends significantly on the operating mode the
processor enters next. And this cost can be substantial. For
example, in an ARM7-based CPU waking up from a deep
sleep mode to the most active mode takes 24.5 ms of time and
1.5 mJ of energy [13], which is enough for the processor to
perform two 1024-sample FFT procedures. TheIDLE mode,
on the other hand, consumes a little more power, but has little
overhead to wake up from.

This paper addresses the resource modeling and power-
aware task scheduling problem for extensible multi-processor
systems. It formulates the scheduling problem as an integer
linear programming (ILP) problem. In our formalism, tasks
may have data dependencies, and each task can run at a
distinct operation mode on one of the processors. There may
be multiple communication media (e.g. buses) that connect
the processors. Each of them may be shared by multiple
processors and operate at different speed mode. A processor



may either idle or enter aSTBY mode when there is no task
to execute. However, if it goes standby, it must pay the extra
cost when waking up from the sleeping mode.

Our formalism covers both power and timing properties. In
one setting, the objective is to minimize power consumption
while satisfying the period and/or deadline constraints of
an application. We assume an application is specified as an
acyclic task graph where an edge represents a data dependency
between two tasks. This is common in signal processing
applications where the problem is represented by a periodic
data-flow task graph. The resource specification consists of
a power model for each processor and communication ele-
ment (i.e., bus). The solution to the problem gives both the
optimal task-to-processor allocation, task-to-mode mapping,
and computation and communication schedule, all within
the resource, precedence and timing constraints. Note thata
similar latency minimization (i.e., throughput maximization)
under power constraints is also tractable in our framework
with some modifications.

We used our resource model and scheduling algorithm
for sound source localization (SSL) on an extensible multi-
processor platform, calledmPlatform , being developed at
Microsoft Research (Figure 1). SSL uses an array of micro-
phones to estimate the direction of the sound source. It is a
computational and memory intensive application that involves
FFT and massive hypothesis testing. ThemPlatform we used
in this study consists of oneARM7-based board and four
MSP430-based boards each with a microphone attached. The
SSL application stresses the platform in almost all dimensions:
memory, execution time, and power consumption. Thus, it
is an ideal candidate for verifying our resource model and
scheduling algorithm.

Fig. 1. A prototypingmPlatform stack.

The paper is structured as follows. Section II introduces
resource and application models and gives a simple motivating
example for such models. Section III presents the power-aware
scheduling problem as an ILP formulation. Section IV applies
the resource model and scheduling algorithm to an extensible
multiprocessor embedded platform and explores application
parameter space for a sound source localization application.

II. TASK AND RESOURCEMODELING

We use a multi-mode, event-driven task model for extensible
multi-processor systems. In this model, an application is
structured as a set modes, calledconfigurations. In each con-
figuration, the application is a set of asynchronous components
interacting with messages. We call these componentstasks.
The tasks are event triggered, that is, they respond to input
events, process them, and may generate output events. So,
a configuration is a directed graph of tasks linked by data
precedence dependencies. We call this graph atask graph. In
the following discussion, we restrict us to acyclic task graphs.

The benefit of using asynchronous message passing is that
the tasks may be mapped to different processors transpar-
ent to users. This gives a system the flexibility to adjust
operation conditions according to application requirements.
Configuration changes, though, are explicitly specified by
programmers. When changing configurations, existing tasks
can be terminated; new tasks can be created; and the states of
running tasks can be reconfigured. But within a configuration,
the structure of a task graph keeps unchanged.

Each configuration may associate with user specified con-
straints, such as total energy budget, end-to-end real timere-
quirements, and some specific task mapping. A task scheduling
algorithm is used to determine the setting of processors and
bus, such as voltage scaling and clock frequency, the complete
allocation of tasks to processors, and the release time and
deadline for each task. In this paper, we only consider the
task scheduling problem within a configuration. This is not a
significant limitation, since once schedules are computed for
every configuration, changes of configuration can reload new
schedules.

At run time, each task is mapped to a processor. The
communication between two tasks are either local, if the two
tasks are on the same processor; or across the communication
bus, if the two tasks are on different processors.

We first formally specify the task and resource model that
is used in the ILP formalism presented in the next section.
Throughout the paper the following notation convention is
used. The constant parameters, the variables, and the sets of
the model are written in lower-case, upper-case, and upper-
case Gothic letters respectively.

A. Resource Model

We assume three specifications are given: a platform spec-
ification of the hardware configuration and resources, an
application specification of dependency and timing require-
ments, and a mapping specification that includes worst case
execution time of each task on each processor and worst case
communication time of each message on each bus.

Platform Specification
• A set of processorsP communicating through a set of

busesB. We assume that each bus is either shared using a
TDMA-based protocol or is dedicated to a single proces-
sor. More general processor communication models are
possible within the formalism, but are not included in this
paper for simplicity of the presentation.



• A power model for each componentc ∈ P ∪ B, i.e., for
each processor or busc a set of active operating modes
M specified with powerpc,m consumed in each mode
m ∈ M. Almost all micro-controllers support frequency
scaling, so, for instance, each mode inM may be related
to a particular processor operating frequency.
In addition to active power modesM, there are typically
two sleep modesS = {I , S}, with IDLE mode I and
STBY modeS. In the IDLE mode the internal clock
is not stopped, but most other internal components are.
For c ∈ P ∪ B IDLE mode is specified withpc,I , the
power consumed on componentc in IDLE modeI .
In the STBY mode the internal oscillator is completely
stopped but it can be maintained outside the chip, e.g.,
through a real-time clock. Forc ∈ P STBY mode is
specified with:pc,S - the power consumed on component
in STBY modeS, p′

c,m - the power consumed during
waking up fromSTBY to modem ∈ M, and t ′c,m the
wake-up time to modem ∈ M. The costs of waking up
from the IDLE are often considerably smaller than the
the same costs for theSTBY mode [13], and thus will
be ignored in the model.
We also assume that a bus can only operate at one active
mode within one configuration to avoid the complexity
of dynamically synchronizing the TDMA protocol.

• For each componentc ∈ P ∪ B an upper bound on
allowed component utilizationup .

Application Specification

• A directed acyclic task graphG = (T , E) with a set of
tasksT andE ⊆ T 2. Let τ ∈ T denote a task, and let a
pair (τi, τj) ∈ E denote data dependency, i.e., precedence
between two tasksτi andτj .

• A period π of the execution of the task graph. Here
we present the procedure for a single-rate applications.
In a multi-rate case, different task subgraphs may have
different periods, the constraints are written for multiple
instances of subgraphs, andπ is defined as the least
common multiple of all subgraph periods.

• A release timerτ for each source nodeτ ∈ Src(G), and
a deadline timedτ for each sink node ofτ ∈ Dst(G).
A source (resp. sink) node is each node ofG with input
(resp. output) degree equal to 0. We assumerτ ≥ 0 for
each source, anddτ ≤ π for each sink nodeτ .

Mapping Specification

• For each taskτ ∈ T , processorp ∈ P and modem ∈ M,
the worst-case task execution timetτ,p,m . This value can
be measured or estimated by computing worst-case task
number of cycles.

• For each taskτ ∈ T , bus b ∈ B and modem ∈ M,
the worst-case communication timetτ,b,m of the message
that contains task output. This value can be measured or
estimated by determining the largest size of the output of
task τ .

• An optional allocation mappinga of tasks inT̄ ⊆ T to
processors:aτ,p = 1 if task τ ∈ T̄ is preallocated to

processorp ∈ P , otherwiseaτ,p = 0. Depending on a
problem instance, for a subset̄T of tasksT allocation
may be determined directly by the problem specification.
For instance, a data sampling task may execute only
on certain processor boards connected with a particular
sensor. Similarly, a subset of tasks may have preassigned
modes of operation.

The scheduling algorithm can also take into account energy
per sensor reading or energy per memory read or write
operation. Although this does not make the corresponding
ILP more complex, we do not present it here to keep the
presentation simpler.

B. Motivating Example

Beside solving the task allocation and scheduling problem
for a given application, the objective of the formalism pre-
sented in Sec. III is to determine the active and sleep modes of
operation that are optimal with respect to power. In this section
we try to motivate the optimization procedure by showing
that the optimal mode selection is not obvious and depends
on power costs and other parameters even for the simplest
applications.

We consider an application with a single periodic taskτ
executing on a processorp with period π. So, no commu-
nication is involved in the example. The power model for
p consists of three active modesM = {1, 1

4 , 1
32}, where1

denotes the mode with the largest and132 with the smallest
(32 times smaller) operating frequency. In addition, thereare
two sleep modes,IDLE andSTBY , S = {I , S}. We assume
that after executing taskτ in a certain modem the processor
enters one of the sleep modess . Let a given parameteru
be equal to the processor utilization in the slowest frequency
mode. Thus, the execution time of the task in modem ∈ M
is

tτ,p,m =
π · u

32 · m

The simple power model presented above provides the follow-
ing expression for the energy spent in every period

J (m, s) = pp,m ·tτ,p,m+pp,s ·(π−tτ,p,m−t ′p,m,s)+p′
p,m,s ·t

′
p,m,s

The three elements of the sum denote energies spent in mode
m, in sleep modes and in waking-up from modes to mode
m, respectively from the first sum element.

In previous research we measured the parameters of the
equation for an ARM-based processor and, together with other
data, they are presented in the Sec. IV. We used them to
compute the optimal modesm and s that result in minimal
energyJ (m, s). The computation was performed for the range
of periodπ = [0, 100]ms and utilizationu = [0, 1] values. The
results are shown in Fig. 2. It follows that, for different values
of parameters, all active and sleep power modes can in some
combination be optimal. In general, for large periodπ the
optimal active mode is the largest frequency mode and optimal
sleep mode is the standby mode. However, ifu is large, even
for medium values ofπ the optimal combination may be
slowest frequency mode and idle sleep mode. It is interesting



to note that for the linear execution time model as used here,
if the waking-up costs are all zero, the optimal modes are
the largest frequency and standby modes, irrespective of the
values forπ andu.

Fig. 2. Optimal active and sleep power modes for minimal energy costs per
period in a simple periodic application

III. I NTEGERL INEAR PROGRAMMING FORMALISM

A. ILP Variables

The complete solution of the problem informally described
in the introduction consists of allocation (task-to-processor,
task-to-bus) and operation mode (task-to-mode, bus-to-mode)
mappings, but also of a static time schedule for the tasks.
Since the number of processors, buses and modes is finite
and relatively small, the mappings could be encoded with
binary variables. However, this is generally not true for the
schedule part of the solution and, therefore, one approach for
the problem is (mixed) integer linear programming (ILP). In
principle, a correct ILP solver will always find an optimal
solution, whenever there exists a feasible schedule that satisfies
all constraints. For the CPLEX solver [9] that was used in this
study, all constraints have to be of the form (

∑
i ai ·Xi) ρ bi,

whereρ is an element of the set{≤, =,≥}, coefficientsai

andbi are real-valued constants andXi are program variables
that can be of either binary (0 or 1) or integer type.

We first present the variables of the ILP problem that form
the output of the entire procedure. The set ofcore variables
consists of:

• Binary task-to-component allocation variableA. For each
task τ ∈ T and each processorp ∈ P let Aτ,p be 1 if
and only if taskτ is allocated to processorp. Also, for
each taskτ ∈ T and each busb ∈ B let Aτ,b be 1 if and
only if the output of taskτ is communicated over busb.

• Binary task-to-mode and bus-to-mode variableM . For
each taskτ ∈ T and each modem ∈ M let Mτ,m be 1
if and only if taskτ is to execute in modem. Also, for
each busb ∈ B and each modem ∈ M let Mb,m be 1
if and only if busb is to operate in modem.

• Binary task transition variableX . For each taskτ ∈ T
let Xτ be 1 if and only if, on a processor to whichτ is
allocated, the execution of taskτ starts after a wake-up
from standby modeS.

• Integer task execution and communication start time-
instant variablesSe andSc. For each taskτ ∈ T let Se

τ

denote the time instant whenτ starts executing, and let
Sc

τ denote the time instant whenτ starts communicating
its output.

In general, if the ILP problem variables are bounded, as in
our case, the problem is NP-hard. However, problems with
thousands of variables and constraints can efficiently be solved
with modern ILP tools. We tried to keep the number of core
variables as small as possible because this number mostly
determines the actual computational complexity.

Since some constraints cannot be represented as linear
expressions of core program variables, additional variables are
needed for the linear form of the program. Typically, such
variables are determined once the values for the core variables
are set. In the ILP problem constraints we use the following
variablesderivedfrom the core variables described above:

• Uτ,p,m , Uτ,b,m andKτ,p,m . For eachτ ∈ T , p ∈ P and
m ∈ M, let binary variable

– Uτ,p,m be 1 if and only if taskτ is allocated to
processorp and executes in modem.

– Kτ,p,m be 1 if and only if taskτ , in addition to being
allocated to processorp and executing in modem,
starts after a wake-up from standby modeS.

For eachτ ∈ T , b ∈ B and m ∈ M, let Uτ,b,m be 1
if and only if the output of taskτ is communicated over
the busb which operates in modem.

• Vτ,τ ′,p , Nτ,τ ′,p , Bτ,τ ′,p , Rτ,τ ′,p , and Hτ,τ ′,p . For each
pair of tasksτ, τ ′ ∈ T andp ∈ P , let binary variable

– Vτ,τ ′,p be 1 if and only ifτ andτ ′ are both allocated
to processorp,

– Nτ,τ ′,p be 1 if and only if, in addition toτ and
τ ′ being allocated to processorp, τ ′ immediately
follows τ , not necessarily within the the same period
iteration,

– Bτ,τ ′,p be 1 if and only if, in addition toτ and
τ ′ being allocated to processorp, τ ′ immediately
follows τ across period iterations, i.e., if and only if
task τ ′ is the first andτ the last task executing on
p,

– Rτ,τ ′,p be 1 if and only if, in addition toτ and τ ′

being allocated to processorp and τ ′ immediately
following τ , between the two tasks the processorp

is in the standby modeS. Let Hτ,τ ′,p represent the
time spent in the standby mode.

For instance, the consumed power of a processor directly
depends on the time spent in the standby mode. In fact,
representing this time as a linear combination of core and
derived variables makes the constraints of the ILP problem
more difficult.

B. ILP Constraints

The ILP problem is defined with the following set of
constraints:



• System assumptions.A task is allocated to a single
processor. For all tasksτ ∈ T

∑

p∈P

Aτ,p = 1

A task executes in a single mode. For all tasksτ ∈ T
∑

m∈M

Mτ,m = 1

A shared bus operates in single mode (other than idle
modeI ). For all busesb ∈ B

∑

m∈M

Mb,m = 1

• Execution and communication time.By definition of a
derived variableUτ,p,m , we haveUτ,p,m = 1 if and only
if Aτ,p = 1 and Mτ,m = 1. We first note that arbitrary
binary variablesX, Y and Z satisfy expressionX AND

Y = Z if and only if they satisfy linear inequality0 ≤
X+Y −2Z ≤ 1. Thus, for allτ ∈ T , p ∈ P andm ∈ M

0 ≤ Aτ,p + Mτ,m − 2 · Uτ,p,m ≤ 1

Similarly, for all τ ∈ T , b ∈ B andm ∈ M

0 ≤ Aτ,b + Mb,m − 2 · Uτ,b,m ≤ 1

Note that the solution execution timeEτ of task τ , and
communication time of its outputCτ , can be represented
as the following linear expressions, that will be used as
a shorthand in other constraints

Eτ ,
∑

p∈P

∑

m∈M

tτ,p,m ·Uτ,p,m ,Cτ ,
∑

b∈B

∑

m∈M

tτ,b,m ·Uτ,b,m

• Wake-up time. By definition of a derived variable
Kτ,p,m , we haveKτ,p,m = 1 if and only if Xτ = 1 and
Uτ,p,m = 1. Thus, for allτ ∈ T , p ∈ P andm ∈ M

0 ≤ Xτ + Uτ,p,m − 2 · Kτ,p,m ≤ 1

The wake-up timeWτ of taskτ can be represented as

Wτ ,
∑

p∈P

∑

m∈M

t ′p,m · Kτ,p,m

• Release, deadline and utilization.Each source task
τ ∈ Src(G) cannot start execution before its release time
instant

rτ ≤ Se
τ

Similarly, each sink taskτ ∈ Dst(G) has to complete
execution before its deadline time instant

Se
τ + Eτ ≤ dτ

Each processor or busc ∈ P∪B cannot be utilized above
its maximum allowed utilizationuc

∑

τ∈T

∑

m∈M

tτ,c,m · Uτ,c,m ≤ π · uc

• Ordering. By definition of a derived variableVτ,τ ′,p , we
haveVτ,τ ′,p = 1 if and only if Aτ,p = 1 andAτ ′,p = 1.
Thus, for allτ, τ ′ ∈ T andp ∈ P

0 ≤ Aτ,p + Aτ ′,p − 2 · Vτ,τ ′,p ≤ 1

Binary variableNτ,τ ′,p is 1 if and only if on processorp
taskτ ′ executes immediately after taskτ . The following
three expressions put constraints onNτ,τ ′,p . For all
τ, τ ′ ∈ T andp ∈ P

Nτ,τ ′,p ≤ Vτ,τ ′,p

For all τ ∈ T andp ∈ P
∑

τ ′∈T

Nτ,τ ′,p ≤ Aτ,p

For all p ∈ P
∑

τ∈T

∑

τ ′∈T

Nτ,τ ′,p =
∑

τ∈T

Aτ,p

Binary variableBτ,τ ′,p is 1 if and only if τ ′ is the first
andτ the last task executing onp. Thus, we have for all
τ, τ ′ ∈ T andp ∈ P

Bτ,τ ′,p ≤ Nτ,τ ′,p

For all p ∈ P
∑

τ∈T

∑

τ ′∈T

Bτ,τ ′,p = 1

We will use the following short notation

Vτ,τ ′ ,
∑

p∈P

Vτ,τ ′,p ,Nτ,τ ′ ,
∑

p∈P

Nτ,τ ′,p ,Bτ,τ ′ ,
∑

p∈P

Bτ,τ ′,p

For instance,Vτ,τ ′ = 1, if there exists a processor such
that bothτ andτ ′ are allocated to it. If, for a givenτ ∈ T
there is noτ ′ ∈ T such that(τ, τ ′) ∈ E and the two tasks
are allocated to different processors, than the output of
τ should not be sent over any bus. Thus, for each task
τ ∈ T ∑

b∈B

Aτ,b ≤
∑

(τ,τ ′)∈E

(1 − Vτ,τ ′)

As a consequence, for a task whose output is not sent
over any bus we haveCτ = 0.

• Precedence.A task may be scheduled for execution
only after all its predecessor tasks complete. For each
dependent task pair(τ, τ ′) ∈ E

Se
τ + Eτ ≤ Se

τ ′

Also, the output of a task may be communicated only
after the task completes. For eachτ ∈ T

Se
τ + Eτ ≤ Sc

τ

If the two tasks in a dependent task pair(τ, τ ′) ∈ E
are assigned to different processors, then the start time
instant of τ ′ is constrained by the completion of the
communication of the output ofτ . In the following



constraint, the numberz is a positive constant with a large
value. If the two tasks are assigned to the same processor
the rightmost element takes a large value. The given
constraint still holds and the constraint is automatically
satisfied, so the communication time is ignored. However,
if the two tasks are not assigned to the same processor
the rightmost element is zero and the communication
time is taken into account. For each dependent task pair
(τ, τ ′) ∈ E

Sc
τ + Cτ ≤ Se

τ ′ + z · Vτ,τ ′

• Overlap. A task can begin its execution anytime but
its execution cannot overlap with the execution of other
tasks. Recalling large constantz as in the previous
constraint, the following constraint is not automatically
satisfied only ifNτ,τ ′ = 1, i.e., only if on a processor the
execution ofτ ′ immediately follows the execution ofτ .
In essence, assumingBτ,τ ′ = 0, the following constraint
requiresSe

τ ′ to be larger thanSe
τ for the execution time

of task τ and wake-up time of taskτ ′ (if different than
0). Binary variableBτ,τ ′,p is 1 if and only ifτ ′ is the first
andτ the last task executing onp. So, the term−π ·Bτ,τ ′

accounts if the execution ofτ extends over the periodπ
bound. For allτ, τ ′ ∈ T

Se
τ + Eτ + Wτ ′ − π · Bτ,τ ′ ≤ Se

τ ′ + z · (1 − Nτ,τ ′)

Since a bus is shared through a TDMA protocol addi-
tional communication constraint is that two transmissions
from the same processor board cannot overlap.

Sc
τ + Cτ − π · Bτ,τ ′ ≤ Sc

τ ′ + z · (1 − Nτ,τ ′)

• Standby time.Derived binary variableRτ,τ ′,p is 1 if and
only if Nτ,τ ′,p = 1 and processorp starts executingτ ′

after waking up from standby modeS (Kτ ′ = 1). Thus,
for all τ, τ ′ ∈ T andp ∈ P

0 ≤ Nτ,τ ′,p + Kτ ′ − 2 · Rτ,τ ′,p ≤ 1

If Rτ,τ ′,p = 1 then derived variableHτ,τ ′,p is the
time spent in standby modeS after completingτ , else
Hτ,τ ′,p = 0. If Rτ,τ ′,p = 1 then the both sides of the
following inequality reduce to zero makingHτ,τ ′,p equal
to the the standby time. For allτ, τ ′ ∈ T andp ∈ P

0 ≤ Se
τ+Eτ+Hτ,τ ′,p+Wτ ′−Se

τ ′−π·Bτ,τ ′,p ≤ z ·(1−Rτ,τ ′,p)

0 ≤ Hτ,τ ′,p ≤ z · Rτ,τ ′,p

• Predetermined variables.The preallocation of tasks̄T
specified with the mappinga generate the following
constraint. For allτ ∈ T̄

Aτ,c = aτ,c

Similar constraints can be written for predetermined
mode variables.

C. Objective function

The optimization objective defines the objective function
and specifies the optimization direction, min or max. In this
paper we minimize the system power while satisfying timing
and dependency constraints described above. We assume that
the total system power consists of power consumed by com-
putation and communication elements, i.e., by processors in P
and buses inB. Recall thatpc,m denotes the power consumed
on componentc ∈ P ∪ B in modem ∈ M ∪ S, and p′

c,m

denotes the power consumed onc during a wake-up from the
standby modeS ∈ S to modem ∈ M. Let Tc,m be the
total time in a single period spent on componentc ∈ P ∪ B
in modem ∈ M ∪ S, and T ′

c,m the time spent in waking
up from standby mode to modem ∈ M. The system energy
consumed in a periodπ is given with the linear expression

J =
∑

c∈P∪B

(
∑

m∈M∪S

pc,m · Tc,m +
∑

m∈M

p′
c,m · T ′

c,m)

All power data is considered to be known, and all time vari-
ables can be represented through following linear expressions
of the ILP problem variables defined previously:

Tc,m =
∑

τ∈T

tτ,c,m · Uτ,c,m (for m ∈ M)

T ′
c,m =

∑

τ∈T

t ′c,m · Kτ,c,m (for m ∈ M)

Tc,S =
∑

τ∈T

∑

τ ′∈T

Hτ,τ ′,c

Tc,I = π −
∑

m∈M

(Tc,m + T ′
c,m) − Tc,S

In the scope of this project we have built a small tool
that automatically generates input to the CPLEX ILP solver,
i.e., the constraints and objective function, from a high-level
application and resource specification.

IV. M ODEL EVALUATION CASE STUDY

A. Sound Source Localization

Sound source localization (SSL) is classical sensing appli-
cation that uses a microphone array to detect the direction of a
sound source. They are used in teleconference, intelligentlec-
ture/class rooms[18], human-computer interactions, and target
tracking[6]. The basic principle is to use the time differences
of arrival from the sound source to different microphones
to triangulate the sound source location. There are many
algorithms proposed for the application [22]. In this paper, we
use a SRP-PHAT algorithm [5] with four microphones placed
at the four corners of a square. The length of the sides is 20cm.

In SRP-PHAT (and similar algorithms) the location is
determined by computing delay between times of audio signal
arrival to different microphones. This delay could, in principle,
be estimated from the signal cross-correlation function. With
an array of microphones, the sum of correlation functions over
all pairs of microphones has to be considered and maximized.
If the number of used microphones isNm such a sum would
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Fig. 3. Task graph of an SSL application. Sound signals are sampled from
4 microphones synchronously; Fourier transform is appliedto each signal
sequence to extract the frequency components; the SC task classifies if the
source sequence comes from human speech or background noise; and the HT
task performs the location hypothesis testing in the frequency domain.

naturally requireO(N2
m) computational complexity. However,

by assuming a certain suitable weighting function to take into
account the noise, the complexity can be reduced toO(Nm)
[22].

In practice, the maximization of the correlation function is
achieved through hypothesis testing. Namely, multiple source
location hypotheses are tested and the one that results in the
largest correlation is declared as the source location. Fortele-
conference applications the location is commonly represented
in spherical coordinates, so each hypothesis corresponds to
a spherical segment at a certain distance from the center of
the scene. In this study we considered simpler implementation
in which each hypothesis is related to a planar angle. The
selection of the number of hypothesesNh is also important
and directly affects computational complexity (see [16] for
improvements).

The signal processing algorithms like SRP-PHAT are usu-
ally performed in the frequency domain because of more
efficient processing and noise filtering. The algorithm is per-
formed for a window of frequencies, i.e., for a window ofNw

discrete frequencies. For audio applications this window is
usually within 0.2-4KHz. Moreover, since hypothesis testing
is used in the SRP-PHAT algorithm, the frequency domain
allows for a table with a phase shift for each hypothesis to
be computed off-line, thus reducing the number of operations
performed on-line.

Application specification.Fig. 3 shows the task graph of the
SRP-PHAT algorithm. The FFT task applies Fourier transform
to the sampled sound signals. The SC task performs noise
power estimation. In the simplest variants of the algorithmthe
noise level is used to classify the currently processing block
of samples, i.e., to decide whether the currently processed
sound is noise or voice. If more than two channels decide that
their blocks contain voice samples, the HT task is executed to
determine source location through correlation maximization.
In more complex algorithm variants the noise level itself is
used in the expression for correlation. If more than 3 SC tasks
vote that the samples come from a sound source rather than
noise, the HT task is triggered. HT task performs hypothesis
testing to find the most likely angle of sound source. For this
discussion, we ignore the cost of the VOTE task.

Parameter ARM7 MSP430

Active power at full speed (mW) 186 10.8
Active power at1/4 of full speed (mW) 76.4 2.7

Active power at lowest speed (mW) 42.5@1.9MHz 1.4@0.75MHz
Idle power (mW) 42 0.005

Standby power (mW) negligible negligible
Wakeup energy (to full speed) (mJ) 1.5 negligible

Wakeup energy (to lowest speed) (mJ) 0.1 negligible
Wakeup time (to full speed) 24.5ms 6µs

Wakeup time (to lowest speed) 1.4ms < 6µs

TABLE I

PROCESSOR POWER CONSUMPTION AT DIFFERENT OPERATING MODES.

B. Hardware Design

We evaluated SSL usingmPlatform , a modular and ex-
tensible hardware platform developed at Microsoft Research.
mPlatform consists of a collection of circuit boards; a number
of these boards are stacked together to implement a device
with specific features. Some of these boards are general
purpose processing boards while others are special purpose
boards such as radio boards for wireless communication,
sensor boards for sensing physical phenomena, and power
boards for supplying power to a stack of boards. Each special
purpose board, except for power boards, also has a local
processor which enables efficient real-time event handling.

All mPlatform boards implement a uniform hardware inter-
face. This uniform interface makes it possible to stack together
any combination of boards to implement a device that meets
specific application needs.

EachmPlatform board connects to multiple buses for inter-
processor communication. There is a 24-bit wide parallel bus
that connects to the local processor through a programmable
bus, implemented using Complex Programmable Logic De-
vice (CPLD). The CPLD bus is shared using a TDMA-like
protocol. A set of switchable serial buses enable dynamic
pair-wise communication between processors using standard
serial protocols such as RS232 and SPI. There is also a
multi-master I2C bus shared by all the local processors. For
SSL implementation, we used a stack of 6 boards. The stack
consisted of a processing board with anARM processor, 4
sensor boards - each with an omni-directional microphone
attached to anMSP430 processor, and a power board. We
used the 24-bit CPLD bus for inter-processor communication.

Platform specification.We used the OKI ML675003 mi-
crocontroller with 512K of Flash ROM, and 32K RAM for
the ARM processor [2]. The processor in our system runs
at a maximum clock frequency of 60MHz. The clock can
be scaled down by 2,4,8,16, or 32, resulting in 6 different
modes corresponding to different operating frequencies. In our
previous research [13] we presented results of extensive power
measurements. Some of the measured data relevant for this
study is given in Table IV-B.

The TI MSP430F1611 microcontroller used in the
mPlatform sensor boards operates at 4 different frequencies,
the highest being 6Mhz [1]. The required power data for
this microcontroller is taken from [17]. The parallel bus has
maximum clock rate of 16MHz.



Parameter RingCam mPlatform

sampling frequencyfs 16KHz 8KHz
sample block sizeNF F T 640 512
number of hypothesesNh 90 12

number of microphonesNm 8 4
window sizeNw 240 240

TABLE II

THE BASELINE PARAMETERS OF THESSLAPPLICATION.

Similar to the processors, the bus can also be slowed
down resulting in five different possible clock rates makingit
possible to vary theCPLD power consumption. The required
power data can be computed from the curves given in [3].

C. Performance Model

The parameter space of the SSL application is large, which
enables tuning the performance even for embedded imple-
mentations such asmPlatform . Table II shows the baseline
parameters we implemented withmPlatform , in comparison
to the similar algorithm implemented in RingCam project [7]
using a dual CPU (Pentium 4) 2.2GHz PC. The table gives an
idea of the performance level that can be expected from the
embedded solution such asmPlatform .

Beside the basic signal processing parameters such as
sampling frequencyfs, the sample block sizeNFFT , and the
window sizeNw, there are several application-level parameters
such as the number of microphonesNm, the number of
hypothesesNh (determining the sensing accuracy), and the
classification threshold (determining the sensitivity). The effect
of each of these parameters on the application time and
memory complexity can be tremendous. For instance, the size
of the constant look-up table that stores phase-shift values for
all location hypotheses isO(Nh ·Nm ·Nw). Since each value is
a complex number, even for 4 microphones, 12 hypothesis and
window size 240, the requirement easily sums up to 200KB.
The RAM requirements areO(NFFT ·Nm) which may also be
critical since even theARM board has only 32KB of RAM.

The time complexity analysis of the SSL algorithm is
important if we want to have timing guarantees for the
application. The tasks in basic variant of the algorithm perform
the following order of operations (usually multiply operations):
O(NFFT ·Nm) for FFT,O(Nh ·Nm) for SC, andO(Nh ·Nm ·
Nw) for HT. So, the dominant part of the time is required for
the HT task, which becomes even worse if noise correction al-
gorithms are implemented (O(N2

m)). The processor boards in
the currentmPlatform do not have a DSP or floating-point co-
processor so all signal processing algorithms are implemented
using software floating-point emulation. However, the code
for all the tasks typically consists of nested loops of arithmetic
operations, so the execution times are highly deterministic and
almost data independent.

Mapping Specification.We conclude this subsection by
presenting some of the execution times of the SSL tasks
directly measured on different processors of our prototype
implementation. The basic application parameters for all ex-
periments are the parameters shown in Table II. We measured
the task execution times for the fastest mode, and verified that

the execution times under other frequencies are scaled linearly
from these numbers.

The execution time of the FFT task, measured on both
ARM and MSP board, is shown in Table III for different
sample block sizesNFFT . Table IV shows the measured worst
case execution times of the HT and SC tasks on theARM
board that in most scenarios has to execute these tasks. Table
(a) gives execution times for different number of hypotheses
Nh, and Table (b) gives execution times for different window
sizesNw.

samples MSP430 (ms) ARM7 (ms)

16 1.62 0.219
32 3.8 0.364
64 8.82 0.686
128 20.1 1.4
256 45.2 2.95
512 99.2 6.32
1024 218 13.6

TABLE III

THE EXECUTION TIME OFFFT OF VARIOUS SIZE.

D. Resource Scheduling and Performance Exploration

Assuming the sampling frequencyfs=8KHz and sample
block sizeNFFT =512 the block of samples is collected in time
period ofTf = NF F T

fs
=64ms. Consider first the case when all

tasks execute onARM board. When the total execution time
ttot = tFFT + tSC + tHT for the entire task graph is taken into
account, we see that theARM processor can process every
sample in real-time only for the most conservative values of
other application parameters. Namely, Fig. 4(a) and (b) show
the ratio ttot

Tf
when the parametersNh and Nw are varied

respectively. Ideally, this ratio should be less than 1. So,for
instance, ifNh=12 (i.e., location resolution of 30 degrees) and
Nw=240, we havettot

Tf
=2.6, which means that only every third

sample can be processed.
We used the ILP procedure presented in Sec. III to explore

the optimal resource management assuming the application
parameters from Table II and resource models presented in
previous subsections. Motivated by the simple analysis from
the previous paragraph we performed the procedure for differ-
ent values of the application period from200ms to 250ms.

Generally speaking, the fundamental trade-off in this system
comes with the fact that for any task, it takesMSP 15
times more time to execute, but uses1/18 the energy of the
ARM processor. The idle mode onARM is significantly
more expensive than that on theMSP and waking up to
an active mode costs time and energy. So, it makes sense
to allocate tasks as much as possible to theMSP processor
as long as the real time constraints are not violated. This
givesARM enough time to go into a deeperSTBY mode.
The effect of more tasks executing onMSP becomes even
more apparent when application parameters, e.g. the FFT block
size or number of hypotheses, are reduced, making the task
execution times smaller.

Figure 5 shows the task allocation for the following three
cases:



Nh 2 3 4 6 12 18

tHT 27.8 37.8 48.8 75.8 138.7 235.98
tSC 1.15 1.62 1.92 3.8 4.8 9

Nw 160 180 200 220 240

tHT 92.67 103 120 130.4 139
tSC 2.4 3.8 4.25 5.52 5.74

(a) (b)

TABLE IV

MEASURED TASK EXECUTION TIMES VALUES FORHT AND SC ON ARM .
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Fig. 4. Portion of samples that can be processed as a functionof number of hypotheses (a) and frequency window size (b)

A. When voting is considered as part of HT and the period
is 200ms, the optimal allocation is to haveMSP boards
send all their samples toARM board and have the FFT,
SC, as well as HT running onARM . All tasks run in
the fastest processor mode. TheARM cannot switch to
STBY mode. The idle time onARM is 42ms, while
the MSP boards spend most of the time in theSTBY
mode. The total energy cost in one cycle is34.7mJ .

B. When voting is considered as part of HT and the period
is 250ms, it pays off to setARM into theSTBY mode,
and move both FFT and SC to theMSP board. All tasks
run in the fastest processor mode. This results in a total
energy cost for one cycle of34.1mJ . Now the ARM
processor spends87.5ms in the STBY mode.

C. It is interesting to observe that when voting is considered
as a task (as shown in Figure 3) with arbitrarily small
execution time, it completely changes the mode that the
ARM wakes up into. In this case, theARM wakes
up to the slowest mode with transition time1.4ms and
transition energy0.1mJ . Now, with the sameMSP
allocation as in B the total energy cost is33.2mJ . This
verifies the observation made in [13] that when aARM
processor wakes up from a standby mode, it should
always first wakes up to the slowest frequency mode.

It is clear that the HT task is the biggest time, memory,
and power consumer. Its 138ms execution onARM consumes
more than 25 mJ (or 75%) of energy. Note that the above
analysis is for worst case scenarios. So, if there is only
background noise, the HT task does not have to be trigger,
and theARM7 may not need to be activated. This shows the
advantage of heterogeneous multiprocessor platforms.

We also implemented the complete SSL application on
mPlatform with more functionalities such as adapting to noise
level. By allocating FFT, SC, and noise-level updating on
eachMSP board and allocating VOTE, SSL, and Display

tasks onARM board, we can achieve an end-to-end delay
of 235ms per 512 samples, that is, our final system processes
roughly one forth of the source signals. A detailed break down
measurement is shown in Table V.

task board execution time (ms)

ADC and DMA MSP 64
512 point FFT MSP 100

SC MSP 72
Noise level update MSP 48
Bus (4 channels) CPLD 2

Voting ARM unmeasurable
HT ARM 138

Overhead MSP 14
Overhead ARM 6

TABLE V

THE EXECUTION TIME OFSSLAPPLICATION ON mPlatform.

V. RELATED WORK

There exists extensive research on system-level low power
optimization. A good survey is given in [4]. Most of the tech-
niques, especially analytical ones, study single processor sys-
tems. Our ILP formulation integrates multiprocessor allocation
and schedule generation with operating mode selection. The
ILP framework has also recently been used for optimization of
multiprocessor systems, but with different optimization criteria
and without taking into account power at all. So, in [10],
[20], and [23] the objective is to maximize, respectively, the
throughput, the minimal task slack, and task extensibility. In
[14] authors use integer programming to solve the problems
with more complicated power, but simpler timing models. In
sensor networks research, ILP formalism was recently also
used to address optimization of global communication between
nodes [21], [15].

VI. CONCLUSION

We tackle the challenge of resource modeling and software
scheduling in extensible multi-processor embedded systems.
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Fig. 5. Task scheduling results (a) Optimal solution, period=200ms (b) Optimal solution, period=250ms (c) Optimal solution when VOTE task runs at
low speed, period=250ms

Our model takes into account multiple operation modes and
the cost of mode switching. With an ILP formalism, we are
able to solve the optimal task to specific processor mode
assignment. Thus, with given end-to-end real time constraints,
we can achieve minimum energy consumption. We have built
mPlatform , a stackable multi-processor platform with hetero-
geneous microprocessors, including MSP430 and ARM7 class
processors. Using a sound source localization applicationas
an example, we show interesting resource trade off based on
application quality requirements.

Our example has a periodic data-flow task graph that is com-
mon in signal processing applications. As such the scheduling
is assumed to be performed off-line. However, its output, in
the form of a static schedule, can be used as a basis for an
on-line scheduler if the application contains also aperiodic or
bursty task requests (for instance, see [11]). We plan to further
develop on-line scheduler and task migration mechanisms for
extensive multi-processor systems. These algorithms willmost
likely involve heuristics due to the complexity of seeking
optimal task assignment. The ILP formalism gives a baseline
and theoretical bound for other heuristics.
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