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Abstract. When a file is to be transmitted from a sender to a
recipient and when the latter already has a file somewhat similar
to it, remote differential compression seeks to determine the simi-
larities interactively so as to transmit only the part of the new file
not already in the recipient’s old file. Content-dependent chunking
means that the sender and recipient chop their files into chunks,
with the cutpoints determined by some internal features of the files,
so that when segments of the two files agree (possibly in different
locations within the files) the cutpoints in such segments tend to
be in corresponding locations, and so the chunks agree. By ex-
changing hash values of the chunks, the sender and recipient can
determine which chunks of the new file are absent from the old one
and thus need to be transmitted.

We propose two new algorithms for content-dependent chunk-
ing, and we compare their behavior, on random files, with each
other and with previously used algorithms. One of our algorithms,
the local maximum chunking method, has been implemented and
found to work better in practice than previously used algorithms.

Theoretical comparisons between the various algorithms can be
based on several criteria, most of which seek to formalize the idea
that chunks should be neither too small (so that hashing and send-
ing hash values become inefficient) nor too large (so that agree-
ments of entire chunks become unlikely). We propose a new crite-
rion, called the slack of a chunking method, which seeks to measure
how much of an interval of agreement between two files is wasted
because it lies in chunks that don’t agree.

Finally, we show how to efficiently find the cutpoints for local
maximum chunking.

1. Introduction

The proliferation of networks such as intranets, extranets, and the
internet has led to a large growth in the number of users that share
information across wide networks. However, the amount of data that
is transferred over the networks is still limited by cost and bandwidth
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constraints. As a result of limited network bandwidth, users can ex-
perience long delays or high costs in retrieving and transferring large
amounts of data across a network.

Fortunately, there are stratagems for reducing the amount of data
that must be transmitted. Data compression algorithms take advan-
tage of the redundancy that is present in many files. They allow one
to transmit not the file itself but information enabling the recipient to
reconstruct the file; because of redundancy, this information may be
much shorter than the original file.

In this paper, we are concerned with taking advantage of another
frequently occurring situation, namely that the recipient already has a
file similar to the one being transmitted. The idea here is, of course,
to transmit only the new content, not the content that the recipient
already has. Because what is transmitted is just the part of one file that
differs from the other, one calls this compression method “differential
compression”. What makes differential compression non-trivial is that,
to implement this idea, one must first decide what part of the file
doesn’t need to be sent, and one must decide this without sending
massive amounts of information.

The most favorable situation of this sort arises, for example, in
the distribution of software updates. Here, a client computer can
tell a distribution server “Please update my program X to version
3.141591; I currently have version 2.71828.” The distribution server
has a copy of the old version 2.71828, compares it with the new version
3.14159, and sends the client essentially just the difference between the
two [27, 2, 30, 15, 16]. What makes this situation so pleasant is that
the sender knows exactly what file the recipient already has (and that
the sender got this information via a very short message from the recip-
ient). “Local differential compression” refers to this situation where,
after the initial message from the recipient, the sender can locally de-
cide what information needs to be sent. Copious use of local differential
compression is found in source and revision control systems [25, 29], in
file systems [19], and in domain specific versions, such as binary code
differencing used for distributing software patches [9, 21].

We shall treat the more difficult situation where the recipient has a
file F1 that is believed to be similar to the file F2 to be transmitted,
but the exact content of F1 is not known to the sender. We shall dis-
cuss some existing protocols and propose new ones for handling this
situation, i.e., for taking advantage of similarity between F1 and F2 to

1This choice of version number is used by TEX.
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reduce the amount of data being sent. “Remote differential compres-
sion” (RDC) refers to such protocols, where the difference between the
two files cannot be produced by the sender alone but must be deter-
mined interactively by the sender and the recipient. We also suggest a
new measure, which we call slack, for comparing such protocols. And
we compare the various protocols using several criteria, including slack.

A comprehensive overview of how chunking is used for RDC, how
RDC can be used recursively, how similar files are identified for RDC,
and how RDC can be used within a file replication system is presented
in [28].

All the RDC protocols that we consider involve dividing at least one
of the files into segments, which we call chunks, and computing hash
values of these chunks to determine which chunks are common between
the sender’s and the recipient’s files and thus do not need to be sent.
The protocols differ in how the chunks are chosen.

Remark 1. RDC chunking protocols are designed for situations where
reasonably large segments of F1 and F2 agree (but are perhaps in dif-
ferent locations in the two files). Other sorts of similarity would require
other sorts of RDC protocols.

One sort of similarity that may fail to produce agreement of signif-
icant chunks occurs in compilation of programs. Compilers produce
binaries with jump statements, where the jump locations are offsets
into the file. These offsets are represented as absolute numbers. As a
result, two almost equal source programs may compile to binaries with
differences rather densely distributed throughout the files.

Something similar happens when files are compressed. Local differ-
ences between two files may result in densely distributed differences
between their compressed versions.

Another sort of example arises from different methods of encoding.
If a single file is encoded according to two different schemes, then the
two encoded files are certainly similar in an intuitive sense, but that
similarity may not result in any actual agreement between the encoded
files.

All these situations are outside the scope of this paper. We are
concerned here only with the use of chunking to detect and exploit
agreement between reasonably long segments of two files.

The RSYNC protocol [31] uses the simplest and uniform choice of
chunks: the recipient chops his file into chunks that are all of the same
length l (except for the last chunk if l doesn’t divide the file length). He
then sends a weak and a strong, collision resistant checksum (or hash
value — we use the terms interchangeably) of each segment to the
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sender. The sender traverses his version of the file, computing weak
checksums over a sliding window. The weak checksums are used in a
crude, in-cache filter to find candidates to match the chunks hashed by
the recipient. By using the strong checksums to validate the candidate
local file chunks, the sender can then deduce which chunks the recipient
already has and which parts of the file need to be transferred directly.

Note that, in this approach, it is necessary for the sender to compute
weak checksums for all segments of length l in his file. It would not do
for the sender to chop his file into chunks of length l as the recipient did
and to compute checksums only for those chunks. Two files that differ
merely by adding a single character at the beginning would almost
surely have no chunks in common, so the nearly total similarity of the
files would be entirely wasted.

The sender thus has to do considerable work, computing the hashes
of all length l segments of the file he wants to send, and comparing the
results with the list of hash values obtained from the recipient.

If a protocol of this sort is to be used repeatedly, to transfer F2 to
many recipients, who have different approximations F1, then the sender
must either repeat all this work for each recipient or else store all the
hash-values (considerably more data than the original file F2) and then
still do the comparisons separately for each recipient.

Remark 2. One could try to alleviate these problems by (partially)
reversing roles. Let the sender chop F2 into chunks of fixed size and
send weak and strong hashes of these to the recipient. The recipient
computes weak hashes in a sliding window to find chunks that might
already be in F1. After using the strong checksums to confirm the can-
didates, he asks the sender for those chunks that he doesn’t already
have. Of course, the total amount of work and communication here
is essentially the same as in RSYNC, but if there are many recipients
then much of the work is distributed among them, rather than being
completely loaded on the sender. On the other hand, in many ap-
plications, such as updating calendar schedules or mailboxes, the file
transfer is, from the recipients’ point of view, mere overhead, not part
of their immediate work. So it may be inappropriate to assign most of
the work to the recipients.

Remark 3. It is possible to reduce the communication overhead of the
RSYNC protocol by using multiple rounds [18]. In the first round, use a
relatively large chunk size. If there are large segments that match, they
will be handled during this round. Subsequent rounds use progressively
smaller chunk sizes.
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Remark 4. We are concerned in this paper with reducing the commu-
nication needed for file transfer, but in particular applications other
considerations may become especially important. For example, when
files are sent to space-constrained devices, standard RSYNC has the
drawback of requiring the receiver to create a fresh copy of the received
file. For this situation, an in-place version of RSYNC is proposed in [24]
to reduce the recipient’s storage needs.

The protocols that we treat in this paper, known ones as well as
new, proceed differently from RSYNC in that both the sender and the
recipient divide their files into chunks and compute (strong) checksums
for the chunks. To avoid the pitfall described above, where a single
character added to a file can make the chunks entirely different, the
chunks in these protocols are not of a fixed length; rather, the places
where the file is to be cut, the chunk boundaries, are determined by
internal features of the files. This is the meaning of “content-dependent
chunking”.

The protocols under consideration all proceed according to the fol-
lowing rough outline; details will be added later. As before, we use
F2 to denote the file to be transmitted and F1 to denote a file that is
already owned by the intended recipient of F2 and that is believed to
have substantial overlap with F2.

(1) The sender chops F2 into chunks and computes a hash value for
each chunk.

(2) The recipient does the same for F1.
(3) The sender sends the recipient the hash values for F2 (along

with the lengths of the chunks).
(4) The recipient compares those hash values with the ones he com-

puted for F1. When two agree, he assumes that the correspond-
ing chunks of F1 and F2 are the same, so there is no need for
the sender to transmit those chunks of F2.

(5) The recipient tells the sender which of the chunks of F2 need to
be sent.

(6) The sender sends those chunks.

Remark 5. We describe in this remark a situation where content-depen-
dent chunking has an important advantage over protocols like RSYNC
that require a sliding window rather than independent chunking by
the two parties. The situation is that the recipient is believed to have
parts of F2 in some file (or files) somewhere in his system, but it is not
known where. In other words, the recipient doesn’t know which file
should be F1 (or perhaps he should use several files, each containing
some part(s) of F2). With a content-dependent protocol, the recipient
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can prepare (ahead of time) a list of hashes of all the chunks of all his
relevant files. When he gets from the sender the hashes of the chunks
of F2, he compares these with the contents of his list. If one tried to
apply this idea to RSYNC, the recipient would send that whole list to
the sender, who would have to compare everything listed with all the
hashes produced in his sliding window. For the role-reversed variant of
RSYNC, the situation is even worse; if the recipient wanted to prepare
a list in advance, it would have to contain all the (weak) checksums of
all the contents of the sliding window in all the relevant files.

Remark 6. The communication cost of content-dependent chunking can
be reduced by using a chunking method recursively as follows [28]. Fix
the parameter(s) of the chunking method to yield a relatively small
chunk size c, just large enough to make it worthwhile to compute and
send hashes of such chunks rather than the chunks themselves. Let
Chk denote the length of a hash value. Apply the chunking method to
produce a sequence of checksums, whose concatenation we regard as
a new file F (1). On average, c symbols in F are represented by Chk
symbols in F (1). Now apply the chunking protocol to F (1), obtaining
a new file F (2). On average, Chk symbols here represent c symbols
in F (1), i.e., c/Chk hash values in F (1), and thus c2/Chk symbols in
the original F . Repeating the process n times, we get a file F (n), each
Chk symbols of which represent, on average cn/Chkn−1 symbols of F .
By choosing the number n of iterations suitably, we can arrange that
each checksum in F (n) represents a rather large chunk of F . Now, to
transmit F , the sender should first send F (n). When a hash value here
matches one in the file already owned by the recipient, a large chunk of
F has been transferred. For those hash values in F (n) that don’t match
any of the recipient’s, the sender should next transfer the chunks of
F (n−1) that were hashed to produce those values. Continue similarly
for n rounds, sending the necessary chunks from F (k) for smaller and
smaller k, where “necessary chunks” are those whose hashes didn’t
match any of the recipient’s at the previous round. At the very end,
when k has decreased to zero, send the remaining chunks of the original
file F .

This sort of repeated chunking and hashing, converting F into F (1),
then into F (2), and so on, would not work with a fixed chunk length
protocol such as RSYNC. As we saw earlier, addition of a single charac-
ter at the start of a file would completely change the checksums in F (1).
As a result, all the later files F (k) would also be completely different,
and the entire similarity between the files would be wasted. When one
uses RSYNC repeatedly, sending large chunks first and then smaller
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ones as in Remark 3, it is necessary to process the whole original file F
for each of the desired chunk sizes. With content-dependent methods,
the files to be processed decrease in length at each step, by a factor
c/Chk.

The main difference between the various protocols we consider will
be the chunking methods, i.e, how the files are to be divided into chunks
at steps (1) and (2) in the outline above. In step (3), the sender should
provide the lengths of the chunks of F2 because these will not be fixed
by the chunking method. He should also provide the locations in F2

of those chunks (their offsets) if these cannot easily be computed from
the lengths (e.g., if the information about different chunks might be
received out of order). Then in step (5), the recipient can efficiently
request the necessary chunks by sending their offsets to the sender.

This somewhat rough description of content-dependent chunking pro-
tocols makes some desiderata evident. First, the chunks should not be
too short. The main reason is that the efficiency of the protocol de-
pends on sending hash values that are significantly shorter than the
chunks they represent. The hash values cannot be too short, lest acci-
dental coincidences of hash values lead the recipient to think he already
has a chunk when he doesn’t. And the chunks themselves should be
a good deal longer than the hash values; otherwise one might as well
send the chunks themselves (i.e., send all of F2) rather than computing
and sending hash values.

There are other disadvantages associated with short chunks. One is
that strong checksums have to be re-initialized for each small chunk, so
setting up the computation for each strong checksum has an overhead.
More importantly, each checksum is stored in a table and the table is
searched for matches with checksums from the other files. There is a
time overhead in storing and searching checksums.

On the other hand, the chunks should not be too long. With ex-
cessively long chunks, there is a risk that large segments of F1 and F2

might coincide yet no whole chunk coincides. Then the protocol would
not detect any of the agreement between the two files, and the recipient
would have to request all the chunks (i.e., all of F2) from the sender.

A third desideratum is that similar files should be chopped into
chunks at corresponding locations. Similarity of the files does us no
good if the protocol fails to detect the similarity because the files were
chopped into entirely different chunks. It is this requirement that pre-
vents us from using chunks all of the same length in both files.

We shall describe and analyze a standard content-dependent chunk-
ing method, the one used in the Low Bandwidth File System (LBFS)
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proposed in [20], and we shall propose and analyze two new content-
dependent chunking methods, called interval filter chunking and local
maximum chunking. The analyses of these methods involve several
measures, related to the desiderata described above. For example, since
excessively long chunks and excessively short chunks both cause prob-
lems, it is desirable to keep the variance of the chunk length (on random
files) low. For similar reasons, one may want to reduce the probability
of getting chunks a great deal longer than the average chunk. We also
introduce a more precise measure, though unfortunately rather difficult
to compute, the slack of a chunking method, which takes into account
not only the lengths of chunks but also the method’s ability to take
advantage of identical segments in files by putting chunk boundaries in
matching places.

In more detail, the content of this paper is as follows. In Section 2,
we present some preliminary information, including some mathemat-
ical tools needed later and some conventions concerning the files we
consider. In Section 3, we introduce a simple probabilistic model of
files with partial agreement, and we use it to define a measure, which
we call slack, of the responsiveness of a chunking method to agree-
ments between the files. That is, once two files start to agree, how
much further in the files must one go until whole chunks agree? Sec-
tion 4 is devoted to a description and analysis of point-filter methods,
particularly the method used in LBFS [20]. In Section 5, we introduce
and study one of our proposed new chunking methods, the interval fil-
ter method. Section 6 does the same for our second (and better) new
method, the local maximum method. Section 7 is about the probabili-
ties, under various chunking methods, of finding long intervals without
any chunk boundaries. In Section 8, we give an efficient algorithm for
finding the chunk boundaries in the local maximum method. (For the
other methods, efficient algorithms are easy to see, but for the local
maximum method this matter is not trivial.) Finally, in Section 9, we
indicate connections with other work.

Applicability. Local maximum chunking is used as part of the RDC
algorithms included in the Distributed File System Replication engine
that was released as part of Windows Server 2003 R2 [4]. It is also being
used as part of the file replication engine underlying Sharing Folders in
the Windows Live Messenger 8.0 [5], and as part of Windows Meeting
Space in Windows Vista [7]. The RDC algorithms are furthermore
packaged as a stand-alone library that is made publicly available for
application developers [6].
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2. Preliminaries

We collect in this section our conventions about files in general and
random files in particular. We also recall some facts from probabil-
ity theory, including ergodic theory, some formulas that will be used
in our calculations, and some combinatorial information about greedy
sequences. The reader may refer to [11], [22], and [12] for further in-
formation about these topics.

2.1. Files. In the description and analysis of content-dependent chunk-
ing protocols, we shall use the following model of files.

We model a file as a sequence of elements from a finite set PFE of
potential file entries. In reality, the sequence is always finite, its po-
sitions being indexed by a segment [0, l − 1] of the natural numbers.
(It is convenient to start the indexing at 0 rather than 1; we stop at
l − 1 so that l denotes the length.) We shall, however, sometimes use
infinite sequences, indexed by the set N of all natural numbers, or even
doubly infinite sequences, indexed by the set Z of all integers. Infi-
nite and doubly infinite sequences serve as a convenient mathematical
approximation to long finite sequences.

When we use the words “left” and “right”, in connection with the
positions in a file, we always assume the traditional picture of Z; the
integers lie on a horizontal line, with the smaller ones to the left of the
larger ones. For example, we would call 0 the left end and l − 1 the
right end of the interval [0, l − 1].

For our analyses of various chunking methods, we shall assume that
the entries of a file are probabilistically independent and uniformly
distributed. That is, if I denotes the index set (a segment [0, l − 1]
or N or Z), then we give the space PFEI of files the product measure
determined by the uniform measure on PFE. This means in particular
that, if i1, . . . , ik are distinct elements of I (i.e., distinct positions in a
file), if X1, . . . , Xk are subsets of PFE, and if A is the set of those files F
for which F (ij) ∈ Xj for each j (i.e., the entries at the positions ij come
from the corresponding sets Xj , all other entries being unconstrained),
then A has probability (or measure)

Prob(A) =

∏

j |Xj|
|PFE||I| ,

where |X| means the number of elements in the set X.
For finite I, it follows that any subset A of PFEI has probability
|A|/(|PFE||I|); that is, we have the uniform distribution on files. For
infinite I, the laws of probability theory provide a unique measure, not
for all subsets of PFEI but for all reasonably well-behaved ones (known
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as measurable sets or as events). The measurable sets include all the
sets that will arise in our discussion. This measure is also called the
uniform measure, just as for finite I, even though it cannot be defined
by simply saying that all individual elements of PFEI have the same
probability. (They do have the same probability, but it is zero, and so
it tells us nothing about probabilities of more interesting events.)

We use standard terminology and notation from probability theory.
For example, when A is a measurable set, we say that a random file has
probability Prob(A) of being in the set A. When this probability is 1,
then we say that files are almost surely in A and that almost all files
are in A. We use E(f) for the expectation and Var(f) for the variance
of a random variable (i.e., a measurable, real-valued function on the
probability space). We also use the standard notations Prob(A|B),
E(f |B), and Var(f |B) for the conditional probability, expectation,
and variance, conditional on the event B, assumed to have positive
measure.

Whether the product measure accurately reflects the actual proba-
bilities of files in the real world depends on the sort of files under con-
sideration. Highly compressed files are close to random in our sense,
but English text files are not, for two reasons. First, the probabilities
of individual characters are not equal; the letter q occurs far less often
than the uniform measure predicts, while the space occurs far more
often. Second, the probabilities at different locations in the file are not
independent; for example, the probability of the letter u is far higher
immediately after q than elsewhere. Similarly, spreadsheets tend not
to be random, as they often have considerable periodic content.

Fortunately, experimentation has shown that our protocols, partic-
ularly the local maximum chunking, work well even on common sorts
of files, like English text, where our analysis becomes doubtful because
our randomness assumptions fail.

Remark 7. There are rather easy ways of increasing the apparent ran-
domness of a file. Given a file that is a sequence of symbols from an
alphabet Σ (not our intended alphabet PFE), one can compute a hash
value for each contiguous subsequence of some fixed window size w.
The resulting sequence of hash values constitutes a new file, whose set
PFE is the set of all possible hash values. Because of the hashing, this
new file usually looks random even if the original file did not.

The time needed to compute hash values for all the windows of length
w can be reduced by using a rolling hash function. This means that
the hash value for each window except the first is computed from the
hash value h of the immediately preceding window, the first symbol a
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in that preceding window (the symbol that is no longer present in the
new window), and the last symbol b in the new window (the symbol
that was not in the previous window).

If we assume that the symbols in Σ can be represented by bit-vectors
of length w, then we can obtain a very simple rolling hash, using bit
vectors of length w as hash values, and using the operations of bitwise
exclusive or and rotation on these vectors, as follows. Given the hash
value h for a particular window, given the first symbol a in that window
(which is about to leave the window), and given the next symbol b after
that window (which is about to enter the window), regard a and b as
bit vectors of length w. Compute the hash value of the next window
by first taking the bit-wise exclusive-or h⊕ a⊕ b and then rotating the
resulting bit vector by one position (the last bit is removed and put
in the front). Because the window size w equals the length of the bit
vectors, when the element b that has just entered the window leaves
the window w steps later, the hash vector will have been rotated by
one full rotation. So the exclusive-or addition of b when it entered the
window will be exactly canceled by the addition of b when it leaves the
window.

A prime example of a rolling hash, for which the collision probabil-
ities have been thoroughly analyzed, is the Rabin hash [23, 17]. It is
based on arithmetic modulo an irreducible polynomial with coefficients
in Z/2. The number |PFE| of possible hash values can be adjusted by
using polynomials of degree log(|PFE|).

The local maximum chunking method was originally proposed and
implemented with a preliminary rolling hash, intended to introduce the
randomness that our analysis presupposes. (Strictly speaking, a deter-
ministic, length-preserving transformation cannot introduce or increase
randomness. It can, however, mask any regularities so that they are
unlikely to influence the analysis of chunking protocols.) Later, it was
found experimentally that the local maximum method works well even
without this preliminary hashing.

Rolling hashes essentially summarize the contents of a neighborhood
in each position of the file, thus making the new file more resistant to
local entropy variations.

Remark 8. There are additional actions that one can undertake in order
to increase the entropy. For example, if a short pattern repeats many
times in succession, as in a long stretch of zeros, then that stretch
can be compressed to a much shorter string before rolling hashes are
applied. The idea is to replace many successive occurrences of the
same string with one occurrence and the number of times to repeat it.
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(Care is needed to avoid possible ambiguity of such repetition instruc-
tions, but we need not concern ourselves with the details here.) Such
run-length encoding is essential for the content-dependent chunking
methods discussed in this paper when the file exhibits periodicity with
period significantly shorter than the horizon of the chunking method. If
no coding is undertaken, then such periodicity would produce undesir-
ably long chunks under the interval filter and local maximum methods,
because there would be no cutpoint in the periodic stretch of the file.
Under the LBFS method, there would be cutpoints, but identical pe-
riodic segments in two files might well have their cutpoints in entirely
different places.

We make an additional assumption about our files, namely that the
set PFE of potential file entries is equipped with a linear ordering. In
many situations, this assumption is clearly satisfied. If the potential
file entries are hash values, or integers obtained in some other way, then
we can use the usual ordering of integers. If they are characters, then
we can order them by their ASCII codes or Unicodes.

One might even argue that, in real computers, potential file entries
are always linearly ordered because they are ultimately represented by
bit strings, and we can use the lexicographic ordering of these strings.
This observation works as long as the sender and recipient use the same
bit string representations. We need our linear orderings to be the same
for the sender and the recipient, and whether the computers’ internal
bit strings can serve this purpose depends on the particular application.

Having assumed a linear ordering of PFE, we obtain a canonical
bijection between PFE and {0, 1, . . . , |PFE| − 1}, namely the unique
order-preserving bijection. We shall therefore, whenever it is conve-
nient, assume without loss of generality that PFE = {0, 1, . . . , |PFE|−
1}.

2.2. Ergodic Theory. We shall use a little ergodic theory in part of
our analysis, so we summarize here what is needed. We state the re-
sults in their natural generality, namely a probability space Ω with
a measure-preserving, one-to-one transformation T of Ω onto itself.
In our applications of these results, however, Ω will always be the
space PFEZ of doubly infinite files, and T will always be the (left-
ward) Bernoulli shift, BS, which sends any file F ∈ PFEZ to the file
G = BS(F ) defined by G(i) = F (i + 1). (The reader should see that,
despite the impression one might get from the plus sign in i + 1, this
really does shift a file to the left.) Thus, the reader can safely pretend
that whenever we write Ω and T , we mean PFEZ and BS. Clearly,
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the Bernoulli shift is a one-to-one function from PFEZ onto itself. (In-
deed, this is a major reason for using doubly infinite files.) It is also
clear, from the definition of the probability measure on PFEZ, that
this measure is invariant under BS. (So BS is an automorphism of the
probability space.)

A measure-preserving bijection T : Ω→ Ω is called ergodic if, when-
ever an event A ⊆ Ω is invariant (meaning T (A) = A), then its proba-
bility is 0 or 1. It is known that BS is ergodic (see [22, Section 2.4, Ex-
ample (1)]), so all the following results about ergodic transformations
apply to the particular case that we need later. Notice that the defini-
tion of ergodicity would be unchanged if we required probability 0 or
1 for all events A for which T (A) ⊆ A. This is because T is measure-
preserving, so such an A would differ from T (A) by a set of measure
0, and the intersection

⋂

n∈N
T n(A) would be an invariant set differing

from A by a set of measure 0.
We shall need three classical theorems of ergodic theory. Poincaré’s

Recurrence Theorem [22, Theorem II.3.2] implies that, if T : Ω→ Ω is
ergodic and if A ⊆ Ω is an event of positive probability, then almost
all points x ∈ Ω have the property that T k(x) ∈ A for some positive
integer k (in fact for infinitely many k). Birkhoff’s ergodic theorem
[22, Theorems II.2.3 and II.4.4] gives more detail about how often the
sequence T k(x) visits A.

Proposition 9. Let T : Ω→ Ω be ergodic and let A ⊆ Ω be any event.
Then for almost all x ∈ Ω,

lim
N→∞

Number of k ∈ [0, N − 1] with T k(x) ∈ A

N
= Prob(A).

Another way to measure frequency of visits to A is the time until
the first visit to A. For ergodic T , let ρ(x) denote the least k ≥ 1 with
T k(x) ∈ A. (Either define ρ(x) arbitrarily on the measure-zero set of
points x for which no such k exists, or simply ignore sets of measure
zero.) Kac’s theorem [22, Theorem II.4.6] gives the following result.
Note that it is about random elements of A, not of the whole space Ω;
that is, the expectation in the conclusion of the theorem is conditional
on x ∈ A.

Proposition 10. Let A be an event of positive probability p in Ω, and
let x be a random member of A. The expectation of the return time
ρ(x), E(ρ|A), equals 1/p.

It will be useful to have a companion result to Kac’s theorem, giving
the expectation of ρ on the whole space Ω rather than on A. Easy
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examples show that this E(ρ) is not determined by Prob(A) alone,
but it turns out to be related to the variance of ρ on A.

Proposition 11. With notation as above,

E(ρ) =
1

2

[

Prob(A)Var(ρ|A) +
1

Prob(A)
+ 1

]

Proof. For the sake of brevity, we systematically ignore sets of measure
zero; they do not affect any of the following computations. Partition
A into the pieces An = {x ∈ A : ρ(x) = n} (n ∈ N− {0}).

It is not difficult to see that the sets T k(An) for 0 ≤ k < n are
all pairwise disjoint. Indeed, suppose, toward a contradiction, that
we had x ∈ T k(An) ∩ T k′

(An′), and suppose this counterexample is
chosen with k as small as possible. If neither k nor k′ were 0, then
T−1(x) ∈ T k−1(An)∩ T k′−1(An′) would contradict the minimality of k.
So we may assume k = 0 and so x ∈ An ∩ T k′

(An′). In particular,
x ∈ A and x = T k′

(y) for some y ∈ An′. But then from k′ < n′ = ρ(y)
we get T k′

(y) /∈ A, a contradiction.
Consider how T acts on the sets T k(An) for 0 ≤ k < n. It sends

each one to the one with k increased by 1, except that when k = n− 1
it sends T n−1(An) into A, according to the definitions of An and ρ.
Since A is the union of the various An’s, it follows that

⋃

0≤k<n T k(An)
(where both n and k vary) is mapped into itself by T . By ergodicity,
its measure is 0 or 1. As it includes A, its measure cannot be 0, so it
is almost all of the space Ω. Since we are ignoring sets of measure 0,
we can say that Ω is partitioned into the sets T k(An), where, as before,
0 ≤ k < n.

From the definitions of An and ρ, it follows that ρ is constant on
T k(An) with value n− k. Therefore,

E(ρ) =
∑

0≤k<n

(n− k)Prob(T k(An)) =
∑

0≤k<n

(n− k)Prob(An),

where the second equality uses the fact that T preserves the measure.
Carrying out the summation over k for each fixed n, we get

E(ρ) =

∞∑

n=1

(

Prob(An)
n(n + 1)

2

)

=

=
1

2

[
∑

n

nProb(An) +
∑

n

n2 Prob(An)

]

.

The first of the two sums in the brackets here can be rewritten as the
sum of Prob(T k(An)) over all n and all k < n. So, as these sets T k(An)
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partition Ω, this sum is simply 1. (This observation is essentially a
proof of Kac’s theorem.) The second sum can be rewritten as follows,
using the fact that, since An ⊆ A, Prob(An) = Prob(A)Prob(An|A).

Prob(A)
∑

n

n2 Prob(An|A) = Prob(A)E(ρ2|A).

Furthermore, since all random variables satisfy Var(f) = E(f 2) −
E(f)2, we can rewrite this in terms of the variance as

Prob(A)[Var(ρ|A) + E(ρ|A)2].

Remembering that E(ρ|A) = 1/Prob(A) by Kac’s theorem, and sub-
stituting the results of our computation back into the formula for E(ρ),
we immediately get the proposition. �

2.3. Useful Formulas. We collect here some formulas for use in the
calculations in later sections. First, there is the well-known formula for
the sum of a geometric series:

∞∑

i=0

xi =
1

1− x
for |x| < 1.

Differentiating term by term (which is correct in the interior of the
interval of convergence of any power series) and omitting the vanishing
i = 0 term from the result, we get

∞∑

i=1

ixi−1 =
1

(1− x)2
for |x| < 1.

Multiplying this equation by x and then differentiating again, we get

∞∑

i=1

i2xi−1 =
1 + x

(1− x)3
for |x| < 1.

We also need a special case of the familiar formula for the sum of an
arithmetic progression.

h∑

m=1

m =
h(h + 1)

2
.

A similar formula for adding values of a quadratic polynomial will be
useful in the form

h∑

m=2

m(m− 1) =
h3 − h

3
.
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Although this formula, once it is proposed, is easily proved by induc-
tion, it can also be seen directly, in the equivalent form

h∑

m=2

(
m

2

)

=

(
h + 1

3

)

.

The right side here counts the 3-element subsets of {0, 1, . . . , h}. The
term with index m on the left side counts those 3-element subsets
whose last element is m, since such a subset is determined by its other
elements, a 2-element subset of {0, 1, . . . , m − 1}. (The same proof
gives the corresponding result for binomial coefficient sums with 2 and
3 changed to any k and k + 1.) Note that the lower limit m = 2 in the
sums here can be changed to 1 or to 0, since the corresponding terms
m(m− 1) vanish.

We shall also have use for estimates of sums of powers in the form

m−1∑

k=0

1

m

(
k

m

)r

.

This is a lower Riemann sum approximating the integral
∫ 1

0

xr dx =
1

r + 1
.

An upper Riemann sum approximating the same integral is obtained
by letting k range from 1 to m rather than from 0 to m − 1. That
amounts to adding 1/m to the sum, so we have

1

r + 1
− 1

m
<

m−1∑

k=0

1

m

(
k

m

)r

<
1

r + 1
.

So for large m we have

m−1∑

k=0

1

m

(
k

m

)r

≈ 1

r + 1
.

Although these approximations suffice for our needs, we note that there
is an exact expression in terms of the Bernoulli numbers Bk:

m−1∑

k=0

1

m

(
k

m

)r

=
1

mr+1

1

r + 1

r∑

k=0

(
r + 1

k

)

Bkm
r+1−k

=
1

r + 1
− 1

2m
+

r

12m2
+ . . . .
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The first term here is the integral approximation obtained above, and
the second term says that the integral is approximately halfway be-
tween the upper and lower Riemann sums.

2.4. Greedy Increasing Sequences. Consider a finite file F or, more
generally, a function F from any interval of integers I = [a, b] to PFE.
Recall that we identified the set PFE of potential file entries with a
set of integers {0, 1, . . . , |PFE| − 1}. So it makes sense to talk about
increasing (or decreasing) subsequences of F . It will be convenient here
to discuss subsequences, not in terms of the values of F that constitute
them, but in terms of the positions where those values occur.

For a fixed F , we define the left-to-right greedy increasing sequence,
abbreviated →greedy sequence, in the interval I = [a, b] as follows.
Its first element g0 is the first element a of I. Thereafter, gk+1 is
defined as the smallest n ∈ I such that n > gk and F (n) > F (gk).
That is, we build an increasing sequence of elements of I such that
the corresponding sequence of F -values is also increasing, and we do so
greedily, always putting into our sequence the first available number.
The sequence ends at gk when there is no n satisfying the requirements
for gk+1. Notice that then F (gk) is the largest value that F attains on
I.

There is an analogous definition of the right-to-left greedy sequence
or ←greedy sequence, which starts with the rightmost point b of I and
thereafter takes gk+1 to be the rightmost point n to the left of gk with
F (n) > F (gn). Notice that the terms in this sequence are chosen in
decreasing order, but their F -values are in increasing order, so that
the corresponding restriction of the original sequence is decreasing.
Because of this somewhat confusing situation, we do not use the words
“increasing” or “decreasing” in connection with ←greedy sequences.2

When we simply say “greedy sequence” without further modifiers,
we mean the →greedy increasing sequence.

The elements gk of the greedy increasing sequence admit a simple
alternative characterization that does not involve recursion on k.

Proposition 12. The →greedy increasing sequence in I consists of
those n ∈ I such that F (n) > F (m) for all m ∈ I such that m < n.

In other words, they are the places where, as we read the sequence
F from left to right, we see a new maximum value. We shall refer to

2 There are a half dozen more variants of greediness: We could take, in either
the left-to-right or the right-to-left versions, successive points with smaller rather
than larger F -values. And in all these situations, we could use weak rather than
strict inequalities of F -values. We shall get by with the →greedy and ←greedy
sequences as defined above and avoid needing any of these other variants.



18 NIKOLAJ BJØRNER, ANDREAS BLASS, AND YURI GUREVICH

such places as left-to-right maxima or→maxima of F . Analogously, of
course, the ←greedy sequence consists of the ←maxima, those n ∈ I
such that F (n) > F (m) for all m ∈ I such that m > n.

Proof. We first prove, by induction on k, that each gk satisfies the
condition in the lemma. For g0, this is vacuously true, since there is no
smaller m ∈ I. As for gk+1, we have F (gk+1) > F (gk) by definition and
F (gk) > F (m) for all m < gk in I by induction hypothesis, so it remains
only to consider m ∈ (gk, gk+1). But the greediness in the definition of
gk+1 implies that all such m have F (m) ≤ F (gk) < F (gk+1).

Conversely, suppose n ∈ I satisfies the condition in the proposition,
and let k be the largest index for which gk ≤ n. (This exists because
g0, being the first element of I, is ≤ n.) If we had the strict inequality
gk < n, then, because gk+1 is chosen greedily and because F (n) > F (gk)
by the assumption about n, we would have gk+1 ≤ n, contrary to our
choice of k. This contradiction shows that we must have gk = n, and
so the lemma is proved. �

Corollary 13. If n ∈ I is not a member of the→greedy sequence, then
there is some m < n such that F (m) ≥ F (n) and m is a member of
the →greedy sequence.

Proof. This was, in effect, proved in the second half of the proof of
Proposition 12, but it can also be obtained by applying the proposition
itself, as follows. If n is not in the greedy subsequence, then there is,
by the proposition, some m < n with F (m) ≥ F (n). The smallest such
m is, by the proposition again, in the greedy sequence. �

We turn next to some probabilistic information about the →greedy
sequence for a random file F : [a, b] → PFE. We shall use this in-
formation in a context where |PFE| � b − a and therefore it is very
unlikely that two positions in [a, b] will have the same F -value. We
take advantage of this circumstance by doing our calculations under
the assumption that F is one-to-one, i.e., that there are no “ties” be-
tween F -values. Formally, this means that we work not with the usual
probability space PFE[a,b] but with the subspace consisting of the one-
to-one functions (and with the probability measure restricted to this
subspace and renormalized to have total probability 1).

Proposition 14. For any n ∈ [a, b], the probability that n is in the
→greedy sequence is 1/(n− a + 1).

Proof. For any n ∈ [a, b], the largest F -value at the n−a+1 positions in
[a, n] has an equal chance of occurring at any of these positions. So the
probability that the largest F -value on [a, n] occurs at n is 1/(n−a+1).
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By Proposition 12, this is also the probability that n is in the greedy
sequence. �

Corollary 15. The expected length of the greedy sequence in [a, b] is

b∑

n=a

1

n− a + 1
=

b−a+1∑

m=1

1

m
≈ ln(b− a + 1) = ln |[a, b]|.

Proof. The expected size of any set is the sum, over all potential el-
ements n, of the probability that n is in the set. So the first sum in
the corollary follows immediately from the proposition. The logarithm
is a well-known asymptotic (for large b − a) approximation to these
harmonic sums. �

Remark 16. It is known that the expected length of the longest (in

contrast to the greedy) increasing sequence is O(
√

|[a, b]|). So the
greedy method of selecting an increasing subsequence usually falls far
short of the maximum achievable length. In fact, a theorem of Erdős
and Szekeres ([10, 1]) asserts that a sequence of integers of length pq+1,
without repetitions, must have an increasing subsequence of length p+1
or a decreasing subsequence of length q + 1. So a sequence of length
l will have a monotone sequence of length at least

√
l. By symmetry,

there will be an increasing subsequence of this length at least half
the time, so the expectation of the maximum length of an increasing
subsequence is at least

√
l/2.

Although the greedy increasing sequences do not usually come near
the length given by the Erdős-Szekeres theorem, they do provide an
elegant proof of that theorem, as follows. Given a sequence F of distinct
integers, let G1 be the greedy increasing subsequence. Delete G1 from
F , and let G2 be the greedy increasing subsequence of what remains.
Continue in the same manner, forming and removing greedy increasing
subsequences G3, . . . , until nothing remains. If one of these sequences
Gi has at least p + 1 terms, then we have the desired conclusion, so
assume that each Gi has at most p terms. So the first q of our greedy
sequences have altogether at most pq elements, not enough to exhaust
the given sequence of length pq + 1. Pick any position that is not in
any of G1, . . . , Gq. Because it was not in Gq, Corollary 13 provides
an earlier position that has a larger F value and is in Gq. This, in
turn, was not in Gq−1, so Corollary 13 provides an even earlier position
with an even larger F value in Gq−1. Continuing in this way, we get a
decreasing subsequence of length q + 1 in F .
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We shall need one additional, perhaps surprising piece of information
about the →maxima of a random file, namely that different positions
behave independently.

Proposition 17. For each n ∈ I, let En be the event that n is a
→maximum of a random file F . Then these events are probabilistically
independent.

Proof. Let n1 < n2 < · · · < nk be elements of I. We must show that

Prob(All ni are →maxima) =

k∏

i=1

Prob(ni is a →maximum),

and we shall do this by induction on k, the cases k = 0 and k = 1 being
trivial. Suppose, therefore, that the result holds for k − 1. Consider
the conditional probability

Prob(n1, . . . , nk−1 are →maxima |nk is a →maximum).

The event that all of n1, . . . , nk−1 are →maxima depends only on the
relative order of the values of F at points n < nk. The conditioning
event, that nk is a →maximum, means that all those values F (n) are
smaller than F (nk), but it says nothing about the order of those F (n)’s
relative to each other. Thus, the conditional probability equals the
absolute probability that n1, . . . , nk−1 are →maxima, which is, by the
induction hypothesis,

k−1∏

i=1

Prob(ni is a →maximum).

Finally, the probability that all of n1, . . . , nk are→maxima is obtained
by multiplying this conditional probability by the probability that nk

is a →maximum, so we get the required equality. �

3. Chunking Methods and Slack

3.1. Chunking Methods and Locality. We begin our discussion of
content-dependent chunking methods for remote differential compres-
sion by defining what we mean by a chunking method. Our definition
is general enough to also cover content-independent methods, such as
chopping a file into chunks of a fixed length, but we shall use it only
in the content-dependent case.

Definition 18. A chunking method is an operation assigning to every
file a set of locations in that file, called the cutpoints of the file. That
is, for files in PFEI where I is [0, l− 1] or N or Z, the cutpoints form a
subset of I. The chunks of a file F are the segments beginning at one
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cutpoint and ending immediately before the next cutpoint, as well as
the segment from the beginning of the file (when there is a beginning,
i.e., when I 6= Z) up to and not including the first cutpoint and the
segment from the last cutpoint (if there is one) to the end of the file.
In the degenerate case where the set of cutpoints is empty, the whole
file counts as a single chunk.

We have adopted here the arbitrary convention that a cutpoint be-
longs to the chunk on its right rather than the one on its left. So the
actual cutting occurs just to the left of the cutpoints.

When the files are infinite (I=N or Z), infinite chunks can occur. In
all the chunking methods that we consider, however, the probability of
such an occurrence is zero. That is, almost all files will be chopped into
finite chunks. We shall often ignore the measure-zero set of exceptions.
Indeed, we have already ignored it in our rough description of protocols,
where the first two steps involve applying a hash function to each chunk.

Definition 19. Let h be a non-negative integer, and let F ∈ PFEI

be a file. A position i ∈ I is h-internal to the file F if the interval
[i − h, i + h] is included in I. In this case, the restriction of F to this
interval, consisting of the 2h + 1 entries F (i − h), . . . , F (i + h) of F ,
is called the h-vicinity of i in F . We may omit the prefix h when it is
clear from the context.

One of the advantages of dealing with doubly infinite files is that
all positions are internal. In a singly infinite file, all except the first h
positions are h-internal; in a finite file, the exceptions are the first and
last h positions.

We shall need to compare vicinities at different positions, and for
this purpose it is useful to have a brief expression for “being the same
except that the positions have been shifted”.

Definition 20. Consider two finite sequences of potential file entries,
of the same length, but indexed by (possibly) different segments of Z,

say σ ∈ PFE[a,a+l] and τ ∈ PFE[b,b+l]. We say that σ and τ agree if they
differ only by shifting the indices from a to b, i.e., if σ(a + i) = τ(b + i)
for i = 0, . . . , l.

Definition 21. A chunking method is local if there exist a non-negative
integer h and a nonempty set C of sequences of length 2h + 1, C ⊆
PFE[−h,h] such that the cutpoints of any file F are exactly those h-
internal positions in F whose h-vicinity agrees with some σ ∈ C. We
call h the horizon of the method and C its criterion (for cutpoints).

The requirement that C be nonempty avoids trivialities; if it were
violated, no file would have cutpoints. With this requirement, not only
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do some files have cutpoints, but almost all infinite files in PFEN have
infinitely many cutpoints and almost all doubly infinite files in PFEZ

have infinitely many positive and infinitely many negative cutpoints.
Thus, almost all files are chopped into finite chunks.

Definition 22. A chunking method is shift-invariant if, whenever i is
a cutpoint of a doubly infinite file F and s is an arbitrary integer, then
i− s is a cutpoint of BSs(F ).

It follows immediately from the definition of locality that any local
chunking method is shift-invariant, simply because the vicinity of i− s
in BSs(F ) agrees with that of i in F .

3.2. Length of Chunks. Fix a shift-invariant chunking method for
doubly infinite files. Because of shift-invariance, each position i ∈ Z has
the same probability p of being a cutpoint. We call this p the cutpoint
probability of the method. In the case of local chunking methods, we
have, with notation as in the definition of locality,

p =
|C|

|PFE|2h+1
.

In the case of singly infinite files, locality requires all cutpoints to be
h-internal, i.e., to be positions ≥ h. All these positions have the same
probability of being cutpoints, and that probability is given by the
same formula as for the doubly infinite case. Similarly, for finite files,
the same formula gives the probability that any particular h-internal
position will be a cutpoint.

Definition 23. For a file F with a cutpoint at 0, we define the chunk
length L(F ) to be the first positive cutpoint.

Thus, the chunk length of F is the length of the chunk whose first el-
ement is 0. We shall comment later, in Remark 28, on why we consider
only files with a cutpoint at 0, rather than extending the definition to
arbitrary files.

It is possible for a file to have a cutpoint at 0 but no cutpoints farther
to the right, so that the chunk length is not defined. But, with all local
chunking methods and indeed with all shift-invariant methods that
have non-zero cutpoint probability, the Poincaré recurrence theorem
ensures that the files with no chunk length form a set of measure zero,
so they will not affect any of the considerations below.

For finite files, on the other hand, there is a non-zero probability
that the chunk length doesn’t exist. But this probability approaches
zero exponentially fast as the length of the file increases. So for very
long files, there is only a negligible danger that the chunk length is
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undefined. It would also be reasonable to modify the definition of
chunk length, to cover the case where a finite file F ∈ PFE[0,l−1] has no
positive cutpoint, by letting the chunk length in this case be the whole
length l of the file.

Notation 24. Given a shift-invariant chunking method, we write p for
the cutpoint probability. If a file F with a cutpoint at 0 is also given,
then we write L(F ) for its chunk length. Thus, L is a random variable
(defined almost everywhere) on the subspace Cut0 of PFEZ consisting
of files with a cutpoint at 0.

Because the random variable L is defined only on the subspace Cut0,
any statement about its statistical properties must be interpreted as
conditional on the event Cut0. Nevertheless, to reduce the chance
of confusion, we shall often (as in the next proposition) indicate the
conditioning explicitly.

Proposition 25. For doubly infinite files, the expectation of the chunk
length for any shift-invariant chunking method is the reciprocal of the
cutpoint probability, E(L|Cut0) = 1/p.

Proof. Notice that the first positive cutpoint of F is, by shift-invariance,
the smallest positive number k such that 0 is a cutpoint of the shifted
file BSk(F ), where BS denotes the leftward Bernoulli shift as above.
Thus the expectation of the chunk length is the conditional expec-
tation, conditioned on F ∈ Cut0, of the smallest positive k with
BSk(F ) ∈ Cut0. This is precisely the situation covered by Kac’s the-
orem, Proposition 10. According to that theorem, the expectation
under consideration is the reciprocal of the probability of Cut0, so it is
1/p. �

Can one associate chunk lengths to (almost) all F ∈ PFEZ, rather
than only to those with a cutpoint at 0? The answer is yes, to some
extent, but the right approach is more complicated than one might
guess. It involves averaging over all the chunks within the file, as
follows.

Definition 26. The average chunk length of a file F ∈ PFEZ is the
limit

lim
N→∞

2N + 1

Number of cutpoints in [−N, N ]
.

This limit and thus the average chunk length may be undefined for
some files F , but these form a set of measure zero. In fact, we have the
following consequence of Birkhoff’s ergodic theorem.



24 NIKOLAJ BJØRNER, ANDREAS BLASS, AND YURI GUREVICH

Proposition 27. For almost all files in PFEZ, the average chunk length
equals 1/p.

Proof. Before starting the main part of the proof, we note that the
definition of average chunk length would be unaffected if we replaced
2N + 1 by 2N in the numerator (without changing the denominator),
because 2N

2N+1
→ 1 as N →∞. We refer to such a change, also in other

similar situations, as a “trivial modification” of the fraction.
Applying Birkhoff’s result, Proposition 9, to the space PFEZ, the

leftward Bernoulli shift, and the event Cut0, and recalling that the
cutpoints of a file F are exactly those k for which BSk(F ) ∈ Cut0, we
find that

lim
N→∞

Number of cutpoints in [0, N ]

N
= p,

where we have made a trivial modification to get N rather than N + 1
in the denominator. Symmetrically, using BS−1 and shifting the file by
one unit (and not needing a trivial modification this time), we get

lim
N→∞

Number of cutpoints in [−N, 1]

N
= p.

Average these two equations to get

lim
N→∞

Number of cutpoints in [−N, N ]

2N
= p.

Finally, take reciprocals of both sides and make a trivial modification
to get the desired result. �

Thus, Proposition 25 would remain true if we replaced chunk length
by average chunk length and took the expectation over all of PFEZ

rather than over Cut0. Notice, however, that average chunk length
cannot replace chunk length in other contexts. For example, in a non-
trivial chunking method, the chunk length will have non-zero variance,
essentially because not all chunks have the same length. But the av-
erage chunk length is, according to Proposition 27, constant almost
everywhere, so its variance is 0.

Remark 28. It is tempting to associate, to (almost) every file F ∈
PFEZ, the length of a particular, chosen chunk to serve as the chunk
length of F . Such a definition would avoid both the restriction to
Cut0 in our definition of chunk length and the limiting process in our
definition of average chunk length. In fact, an earlier draft of this paper
defined the chunk length of F to be the distance between the first two
non-negative cutpoints. Unfortunately, the analog of Proposition 25,
averaging this chunk length over all files, is in general false, even for
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local chunking methods. Here is a simple counterexample. Suppose
PFE = {0, 1}, and let the chunking method put cutpoints at both of
the 1’s wherever the pattern 011 occurs in a file. (Formally, this is a
local chunking method with horizon h = 2 and criterion C consisting of
the 8 sequences ∗011∗ and 011∗∗, where the stars represent either 0 or
1 independently.) The cutpoint probability is 1/4, and the expectation
of the chunk length, as we have defined it, is 4. But the older definition,
using the first two non-negative cutpoints, results in the expectation of
the chunk length being only 7/4.

One can see, intuitively, what goes wrong in this example. The
chunking method guarantees that cutpoints occur in adjacent pairs. So
half the chunks have length 1 (extending from the first to the second
1 in a 011 pattern) while the other half are longer (of length at least 2
and on average 7). Position 0 is considerably more likely to lie in one
of the long chunks, so the next chunk, the one between the first two
non-negative cutpoints, is more likely to be a short one, of length 1.
And of course this drags down the expectation of this version of chunk
length.

Another approach to assigning a chunk length to (almost) every file
is to take the length of the chunk that contains a specific position, say
0. This also fails to work properly, for similar reasons. If there are
chunks of different lengths (as there will be under non-trivial chunking
methods) then 0 is more likely to lie in one of the longer chunks. A
specific counterexample is even easier to produce than for the “first two
non-negative cutpoints” version. Let PFE = {0, 1} again and let the
cutpoints be the positions where the file entry is 1. (This is a special
case of the pure point filter method discussed in more detail below.)
Then the cutpoint probability is 1/2 and the average chunk length is
2. But the expectation of the length of the chunk containing 0 is 3.

Typically a chunking method has parameters which can be manip-
ulated so that the expected chunk length E(L) is as desired. But the
chunks in a particular file may be shorter or longer than this average.
As indicated earlier, both too short and too long chunks are undesir-
able. On the one hand, the overhead of assembling and communicating
the checksum of too short a chunk may outweigh the cost of sending the
chunk itself. On the other hand, excessively long chunks are unlikely to
match between the sender’s and recipient’s files. Therefore, one would
prefer a chunking method with lower deviation from the average chunk
length.

In a sense, too long chunks create a smaller problem than too short
chunks. If necessary, a too long chunk can be subdivided by adding
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additional “artificial” cutpoints; all “indigenous” cutpoints remain in-
tact. For example, if the desired chunk length is L, then a chunk of
size cL + d may be subdivided into c − 1 chunks of size L, and one
chunk of size L + d. In this way, a sender never transmits a chunk
of size larger than 2L. Of course, this method can run into the same
problem that motivated content-dependent chunking in the first place:
Since the artificial cutpoints are at fixed positions, inserting a single
character into a file, near the beginning of a long chunk, may disrupt
agreement between the artificial subdivisions. There are more intrinsic
ways of subdividing long chunks. For example, in the case of local-
maximum chunking method, discussed in section 6, a long chunk can
be subdivided by means of local maxima with smaller horizon.

On the other hand, imposing a minimal length may require removing
indigenous cutpoints. The following example is admittedly extreme
and improbable but it gives a good idea of a discoordination that may
result from removing indigenous cutpoints.

Example 29. The indigenous cutpoints partition the recipient’s file F1

into 2n distinct chunks C1, . . . , C2n that are too small. By removing
half of the cutpoints, we have n bigger chunks C1C2, . . . , C2n−1C2n. The
sender’s file F2 was obtained from F1 by moving C1 to the end. The
indigenous cutpoints partition F2 into 2n chunks C2, . . . , C2n, C1. By
removing half of the cutpoints, we get bigger chunks C2C3, . . . , C2nC1.
But none of these bigger chunks occurs in F1.

Lemma 30. No local chunking method can have an absolute guarantee
that the chunks are not too short and not too long.

Proof. Consider a doubly infinite file F with the same entry in every
position. Let h be the horizon of the chunking method. Every position
of F has the same h-vicinity. It follows that either every position of
F is a cutpoint, which violates the minimality requirement, or else no
position of F is a cutpoint, which violates the maximality requirement.

�

Although files of the sort used in this proof form a set of measure
zero, there is non-zero (albeit small) probability for a file to have a very
long finite stretch of identical entries. In such files one will have either
very short chunks (of length one) or a very long chunk (at least as long
as the stretch of identical entries minus twice the horizon).

The methods that we propose in Sections 5 and 6 below provide ab-
solute lower bounds on the chunk lengths. Upper bounds and stricter
lower bounds hold with high probability. In practice, absolute guaran-
tees are not crucial; high probabilistic guarantees are almost as good.
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3.3. Costs. How can one compare the efficiency of different chunk-
ing methods? The cost of executing a remote differential compression
protocol has several components, including

(1) The number of bytes sent over the wire (in each direction),
(2) The number of communication rounds.
(3) The cumulative time of hard-disk accesses.
(4) The computation complexity of finding the cutpoints.

In this section we concentrate on the first component. It is about
minimizing the bandwidth used by a file transfer. Components 2 and
3 are highly relevant as well, but they do not depend on particular
chunking methods. In particular, for any protocol that fits the rough
outline in Section 1, the number of communication rounds is three,
namely steps 3, 5, and 6 of that outline. (The number of communica-
tion rounds would increase to 2n + 1 if a protocol is used recursively
to depth n, as described in Remark 6. So one should, when using re-
cursion in this way, keep in mind the trade-off between the benefit in
Component 1 and the cost in Component 2.)

Component 3 can be reduced by using multiple disks and carefully
laying out data on disks. A more detailed discussion of components 2
and 3 is however outside the scope of this paper. Component 4 is
addressed in subsequent sections in conjunction with the particular
chunking methods. In particular, we show in Section 8 that local max-
ima can be found efficiently.

We now turn to our primary topic, Component 1. What is sent over
the wire in order to transfer a file F2 from a sender to a recipient?

(S1) The chunk checksums sent to the recipient. Suppose that the
chunks are B1, . . . , Bn and let E(L) be the expected chunk
length. So n is usually close to |F2|/E(L). All checksums have
the same length Chk. So the number of bytes sent is

n · Chk ≈ (|F2|/E(L)) · Chk

(S2) The indication, from the recipient, which of the chunks he wants
to receive; the requested chunks are the chunks of F2 that are
not chunks of F1.

(S3) The requested chunks Bj sent to the recipient. If k is the num-
ber of F2 chunks that are also F1 chunks then the number of
bytes sent is

∑

Bj is wanted

|Bj | ≈ (n− k) · E(L).
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The estimate in (S3) is necessarily a rough approximation because
it assumes that the average length of requested chunks is the same as
the average length E(L) of chunks in general. In fact, shorter chunks
usually have a better chance of matching than long ones do. For an
extreme example, suppose F2 is obtained from F1 by modifying every
E(L)th symbol. Then no chunks of length more than E(L) will match,
and only chunks of length smaller than E(L) will ever have a chance to
match. In such a case the number of requested bytes will be larger than
(n−k) ·E(L). Fortunately, for the purpose of the following discussion,
the important part of the formula in (S3) is not the questionable factor
E(L) but the factor n− k which indicates that we should aim for large
k.

(S1) and (S2) do not depend much on the chunking method. (S1)
just depends, as indicated above, on the average chunk length and the
size of the checksums, both of which can be chosen independently of
the choice of chunking method.

(S2) is negligible compared to (S1) + (S3).
As indicated earlier, (S1) + (S3) can be reduced by applying chunk-

ing methods recursively; see Remark 6. We shall, however, analyze
and compare content-dependent chunking protocols in a simple, non-
recursive context. The comparisons carry over to the corresponding
recursive versions, as the benefits of recursion are essentially indepen-
dent of the benefits of choosing a good chunking method.

To minimize (S3) we would like to maximize the number k of common
chunks. Consider a maximal interval I common to the two files F1 and
F2, and assume that I is long enough to contain at least one common
chunk. I has the form S ·C1 · · ·Cn ·S ′ where C1, . . . , Cn are chunks, S is
a proper final segment of the preceding chunk, and S ′ is a proper initial
segment of the subsequent chunk. The parts S and S ′ of the agreement
interval I are wasted in the sense that the agreement of these segments
of the two files doesn’t reduce the transmissions needed in (S3). If I
had not included any common chunks then the whole I would have
been wasted.

Thus, the efficiency of a chunking method depends, in large part, on
its ability to keep the wasted agreements, the segments S and S ′, small.
In the next subsection, we introduce a mathematically convenient way
to assess this ability. In that discussion, we also take into account
that, although the interval I is common to the two files, its subdivision
into chunks may be different near the ends. This is because whether a
position is a cutpoint depends on its h-vicinity, and that may extend
beyond I.
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3.4. Slack from the Left. We introduce an idealized model of what
happens near the beginning of an interval of agreement between two
files. The model uses two doubly infinite files F1, F2 ∈ PFEZ that
coincide at all non-negative positions but are independent elsewhere.
We write F+ for their common non-negative part (an element of PFEN)
and F−

1 and F−
2 for their respective negative parts. Thus, we envision

a pair of doubly infinite files that start out independent but at some
point (position 0) merge and are identical thereafter.

Formally, we work with the probability space PFEM where M (the
symbol stands for “merge”) consists of all the non-negative integers
and all pairs (i, 1) and (i, 2) for negative integers i. So M =

(
(Z−N)×

{1, 2}
)
∪ N. As with previous probability spaces, we use the product

measure derived from the uniform measure on PFE. Thus, the entries
in a random file F ∈ PFEM are chosen independently and uniformly
from PFE. If F ∈ PFEM then F determines a merging pair of files
(F1, F2) by

Fk(i) =

{

F (i, k) if i < 0

F (i) if i ≥ 0.

The extraction of the two files Fk from F amounts to a pair of projection
functions

πk : PFEM → PFEZ : F 7→ Fk.

Both of these projection functions are clearly measure-preserving; that
is, Prob(πk

−1(A)) = Prob(A) for all events A ⊆ PFEZ.

Remark 31. We think of position 0 as where the agreement between
F1 and F2 begins. Strictly speaking, 0 is where agreement begins to
be enforced by the definition of the model. It is possible for the files
to already have the same entry “accidentally” at −1; this happens
with probability 1/|PFE|. And the actual interval of agreement may
begin even earlier, though with even smaller probability. Modifying the
model to prohibit such coincidences would introduce additional cases
into our computations without significantly changing the results. So
we abstain from such a modification and use the model as presented
above.

Although F1 and F2 are infinite, they are intended to serve as math-
ematically convenient models for the behavior of a pair of real, finite
files with an interval I of agreement as in the discussion at the end of
Section 3.3. More precisely, they model the behavior near the begin-
ning of I, where the files agree to the right and are (as a mathematical
idealization) independent to the left. As indicated earlier, we would
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like our chunking method to minimize the wasted part S of the in-
terval of agreement. We also want to minimize the wasted part S ′ at
the other end of I, but that can be treated almost symmetrically (see
Section 3.5 below), so we concentrate, for now, on S.

In our model, the wasted part extends at least from the merge point
0 to the first non-negative position that is a common cutpoint of both
files. (It may extend further, if, after the first common cutpoint, the
files have different cutpoints. This will not happen with any of the
chunking methods we consider.) That motivates the following defini-
tion.

Definition 32. Let a chunking method for doubly infinite files be
given. The slack of any F ∈ PFEM, written Slack(F ), is the smallest
non-negative integer i that is a cutpoint of both of the derived files F1

and F2.

Since the slack gives information about the behavior of a chunking
method when one enters an interval of agreement from the left end, we
may refer to it as the →slack, especially if we need to contrast it with
the analogous ←slack defined below.

As with some previous definitions, we confess that the slack may not
be defined for some F , if the files F1 and F2 have no common cutpoint.
For local chunking methods, the set of such bad F has probability zero
and can therefore safely be ignored. Indeed, if h is the horizon of the
chunking method, then any cutpoint ≥ h in either F1 or F2 is also a
cutpoint of the other, since the h-vicinities agree. So the only way for
F to have undefined slack is for each Fk to have no cutpoints ≥ h.
But we already saw that almost all files in PFEZ have infinitely many
positive cutpoints, so, invoking the fact that πk preserves measure, we
conclude that almost all F ∈ PFEM have well-defined slack.

For non-local chunking methods, it is not so clear that the slack
is almost everywhere defined, but this will be the case for the one
non-local method that we shall analyze and compare with our local
methods.

It is intuitively plausible that chunking methods with large chunks
will have larger slack, because chunks that start in the independent
negative parts F−

k of the two files will extend farther into the common
positive part F+. Accordingly, it makes sense to measure slack relative
to expected chunk length.

Definition 33. The normalized slack of F ∈ PFEM is defined as
S(F ) = Slack(F )/E(L).
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As indicated by our discussion of (S3) above, remote differential
compression benefits from a chunking method with small slack. Ac-
cordingly, we shall use the expectation of the (normalized) slack as one
measure of the quality of chunking methods.

3.5. Slack from the Right. Recall that it is advantageous for a
chunking method to waste as little as possible from either end of an
interval of agreement. That is, if two files coincide on a long interval
I, then the chunking method should produce a common cutpoint near
the left end and another common cutpoint near the right end of I. The
slack measures how well a method does at the left end. The situation
at the right end is almost but not quite symmetrical. For mathematical
simplicity, we make the definitions exactly symmetrical. Afterward, we
discuss how reality deviates slightly from this perfect symmetry.

Symmetrical to M is the index set

D = {i ∈ Z : i ≤ 0} ∪ {(i, k) ∈ Z× {1, 2} : i > 0}.
(The symbol stands for “diverge”.) An element F of PFED amounts
to two files Fk ∈ PFEZ

Fk(i) =

{

F (i) if i ≤ 0

F (i, k) if i > 0

that coincide at non-positive locations but are independent at positive
locations. The two projections

πk : PFED → PFEZ : F 7→ Fk

preserve measure just as before. Symmetrically to the earlier notation,
we write F− for the common part of F1 and F2, i.e., the restriction of F
to non-positive integers, and we write F+

k for the independent positive
parts of the two files Fk.

Definition 34. Let a chunking method for doubly infinite files be
given. The reverse slack, or←slack, of any F ∈ PFED, which is written
←Slack(F ), is the smallest non-negative integer i such that −i is a
cutpoint of both of the derived files F1 and F2.

The two files Fk extracted from any F ∈ PFED agree at all positions
≤ 0, and the ←slack of F measures how much of this agreement is
wasted. This is intended to model what happens at the right end of a
long interval of agreement between two real files.

Remark 35. As a measure of wasted agreement, the←slack suffers from
a few small inaccuracies. One was already pointed out in Remark 31 in
connection with the →slack, namely that there is a slight chance that
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the interval of agreement between F1 and F2 is actually longer than
what the model enforces. Even though F1(1) and F2(1) are indepen-
dent, they might happen to coincide. As with →slack, we choose to
ignore this problem because it is unlikely to occur at all and even more
unlikely to have a significant influence (more than one or two positions)
on the amount of wasted agreement.

Two other inaccuracies arise from our convention that a cutpoint is
included in the chunk to its right, not the one to its left. Suppose the
←slack of F ∈ PFED is s. So the two files F1 and F2 have a common
cutpoint at −s and no later common cutpoints ≤ 0. Ordinarily (but see
the exception in the next paragraph), this means that the chunks of F1

and F2 that begin at −s will differ, either because they have different
lengths or, if they have the same length, because they extend to positive
positions where the files differ. (Remember that, as discussed above,
we are ignoring possible accidental agreement at position 1.) So the
agreement of F1 and F2 at the s+1 positions −s, . . . , 0 is wasted. The
←slack s underestimates the waste by 1. Thus, were it not for the next
paragraph, this inaccuracy could be corrected by simply adding 1 to
the ←slack. In most situations, this correction will be negligible; the
slack is comparable to the average chunk length, which is much larger
than 1.

There is, however, an exceptional situation where s overestimates the
waste. This occurs when both F1 and F2 have a cutpoint at 1. Being
> 0, this cutpoint has no influence on the←slack s, but the chunk that
begins at −s is [−s, 0], which lies entirely in the interval of agreement
of the two files. So there is no waste at all in this case. The correction
needed in this case is (to not add 1 as in the preceding paragraph
and) to subtract s, i.e., to replace the ←slack with 0. This correction,
though it may be large for an individual file, is usually negligible on
average, especially in comparison with the whole←slack s, because the
probability q that 1 is a cutpoint in both F1 and F2 is so small (clearly
q ≤ p and usually q � p).

Because all the inaccuracies in the reverse slack are relatively small,
we shall neglect them and use the average reverse slack as a measure of
a chunking method’s waste of agreement at the right end of an interval
on which two files coincide.

3.6. Quality of Chunking Methods. Recall the three desiderata for
a chunking method: The chunks should not be too short. The chunks
should not be too long. And agreements between parts of files should
be promptly reflected in agreements between chunks. Of course, these
desiderata are interrelated. For example, the trouble with excessively



LOCAL MAXIMUM CHUNKING 33

long chunks is that a long interval of agreement between files might not
contain any whole chunks. Nevertheless, it is convenient to consider the
three desiderata separately, because the first two are somewhat easier
to deal with. We must not, however, be so focused on the first two
that we ignore the third, because the first two can be satisfied by using
chunks of a single fixed length, and we have seen that this chunking
method can take two nearly identical files (differing by the addition of
a single character) and produce no agreements at all between chunks.

The chunking methods that we consider will have one or two ad-
justable parameters, so that we can control, for example, the average
chunk size, or the minimum chunk size, or sometimes both. So it is
not too difficult to achieve the first or second desideratum; it is the
interplay between the two that imposes a non-trivial requirement on
a chunking method. This interplay can be summarized by saying that
we do not want too much variation in the chunk lengths.

An obvious measure, therefore, is the variance (or its square root,
the standard deviation) of the chunk length. Another possible mea-
sure for the same purpose is the ratio of the average to the minimum
chunk length. A third is the probability of finding no cutpoints in a
long interval, say an interval whose length is 5 or more times the av-
erage chunk length. We shall calculate or at least estimate these three
measures for all of the chunking methods that we treat in the follow-
ing sections, except that the variance of the local maximum method
remains an open problem and the probability of long chunks and the
←slack of the interval filter are expressed not explicitly but in terms
of the smallest root of a certain polynomial equation.

The quality of a chunking method from the viewpoint of the third
desideratum is, we propose, reasonably measured by the slack and re-
verse slack. We shall therefore also compute or at least estimate the
→slack and ←slack of the methods in the following sections, except
that we have not been able to accurately estimate the slack of the
local maximum method (in either direction — they are the same by
symmetry).

4. Point Filter Methods

4.1. Pure Point Filters. The pure point-filter chunking is the most
local chunking method: the vicinity of a position i that determines
whether i is a cutpoint of F consists of F (i) alone. This chunking
method has an integer c ≥ 2 as a parameter. In the following discus-
sion, we consider c as fixed and we identify PFE with the set of integers
from 0 to |PFE| − 1.
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Definition 36. Pure point filter chunking is the chunking method
where the cutpoints of a file F are those positions i where F (i) is
divisible by c.

In practice, the number |PFE| of potential file entries (often hashes
resulting from a rolling hash) is usually a power of 2 and c is a smaller
power of 2. This simplifies the task of finding cutpoints, because, in-
stead of dividing F (i) by c, one can just test whether the bit-pattern
of F (i) ends with enough 0’s.

When |PFE| ≥ c are powers of 2, or more generally when c divides
|PFE|, then the cutpoint probability is clearly 1/c. In general, it is

p =
1

|PFE|

⌈ |PFE|
c

⌉

,

i.e., 1/c rounded up to the next larger multiple of 1/|PFE|. (Had we
chosen PFE to start with 1 rather than 0, then we would round down
rather than up.) In practice, the rounding is negligible because |PFE|
is much larger than c.

Remark 37. It is only a matter of practical convenience that the cut-
points are defined in terms of divisibility. In practice, one uses divis-
ibility by powers of two, because that can be checked by inspecting a
bit pattern, which takes just one CPU cycle. But our analysis applies
equally well to less efficient criteria. One could use an arbitrary subset
C of PFE, defining the cutpoints of a file F to be those positions i
where the value F (i) belongs to C. Then the cutpoint probability is
p = |C|/|PFE|. All the following results, except for approximations
involving c, hold in this more general situation.

The probability distribution of the chunk length L is geometric with
parameter p. That is, L takes each positive integer i as a value with
probability

Prob(L = i) = (1− p)i−1p for i ≥ 1.

(Recall that we defined chunk length only for files with a cutpoint at 0,
so the probabilistic notions here are all conditional on the event Cut0.)
Using the formulas in Subsection 2.3 to sum the relevant series, we
obtain that the expectation of L is

E(L) =
1

p
≈ c

in agreement with Proposition 25, that

E(L2) =
2− p

p2
,
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and therefore that the variance of L is

Var(L) = E(L2)−E(L)2 =
1− p

p2
≈ c2 − c.

The slack is also geometrically distributed, but taking values starting
with 0 rather than 1. (The slack of F ∈ PFEM can be zero; the chunk
length of F ∈ PFEZ cannot.) We have

Prob(Slack = i) = (1− p)ip for i ≥ 0

and therefore

E(Slack) =
1

p
− 1 ≈ c− 1.

The expectation of the normalized slack is thus 1 − p ≈ 1 − 1
c
. Of

course, the reverse slack has the same expectation, because of the left-
right symmetry of the chunking method.

4.2. Point Filters Without Short Chunks. The pure point filter
method allows chunks to be as small as a single element of a file. To
avoid excessively small chunks, a modification of the method was pro-
posed, in [20], forcing all chunks to be larger than a certain length h;
we refer to this modification as the LBFS chunking method. In [20],
the parameters were chosen to be h = 211 and c = 213, but the chunk-
ing method can be applied with any desired h and c. It proceeds as
follows, given a file in PFE[0,l−1] or in PFEN. Ignore the first h + 1 po-
sitions (0 to h) because cutting there would produce an impermissibly
small chunk. Beginning at position h + 1, look for positions i where c
divides F (i), and declare the first such i to be a cutpoint. Then ignore
the next h positions, i + 1 to i + h, again because cutting there would
produce an impermissibly small chunk. Starting at position i + h + 1,
look again for a position where the entry in F is divisible by c, declare
it to be a cutpoint, and so forth.

Because this chunking method was introduced as a part of LBFS (low
bandwidth file system) in [20], we shall refer to it as LBFS chunking.
(LBFS includes other aspects in addition to chunking, such as main-
taining a system-wide database of chunks indexed by their hashes (see
remark 5), but we are concerned in this paper only with the chunking
method.)

Definition 38. In connection with LBFS chunking applied to a file
F , we call a position i a candidate if c divides F (i). The cutpoints
are those candidates i such that i > h and none of the preceding h
positions i − h, . . . , i − 1 is a cutpoint. If a candidate i fails to be a
cutpoint because there was a cutpoint j in the range i−h ≤ j ≤ i− 1,
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then we say that j blocks i (from being a cutpoint). We use the symbol
k for the ratio h/c.

Notice that the candidates for the LBFS chunking method are ex-
actly the cutpoints for the pure point filter method with the same c.

We shall occasionally give particular attention to the case k = 1/4
that corresponds to the choice of parameters proposed in [20].

Remark 39. The LBFS chunking method is not local (except, of course,
when h = 0 and it reduces to the pure point filter method). To see
this, consider how to tell whether a position i is a cutpoint. First,
check whether c divides F (i). If not, then you have the answer, “no.”
But if c does divide F (i), then you still have to check whether any of
i− 1, . . . , i− h was a cutpoint, which would block i. So check whether
c divides any of F (i − 1), . . . , F (i − h). If all the answers are “no”,
then you have the answer; i is a cutpoint. But if you find a candidate
among i − 1, . . . , i − h, then you still need to check whether it was a
cutpoint, which involves checking the preceding h positions. And if you
find a candidate there, then you have to check h positions farther back
from that candidate, and so forth. Thus, there is no a priori bound on
how far back you might have to look in order to decide whether i is a
cutpoint. That is, the chunking method is not local.

We observed earlier that, for any local chunking method, almost
every infinite file F ∈ PFEN has infinitely many cutpoints. Since the
LBFS method is not local, this observation cannot be applied to it
directly. Nevertheless, one can easily deduce the desired information,
that the LBFS method produces infinitely many cutpoints in almost
all F ∈ PFEN, from the corresponding result for the pure point filter
method, which is local. To see this, consider an arbitrary position
i ∈ N. For almost all F , the pure point filter method will have a
cutpoint j > i + h. This j is a candidate in the LBFS method, so
either it is a cutpoint or it is blocked by some cutpoint in the interval
from j − h to j − 1. In either case, there is a cutpoint > i, either j or
the one blocking it. Since this holds with probability 1 for each i (and
since probability is countably additive), almost all F have infinitely
many cutpoints under the LBFS chunking method.

Remark 40. We defined the LBFS method for finite and singly infinite
files but not for doubly infinite files. If one applies the same idea to
doubly infinite files, it may fail to give a well-defined set of cutpoints.
That is, it may not really be a chunking method. The source of this
problem is the same as the source of non-locality in the previous re-
mark. To determine whether a position i is a cutpoint, we may have to
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look farther and farther back in the file. In the case of doubly infinite
files, the process may never terminate, so there is no decision whether
i is a cutpoint.

Consider, for example, a file F ∈ PFEZ such that F (i) is divisible by
c if and only if i is divisible by h. So every hth position is a candidate,
but each such position, if it is a cutpoint, will block the next candidate
from being a cutpoint. It would be consistent with the LBFS method
to say that the cutpoints are all of the positions divisible by 2h, i.e.,
every second candidate. Each of these candidates 2nh blocks (2n +
1)h, but then (2n + 2)h is unblocked and serves as the next cutpoint.
But it would be equally consistent to say that the cutpoints are the
positions of the form (2n + 1)h, the odd multiples of h. Each blocks
the next even multiple of h, and then the next odd multiple of h is
unblocked and serves as the next cutpoint. The LBFS method gives no
way to choose between these two possible selections of cutpoints from
among the candidates. One could amplify the method by specifying the
choice arbitrarily in all such situations; the result would be a chunking
method, but it would not be shift invariant.

Fortunately, the LBFS method works for almost all doubly infinite
files. To see this, notice first that, if a file has no candidates in some
interval of length h, then the method will determine the cutpoints to the
right of that interval. Specifically, the first candidate to the right of the
interval is not blocked, because there is no candidate in the preceding
h positions. So this first candidate is a cutpoint. Knowing this, one
can proceed to the right, inductively determining which candidates are
cutpoints and which are blocked. Furthermore, an easy calculation
shows that almost all files F ∈ PFEZ have candidate-free intervals
of length h arbitrarily far to the left. So, in almost all files, all the
cutpoints are uniquely determined.

From now on, we shall work with the LBFS method as though it
were a genuine chunking method even for doubly infinite files. That is,
we shall ignore the measure-zero set of exceptional files for which the
method fails to determine the cutpoints.

Having made the LBFS chunking method applicable to doubly infi-
nite files, by ignoring a set of probability zero, we note that the method
is clearly shift-invariant even though it is not local.

Remark 41. In the preceding remark, we used the fact that a candidate-
free interval of length h is a doubly infinite file is sufficient to disam-
biguate the choice of cutpoints to the right. There are other intervals
that would serve the same purpose. For example, if h = 3 and if a file
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contains a segment of the form NCCCCNNC, where C means “can-
didate” and N means “non-candidate, then the last candidate in this
segment will be a cutpoint, and the chunking method to the right of
this segment is therefore well-defined. To see that the last C in NCC-
CCNNC is a cutpoint, suppose not. Then it is blocked by a cutpoint
at one of the h = 3 preceding positions, which can only be the last of
the four consecutive C’s. Then the preceding three C’s are not cut-
points, lest they block the fourth one. But why is the third of the four
consecutive C’s not a cutpoint? It’s not blocked by the two preceding
C’s (as they’re not cutpoints), nor by the initial N (as a non-candidate
is certainly not a cutpoint). This contradiction shows that the last C
in NCCCCNNC must be a cutpoint. It is clearly possible to devise
analogous examples, and more complicated ones, also for other values
of h.

The LBFS chunking method clearly ensures that all chunks have
length at least h+1. The following proposition gives basic probabilistic
information about the behavior of this method. The slack is more
complicated and is treated in the next subsection.

For notational simplicity, we assume henceforth that |PFE| is divis-
ible by c. In the general case, the following results are still approx-
imately correct and would become exactly correct if c were replaced
with |PFE|/d|PFE|/ce.

Proposition 42. The LBFS chunking method applied to (almost all)
doubly infinite files has the following properties.

(1) Each position is a candidate with probability 1/c independently.
(2) The expectation of the chunk length is h + c = c(1 + k).
(3) Each point has the same probability to be a cutpoint, namely

1/(c + h).
(4) Any interval of l ≤ h + 1 positions contains a cutpoint with

probability l/(c + h).
(5) The variance of the chunk length is Var(L) = c2 − c.

Proof. Item 1 was already established in our discussion of the pure
point filter method, since the cutpoints of that method are exactly the
candidates of LBFS.

In item 2, the summand h represents the blocked positions immedi-
ately after a cutpoint (at 0), and c is the expected number of subsequent
positions needed to reach a candidate.

That each point has the same probability of being a cutpoint is
obvious by shift-invariance. The value of the probability in item 3
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follows from the expected chunk length via Kac’s theorem, as applied
in Proposition 25.

For item 4, recall that an interval of length ≤ h + 1 can’t contain
more than one cutpoint. So, as i ranges over the l points in the interval,
the events “i is a cutpoint” are mutually exclusive and have probability
1/(c + h) each.

Finally, item 5 simply says that the variance of the chunk length is
the same as for the pure point filter method. Informally, this is true
because waiting h steps before looking for candidates increases chunk
lengths by h but doesn’t affect differences between lengths. Formally,
simply observe that the probability that a chunk, starting at a partic-
ular cutpoint, has length i is 0 for i ≤ h and (1 − 1

c
)i−h−1 1

c
for i > h.

That is, the probability distribution of the chunk lengths is obtained
from that of the pure point filter method by shifting h steps to the
right. The shift increases the expectation by h but has no effect on the
variance. �

For future reference, it will be convenient to express the variance of
L in terms of the cutpoint probability and the parameter h.

Corollary 43. For the LBFS method,

Var(L) =
1

p2
− 2h + 1

p
+ h2 + h .

Proof. Substitute c = 1
p
− h into item 5 of the proposition. �

Remark 44. The mutual exclusion used in the proof of item 4 can also
be used to obtain the probability 1/(c + h) in item 3 without invoking
Kac’s theorem. Letting p be the probability that a particular position
i is a cutpoint, we find that

p =
1

c
(1− hp).

The first factor here, 1/c, is the probability that i is a candidate. The
second factor is the independent probability that it is unblocked. In-
deed, for each of the h immediately preceding positions j = i−h, . . . , i−
1, there is probability p that j is a cutpoint, and these events are mutu-
ally exclusive. So hp is the probability that i is blocked. Independence
follows from the observation that whether j is a cutpoint depends only
on the file entries at j and to the left, not on the entry at i. Solving
the equation above for p, we get 1/(c + h).

Of course it is also possible to get the expected chunk length by a di-
rect computation (using formulas from Section 2.3) and the probability
distribution described in the proof of item 5.
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Remark 45. The number of candidates skipped by the LBFS method,
after it finds a cutpoint and before it begins to look for the next can-
didate, is binomially distributed, for it is the number of “successes”
(candidates) in h independent “trials” (positions), each trial having
success probability 1/c. Thus, the expected number of skipped candi-
dates is h/c = k. The probability that at least one candidate will be
skipped, i.e., that the chunk is larger than what the pure point filter
method would produce, is

1−
(

1− 1

c

)h

≈ 1− e−k

for large c. If, for example, we want the minimum chunk size h + 1 to
be about half of the average chunk size c + h (as is the case for the
local maximum method in Section 6), then we would have k = 1 and
so the probability that LBFS skips a candidate is approximately 1 −
(1/e) ≈ 63% — and the probability of skipping at least two candidates
is ≈ 26%. Thus in this situation, the LBFS method and the pure point
filter method differ on a large fraction of the chunks.

4.3. The Slack of LBFS Chunking. In this subsection, we shall es-
timate the expected slack of the LBFS method. Before proceeding, we
must check that the notion of slack makes sense in this context. Imme-
diately after defining slack (Definition 32), we observed that, although
some F ∈ PFEM may fail to have a slack, because the component
files F1 and F2 have no common non-negative cutpoint, the probability
of this event is zero for any local chunking method. Since the LBFS
method is not local, a separate argument is needed here, but it is an
easy one. With probability 1, the common positive part F+ of F1 and
F2 will contain an interval of length h with no candidates and therefore
no cutpoints, and it will have a candidate to the right of this interval.
The first such candidate is a common cutpoint of F1 and F2, and so
Slack(F ) is defined. Since we are interested in the expected slack, we
can ignore the measure 0 set of F ’s whose slack is undefined.

The exact value of the expected slack seems to be difficult to com-
pute, so we shall estimate it from below.

Consider a random F ∈ PFEM, giving rise to a merging pair of files
F1, F2 ∈ PFEZ. The slack depends on the location of candidates in the
common part F+ and also on any cutpoints that may be present in F−

1

and F−
2 in the critical range of positions −h,−h + 1, . . . ,−2,−1, the

last h positions before the merge. These positions are called critical
because a cutpoint there, in either file, could block a candidate in F+
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from being a cutpoint of that file and could thus delay the appearance
of a common cutpoint.

With bad luck, the delay could be quite large. Suppose, for example,
that F+ has candidates at exactly the positions in = hn for all non-
negative n, and suppose further that F1 has a cutpoint in the critical
range but F2 does not. The critical cutpoint in F1 will block the can-
didate at 0, so the next cutpoint of F1 will be at h. That will, in turn,
block 2h, so the next cutpoint is at 3h, and so forth. In F2, on the other
hand, 0 is not blocked, so it is a cutpoint, and it blocks h. The next
cutpoint in F2 is 2h, blocking 3h, and so forth. Thus, the cutpoints of
F1 (resp. F2) are hn for odd (resp. even) n, and there are no common
cutpoints. (The example doesn’t really depend on the assumed precise
spacing of the candidates. It would suffice that the distance in+1 − in
be ≤ h and that in+2 − in be > h for all n.) As indicated above, the
probability of this situation is zero, but there is a non-zero probability
that this sort of alternation continues for a large (but finite) number
of steps.

We must take such situations into account when estimating the slack,
because the delay in getting the files to agree on a cutpoint can greatly
increase the slack.

We shall take the delay into account, but only partially. In other
words, we shall take too optimistic a view of the possible delay. This
is why our estimate of the slack will be low. More specifically, we
shall take into account that, if one or both files F1 and F2 have a
cutpoint in the critical range, then the last of these cutpoints, say at
position −j (where 1 ≤ j ≤ h), blocks, in at least one of the files, all
candidates up to and including h− j. If one of the files has a cutpoint
z in [0, h− j] that is blocked in the other file, then there cannot be a
common cutpoint until at least position z + h + 1. We shall pretend
that the next candidate after z + h in F+ is a common cutpoint of the
two files and is therefore the slack. In reality, it can happen as in the
situation described above that, while one of the files has its candidates
up to z +h blocked, the other has a cutpoint in that part of F+, which
blocks the candidate that we pretend is a common cutpoint. That is
why our pretense is too optimistic and our estimate of the expected
slack too low.

We define Slack′(F ), for almost all F ∈ PFEM, to be

• the first candidate > z +h in F+ if z ≥ 0 is a cutpoint of one of
the files F1 and F2 but is blocked in the other file by a cutpoint
in the critical range, and
• Slack(F ) if there is no such z.
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Thus, Slack′(F ) is where we optimistically pretend to have the first
common cutpoint of F1 and F2. It is our low estimate of Slack(F ). We
write S ′ for Slack′ /(c + h); it is our low estimate of the normalized
slack S = Slack /(c + h).

We compute the expectation of Slack′ by dividing the probability
space PFEM (or rather the measure one subset where the cutpoints of
F1 and F2 are well defined) into several pieces Pr, computing for each
piece its probability pr and the conditional expectation er of Slack′,
and finally adding all the products prer to get the overall expectation
E(Slack′), our lower bound for E(Slack). There are six pieces, defined
as follows; in each case, we describe the conditions on the component
files F1 and F2 that put F ∈ PFEM into that piece. Remember that
F−

1 and F−
2 are the independent negative parts of F1 and F2 while F+

is their common positive part. Remember also that no two cutpoints
of a file can be within a distance h of each other, so each of F1 and F2

has at most one cutpoint in the critical range.

(1) Neither F1 nor F2 has a cutpoint in the critical range [−h,−1].
(2) Both F1 and F2 have a cutpoint at the same position −j ∈

[−h,−1].
(3) F1 has a cutpoint −j ∈ [−h,−1] and F+ has a candidate z that

is a cutpoint of F2 but blocked by −j in F1.
(4) F1 has a cutpoint −j ∈ [−h,−1], F2 has no cutpoint in [−j,−1],

and there is no z as in (3).
(5)–(6) Like (3)–(4) but with the roles of F1 and F2 interchanged.

Before treating these pieces individually, we check that they consti-
tute a partition of PFEM (minus, as always, the set of measure zero
where the cutpoints are not well defined). It is clear that (1) is disjoint
from all the others. Observe that, in (3), no point in [−j,−1] can be
a cutpoint of F2, because such a cutpoint would block z from being
a cutpoint of F2. This observation and the analogous one in (5) im-
mediately show that all six pieces are disjoint. To see that they cover
(almost) all of PFEM, consider any F for which the cutpoints of F1 and
F2 are well defined. If it is not in piece (1) or (2), then at least one
of F1 and F2 has a cutpoint in [−h,−1] and, if both do, then they are
not at the same point. We can thus classify F according to which of
the files has its critical cutpoint farther to the right. If this is F1, then
we clearly have (3) or (4), and if it is F2 then, symmetrically, we have
(5) or (6).

Now let us compute the probabilities pr and the conditional expec-
tations er of Slack′ for the six pieces in turn. Of course there are only
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four computations, since (5) and (6) give the same results as (3) and
(4) by symmetry.

A preliminary observation will be useful in these computations. The
first non-negative candidate in a random F ∈ PFEM is exactly the slack
of F under the pure point filter method. We have already computed its
expectation as c− 1. More generally, the first candidate at a position
> i in a random file has expectation c+ i. This follows from the special
case already done (where i is −1) by shift invariance.

Piece 1. By Proposition 42, the probability that F1 has a cutpoint in
the critical range of length h is h/(c+h). So the probability that it has
no cutpoint there is c/(c + h), and similarly for F2. Since the negative
parts F−

1 and F−
2 are independent, we get

p1 =

(
c

c + h

)2

.

Because there are no cutpoints in [−h,−1], the first candidate in the
non-negative part F+ will be a common cutpoint of F1 and F2. So the
conditional expectation of the slack (and Slack′) is the (conditional)
expectation of the first non-negative candidate. We put “conditional”
in parentheses here, because the condition (1) makes no difference.
The condition refers only to the negative parts of the files while the
candidate we seek is determined by the non-negative parts. Thus, by
the preliminary observation, we have

e1 = c− 1

and the contribution of piece (1) to the overall expectation is

p1e1 =
c2(c− 1)

(c + h)2

Piece 2. We split piece (2) into h sub-pieces, according to the value
of j ∈ [1, h], and we compute the probabilities p2(j), the expectations
e2(j), and the contributions to the overall expectation separately for
the sub-pieces.

Consider therefore, a fixed j ∈ [1, h]. The probability that F1 has a
cutpoint at −j is, according to Proposition 42, 1/(c+h), and the same
for F2. Since these events refer only to the negative parts F−

1 and F−
2 ,

they are independent, and so

p2(j) =
1

(c + h)2
.
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When F1 and F2 have cutpoints at−j, these cutpoints block candidates
up to and including h−j. So the slack (and Slack′) is the first candidate
position > h− j. By the preliminary observation, this has expectation

e2(j) = c + h− j.

The contribution of sub-piece j to the overall E(Slack′) is the product
p2(j)e2(j), and summing over all j we get the contribution of piece (2)

p2e2 =
h∑

j=1

1

(c + h)2
(c + h− j)

=
h

c + h
− 1

(c + h)2

h(h + 1)

2

=
ch + 1

2
h2 − 1

2
h

(c + h)2

=
h

(c + h)2

(

c +
h− 1

2

)

.

We note that p2 has the simple formula h/(c + h)2, and this combines
with the preceding formula for p2e2 to give e2 = c+(h−1)/2. The latter
has the intuitive interpretation that j, being random in the interval
[1, h] is on average (h + 1)/2 and so the cutpoints at −j in both files
block candidates up to and including, on average, (h − 1)/2. So the
first common cutpoint will be the first candidate > (h− 1)/2, and its
expectation is, by the preliminary observation, c+(h−1)/2. Using the
average j instead of considering each j individually can be justified, but
the justification ultimately amounts to the computation we did above,
treating each j separately and adding the resulting contributions.

Piece 3. With j and z as in (3), notice that 0 ≤ z ≤ h− j, because z is
blocked in F1 by −j. Since z is a cutpoint in F2, it blocks all candidates
up to and including h + z. So to find a common non-negative cutpoint
of F1 and F2, we must look for candidates in F+ strictly to the right of
h+z. As indicated above, we will pretend that the first such candidate
is a common cutpoint; formally, this means that we deal with Slack′(F )
instead of Slack(F ).

As in the previous subsection, we split the piece under consideration
into sub-pieces, this time indexed by both j and z, where j ranges from
1 to h and z ranges from 0 to h− j.

We begin by computing the probability p3(j, z) of the sub-piece in-
dexed by j and z. The probability that F1 has a cutpoint at −j is, by
Proposition 42, 1/(c + h). The probability that F2 has a cutpoint at z
is the same. And these two events are independent because the former
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depends only on F−
1 while the second depends only on F2, i.e., on F−

2

and F+, and these parts of F are independent. We need not consider
separately the requirement in (3) that z is blocked by −j in F1; this is
already covered by the fact that j and z are in the appropriate ranges,
specifically that −j < z ≤ h− j. So we infer that

p3(j, z) =
1

(c + h)2
.

The conditional expectation of Slack′ is the expectation of the first
cutpoint of F+ strictly after h + z, so, by our preliminary observation,

e3(j, z) = c + h + z.

Thus, the contribution of this sub-piece to the overall E(Slack′) is

p3(j, z)e3(j, z) =
c + h + z

(c + h)2
.

To get the contribution of the whole piece (3) to E(Slack′), we must
sum this over z from 0 to h − j and then over j from 1 to h. Since
the expression being summed is independent of j, we prefer to carry
out the sum over j first; converting the limits of summation to the new
order, we get

p3e3 =
h−1∑

z=0

h−z∑

j=1

c + h + z

(c + h)2

=

h−1∑

z=0

(c + h + z)(h− z)

(c + h)2
.

We postpone simplifying the sum over z in order to make it easier to
combine with the forthcoming result from piece (4).

Piece 4. In the description of piece (4), the requirement that there is no
z as in (3) is equivalent to saying that F2 has no cutpoint in the interval
[0, h− j]. Indeed, a cutpoint in that interval would be a candidate of
F+ and would be blocked in F1 by −j, whereas a cutpoint farther to
the left would not be in F+ while one farther to the right would not
be blocked by −j.

Combining this requirement with the other requirement in (4) that
F2 have no cutpoint in [−j,−1], we find that we can restate (4) as
follows: F1 has a cutpoint −j in the critical range, but F2 has no
cutpoint in the interval [−j, h− j] of length h + 1.

As before, we divide our piece into sub-pieces, according to the value
of j, and we do the calculation for each j separately.
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To calculate the probability p4(j) of the sub-piece indexed by j, we
again apply Proposition 42. The probability that F1 has a cutpoint at
−j is 1/(c + h). The probability that F2 has a cutpoint in [−j, h − j]
is (h + 1)/(c + h), so the complementary probability, that it has no
cutpoint in this interval, is (c− 1)/(c + h). Since F2 is independent of
the negative part F−

1 of F1, it follows that we can simply multiply the
two probabilities to get

p4(j) =
1

c + h
· c− 1

c + h
=

c− 1

(c + h)2
.

Notice that neither F1 nor F2 has a cutpoint in [−j + 1, h − j]. We
already pointed this out for F2, with the slightly longer interval [−j, h−
j], but it also holds for F1 because this file has a cutpoint at −j,
which blocks the next h positions. Therefore, the next candidate in F+

strictly to the right of h − j will be a common cutpoint and will thus
be the slack (and Slack′) of F . The expectation is, by our preliminary
observation,

e4(j) = c + h− j.

Therefore, the contribution of this sub-piece to E(Slack′) is

p4(j)e4(j) =
(c− 1)(c + h− j)

(c + h)2
.

To get the contribution of piece (4) to E(Slack′), we must sum over j;
it is convenient to postpone actually doing this summation until after
we combine the results from pieces (3) and (4), but we prepare for
the job of combining these pieces by changing the summation variable
from j to z = h− j. (In contrast to previous computations, z does not
represent a position here. It is merely a formal variable. We chose the
letter z to facilitate combination with the sum from piece (3).)

p4e4 =

h∑

j=1

(c− 1)(c + h− j)

(c + h)2
=

h−1∑

z=0

(c− 1)(c + z)

(c + h)2
.

Assembling the pieces. Since all the contributions to E(Slack′) com-
puted above had (c + h)2 in their denominators, we put those denomi-
nators aside for the time being. That is, we assemble the contributions
to (c + h)2 E(Slack′).
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As indicated above, we first combine the contributions from pieces (3)
and (4). We get

h−1∑

z=0

(c + h + z)(h− z) +

h−1∑

z=0

(c− 1)(c + z) =

=
h−1∑

z=0

(
ch + h2 + c2 − c− z(z + 1)

)

= ch2 + h3 + c2h− ch−
h∑

m=1

m(m− 1)

= ch2 + h3 + c2h− ch− h3 − h

3
,

where we introduced the new summation variable m = z + 1 and then
applied one of the summation identities from Section 2.3. Simplifying
slightly by combining the two h3 terms, and doubling the result so as
to account for pieces (5) and (6) as well as (3) and (4), we get as the
contribution of these four pieces to (c + h)2 E(Slack′)

2ch2 +
4

3
h3 + 2c2h− 2ch +

2

3
h.

Finally, adding the contributions c3−c from piece (1) and ch+ 1
2
h2− 1

2
h

from piece (2), and restoring the (c + h)2 denominator, we get

E(Slack′) =

(

2ch2 +
4

3
h3 + 2c2h− ch +

1

6
h + c3 − c2 +

1

2
h2

)

/(c+h)2.

Recall that Slack′(F ) ≤ Slack(F ) for all F , with the usual exception
of a measure zero set where the chunking method doesn’t work or too
few cutpoints exist. Thus, our calculation proves the following lower
bound for the expected slack.

Proposition 46. The expectation of the slack E(Slack) of the LBFS
method with parameters c and h is greater than or equal to

(

2ch2 +
4

3
h3 + 2c2h− ch +

1

6
h + c3 − c2 +

1

2
h2

)

/(c + h)2.

The expectation E(S) of the normalized slack is the same except
that the denominator (c + h)2 is replaced with (c + h)3, because, by
Proposition 42, c + h is the expectation of the chunk length.

When, as is usually the case in practice, c and h are fairly large
numbers, then, since the coefficients in our formulas are not particularly
large, we can approximate the formulas by keeping only the terms of
highest degree.
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Corollary 47. For large c and h, the expectation of the normalized
slack is asymptotically bounded below by

(

2ch2 +
4

3
h3 + 2c2h + c3

)

/(c + h)3.

In terms of the parameter k = h/c, this asymptotic lower bound is
(

4

3
k3 + 2k2 + 2k + 1

)

/(1 + k)3.

In particular, for the LBFS method with k = 1/4 (the choice pro-
posed in [20]), we find that the expectation of the normalized slack is
asymptotically at least 0.842. Here is a table of values of the asymp-
totic lower bound in the corollary, as k ranges from 0 to 1 in steps of
1/10.
k 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
E(S) 0.92 0.86 0.83 0.80 0.79 0.78 0.78 0.78 0.79 0.79
This function of k attains its minimum (over positive values of k) at

k = 1/
√

2, the minimum value being

8

3

(

1− 1√
2

)

≈ 0.781049.

Corollary 48. For large c and h, the expectation of the normalized
slack of the LBFS method is at least 0.781.

Remark 49. The preceding estimates do not imply that the normalized
slack of the LBFS method is optimized (i.e., minimized) by choosing k
to be 1/

√
2. This choice optimizes (for large c and h) the expectation

of S ′, but the difference between Slack′ and Slack, and thus also the
difference between the normalizations S ′ and S, increase as k increases,
and so we would expect the optimum of E(S) to occur at a value of k
somewhat smaller than 1/

√
2.

To see why the difference between Slack′ and Slack should grow with
k, recall that Slack′ is what Slack becomes if we pretend that files do
not have cutpoints in a certain interval whose length is, on average,
about h/2. The probability that this pretense is an error, i.e., the
probability that there is a cutpoint in such an interval, is near

h/2

c + h
=

k/2

1 + k
,

which is an increasing function of k for positive k.

Remark 50. The preceding observations suggest the question of the
behavior of E(S) as k →∞. The lower bound E(S ′) computed above
approaches 4/3, but we expect E(S) to be significantly larger. Here is
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a rough argument to show that E(S) is approximately proportional to
k2 for large k.

Since k is large, h is much larger than c, and so the cutpoints in a
random file will be spaced approximately h positions apart. Indeed, the
LBFS method always skips h positions after a cutpoint, but then it will
very quickly, in about c more steps, find a candidate, which will serve
as the next cutpoint. Notice that the h skipped positions will usually
include a large number (approximately k) of blocked candidates.

Thus, an interval of length h is very likely to contain a cutpoint, but
where in the interval that cutpoint lies, or equivalently the remainder
of the cutpoint modulo h, is essentially random, being determined by
some event in the distant past (where there were h consecutive non-
candidates or some other special configuration of file entries that makes
the LBFS cutpoints well-defined thereafter) and the small (relative to
h) differences between h and the actual chunk lengths.

In particular, in the model PFEM of merging files, we expect F1 and
F2 to have cutpoints in the critical range [−h,−1], and we expect the
location of these cutpoints to be uniformly randomly distributed in this
range. Now when two points are chosen at random from an interval,
the expectation of the smaller (resp. larger) is at the left (resp. right)
trisection point of the interval. So, on average, one of our files has a
cutpoint at −2h/3 and the other at −h/3. (This use of averages is one
of several reasons why this is a rough argument.) The next cutpoints
after these will come about h positions later, i.e., near h/3 and 2h/3,
respectively.

Our optimistic estimate for the slack takes into account that one
file’s cutpoint at h/3 blocks the other’s cutpoint at 2h/3 from being a
common cutpoint, but it then assumes that the next cutpoint of the
former file, h units past the cutpoint at h/3, is a common cutpoint. So
it pretends to see a common cutpoint near 4h/3. This accounts, since
the chunk length is essentially h, for the value 4/3 that we found for
the expectation of the normalized slack.

But the assumption that there is a common cutpoint near 4h/3 is
usually wrong; one file has a cutpoint near 2h/3 blocking any candidate
near 4h/3. Were it not for random fluctuations, the two files would
alternate cutpoints, one having cutpoints near (n + 1

3
)h and the other

near (n + 2
3
)h for all n, and there would never be a common cutpoint.

In reality, the positions of the cutpoints modulo h will slowly drift as
we proceed farther to the right in the file. How long will it take them
to drift to a collision, i.e., to a common cutpoint?
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The distance between the cutpoints is initially (i.e., just before the
merge at position 0) proportional to h; on average it is h/3. From one
cutpoint to the next, each increases, modulo h, by a random amount
of size approximately c. So the distance between them increases or
decreases randomly, by amounts roughly proportional to c. So the
number of steps needed for the distance to become zero can be approx-
imated by the number of steps needed for a random walk, in steps of
length roughly c = h/k, to cover a distance proportional to h. But the
distance covered by a random walk is known to be proportional to the
size of the step times the square root of the number of steps. So the
number of steps needed will be roughly proportional to k2. Since each
step of the random walk corresponds to advancing a distance roughly
equal to the chunk length in the file, the number of steps is approx-
imately the normalized slack. Thus, we expect the normalized slack,
for large k, to be roughly proportional to k2.

4.4. The Reverse Slack of LBFS Chunking. The definition of the
cutpoints in LBFS chunking is not symmetrical with respect to left
and right, so there is no reason to expect the ←slack of this chunking
method to equal the →slack. We therefore calculate the reverse slack
here. This turns out to be easier than the preceding calculation of the
→slack, in that we can obtain an exact answer rather than only a lower
bound. The reason the reverse slack is easier to compute is that, when
we have a candidate in the common part F− of the two files F1 and
F2, the question whether it is a cutpoint depends only on F−, not on
the diverged, independent F+

1 and F+
2 . We can therefore obtain simple

formulas for the probability that the reverse slack of a file is s.
This probability is the product of two factors, namely the probability

that −s is a cutpoint (in F−) and the conditional probability, given
that −s is a cutpoint, that there is no other cutpoint in the interval
[−s+1, 0]. The first factor here is just the cutpoint probability, already
computed as 1/(c + h) in Proposition 42. For the second factor, we
must consider two cases, depending on the relative size of s and h. If
s ≤ h, then the second factor is 1, because the interval [−s + 1, 0] is
within the range where −s blocks all candidates from being cutpoints.
If s > h, however, then −s blocks candidates only up to and including
−s + h and so we must still consider possible cutpoints in the interval
[−s+h+1, 0]. Notice that there is a cutpoint in this interval if and only
if there is a candidate there, because the first candidate there, if any,
will be a cutpoint. Thus, the second factor for our computation can be
expressed as the probability, conditional on a cutpoint at −s, of having
no candidates among the s−h positions in [−s+h+1, 0]. But the events
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“i is a candidate” for such positions i are independent of each other
and of the cutpoint at −s. Each of these events has probability 1/c,
so the probability that none of them occurs is (1 − 1

c
)s−h. Therefore,

the probability that s is the reverse slack is, when s > h, given by
(1− 1

c
)s−h/(c + h).

Therefore, the average ←slack for the LBFS chunking method is
given by

h∑

s=0

s
1

c + h
+

∞∑

s=h+1

s
1

c + h

(

1− 1

c

)s−h

.

A routine calculation, using the formulas in Section 2.3, yields the
explicit form of the ←slack:

h(h + 1)

2(c + h)
+ c− 1 =

h2 − h + 2c2 − 2c + 2ch

2(c + h)
.

The normalized reverse slack, obtained by dividing this result by the
expectation c + h of the chunk length, is

h2 − h + 2c2 − 2c + 2ch

2(c + h)2
≈ k2 + 2k + 2

2(k + 1)2
=

1

2
+

1

2(k + 1)2
,

where k is, as before, h/c, and where the approximation is for large h
and c with fixed k.

In particular, when k = 1/4 as in [20]), the normalized reverse slack
is approximately 0.82.

If we allow k to vary, the expected normalized←slack, as a function
of k (for large h and c) is monotonically decreasing, but there is no use
choosing a large k in order to make the←slack small, for we have seen
that this would make the →slack large. What we can reasonably do is
to compute the value of k that minimizes the sum of the normalized
reverse slack and our lower bound for the normalized slack. That will
provide a lower bound for the normalized →slack plus ←slack over all
possible values of k. That minimum occurs at (1 +

√
17)/4 ≈ 1.281,

and our lower bound for the sum of the two normalized slacks is ap-
proximately 1.41.

Corollary 51. The sum of the normalized →slack and ←slack of the
interval filter method, with arbitrary k, is asymptotically (for large h
and c) greater than 1.408.

5. Interval Filter Methods

5.1. Definition of Interval Filter Chunking. Any local chunking
method might be called an interval filter method, because whether a
position i is a cutpoint of a file F is determined by applying some
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criterion (or filter) C to the contents of F in some interval [i−h, i+h]
around i. (The notations C and h here are from Definition 21.) But
we shall use the phrase “interval filter” in a more restrictive sense.

The first restriction is that whether i is a cutpoint will depend on the
contents of the file only in an interval [i− h, i]. That is, when reading
the file from left to right, one can recognize a cutpoint when one gets
to it, without having to read any farther in the file. (This presupposes,
for technical reasons, that we know where the file ends; see Remark 53
below.)

A second restriction concerns the particular form of the criterion for
cutpoints. We assume that the set PFE of potential file entries has
been partitioned into two pieces, U and V , and that the cutpoints of a
file F are the positions matching the V in the pattern

U . . . U
︸ ︷︷ ︸

h

V .

More formally:

Definition 52. The interval filter chunking with horizon h determined
by a partition of PFE into U and V is the chunking method that
declares a position i to be a cutpoint of a file F if and only if

• i is an h-internal position in F .
• all of F (i− h), . . . , F (i− 1) are in U , and
• F (i) ∈ V .

This definition immediately shows that interval filter chunking is a
local chunking method with horizon h.

Remark 53. For i to be a cutpoint of F , the first clause in the definition
requires that the whole interval [i−h, i+h] be included in the domain
of F , but the values of F on the right part, [i+1, i+h], of this interval
are irrelevant. We could modify the first clause to require only that
[i−h, i] be included in the domain of F . Then there could be cutpoints
within h of the end of a finite file. The modification would have the
advantage that one could determine whether i is a cutpoint of F by
reading F up to position i, without needing to know how much farther
F goes. The modification would have the disadvantage of violating
our definition of locality of chunking methods (Definition 21), which
demands that all cutpoints be h internal. Both the advantage and the
disadvantage are quite small; in particular, one ordinarily knows where
a file ends. It is convenient for our purposes to use the definition as
given, ensuring locality.

The particular form of the filter, h consecutive U ’s followed by a V ,
ensures that no two distinct cutpoints will be within h positions of each
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other. Consequently, all chunks have length > h except that the first
chunk (in a finite or singly infinite file) might have length only h.

5.2. Statistics of Interval Filter Chunking. In the following dis-
cussion of interval filter chunking, we assume that not only PFE but
also U , V , and h are fixed. We use the notations

u =
|U |
|PFE| and v = 1− u =

|V |
|PFE|

for the probabilities that a random element of PFE is in U and V ,
respectively. The independence of the entries at different positions
in a random file immediately implies that an arbitrary position is a
cutpoint with probability p = uhv. And then, by Proposition 25, the
expectation of the chunk length is E(L|Cut0) = 1/(uhv). The following
computation will give us the variance of the chunk length L; it will
also give the expectation without the need for Kac’s theorem. Since
we are concerned here with the chunk length, which was defined only
for files with a cutpoint at 0, the probabilities, expectations, etc., in
the following discussion are all conditional on the event Cut0.

Let Sk be the probability that the next cutpoint is at k and therefore
the chunk length is k. Since the filter prevents cutpoints from being
within h of each other, we have Sk = 0 for all k ≤ h. For larger k, we
have

Sk = uhv

(

1−
k−h−1∑

j=0

Sj

)

.

The factor uhv here is the probability that k is a cutpoint. The re-
maining factor is the probability, conditional on k being a cutpoint,
that there is no earlier cutpoint after 0, i.e., that no j in the range
[1, k − 1] is a cutpoint. The upper limit on the sum is not k − 1 but
k − h − 1 because the condition that k is a cutpoint already implies
that no j ∈ [k − h, k − 1] is a cutpoint. A priori, the terms in the sum
should be conditional probabilities of j being a cutpoint, conditional
on k being a cutpoint. Fortunately, the conditioning here doesn’t mat-
ter. Whether j is a cutpoint depends only on file entries at positions
≤ j ≤ k− h− 1, while the condition that k is a cutpoint depends only
on entries in positions ≥ k − h. Notice also that the lower limit j = 0
of the sum could be replaced by j = h + 1 or anything in between, as
Sj = 0 for j ≤ h; the same observation applies to other sums, like the
one defining S(z) below.
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To easily manipulate the formula for Sk, we introduce the generating
function

S(z) :=
∑

k>h

Skz
k.

Multiplying the formula for Sk by zk and summing over k, we get

S(z) = uhv
∑

k>h

zk − uhv
∑

k>h

k−h−1∑

j=0

Sjz
k.

The first term here involves a geometric series and thus simplifies to
uhvzh+1/(1 − z). To evaluate the sum in the second term, we inter-
change the order of summation; since the range of the variables j and
k is given simply by 0 ≤ j < k − h, we get

∞∑

j=0

∞∑

k=h+j+1

Sjz
k =

∞∑

j=0

Sj
zh+j+1

1− z

=
zh+1

1− z

∞∑

j=0

Sjz
j

=
zh+1

1− z
S(z).

Combining the two terms and remembering that uhv equals the cut-
point probability p, we get

S(z) =
pzh+1

1− z
(1− S(z)),

and solving for S(z) we get

S(z) =
pzh+1

1− z + pzh+1
.

The expectation of L is the derivative of S(z) evaluated at z = 1, so
we compute

S ′(z) =
pzh(h + 1− hz)

(1− z + pzh+1)2
.

When z = 1, this reduces to 1/p, as predicted by Kac’s theorem via
Proposition 25. We get E(L2) by multiplying S ′(z) by z, differentiating
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again, and then setting z = 1, because

(zS ′(z))′ =

(

z
∑

k

Skkzk−1

)′

=

(
∑

k

Skkzk

)′

=
∑

k

Skk
2zk−1,

and setting z = 1 yields
∑

k Skk
2 = E(L2). So we differentiate

pzh+1(h + 1− hz)(1− z + pzh+1)−2,

set z = 1 in the result, and simplify to get

E(L2) =
2

p2
− 2h + 1

p
.

Finally, the variance of the chunk length is

Var(L) = E(L2)− E(L)2 =
1

p2
− 2h + 1

p
=

1− (2h + 1)p

p2
.

Comparing this to Corollary 43, we see that, for the same cutpoint
probability p (hence the same average chunk length 1/p) and the same
minimum chunk length h, our interval filter method gives a smaller
variance Var(L) than the LBFS method. As indicated in the intro-
duction, smaller variance of the chunk length is generally desirable.

As explained earlier, there are other ways to assess desirability of
chunking methods. The slack and reverse slack, introduced for just
this purpose, and also the probability of long chunks will be consid-
ered below. But first, we look briefly at the the criterion that simply
compares the expected and minimum chunk lengths.

Having enforced a minimum chunk length of h by our choice of filter,
it is reasonable to aim next for chunks that are not too big, and one
might do this by choosing the parameters u and v (subject to u+v = 1
of course) so as to minimize E(L). To do this, it is convenient to
work with the reciprocal of E(L), namely uhv = uh(1 − u), which
we want to maximize. Differentiating it with respect to u, we get
huh−1 − (h + 1)uh, which vanishes at u = 0 and at u = h/(h + 1).
Unless h = 0 (in which case we would be dealing with a pure point
filter method), u = 0 minimizes uhv; the maximum we want is at
u = h/(h + 1), so v = 1/(h + 1). The cutpoint probability for this
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choice of u and v is

uhv =
hh

(h + 1)h+1
=

(

1− 1

h + 1

)h
1

h + 1
≈ 1

eh
,

and so the expected chunk length is approximately eh. The average
chunk is approximately e times the minimum possible chunk size.

5.3. Slack of the Interval Filter Method. Consider a random F ∈
PFEM, as in the definition of slack, and use the notation F1, F2, F−

1 ,
F−

2 , F+ as there. Write Pk for the probability that the first common
cutpoint ≥ 0 of the files F1 and F2 is at k. So E(Slack) =

∑

k Pkk.
For 0 ≤ k < h, the probability that k is a common cutpoint is u2h−kv.

The reason is that for k to be a common cutpoint requires F+(k) to
be in V (probability v), F+(j) to be in U for j = 0, 1, . . . , k − 1 (k
events of probability u each), and both F−

1 (j) and F−
2 (j) to be in U

for j = k − h, . . . ,−1 (2(h − k) events of probability u each). All
these events are independent, so we just multiply their probabilities.
Furthermore, still assuming 0 ≤ k < h, we know that, if k is a common
cutpoint, then it is the first one, because distinct cutpoints can never
be within h of each other. Thus,

Pk = u2h−kv for 0 ≤ k < h.

For k ≥ h, on the other hand, the probability that k is a common
cutpoint is given by the simpler formula uhv, since we just require F (k)
to be in V and F (j) to be in U for the h values k − h, . . . , k − 1 of
j. But the probability that k is the first common cutpoint is more
complicated, since we must exclude the possibility of earlier common
cutpoints. More precisely, when k is a common cutpoint, then none of
k− h, . . . , k− 1 can be a cutpoint (of either file), but we must exclude
the possibility of a common cutpoint j ∈ [0, k−h−1]. Note that, since
we only consider values of j smaller than k − h, the event that such a
j is a cutpoint is independent of the event that k is a cutpoint; indeed,
the former depends on file contents at positions ≤ j < k − h while
the latter depends on file contents at positions ≥ k − h, and these are
independent. Thus, we have

Pk = uhv

(

1−
k−h−1∑

j=0

Pj

)

for k ≥ h.

Note that, although the events “j is a common cutpoint” for distinct
values of j need not be mutually exclusive (if the j values differ by
more than h), the events “j is the first common cutpoint” are mutually
exclusive, so the sum in our formula correctly represents the probability
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of their union — and this is precisely the probability that some j < k−h
is a common cutpoint.

As before, manipulation of these formulas for Pk becomes easier if
we introduce the generating function

P (z) =

∞∑

k=0

Pkz
k.

If we take the formulas above for Pk, multiply by zk and sum over k,
we get

P (z) =
h−1∑

k=0

u2h−kvzk +
∞∑

k=h

uhvzk −
∞∑

k=h

uhv
k−h−1∑

j=0

Pjz
k.

We simplify each of the three terms on the right, and for notational
convenience we remember that the product uhv is the cutpoint proba-
bility, for which we have the shorter notation p. The first term on the
right side is

u2hv

h−1∑

k=0

(z

u

)k

= puh

(
z
u

)h − 1
z
u
− 1

.

We introduce the abbreviation

α(z) =

(
z
u

)h − 1
z
u
− 1

,

so that the first term on the right side of the formula for P (z) becomes
puhα(z). The second term is

∞∑

k=h

pzk =
pzh

1− z
.

In the third term, we interchange the order of summation, obtaining

uhv
∞∑

j=0

∞∑

k=j+h+1

Pjz
k = p

∞∑

j=0

Pj
zh+j+1

1− z
=

pzh+1

1− z
P (z).

Inserting these simplifications into our formula for P (z) and multiply-
ing by 1− z to clear denominators, we get

(1− z)P (z) = (1− z)puhα(z) + pzh − pzh+1P (z).

The expectation of the slack is obtained by differentiating P (z) to
get

∑

k Pkkzk−1 and then setting z = 1 to get
∑

k Pkk. To evaluate
P ′(1), we differentiate the last displayed formula with respect to z and
substitute z = 1 in the result. The differentiation is simplified by the
observation that, whenever a factor 1−z in our formula survives in the
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derivative, it will be annihilated by the substitution; in particular, we
can ignore the term involving α′(z). The computation produces

−P (1) = −puhα(1) + hp− (h + 1)pP (1)− pP ′(1).

Remembering that P (1) =
∑

k Pk = 1 and solving for P ′(1), we get

P ′(1) =
1

p
− uhα(1)− 1.

The definition of α(z) gives

uhα(1) = uh

(
1
u

)h − 1
1
u
− 1

=
1− uh

1
u
− 1

.

Inserting this into the formula for P ′(1), we finally get, using also that
1− u = v,

E(Slack) =
1

p
−

1
u
− uh

1
u
− 1

=
1

p
− 1− uh+1

v

The expectation of the normalized slack is obtained by dividing by the
expected chunk length, i.e., multiplying by p = uhv, which gives

1− uh + u2h+1.

If, as suggested at the end of the preceding subsection, we choose
u = h/(h + 1), so as to minimize the expected chunk length, then the
normalized slack is, on average

1−
(

1− 1

h + 1

)h

+

(

1− 1

h + 1

)2h+1

≈ 1− 1

e
+

1

e2
,

where the approximation is good for large h.
On the other hand, one might want to choose u and v so as to

minimize the expected normalized slack. By differentiating, one finds
that the minimum occurs when uh = (h + 1)/(2h + 1) ≈ 1/2,

u ≈ h

√

1

2
and so v ≈ ln 2

h
.

The minimum value of the expected normalized slack is thus approxi-
mately 3/4.

5.4. Probability of Long Chunks. We estimate next the probability
of getting long chunks in the interval filter method. This estimate will
be relevant later in two computations. One concerns the probability
of a long interval containing no cutpoints; the other concerns the right
slack of the method.

As before, we assume that u, v, and h are given, and we write p for
the cutpoint probability p = uhv.
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Let qk be the conditional probability that there is no cutpoint in
the interval [1, k] given that there is a cutpoint at 0. Let Q(z) be the
generating function

Q(z) =

∞∑

k=0

qkz
k.

Before proceeding to estimate qk, we comment on the condition
“there is a cutpoint at 0.” It obviously implies that the file entry
at 0 is in V . It implies more, namely that the h previous file entries are
in U , but this additional information has no effect on the probability of
a cutpoint at any positive position. To get a cutpoint at some k > 0,
we need h consecutive elements of U at positions k − h to k − 1 and,
because of the element of V at position 0, no positions farther to the
left can contribute to a cutpoint at k. Thus, qk could also be described
as the probability that a random file F has a cutpoint at k, given that
F (0) ∈ V .

We have almost computed the probabilities qk in Section 5.2. We
obtained there the generating function S(z) for the probabilities Sk

that the first positive cutpoint is at k, given a cutpoint at 0. This Sk

can be described as the probability, given a cutpoint at 0, that there is
no cutpoint in [1, k − 1] but there is one in [1, k]. That is,

Sk = qk−1 − qk

for all k ≥ 1. Multiplying this equation by zk, summing over all k ≥ 1,
and taking into account that S0 = 0 and q0 = 1, we find that

S(z) = zQ(z)−Q(z) + 1.

Solving for Q(z) and using the formula for S(z) computed in Sec-
tion 5.2, we find that

Q(z) =
1− S(z)

1− z
=

1

1− z + pzh+1
.

Because this generating function is rational, one can, in principle,
expand it in partial fractions, expand those fractions as geometric se-
ries, and thus obtain explicit formulas for the probabilities qk. This
approach, unfortunately, presupposes that one knows the roots of the
polynomial 1 − z + pzh+1; these roots enter into the partial fraction
expansion, and (unless there are multiple roots) the formula for qk is
a linear combination (with constant coefficients) of the h + 1 terms
wk, where w ranges over the reciprocals of the h + 1 roots of the poly-
nomial. In other words, w ranges over the solutions of the equation
wh+1−wh + p = 0, which is most conveniently (for our purposes) writ-
ten as wh(1−w) = p. For large k, the formula for qk will be dominated
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by the wk term for the largest of the roots. Most of the rest of this sec-
tion will be devoted to estimating this largest root and thus estimating
the rate at which qk approaches 0 as k →∞. But first we indicate, in
the following remark, an alternative approach to the computation of
qk; the reader can safely skip it, as it will not be used directly in the
subsequent work.

Remark 54. The inclusion-exclusion principle provides a formula for qk

as follows. For each subset A of {1, 2, . . . , k}, let r(A) be the probability
that a random file with a cutpoint at 0 also has cutpoints at all the
members of A (and possibly additional points as well). Notice that
r(A) = 0 if any element of A is ≤ h or if any two distinct elements
differ by ≤ h, because no file has two cutpoints separated by a distance
h or less. For all other choices of A, the events of having cutpoints
at the various elements of A are independent of each other and of the
condition that there is a cutpoint at 0, so r(A) = p|A|. The inclusion-
exclusion principle, applied to this situation, says that

qk =
∑

A⊆{1,...,k}

(−1)|A|r(A) =
∑

l

(−1)lplNl,

where Nl is the number of l-element subsets of {1, 2, . . . , k} that are
good in the sense that they have no elements ≤ h and no two distinct
elements a distance ≤ h apart. Fortunately, these good subsets are
quite easy to count. Notice first that, if A = {a1 < a2 < · · · < al} is
good, then 0 < a1 − h (because A has no elements ≤ h) and a1 − h <
a2 − 2h < · · · < al − lh (because ai and ai+1 differ by more than h).
Thus, we can compress A to a set of l positive integers Ã = {ai − ih :
1 ≤ i ≤ l}, which is obviously a subset of {1, 2, . . . , k−lh}. Conversely,

any l-element subset of {1, 2, . . . , k−lh} arises as Ã from a unique good
A. Therefore,

Nl =

(
k − lh

l

)

and

qk =
∑

l

(−1)lpl

(
k − lh

l

)

.

(The variable l can be allowed to range over all integers, but the bino-
mial coefficient will vanish unless l is in the range of reasonable values,
0 ≤ l ≤ k/(h+1).) This formula for qk, though quite explicit, does not
seem to be directly amenable to estimating the asymptotic behavior of
the sequence of qk’s, mainly because of cancellations between the pos-
itive and negative terms in the sum. It leads, however, to a recursive
formula that can be more useful for asymptotic estimates. Indeed, the
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familiar Pascal-triangle identity for the binomial coefficients allows us
to write

qk =
∑

l

(−1)lpl

(
k − lh− 1

l

)

+
∑

l

(−1)lpl

(
k − lh− 1

l − 1

)

.

The first sum here is simply qk−1. The second can be rewritten, by
factoring out −p and changing the summation variable to m = l − 1,
as

−p
∑

l

(−1)mpm

(
k − h− 1−mh

m

)

= −pqk−h−1.

Therefore, we get the linear recursion equation

qk = qk−1 − pqk−h−1.

The usual technique for solving such recursions, namely looking for con-
stants λ such that λk solves the recursion, forming a linear combination
of such solutions for the various possible λ’s, and choosing the constant
coefficients in the linear combination to match initial conditions, leads
to the following equation for λ:

λh+1 = λh − p.

This is exactly the equation whose roots w figured in the discussion
preceding this remark. So we have reached, via a different route, the
same conclusion: The asymptotic behavior of qk for large k is exponen-
tial, qk ≈ constant · λk, where λ is the largest (in absolute value) root
of wh(1− w) = p.

We now turn to the task of estimating the largest root of wh(1−w) =
p. Recall that the cutpoint probability p was obtained as p = uhv =
uh(1 − u), so u is a root of our equation. Recall also that, for a fixed
h, the maximum possible value of p is pmax = hh/(h + 1)h+1, attained
at u = h/(h + 1).

To study the solutions of wh(1 − w) = p, let us concentrate first
on non-negative real solutions, and so let us consider the graph of the
function f(w) = wh(1−w). For non-negative w, it starts at the origin,
where it has a root of multiplicity h; it increases up to the point where
w = h/(h + 1) and f(w) = hh/(h + 1)h+1 (the maximum we computed
earlier), and then it decreases to the point where w = 1 and f(w) = 0.
As w continues to increase, f(w) continues to decrease, i.e., to become
more and more negative.

Thus, for p in the range 0 ≤ p < pmax, there are two non-negative
real solutions w for wh(1 − w) = p, both of which are simple roots
except that when p = 0 the root w = 0 has multiplicity h. Let us write
w+ for the larger and w− for the smaller of these roots. For p = pmax,
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there is a single non-negative real root, with multiplicity 2; we let both
w+ and w− denote this root. Thus, both w+ and w− are continuous
functions of p in [0, pmax]. We can ignore any values of p outside this
interval, because they cannot arise as the cutpoint probability of the
interval filter method.

We propose now to show that w+ is the root of largest absolute value
for the equation wh(1− w) = p, not just among the non-negative real
roots already considered but also among all roots in the complex plane.
Notice that there is no problem (and no interest) in the case p = 0;
here we know all the roots: an h-fold root at 0 = w− and a simple root
at 1 = w+. So we may assume p ∈ (0, pmax]. Temporarily fix p (and
thus w+) and consider the following two disks in the complex plane.
The left disk is centered at the origin and has radius w+; the right disk
is centered at 1 and has radius 1 − w+. The situation is illustrated
in Figure 1. Notice that the two disks are tangent at their common
boundary point w+. Our ultimate goal is to show that all the roots of
wh(1−w) = p lie in the left disk, but first we establish the easier result
that all these roots lie in the union of the two disks.

-

6

1

�
�

�
��

w+

Figure 1. A cover for the roots of wh(1− w) = p

To see this, suppose w is a root that lies outside the left disk. So
|w| > w+ and thus |w|h > w+

h. But

|w|h · |1− w| = p = w+
h · (1− w+),

and so we must have |1−w| < 1−w+. That is, w lies in the right disk.
To show that the roots actually all lie in the left disk, we allow p to

vary and consider what happens if p starts at 0 and gradually increases
toward pmax. Of course, at each stage of the process, there is a root
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w+ at the point of tangency of our two disks. Our concern is with the
behavior of the other h roots. Initially, when p = 0, these roots are
all at the center 0 of the left disk. (The left disk is initially the unit
disk and the right disk a single point.) Now as p increases, the left
disk shrinks, the right disk grows, and the roots we are interested in
move around continuously. Can they escape from the left disk? The
preceding paragraph shows that the only way to escape from the left
disk is to enter the right disk. Since the disks touch only at w+, an
escaping root would have to coincide, at the moment of its escape,
with w+. That is, w+ would have to be (at least) a double root of our
equation wh(1− w) = p. But we know, from our analysis of the non-
negative real roots, that w+ is a simple root for p < pmax; it becomes a
double root only when p reaches pmax. Thus, the only possible moment
when a root can escape from the left disk is at the very end of the range
of relevant p values. That is, for all p ∈ [0, pmax], all the roots are still
in the left disk.

This completes the verification of our claim that w+ is always the
largest root in absolute value.

There remains the question of evaluating or at least estimating w+

as a function of p (where we continue to regard h as fixed). The two
following rough estimates will suffice for our purposes; both are based
on the fact that the function f(w) = wh(1− w) has a negative second
derivative throughout the interval [h/(h + 1), 1] (in fact for all w >
(h− 1)/(h + 1)). Recall that this is the interval over which w+ ranges
as p = f(w) varies from pmax down to 0. Knowing that the graph of f
is concave, we have that this graph lies below its tangents and above
its chords on this interval.

The tangent to the graph of f at the point w = 1, p = 0 is the line
p + w = 1, because f ′(1) = −1. Since the graph is below this tangent,
we conclude that w+ ≤ 1− p (with equality only at p = 0).

The chord of the graph of f joining the point w = 1, p = 0 and the
point w = h/(h+1), p = pmax has the equation w = 1−p/(pmax(h+1)).
Since the graph lies above the chord, we have

w+ ≥ 1− 1

pmax(h + 1)
p ≈ 1− ep,

where the approximation is good for large h. Figure 2 illustrates the
above estimations. (For the sake of visibility, the figure is drawn with
different scales along the two axes.)

Inserting these estimates of w+ into our previous results concerning
the probabilities qk of chunks longer than k, we find that, for large k, qk

lies between a constant multiple of (1−ep)k and a constant multiple of
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Figure 2. A graph of f(w) for estimating w+ as a func-
tion of p

(1− p)k. The constant here arises from the partial fraction expansion
of the generating function Q(z). If we express k in terms of the average
chunk length 1/p, i.e., if we set k = M/p, so that qk is the probability
that the chunk containing 0 is at least M times the average length,
then we can approximate

(1− ep)k =
(
(1− ep)1/ep

)eM ≈ e−eM

and
(1− p)k =

(
(1− p)1/p

)M ≈ e−M .

Thus, as a function of M , the probability of a chunk M times as long as
the average decreases exponentially and lies between a constant multi-
ple of e−eM and a constant multiple of e−M . The actual factor in the
exponent depends on p; the upper estimate e−M is more accurate for
very small p (where the graph of f is close to the tangent used in ob-
taining this estimate), while the lower estimate e−eM is more accurate
for relatively large p, i.e., close to pmax.

One can, of course, obtain more accurate estimates of the decay rate
of qk by estimating w+ more accurately. For example, one can express
w+ as a Taylor series in 1− p or as a Puiseux series in p− pmax.

5.5. Reverse Slack of the Interval Filter Method. The estimates
of qk in Section 5.4 enable us to estimate the reverse slack of the interval
filter method as follows. Consider a random F ∈ PFED. The probabil-
ity that its←slack is a particular natural number k is the product of the
probability of a cutpoint at −k and the conditional probability, given
a cutpoint at −k, of having no further cutpoints in [−k + 1, 0]. The
former factor is p = uhv and the latter is, thanks to shift-invariance,
qk. (We are in the pleasant situation that neither factor is influenced
by F+

1 and F+
2 ; only F− is relevant, and so we are essentially dealing

with a file in PFEZ.)



LOCAL MAXIMUM CHUNKING 65

The expectation of the ←slack is therefore

E(← Slack) =
∞∑

k=0

kpqk = pQ′(1),

where Q is the generating function obtained in Section 5.4,

Q(z) =

∞∑

k=0

qkz
k =

1

1− z + pzh+1
.

Differentiating, we find

Q′(z) = −(1− z + pzh+1)−2(−1 + p(h + 1)zh)

and so

Q′(1) = p−2(1− p(h + 1))

and

E(← Slack) =
1

p
− (h + 1).

The normalized ←slack therefore has expectation 1− p(h + 1).
If h is fixed, then the value of p that minimizes the normalized←slack

is pmax = hh/(h+1)h+1, and the minimum of the normalized←slack is

1− pmax(h + 1) = 1−
(

h

h + 1

)h

≈ 1− 1

e

for large h.

6. Local Maximum Chunking

As the name suggests, local maximum chunking selects, as the cut-
points of a file F , those positions i where the entry F (i) attains a local
maximum. Recall that we fixed a linear ordering of PFE, so the notion
of (strict) maximum makes sense. “Local” means that F (i) is a max-
imum within a radius of h positions to either side. Here is the formal
definition.

Definition 55. Local maximum chunking with horizon h is the chunk-
ing method that declares a position i to be a cutpoint of a file F if and
only if

• i is h-internal to F and
• F (i) > F (j) for all j 6= i in the interval [i− h, i + h].

We refer to the interval [i−h, i+h] as the window around i. Clearly
(and fortunately for the terminology), local maximum chunking is a
local chunking method.
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We shall often assume that the number |PFE| of potential file entries
is much larger than the horizon h. In applications, we might typically
have |PFE| = 232 and h = 27, so the assumption is justified in practice.
The main purpose of the assumption is to excuse us from paying at-
tention to the strictness of the inequality F (i) > F (j) in the definition.
Of course, if we had written F (i) ≥ F (j) instead, then there could be
more cutpoints in a file, points that are tied for maximum with some
other point in their window. When |PFE| � h, ties for maximum be-
come very unlikely, so we can safely ignore them when estimating the
statistical properties of local maximum chunking. We shall use phrases
like “ignoring ties” to refer to the assumption that |PFE| � h and to
indicate how it is being used.

Remark 56. According to the so-called “birthday paradox”, one would
need the stronger inequality |PFE| � h2 to ensure that all ties are
unlikely. This is no problem, for two reasons. First, the typical values
quoted above satisfy the stronger inequality. Second, we often don’t
care about avoiding all ties but only ties for maximum, and for this
|PFE| � h suffices.

6.1. Statistics of Local Maximum Chunking. It is clear from the
definition of local maximum chunking that, if i is a cutpoint, then no
other point in its window can be a cutpoint. Therefore, all chunks have
length at least h + 1, except that the first chunk (in a finite or singly
infinite file) can have length h.

Ignoring ties, we easily see that the cutpoint probability for local
maximum chunking is p = 1/(2h + 1). Indeed, if i is any h-internal
position of a file, then exactly one of the 2h+1 positions in the window
around i must have the largest file entry in this window (because there
are no ties for maximum), and each of the positions has an equal chance,
1/(2h + 1).

It follows, by Kac’s theorem via Proposition 25, that the expectation
of the chunk length is 2h + 1.

Remark 57. Abstaining from the assumption that there is no tie for the
maximum, we still have a formula for the cutpoint probability, namely

p =

m−1∑

k=0

1

m

(
k

m

)2h

,

where we have abbreviated |PFE| as m, so PFE = {0, 1, . . . , m − 1}.
The term indexed by k in this sum represents the probability that the
file value at i is k (probability 1/m) and the other 2h file values in the
window are in the range [0, k − 1] (probability k/m for each position
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and thus (k/m)2h for all 2h positions). As we saw in Section 2.3, this
sum is approximately 1/(2h + 1) for large m, in agreement with the
“no ties” estimate above. Also, we exhibited in Section 2.3 the more
precise formula

p =
1

m2h+1

1

2h + 1

2h∑

k=0

(
2h + 1

k

)

Bkm
2h+1−k =

1

2h + 1
− 1

2m
+

h

6m2
+. . . .

As m→∞, all terms except 1/(2h + 1) approach zero.

Unfortunately, we do not have good estimates for the slack of the lo-
cal maximum chunking method or for the variance of the chunk length.
We briefly indicate in this section what we know and where the diffi-
culty arises in trying to go farther.

Consider first the slack. Because of the left-right symmetry of the
local maximum method, it is clear that the expectations of the slack and
reverse slack are equal. We therefore confine attention to the former.

Consider a random F ∈ PFEM. What is the probability that its slack
is a particular number k ≥ 0? For k ≤ h, all that is required is that
k be a common cutpoint of F1 and F2; it will be the first non-negative
cutpoint because cutpoints are never within a distance h of each other.
The windows centered at k in the two files together contain 3h− k + 1
positions, namely the k + h + 1 non-negative positions from 0 through
k + h and 2(h− k) negative positions, k− h through −1 in each of the
two files. Thus, the probability that k is the slack is 1/(3h− k + 1).

Consequently, the probability that the slack is at most h is

h∑

k=0

1

3h− k + 1
=

3h+1∑

j=2h+1

1

j
≈ ln(3h + 1)− ln(2h) ≈ ln

3

2
.

For k > h, however, the situation is more complicated. The proba-
bility that k is a common cutpoint is actually simpler; it is 1/(2h + 1)
because the window [k− h, k + h] lies entirely in the common part F+

of the two files. What is difficult is finding the probability, given that k
is a cutpoint, that it is the first one ≥ 0. The fact that k is a cutpoint
gives some information about the values of F+ in [k − h, k − 1]; they
are more likely to be smaller than they would be if we knew nothing
about k, for all these values are ≤ F (k). And that increases the proba-
bility that positions just to the left of this window (positions k− 2h to
k−h+1) are cutpoints; their windows overlap the region where F+ has
smaller than usual values, so they have a better chance of being a local
maximum. It is this indirect effect of the condition “k is a cutpoint”
on the cutpoint probabilities between h and 2h positions earlier that is
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difficult to compute and has prevented us from estimating the slack of
the local maximum method.

The problem of computing the slack is indirectly related to the prob-
lem of computing the variance of the chunk length, as follows. Obeying
Pólya’s dictum (as quoted by Halmos in [14]), “if you can’t solve a
problem, then there is an easier problem that you can’t solve — find
it!” notice that the difficulty described above, which prevents us from
computing the expected slack of a random F ∈ PFEM, also affects the
simpler case of a random file F ∈ PFEZ, if we consider the obvious
analog of the slack, namely the smallest non-negative cutpoint. We
know that each point k ∈ Z has probability 1/(2h + 1) of being a
cutpoint, but its probability of being the first non-negative cutpoint is
subject, when k > h, to the same complications encountered in trying
to compute the slack.

Instead of the first non-negative cutpoint of a doubly infinite file F , it
is convenient to consider the first positive cutpoint, which we call ρ(F ).
The expectation is merely increased by 1, because the chunking method
is shift-invariant. The notation ρ matches that of Section 2.2, the
number of iterations of the Bernoulli shift needed to bring F into the set
Cut0 of files with a cutpoint at 0. So the expectation of the first positive
cutpoint is given by Proposition 11 in terms of the probability of Cut0
and the conditional variance of ρ, conditional on the event Cut0. The
probability of Cut0 is just the cutpoint probability, 1/(2h + 1). And
Var(ρ|A) is just the variance of the chunk length.

Thus, the problem of computing the variance of the chunk length
turns out to be equivalent to a simplified version of the problem of
computing the average slack. Note that this equivalence is not specific
to local maximum chunking but applies to any shift-invariant chunking
method for which the average chunk length is known.

7. Probability of Long Chunks

This section is about another measure of quality of local chunking
methods, namely the probability of getting exceptionally large chunks.
More precisely, we deal with the probability that a long interval [1, l]
contains no cutpoints of a random, doubly infinite file. Since very large
chunks are undesirable, one wants this probability to be small. But one
does not want to achieve this by making all the chunks too small, since
very small chunks are also undesirable. In order to fairly compare
different chunking methods, it is therefore reasonable to choose their
parameters so that the average chunk sizes agree and then to ask about
the probabilities of significantly larger chunks. In this section, we carry
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out a comparison of the chunking methods we have discussed, comput-
ing the probability of finding no cutpoint in an interval [1, l] where l is
a specified multiple of the average chunk size.

As we want to show that the probability of such a long cut-less
interval is smaller (and thus better) for the local maximum method
than for its competitors, we shall estimate the former from above and
the latter from below.

The most complicated computation here will be for the local maxi-
mum method, so we arrange our notation and conventions to maximize
convenience there. As before, we let h be the horizon for the local maxi-
mum method, so the expected chunk length is 2h+1. We shall estimate
the probability of finding no cutpoints in the interval [1, 2hM ], which
is essentially (glossing over the distinction between 2h and 2h + 1) M
average chunk lengths long. Here the multiplier M should be larger
than 1, but it need not be huge. M = 5 might be a reasonable choice;
i.e., we might want to have low probability that a particular chunk is
more than 5 times the average length.

Our calculation will assume that there are no ties among the file
entries in the interval under consideration. Considerably weaker as-
sumptions would suffice, but this one is easy to use and is satisfied
with high probability for typical values of the parameters.

7.1. Pure Point Filter Method. We first obtain a lower estimate
for the probability of long chunks in the pure point filter method. As
indicated above, for a fair comparison, we adjust the parameter c of
the pure point filter method to produce the same average chunk length
2h + 1 as the local maximum method. Then each position in a ran-
dom file has, independently, probability 1/(2h+1) of being a cutpoint.
Therefore, the probability of no cutpoint among 2hM points is

(

1− 1

2h + 1

)2hM

.

We resist the temptation to approximate 1− (1/(2h+1)) by e−1/(2h+1),
because this is an approximation from above and we want one from
below. Instead, we use that

2h + 1

2h
= 1 +

1

2h
< e1/(2h),

so

1− 1

2h + 1
=

2h

2h + 1
> e−1/(2h),
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and therefore the probability of no cut point in [1, 2hM ] in the pure
point filter model is

(

1− 1

2h + 1

)2hM

> e−2hM/2h = e−M .

7.2. LBFS Method. We next perform the analogous computation for
the LBFS chunking method. That method had two parameters, pre-
viously called c and h. The latter notation is no longer usable, since
we are now using h as the horizon of the local maximum method. For-
tunately, in our earlier discussion of the LBFS method, we introduced
the notation k for the ratio h/c, and this letter is still available. So
we shall carry out the computation for the LBFS method with 1/c as
the probability of any position being a candidate and with kc as the
horizon. We think of k as fixed; for example k was 1/4 in the version of
the LBFS method proposed in [20]. We adjust c to make the expected
chunk length c + kc match our 2h + 1. Thus, c = (2h + 1)/(k + 1).

Now the probability that the interval [1, 2hM ] contains no cutpoint is
obviously bounded below by the probability that this interval contains
no candidate, namely

(

1− 1

c

)2hM

=

(

1− k + 1

2h + 1

)2hM

.

We estimate this from below by the same technique already used for
the pure point filter method. We have

2h + 1

2h− k
= 1 +

k + 1

2h− k
≤ e

k+1

2h−k

and therefore

1− k + 1

2h + 1
=

2h− k

2h + 1
≥ e−

k+1

2h−k .

Thus, the probability that there is no cutpoint in [1, 2hM ] is at least

e−(k+1)2hM/(2h−k).

This estimate is useless for very large k, but for reasonable k, small
compared to h, this lower bound is essentially e−(k+1)M . For example,
when k = 1/4, we have the lower bound e−5M/4. More generally, as
long as k � h, we get a lower bound that decreases only exponentially
with M .
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7.3. Interval Filter Method. Although our main goal is to show that
the local maximum method makes long intervals without cutpoints far
less likely than the previously known LBFS chunking method, we in-
clude also a rough estimate for the corresponding probability in the
interval filter method. As with the point filter and LBFS chunking
methods, we shall find that the probability of finding no cutpoint in a
long interval decreases (only) exponentially with respect to the inter-
val’s length.

We already computed in Section 5.4 the conditional probability ql of
finding no cutpoint in [1, l] given that there is a cutpoint at 0. Now
we shall compute the unconditional probability of finding no cutpoint
in [1, l]. We shall obtain it by combining conditional probabilities,
the conditions being the various possibilities for what happens at and
shortly before position 0. Since we are interested in long intervals, we
shall assume that l > h.

For each j in the range 0 ≤ j < h, let Cj be the event that the entry
F (−j) at position −j is in V and all the entries in positions −j + 1 to
0 are in U . So Prob(Cj) = vuj. The conditional probability, given Cj,
of having no cutpoint in [1, l] is

ul +

h−j
∑

i=1

ui−1vql−i.

The first term here is the probability that there is no element of V ,
and therefore certainly no cutpoint, at any position in [1, l]. The term
indexed by i in the sum is the probability that V occurs somewhere
in the interval [1, l], that the first such occurrence is at i, and that no
cutpoint occurs thereafter, in [i + 1, l]. We restrict i to range only up
to h− j because, if the first positive i where V occurs were at position
h− j + 1 or later, then it would be preceded by at least h consecutive
U ’s, from position −j + 1 to i − 1 inclusive. Then this i would be a
cutpoint, so this situation does not contribute to the probability we
are computing.

Let D be the event that none of the Cj occur, i.e., the event that all
file entries from position −h+1 to 0 are U ’s. This event has probability
uh and the conditional probability, given D, of finding no cutpoint in
[1, l] is simply the probability that all l of the file entries from position
1 to l are in U ; the reason is that, if there were any V in this range,
then the first one would, because of D, be a cutpoint.
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Thus, the probability of finding no cutpoint in [1, l] is given by

h−1∑

j=0

ujv

(

ul +

h−j
∑

i=1

ui−1vql−i

)

+ uh+l.

The sum over j of ujvul is just a finite geometric series; evaluating it
and remembering that 1−u = v, we find simply ul−uh+l. The second
term here cancels the uh+l that arose from D, so what remains is ul.
The double sum over j and i can be simplified somewhat by reversing
the order of summation. The final result is that the probability that
the interval [1, l] contains no cutpoint is

ul + v
h∑

i=1

ql−iu
i−1 − p

h∑

i=1

ql−i.

Note that i ranges only up to h, so for large (compared to h) values
of l, all the subscripts of q’s in this formula are large, so we can use
the asymptotic estimates from Section 5.4. Thus, we find that all
terms in our formula decrease exponentially as l grows; specifically the
probability of finding no cutpoint in [1, l] is asymptotically a constant
multiple of w+

l. From our rough estimates of w+ in Section 5.4, we can
infer that, if l = M/p, so that the interval [1, l] is M times as long as
an average chunk, then the probability that [1, l] contains no cutpoint
is asymptotically Ae−BM for some constants A and B, with B lying
between 1 and e.

7.4. Local Maximum Method. In this subsection, we estimate from
above the probability that the local maximum method with horizon h
produces no cutpoint in the interval [1, 2hM ]. Recall that we assume
that |PFE| is so large that we can ignore the possibility of two relevant
positions having equal entries in a random file. Here the relevant posi-
tions are not just the interval [1, 2hM ] but an additional h positions at
either end, since these are within the windows of positions 1 and 2hM
and may thus affect cutpoints within [1, 2hM ].

Observe that whether a position i is a local maximum depends only
on the relative ordering of the values of F on the interval [i− h, i + h],
not on the actual values of F . Thus, we could replace our probability
space of random files with the finite space of all linear orderings of
the relevant interval of positions [1− h, 2hM + h]; all of the (L + 2h)!
orderings are equally probable.

Formally, this means that we use the function Φ that assigns to each
F ∈ PFEZ (without ties in the relevant segment) the ordering induced
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on [1− h, 2hM + h] by

m ≺ n ⇐⇒ F (m) < F (n),

we observe that our probability measure on PFEZ projects via Φ to
the uniform measure on the set of orderings, and we observe that the
notion of local maximum (as well as the other notions that will play a
role in our computations) depend on F only via Φ(F ).

7.4.1. Splitting intervals without local maxima. To estimate from above
the probability of the event “no local maximum in [1, 2hM ]”, we first
show that this event is included in some other events whose probability
is easier to estimate. That is, we analyze sequences F that have no local
maximum in [1, 2hM ], and we establish some other properties that all
such sequences must have.

Accordingly, we consider a temporarily fixed F with no local maxi-
mum in [1, 2hM ], and we deduce some properties of F .

For each n ∈ [1, 2hM ], define µ(n) to be the element of [n−h, n+h]
where F has the largest value. Since n is not a local maximum, µ(n) 6=
n. Partition [1, 2hM ] into two pieces according to the relative order of
µ(n) and n; that is, define

A = {n ∈ [1, 2hM ] : µ(n) < n} and B = {n ∈ [1, 2hM ] : µ(n) > n}.

Lemma 58. A is an initial segment and B a final segment of [1, 2hM ].

Proof. By symmetry, it suffices to prove one of the two assertions; we
choose the second. It suffices to show that, if n ∈ B and n < 2hM ,
then n + 1 ∈ B. In the window W = [n + 1 − h, n + 1 + h] centered
at n + 1, all the points to the left of n + 1 are also in the window
[n− h, n + h] centered at n and are distinct from µ(n). They therefore
have F -values smaller than F (µ(n)). Furthermore µ(n) ∈ W . So the
points of W to the left of n + 1 cannot serve as µ(n + 1). �

The argument in this proof extends easily to show that, when n ∈ B
and n < 2hM , then µ(n + 1) is either µ(n) or n + 1 + h, whichever has
the larger F -value.

The lemma shows that an interval [1, 2hM ] without local maxima
can be split into two subintervals that are without local maxima in
a stronger, one-sided sense. In A, every element n is prevented from
being a local maximum by something to its left in its window (i.e.,
something in [n − h, n − 1], namely µ(n)), while in B, everything is
prevented from being a local maximum by something to its right (i.e.,
in [n + 1, n + h]).
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7.4.2. Greedy Increasing Sequence. We temporarily confine our atten-
tion to the subinterval B of [1, 2hM ] where (for our still fixed F ) we
have, for each n, a µ(n) ∈ [n + 1, n + h] with a larger F -value than n
has. (To avoid possible confusion, we note that µ(n) need not be in B;
it could be larger than 2hM .) Of course, what we do with B can also
be done symmetrically with A.

Let (gk) be the→greedy increasing sequence in B for (the restriction
to B of) the file F , as defined in Section 2.4. Since gk+1 is defined as
the smallest n > gk with F (n) > F (gk) and since, by definition of B,
µ(gk) is such an n, we have

gk+1 ≤ µ(gk) ≤ gk + h.

Thus, the greedy increasing sequence increases in steps of at most h
and therefore has at least d|B|/he terms. (We can round |B|/h up to
an integer, rather than down, because g0 is the first element of B and
therefore gk is no larger than the kh + 1st element of B.) Notice that
this fact makes F �B quite atypical. Indeed, as we saw in Section 2.4
the expectation of the length of the greedy sequence in an interval of
size |B| is approximately ln |B|. So the greedy sequence for F is far
longer than expected when |B| is sufficiently large compared to h.

Recall from Proposition 12 that the elements gk of the greedy se-
quence are exactly the →maxima of F in B.

7.4.3. Good Cuts. By a cut in [1, 2hM ], we mean a partition of [1, 2hM ]
into two subintervals A′ and B′, with A′ lying to the left of B′. That
is, A′ = [1, c] and B′ = [c + 1, 2hM ], for some c ∈ [0, 2hM ]; this allows
the possibility that A′ or B′ could be empty. We think of this cut as
being located between c and c + 1, and so we say that it lies just to
the right of c and just to the left of c+1. We also use terminology like
“consecutive cuts” in the same sense.

A cut (A′, B′) will be called

• right-good if B′ has at least one→maximum in every h consec-
utive elements,
• left-good if A′ has at least one ←maximum in every h consecu-

tive elements, and
• good if it is both left- and right-good.

Our results above show that, when F has no local maximum in the
interval [1, 2hM ], this interval admits at least one good cut, namely
the partition into the specific pieces A and B defined above. It will be
useful to know that, in fact, there are usually several good cuts

Lemma 59. At least one of the following three statements is true.
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(1) The cut (∅, [1, 2hM ]) is good.
(2) The cut ([1, 2hM ], ∅) is good.
(3) There are at least h + 1 consecutive cuts, all of which are good.

Proof. The cut (∅, [1, 2hM ]) is vacuously left-good, so if it is right-good
then we have the first alternative of the lemma. So we assume for the
rest of the proof that (∅, [1, 2hM ]) is not right-good. Symmetrically,
we assume that ([1, 2hM ], ∅) is not left-good.

If a cut ([1, c], [c + 1, 2hM ]) 6= ([1, 2hM ], ∅) is right-good, then so
is the next cut to the right, ([1, c + 1], [c + 2, 2hM ]), and therefore,
by induction, so are all cuts further right. The reason is that each
→maximum for [c + 1, 2hM ] except c + 1 is also a →maximum for
[c + 2, 2hM ]. (Note that a →maximum for [c + 2, 2hM ] need not be
a →maximum for [c + 1, 2hM ], because its F -value may be smaller
than F (c + 1).) Let p be the largest number in [1, 2hM ] such that the
cut just to the left of p is not right-good; this exists because the cut
just to the left of 1, i.e., the cut (∅, [1, 2hM ]), is not right-good. Since
right-goodness is preserved when one moves a cut to the right, we see
that the right-good cuts are exactly those that are to the right of p.
Because our original cut (A, B) is good, we know that p ∈ A.

Similarly, let q be the smallest number in [1, 2hM ] such that the cut
just to the right of q is not left-good, and observe that q ∈ B. In
particular, p < q. Also note that the left-good cuts are exactly those
that are to the left of q. Therefore, the good cuts are those that lie
between p and q. To show that there are at least h+1 of these, suppose
not. That means q ≤ p + h.

We assume, for the rest of the proof, that F (p) < F (q). This entails
no loss of generality, because the other case, F (q) < F (p), can be
treated symmetrically.

Consider the →greedy increasing sequence in the interval [p, 2hM ].
It begins with g0 = p, and its next term g1 is the first n ∈ [p + 1, 2hM ]
such that F (p) < F (n). Now q is such an n, so we have g1 ≤ q ≤ p+h.
That is, the difference between the first two elements of this greedy
sequence is at most h.

All →maxima for [p + 1, 2hM ] that are to the right of g1 are also
→maxima for [p, 2hM ]. Indeed, the only way a →maximum n for
[p + 1, 2hM ] could fail to be a →maximum for [p, 2hM ] is to have
F (n) < F (p). But if n > g1, then its being a →maximum for [p +
1, 2hM ], which contains g1, implies that F (n) > F (g1) > F (p). So
n cannot fail to be a →maximum for [p, 2hM ]. Now the difference
between any two consecutive →maxima for [p + 1, 2hM ] is at most h
because the cut just to the left of p + 1 is right-good (by definition of
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p). So the difference between consecutive→maxima for [p, 2hM ] to the
right of g1 is at most h also. This fact, together with the result of the
preceding paragraph, shows that the cut just to the left of p is right-
good, contrary to the definition of p. This contradiction (together with
the analogous contradiction, to the definition of q, when F (p) > F (q))
completes the proof of the lemma. �

Corollary 60. There is a good cut (A′, B′) such that the cardinalities
|A′| and |B′| are divisible by h.

Proof. The conclusion of the corollary is obvious if either of the first
two alternatives in the lemma holds. Under the third alternative, we
have h + 1 consecutive good cuts (we actually need only h), so one of
them must be at a distance from the left end that is divisible by h.
That is, some good cut (A′, B′) has |A′| divisible by h. |B′| has the
same divisibility property because 2hM does. �

We summarize the preceding work as follows.

Proposition 61. For any F ∈ PFEZ (without ties) that has no local
maximum in [1, 2hM ], there exists a c, with 0 ≤ c ≤ 2M , such that the
cut ([1, ch], [ch + 1, 2hM ]) is good.

7.4.4. Probabilities of →Maxima. We now un-fix F ; that is, F will
now be a random element of PFEZ. Our ultimate goal is to estimate,
from above, Prob(F has no local maximum in [1, 2hM ]). In view of
the results obtained above, we begin by estimating, for a fixed c, the
probability that the cut ([1, ch], [ch + 1, 2hM ]) is right-good, i.e., that
every h consecutive elements of [ch + 1, 2hM ] include at least one
→maximum. There will be a similar estimate for the probability that
([1, ch], [ch+1, 2hM ]) is left-good, and afterward we shall combine these
estimates and sum over all c to estimate the probability that there is
no local maximum in [1, 2hM ].

Recall from Propositions 14 and 17 that, as n ranges over the interval
J = [ch+1, 2hM ], the events “n is a→maximum” are probabilistically
independent and their probabilities are given by 1/(n − ch). We can
now easily compute the probability that a given subinterval of length h
in [ch + 1, 2hM ], say [ch + a + 1, ch+ a + h], contains a→maximum of
J . Indeed, the probability that this interval contains no →maximum
for J is given by a telescoping product:

h∏

i=1

(

1− 1

a + i

)

=

h∏

i=1

a + i− 1

a + i
=

a

a + h
.

So the complementary probability, that there is at least one→maximum
of J in [ch + a + 1, ch + a + h], is h/(h + a).
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Break the interval [ch + 1, 2hM ] into 2M − c subintervals, which we
call blocks, of length h. The event that the cut ([1, ch], [ch + 1, 2hM ])
is right-good is included in the event that each of these blocks contains
a →maximum of J , and the probability of the latter event can be
computed by combining the computation in the preceding paragraph
with the independence result in Lemma 17. Numbering the blocks
from 1 to 2M − c, we can apply the computation from the preceding
paragraph, with a = (j − 1)h, to see that the jth block contains a
→maximum of J with probability h/(h + (j − 1)h) = 1/j. Thus, by
independence, the probability that every block contains a→maximum
of J is

2M−c∏

j=1

1

j
=

1

(2M − c)!
.

This probability therefore provides an upper bound for the probability
that the cut ([1, ch], [ch + 1, 2hM ]) is right-good.

Similarly, the probability that the cut ([1, ch], [ch + 1, 2hM ]) is left-
good is bounded above by 1/c!. Furthermore, all the events “n is a
→maximum of [ch + 1, 2hM ] are independent of the events “m is a
←maximum of [1, ch]”. This is because the former events refer only to
the relative ordering of values of F at places > ch while the latter refer
only to the relative ordering values of F at places ≤ ch. Therefore, the
probability that ([1, ch], [ch + 1, 2hM ]) is good is bounded above by

1

(2M − c)!
· 1

c!
=

(
2M

c

)
1

(2M)!
.

The event that [1, 2hM ] contains no local maximum is included in
the union of the events that ([1, ch], [ch + 1, 2hM ]) is good, where c
ranges from 0 to 2M . Thus, the probability of no local maximum in
[1, 2hM ] is bounded above by

2M∑

c=0

(
2M

c

)
1

(2M)!
=

22M

(2M)!
.

7.4.5. Comparison With Other Methods. We compare the probability
of unpleasantly long chunks under the point filter, LBFS, interval filter,
and local maximum chunking methods. Recall from the preceding cal-
culations that, when the parameters of all three methods are adjusted
to produce the same average chunk length 2h + 1, the probabilities of
finding no cutpoints in the interval [1, 2hM ] (approximately M average
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chunks) are

> e−M for the pure point filter method

> e−(k+1)M/(1−k/2h) ≈ e−(k+1)M for the LBFS method

> Ae−BM for the interval filter method

< 22M/(2M)! for the local maximum method,

where in the case of LBFS k = h/c is the expected number of candidates
in a segment of length equal to the horizon, and where in the case of
the interval filter method 1 < B < e.

Notice that the pure point filter, LBFS, and interval filter meth-
ods give probabilities that decrease “only” exponentially as M → ∞,
while the local maximum method gives a probability that decreases
more rapidly. This can be seen by comparing the logarithms of the
probabilities, using Stirling’s approximation for the factorial. The four
logarithms are −M , −(k + 1)M , −BM + ln A, and asymptotically
−2M(ln M − 1), respectively. The last is, for large enough M , much
smaller (i.e., more negative) than the others because of the ln M factor.

Unfortunately, this comparison of behaviors as M →∞ can be mis-
leading. The reason is that our computation for the local maximum
method assumed that there are no ties, i.e., that no file entry is repeated
in the interval [1−h, 2hM +h]. That assumption is reasonable as long
as (2hM)2 � |PFE|, but not as M → ∞; in fact the assumption is
obviously false once M is large enough.

So a true comparison should use relatively small values of M . These
are also the values of M that are relevant for practical purposes. We
would like to have small probabilities for cut-less intervals of length,
say, 5 average chunk lengths. The corresponding probabilities for very
large M will be too small to worry about.

It turns out that, once M ≥ 4, our upper bound 22M/(2M)! for the
local maximum method is smaller than the lower bound e−M for the
pure point filter method and also the lower bound e−5M/4 for the LBFS
method when k = 1/4. If we increase M to 7, the local maximum
method gives a probability smaller by almost a factor 1000 than the
LBFS method with k = 1/4.

Remark 62. Our upper bound for the probability of no local maxi-
mum in [1, 2hM ] is rather rough; we sacrificed a good deal of informa-
tion by using only the fact that each of the 2M − c blocks contains a
→maximum, when in fact every interval of length h in J must contain
a →maximum. The reason for this sacrifice is to obtain independence
and thereby facilitate the computation. Because the blocks are pairwise
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disjoint, the events that they contain →maxima of J are independent.
If we used all subintervals of J of length h, rather than only the blocks,
we would lose the disjointness and thus the independence. If the com-
putation could be completed despite this loss, it would surely yield a
tighter upper bound than the one we obtained.

8. Computing Local Maxima

In this section, we discuss ways of finding the local maxima in a
(finite) file. For the other chunking methods that we have discussed —
point filter, LBFS, and interval filter — it is clear that the cutpoints of
a file F can be found in a single pass through the file, performing some
elementary test (divisibility by a given c or membership in U) on each
file entry, and counting (to see whether we are at a blocked location
for LBFS or whether we have matched an interval filter). The most
obvious algorithm for determining local maxima, namely to compare
each file entry with each of the 2h others in its window, is far less
efficient, as it requires 2h operations per file position. Fortunately,
there are better algorithms. We shall describe two of them. One is
rather straightforward and needs just two comparisons per file entry.
That is, the total number of comparisons needed is no more than twice
the length of the file. The second algorithm is more sophisticated and
needs, on average, only

1 +
ln h

h
+ O

(
1

h

)

comparisons per file entry. Since h is large, this amounts to barely
more than 1 comparison per file entry, so the local maximum chunking
method does not require significantly more work than others to find
the cutpoints.

Remark 63. For operation on a modern CPU, the important metric is
the number of branch mispredictions encountered during chunk com-
putation. Modern CPUs use advanced branch prediction hardware to
opportunistically continue computation assuming a branch predicate
evaluates to the same value as it did when it was previously encoun-
tered. This pays off as long as branch predicates are biased to evaluate
to the same value, but is of no help if branch predicates evaluate to
different truth values in random alternation. Counting the number of
comparisons per file entry provides an upper bound on branch mispre-
dictions, and is therefore a good abstract measure for the running time
of the chunking methods.
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We begin by describing the more straightforward of the two algo-
rithms. The idea is to read the file F , from left to right, producing a
list of the local maximum positions, and keeping track of the additional
information that is relevant to the computation of later local maxima.
More precisely, the algorithm will keep track of pairs (i, F (i)) that
might affect future decisions about what is or is not a local maximum.
Those pairs are of two sorts.

First, there are the pairs (i, F (i)) that might turn out to be local
maxima, but are not yet known to be local maxima. This means that
F (i) is larger than the h immediately preceding values of F as well
as the subsequent values that have been read so far, but the number
of these subsequent values is < h. So i looks as though it could be a
cutpoint but some values in its window remain to be read, so it may
yet turn out not to be a cutpoint. Notice that pairs of this sort must
always have i within the last h positions that have been read; once
we read farther than that, we will know whether i is a cutpoint, so it
will either be put on the output list of local maxima or dropped from
consideration.

Second, there are the pairs (i, F (i)) that might prevent some position
that we haven’t yet visited from being a cutpoint. That is, we might
in the future read F (j) at position j and decide that j cannot be a
cutpoint because F (i) ≥ F (j). In principle, any of the pairs (i, F (i))
among the last h that were read could play this role, but many of them
can safely be ignored. Specifically, suppose that we have read a larger
value at a later position, say F (i′) ≥ F (i) with i′ > i. Then any future
j that is prevented from being a cutpoint by (i, F (i)) is also prevented
by (i′, F (i′)). Indeed, we have F (i′) ≥ F (i) ≥ F (j) and, if i is in the
window of j, then so is i′ because i < i′ < j.

This means that the only i’s for which we have to remember (i, F (i))
because it might prevent a future j from being a cutpoint are those
i, within the last h positions read, for which F (i) is larger than all
later F -values already read. Proposition 12, applied in the right-to-
left direction, tells us that these values of i constitute the ←greedy
sequence in the interval of the last h positions read.

Notice that, if there is an (i, F (i)) of the first sort, a candidate for
being a cutpoint, then it is also of the second sort, since it is within
the last h positions read and its F -value is larger than the later ones.
Summarizing, we see that our algorithm should maintain the following
information as it reads through the file F :

• (i, F (i)) for i in the←greedy subsequence of the interval of the
last h positions read, and
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• one additional bit, telling whether the leftmost position in the
greedy sequence (the one with the largest F -value) is a candi-
date for being a cutpoint, i.e., whether its F -value exceeds the
h immediately preceding F -values.

Thus, our algorithm acts as follows while reading the file from left to
right. It maintains a list Λ of pairs and a bit γ, and it (gradually)
outputs a list of cutpoints. At position i, the algorithm performs the
following steps, in the given order.

(1) Read F (i).
(2) Go through Λ, in order, deleting any pairs (j, F (j)) with F (j) ≤

F (i). Stop when and if a pair is not deleted.
(3) If (i−h, F (i−h)) is in Λ, add it to the output list of cutpoints

and set γ := 0.
(4) Add (i, F (i)) to the beginning of Λ and, if Λ has no other ele-

ments, set γ := 1.
(5) Delete (i− h, F (i− h)) from Λ (if it’s present).

When the algorithm has finished processing position i in this manner,
Λ contains (j, F (j)) for j in the ←greedy sequence for [i − h + 1, i], γ
is 1 if and only if the last (leftmost) element of Λ is still a candidate
to be a cutpoint, and the output produced so far consists of all the
cutpoints at positions ≤ i− h. Note that the algorithm maintains the
property that the pairs (j, F (j)) in Λ always occur in order of decreasing
j and increasing F (j). This is why the sentence beginning “Stop” in
instruction (2) is justified; the elements of Λ that are not inspected
have F (j) at least as large as the non-deleted one that triggered the
stop, and so they should also not be deleted.

To estimate the number of comparisons performed (while executing
instruction (2)) during a run of this algorithm, we associate to each
comparison a position in the file as follows. If the comparison of the
newly read F (i) with an earlier F (j) results in the deletion of (j, F (j))
from Λ (because F (j) ≤ F (i)), then associate position j to this com-
parison; we refer to this as “association with deletion”. Otherwise, i.e.,
if F (j) > F (i), then associate position i to the comparison; we refer to
this as “association without deletion”.

Since any (j, F (j)) enters Λ just once, it is deleted at most once,
and so j has at most one comparison associated to it with deletion.
Furthermore, because of the “stop” part of instruction (2), each i has at
most one comparison associated to it without deletion. So altogether,
each position has at most two comparisons associated to it. Thus, the
total number of comparisons performed by the algorithm is at most
twice the length of the file.
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Remark 64. We can be more precise about the number of comparisons.
The only way a position i can avoid having a comparison associated to
it with deletion is to have F (i) > F (j) for all j > i in its window. Call
such a point a right semi-maximum. The only way i can avoid having
a comparison associated to it without deletion is to have F (i) ≥ F (j)
for all j < i in its window. Call such a point a left semi-maximum.
(Note the asymmetry: right semi-maxima satisfy a strict inequality
and left semi-maxima only a non-strict one. Of course, this doesn’t
matter if PFE is big enough and we ignore ties.) Thus, the number of
comparisons performed by this algorithm is twice the length of the file,
minus the sum of the number of right and left semi-maxima. Since a
local maximum is both a right and a left semi-maximum, it follows that
the number of comparisons is at most twice the number of positions
that are not local maxima.

We now turn to a more sophisticated algorithm, which, compared to
the preceding one, cuts the number of comparisons almost in half, on
average.

The algorithm splits the file into blocks of length h + 1, and it pro-
cesses the blocks in order, from the leftmost to the rightmost. For
brevity, we ignore the trivialities arising if the length of the file isn’t
exactly divisible by h + 1.

For a position i to be a local maximum, it is necessary (but not
sufficient) that F (i) > F (j) for all j in the block containing i, because
all such j are in the window [i − h, i + h] centered at i. We call i a
candidate if it fulfills this necessary condition. For a candidate to be a
local maximum it must, in addition, have an F -value greater than that
of any position within h in the immediately previous and immediately
following blocks. If the algorithm finds that a candidate fails to satisfy
this additional requirement, we shall say that it kills the candidate; we
use the phrase live candidate to mean a candidate that has not (yet)
been killed.

When processing a block B, the algorithm will produce the following
information:

(1) If, when it starts processing B, there is a live candidate in the
immediately previous block, it will decide whether that candi-
date is a local maximum.

(2) It will produce the←greedy sequence of B, in decreasing order
of positions (and thus increasing order of F -values).

(3) It will decide whether the last term in the←greedy sequence is
a candidate.
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(4) If the last term is a candidate, it will decide whether it is to be
killed because of a larger or equal F -value in the previous block
(and within the candidate’s window).

Recall that, by Proposition 12 (applied with right and left reversed),
the←greedy sequence in item (2) consists of those positions in B where
the F -value is greater than all later F -values in B. It can thus be found
by reading the F -values in the block B, from right to left, keeping track
of the highest value seen so far, and adding to the ←greedy sequence
any position where the newly read value exceeds the largest previously
seen value. Notice that the algorithm processes the blocks in left-to-
right order but processes the positions within any block in right-to-left
order.

In connection with item (3), notice that the last element of the
←greedy sequence will always have an F -value ≥ all other F -values
for the block B. But for a candidate, we need strict inequality here.
So item (3) amounts to checking for ties for the highest F -value in the
block.

Most of the algorithm’s work goes into item (2), so we begin our
description there. Notice that, if we were just producing the ←greedy
sequence (and not doing anything about items (1), (3), and (4)), this
would involve h comparisons. Each position in the block, except the
rightmost, must have its F -value compared, at the time the algorithm
reads it, with the F -value of the currently last element of the sequence
under construction. So this task requires approximately one (exactly

h
h+1

) comparison per position in the file.
Item (3) can be handled simultaneously with the construction of the
←greedy sequence. Whenever a position is put into the sequence, call
it a candidate (tentatively). If another position is put in later (because
it has a larger F -value) kill the old candidate while making the newly
added position a candidate. Also, if another position in the block is
found to have the same F -value as the current candidate, then kill the
candidate (even though it remains in the ←greedy sequence and the
later position with the same F -value is not added to the sequence).
Thus, item (3) requires no additional comparisons.

Let us refer to the process just described, running through B in
reverse order to handle items (2) and (3), the ordinary run through B.
If, when we start processing block B, there is no live candidate in the
immediately previous block, then the ordinary run through B handles
item (1) vacuously and we need only consider item (4), which we shall
do later. But if there is a live candidate in the preceding block, then
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the ordinary run must be modified in order to handle item (1), and we
now describe this modification.

Suppose, therefore, that position m is a live candidate in the block
just before B. Being a candidate, it has a larger F -value than all
other elements of its block. Furthermore, being live, it has a larger F -
value than all positions to its left in its window, i.e., in [m− h, m− 1],
because otherwise it would have been killed during the processing of its
own block — see item (4). So it will be a local maximum unless there
is a larger or equal F -value at a position that is in B and ≤ m + h.
Our task is to detect such an F -value, if there is one, and then kill m.
And we must do this without excessive comparisons of F -values.

Begin processing B by the ordinary run until you reach position
m + h. (The point is that, until this moment, you’re working with
positions outside the window of m and thus irrelevant to item (1).)
When you reach m + h, there is a branching according to whether the
current last position in the←greedy sequence, say g, has F (g) ≥ F (m)
or F (g) < F (m).

Suppose first that F (g) ≥ F (m). (To avoid confusion, notice that
this case hypothesis doesn’t kill m because g is beyond the right end
of the window of m.) In this case, continue going leftward through the
block B, but, instead of comparing F -values with F (g) (as the ordinary
run would), compare them with F (m). As long as they are < F (m),
they can be ignored as they don’t kill m and they don’t go into the
←greedy sequence (because F (g) ≥ F (m)). If you find an F -value
equal to F (m), then that kills m, but the position still doesn’t go into
the ←greedy sequence; once m is killed, resume the ordinary run from
the next position on the left. Finally, it you find an F -value strictly
greater than F (m), then kill m, and resume the ordinary run from the
current position. Notice that, in this last situation, one position has
its F -value compared with both F (m) and F (g). So the total number
of comparisons will not be h as computed above for the ordinary run
but h + 1; that’s still an average of only one comparison per position
in B.

Now consider the other case, where F (g) < F (m). In this case,
continue with the ordinary run but, whenever a position g′ is added
to the ←greedy list, check whether F (g′) ≥ F (m). If so, then kill m
and continue with the ordinary run and no further comparisons with
F (m). If, on the other hand, F (g′) < F (m), then m remains live and
the next addition to the←greedy sequence will also need a comparison
with F (m). Notice that, if m should be killed, then this procedure
will kill it. Specifically, if m should be killed, then there is an x in its
window and in B with F (x) ≥ F (m), because, as noted above, any
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other reason for killing m would have done so while the previous block
was processed. The rightmost such x will be added to the ←greedy
sequence, will therefore have F (x) compared to F (m) by our algorithm,
and will thus kill m.

In the case just considered, it is possible for many positions to have
their F -values compared with the F -values at both m and the current
last position in the ←greedy list. Indeed, this happens whenever a
position ≤ m + h is added to the ←greedy list as long as m remains
live. A priori, the number of such occurrences is bounded by the length
of the ←greedy list, which is, as we saw in Section 2.4, on average
approximately ln h. In fact, we shall get a much better bound, on
average, later, but first we finish the description of the algorithm by
showing how to handle item (4).

Item (4) is handled by a separate process after the completion of the
run through B (either the ordinary run or the modification to handle
item (1)). Suppose, therefore that this run has been completed and
that it resulted in a candidate, namely the last term g of the ←greedy
sequence, and that this candidate hasn’t been killed yet (i.e., no point
to its left in B had the same F -value). For item (4), we must check
whether some point x in the window of g and in the previous block
had a larger F -value, F (x) > F (g). The key observation is that, if
this happens, then the rightmost such x is in the ←greedy sequence
of the previous block. Indeed, for all y > x in that block, we have
F (x) > F (g) ≥ F (y). So to look for such an x, it suffices to look
through the terms of the previously computed ←greedy sequence of
the preceding block. Since the length of the ←greedy sequence in any
block is, on average, only approximately lnh, we can handle item (4)
with only ln h additional comparisons, i.e., only lnh

h
comparisons per

position, on average.
This completes the description of the algorithm and most, but not

all, of the estimation of how many comparisons of F -values are needed.
On average, we have, during the processing of a block, at most

• h comparisons to handle items (2) and (3),
• ln h comparisons to handle item (1) in the case where F (g) <

F (m) and F (g′) < F (m) for many subsequent elements g′ of
the ←greedy sequence, and
• ln h comparisons to handle item (4).

We now show that the ln h associated to item (1) can be reduced
greatly, namely to a constant. Thus, the final estimate for the average
number of comparisons will be h+ln h+O(1) per block or 1+ lnh

h
+O( 1

h
)

per position. Notice that, even without this improvement, we already
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know that the average number of comparisons per position is at most
1 + 2 lnh

h
.

Remark 65. Before proceeding with the proof, we give a rough, intuitive
argument for why we might expect the number of comparisons needed
for (1) to be less than the estimate lnh. If there is a live candidate
in the preceding block, its expected position is at the middle of that
block, and so our algorithm begins paying attention to item (1) around
the middle of the current block. Once it begins paying attention, it
performs an extra comparison when adding an element to the←greedy
sequence. But, if attention begins at the middle of the block, then there
is a 50% chance that nothing will be added to the ←greedy sequence
from that point on, because there is a 50% chance that the largest
F -value in the block is in the right half of the block, in which case the
←greedy sequence is already complete when the algorithm reaches the
middle of the block. Of course, a real proof must take into account
that the live candidate in the preceding block isn’t known to be at the
midpoint, so its variability must be taken into account. That is what
the following argument does.

We wish to bound, from above, the expectation of the number X of
additional comparisons introduced by the part of the algorithm that
handles item (1). To begin, we imagine some changes in the algorithm,
which make X worse, i.e., bigger, but which simplify the computation of
its expectation. Of course by bounding the expectation of the imagined,
larger X, we obtain a fortiori the same bound for the expectation of
the actual X.

The first imagined change is that we pretend that the position m of
a maximum of F in the preceding block is a live candidate, whether
or not it really is one. This clearly increases the number X of extra
comparisons, because we will be doing comparisons for the sake of
item (1) in some cases where the actual algorithm can ignore item (1)
because there is no live candidate. In the case where the maximum
is attained at several positions, we choose one of them at random to
serve as m. (This is one of the cases where there is really no live
candidate.) Observe for future reference that m is equally likely to be
any of the h positions in the preceding block, and therefore the place
where our algorithm will begin doing extra work is equally likely to
be immediately to the left of any of the h + 1 positions in the current
block B.

The second imagined change is that, once we get into the range where
the extra work is done, every element added to the ←greedy sequence
contributes an extra comparison. This makes X worse because in the
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actual algorithm the extra comparisons would end when and if the
←greedy sequence acquires a member g with F (g) ≥ F (m).

With both imagined changes, X is simply the number of positions
that are put into the ←greedy sequence and are ≤ m + h. As noted
above, m is a random variable uniformly distributed in the preceding
block, and so m + h is uniformly distributed in the range from the
rightmost element of the preceding block to the next-to-rightmost el-
ement of the current block B. (In other words, the range of values of
m + h is B shifted one step to the left.) Let us write r for the location
of m + h in this range, but counted from right to left (the direction
that the algorithm goes while processing B). Thus, r = 1 means the
next-to-rightmost element of B; r = h+1 means the rightmost element
of the preceding block. All h + 1 values of r are equally likely. For any
particular r, the elements of the ←greedy sequence that contribute to
X are those whose distance from the right end of B is > r. (For ex-
ample, if r = 1 then all but the rightmost element of B can contribute
to X, while if r = h + 1 then nothing contributes to X.) The position
at distance j from the right end of B has probability 1/j of being in
the ←greedy sequence; see Section 2.4. Therefore, the expectation of
X (as increased by our imagined changes) is

1

h + 1

h+1∑

r=1

h∑

j=r+1

1

j
.

This double sum is easy to estimate by interchanging the order of
summation. Specifically, for any fixed j in the relevant range 2 ≤ j ≤ h,
the fraction 1

j
occurs j − 1 times, namely once for each r in the range

1 ≤ r ≤ j − 1. So these terms contribute j−1
j

< 1. This happens for

each of the h−1 values of j, so the double sum is < h−1 < h+1, and
the expectation of X is therefore < 1.

9. Related Work, Variants, and Open Problems

9.1. Previous Work. After we developed the main results on local
maximum chunking, we learned of a related technique proposed in [26].
That paper introduces the concept of local algorithms for document
fingerprinting.

In the situation treated in [26], at least one distinguished position,
whose file entry (a hash value) is to be part of the fingerprint, must
be chosen within each interval of w consecutive positions. The task of
choosing these distinguished values is analogous to the task of choosing
cutpoints in remote differential compression. In both cases, the chosen
positions should be neither too close together nor too far apart, and in
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both cases agreements between substantial segments of two files should
result in corresponding positions being chosen in the two files. Because
of the analogy and for the sake of brevity, we shall write “cutpoint” to
refer to the distinguished positions, even though [26] does not envision
actually cutting files there.

The winnowing method proposed in [26] chooses a cutpoint by con-
sidering each interval of hashes with length w and selecting the index
with the minimal hash value; if there is a tie, the right-most position
with minimal hash value is chosen. As a result, successive cutpoints
may be arbitrarily close to each other, but their distance never exceeds
w. Winnowing is a local algorithm because whether a position is a
cutpoint depends only on hash values within w positions to both sides
of it. Analogously to the probability distribution of local maxima, the
density of local minima is computed as 2/(w + 1). It is also shown
in [26] that any local scheme for choosing distinguished points never
farther than w apart must have density at least 1.5

1+w
. It is also shown

in [26] that, for the pure point filter method or any impure variant
thereof, if the method ensures at least one cutpoint in every interval of
length w, then the density of cutpoints is at least 1+ln w

w
. Finally, [26]

gives an algorithm for determining the cut-points.
Our results on local maximum chunking can be viewed as comple-

mentary: The winnowing scheme of [26] imposes an absolute upper
bound w on the distance between consecutive cutpoints (which we’ll
call the chunk length) and seeks to prevent the chunks from being too
much shorter. Our local maximum method imposes an absolute lower
bound h+1 on the chunk length and seeks to prevent the chunks from
being too much longer. This is why we strive for small slack and for
low probability of long chunks.

Finally, we provide an analysis of the average number of file compar-
isons per file entry, which translates into branch mispredictions.

9.2. Hash-less Local Maxima. All of the chunking methods we have
considered relied on a pre-processing step that uses a hash function to
distill characters in an interval of length w into machine representable
numbers. This is useful when a cut-point can be determined by us-
ing arithmetic or logical operations on the numbers that are directly
supported by the CPU. In the point filter, LBFS, and interval-filter
chunking methods, these operations consisted of masking selected bits
to determine cut-points. In the local maximum approach, the relevant
operation is comparison.

It is however, possible to skip the pre-processing step in the local
maximum method and treat a block of w consecutive characters as an
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8 ·w bit number. For numbers of this size, the comparison operation is
not directly provided by the CPU, and so we have to supply our own
comparison operation to find local maxima among these numbers.

On average, and in practice, it seems that even a näıve procedure for
finding locally maximal substrings by means of lexicographic byte-wise
comparisons is superior, in terms of running time, to pre-processing
|F | with a rolling hash. While a lexicographic byte-wise comparison
over words with w bytes requires in the worst case w comparisons per
position, it is likely that far fewer comparisons (often just one) are
required because the most significant byte of the largest number so far
is likely to be larger than a random byte.

One straightforward refinement of the näıve procedure is to record
the number of repeated characters at the currently scanned position.
This allows processing files consisting of large blocks of the same char-
acters independently of w, but it does not help in the case of files
consisting of large blocks of periodic patterns (longer than a single
character). Obviously, the first refinement may be generalized to also
take periodic patterns into account. In general, it may be of theoretical
interest to consider variants of Boyer-Moore [13, 8, 3] string matching
algorithms that avoid repetitive scanning of the same characters. In
contrast to Knuth-Morris-Pratt and Boyer-Moore string matching al-
gorithms, this problem is not that of finding a fixed pattern, and we
cannot rely on a one-pass pre-processing step.

9.3. Open Problems. Our calculations leave several problems open:

• What is the slack of the local maximum method? Is it smaller
than (our lower bounds for) the slack of the point filter and
LBFS chunking methods?
• What is the variance of the chunk length for the local maximum

method?
• Replace our estimates for the probabilities of long cutpoint-free

intervals by exact values (or tighter estimates).

Another natural question concerns the ratio of expected chunk size
to minimum chunk size. We would like this ratio to be as small as
possible. The absolute minimum value, 1, is attainable but only by
chopping the file into chunks of constant size, and we have seen that
this is a bad method because adding one character to a file can destroy
all agreement between chunks. The LBFS method can attain ratios
arbitrarily close to 1 by taking h � c (i.e., k � 1), but we have seen
that this also makes agreement between chunks difficult to attain; recall
in particular Remark 50. A reasonable question is how small the ratio
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can be for local chunking methods. (Locality excludes both constant-
length chunks and the LBFS chunking method with h > 0.) The
interval filter attains a ratio approaching e (for large h), and the local
maximum method does somewhat better with a ratio approximately 2.
Can a local method do better yet?
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