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Abstract 

 

The MIPS-to-Verilog (M2V) compiler translates 

blocks of MIPS machine code into a hardware design 

represented in Verilog. The design constitutes an 

Extension for the eMIPS processor, a dynamically 

extensible processor realized on the Virtex-4 XC4LX25 

FPGA. The Extension interacts closely with the basic 

pipeline of the microprocessor and recognizes special 

Extension Instructions, instructions that are not part of 

the basic MIPS ISA. Each instruction is semantically 

equivalent to one or more blocks of MIPS code. The 

purpose of the M2V compiler is to automate the process 

of creating Extensions for the specific purpose of 

accelerating the execution of software programs. 

M2V is a three-pass compiler that accepts as input 

basic blocks in the form generated by the eMIPS BB-

Tools, a set of programs for the analysis and 

instrumentation of MIPS ELF images.  Pass 1 of M2V 

generates a circuit graph that is semantically equivalent 

to the basic block that is being accelerated.  Pass 2 

schedules the operations in the circuit graph under the 

microarchitectural constraints of the eMIPS processor.    

Pass 3 emits synthesizable Verilog that constitutes the 

hardware accelerator that runs in the eMIPS extension 

slot.   

The compiler was implemented from scratch in C++ 

and despite its current limitations it can already compile 

a few simple examples. The quality of the synthesizable 

Verilog that is generated by M2V compares favorably 

with hand-generated code for the same input. On a 64-bit 

division test M2V generates an Extension that performs at 

the same speed but uses half the area of the hand-

generated version. 

1 Introduction 
 

An embedded system typically runs a small set of 

applications and has tight power, cost, and performance 

criteria.  Using a general purpose CPU for these systems 

can help meet the performance goals, but inefficiency can 

result when specialized resources, such as a floating point 

unit (FPU), are present but seldom, if ever, used.  A lower 

power processor with a reduced instruction set 

architecture (ISA) and without a FPU may suffer from 

poor performance.   

Extensible processors try to compromise between 

general purpose CPUs and minimal RISC 

implementations.  Extensible processors have a simple 

RISC pipeline and the ability to augment the ISA with 

custom instructions.  The ISA can be augmented 

statically, at tape-out, or it can be augmented dynamically 

when applications are loaded.  The eMIPS processor is an 

example of a dynamically extensible processor.   

Extensible processors take advantage of the fact that a 

small amount of code takes the majority of execution time 

in a typical program.  The code that executes most often is 

a candidate for hardware acceleration.  The code must be 

identified by a special instruction that will initiate the 

accelerator.   

Selection of the best code to accelerate is an active 

area of research.  The eMIPS tool-chain restricts the code 

selection problem to the set of basic blocks in the 

application.  Using the strict definition in [1], the basic 

block is a directed acyclic graph (DAG).  The BB-Tools 

select the basic blocks to accelerate and patch the binary 

image with the special instructions for the accelerator.  

The M2V compiler automatically generates the hardware 

accelerator. 

The accelerator can be statically loaded when eMIPS 

is reset or it can be dynamically loaded when an 

application is loaded using partial reconfiguration of the 

FPGA. By dynamically loading and unloading 

accelerators, programmable hardware can be minimized. 

In previous versions of eMIPS, the accelerator blocks 

could be specified and given to a hardware designer to 

hand design the accelerator.  While this can lead to an 

efficient implementation, it does not scale well as 

dynamically extensible processors are more widely used.  

The use of tools like M2V can expand the use of hardware 

acceleration.  

M2V accelerates applications from their compiled 

machine code.  This is the only option when an 

application’s source code is unavailable, such as when a 

third-party writes the application and keeps the sources.  

Accelerating from binaries can also be advantageous if 

multiple front-ends are used for development.  A 

developer could use C, LISP, Perl, or any other high-level 
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programming language for their development, but they all 

must be compiled to machine code.  

The remainder of this document is structured as 

follows. Section 2 discusses related work, Section 3 gives 

an overview of the eMIPS hardware platform, Section 4 

goes through the M2V data structures and algorithms in 

detail.  Section 5 explains how to run the M2V tool when 

a BBW source file has been generated.  Section 6 goes 

through the source code implementation for M2V and 

Section 7 explains the hardware that is generated from 

M2V in more detail.  Section 8 discusses the experimental 

results, Section 9 gives future research directions, and 

Section 10 concludes the report.  Appendix I contains 

figures that illustrate scheduling for the primary example 

in the report.  Appendix II contains the Verilog output 

from M2V for the example in the report.  Appendix III 

contains the BBW file for the example basic block and 

Appendix IV lists the output from M2V when using the 

example basic block as input. 

 

2 Related Work 
 

Work on extensible processors can be divided in 

several ways.  One avenue of exploration is to define the 

underlying hardware.  Chimaera [7] and GARP [8] are 

two examples of extensible hardware from the late 

1990’s.  Commercial FPGA manufacturers today all 

provide examples of soft-cores, microprocessor designs 

that the customer can modify and extend for their 

application [15, 3, 13].  M2V uses the eMIPS processor 

[6] as its underlying hardware platform. eMIPS is the first 

design that is secure for general purpose multi-user loads, 

and the set of potential applications is therefore more 

open-ended than those found in the typical embedded 

system alone.  

A common approach to generate code for an 

extensible processor is to modify an existing C compiler. 

Tensilica [14] regenerates a full GNU compilation system 

given the RTL of the new instruction. Ienne et al. [4] use 

the SUIF compiler. To the best of our knowledge, M2V is 

the first compiler that accepts as input binary machine 

code rather than source code. There are trade-offs 

between accelerating from source code in a high-level 

language or from binaries.  One of the major advantages 

when accelerating from binaries is that any application 

can be accelerated, even applications where the source 

code is controlled by an outside party and not available to 

the system developer. A disadvantage is that some of the 

information that has been discarded must be 

reconstructed, and there are limits to this reversal process. 

Another avenue of research in extensible processors 

is the identification of the instruction set extensions (ISE) 

that most benefit a given program, see for instance [5] for 

a recent overview. Bonzini [5] advocates generating the 

ISE from within the compiler, Tensilica [14] from 

profiling data. M2V currently follows the application 

profiling approach; it uses the BB-Tools and dynamic 

full-system simulation with Giano to select the candidate 

basic blocks. A possible extension to our work is to use 

M2V in concert with a high-level compiler. Once the ISE 

is identified from within the compiler, its definition could 

be output in the form of a BBW file. 

A related area is the generation of HDL code from C, 

the so-called C-to-gates design flows [11, 12]. The input 

to M2V is binary code, but the target is similar.  

 

3 eMIPS Hardware Overview 
 

The extensible MIPS (eMIPS) processor [6] has been 

developed at Microsoft Research as an example of a RISC 

processor integrated with programmable logic.  The 

programmable logic has many uses, such as: extensible 

on-line peripherals, zero overhead online verification of 

software, hardware acceleration of general-purpose 

applications, and in-process software debugging [2].  This 

report is concerned with automatically generating 

hardware accelerators. 

The instruction set for the eMIPS processor is the 

instruction set for the R4000 MIPS processor [10].  The 

R4000 is an example of a classic RISC architecture.  The 

eMIPS pipeline follows the classic RISC pipeline [9] 

consisting of five stages: instruction fetch (IF), instruction 

decode (ID), execute (EX), memory access (MA), and 

register write-back (WB). 

 

Figure 1: Block diagram of the eMIPS architecture. 

The eMIPS processor departs from a standard RISC 

processor by adding an interface to programmable logic.  

The programmable logic is tightly integrated with the 
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RISC pipeline, it can synchronize with it and it can access 

the same resources as the RISC pipeline.  Figure 1 shows 

a logical block diagram for the eMIPS processor, a 

physical view of the prototype is depicted in Figure A-8 

and Figure A-9.  The tight coupling of the pipeline and 

programmable logic creates a very low latency interface 

between the accelerator and the RISC pipeline.   

Figure 2  (and a repeated, larger, version in Figure A-

1) illustrates the pipelining of instructions through eMIPS.  

The decode logic in the extension logic is always an 

observer of the main pipeline and is trying to decode the 

instruction in the instruction decode (ID) phase of the 

pipeline.  When the instruction is not an extension 

instruction, the extension fails to decode it and it is 

executed in the main pipeline.  When the instruction is 

successfully decoded by the extension logic, the extension 

logic is activated and the hardware accelerator is used.  

Instructions flowing through the main RISC pipeline prior 

to the extension instruction complete normally.  

Instructions following the extension are stalled until the 

extension is near completion, in the EXn-1 cycle. 

IF ID EX MA

EX1

WB

IF ID EX MA WB

IF ID EX2 MA WBEXn-1Exn-2 EXn...

IF ID EX MA WB

IF ID EX MA WB

Instruction m-2

Instruction m-1

Extension Instruction m

Instruction j

Instruction j+1

Cycle Number 0 1 2 3 4 5 n+2 n+3 n+4 n+5 n+6 n+7 n+8...

IFInstruction m+1

 

Figure 2: Instruction flow through eMIPS pipeline. 

The RISC pipeline imposes microarchitectural 

constraints on the extension logic, for instance in the 

arbitration for access to the register file and other 

resources.  The extension logic needs to read and write the 

register file and access the memory management unit 

(MMU).  These accesses by the extension logic are 

scheduled by M2V so as not to conflict with the primary 

RISC pipeline. 

The primary RISC pipeline uses two read ports on the 

register file when an instruction is in the ID stage, it uses 

one MMU port when in the MA stage, and it uses one 

write port on the register file when in the WB stage.  The 

eMIPS register file has four ports which are multiplexed 

between four read ports and two write ports.  The 

extension logic has the potential to use all of the eMIPS 

register file ports, but it must not conflict with the primary 

RISC pipeline.  Thus, register writes must be delayed by 

the extension until previous instructions are retired and 

register reads must be finished a couple of cycles before 

trailing instructions get to the ID stage. 

As a specific example, when the extension instruction 

is in the EX1 cycle of execution, instruction m-1 is in the 

MA pipeline stage and so instruction m-1 has access to 

the MMU.  Instruction m-2 is in the WB pipeline stage 

and it has control of the register file write ports.  The 

extension instruction does not have control of all the 

resources until stage EX3 when the previous instructions 

have been retired. 

The eMIPS processor has been implemented on a 

Xilinx Virtex 4 FPGA using the ML401 evaluation board.  

The partial reconfiguration capabilities of this FPGA 

allow software to load dynamically the hardware for the 

instruction extensions.   

 

4 The M2V Compiler 
 

The M2V compiler is one element of a larger eMIPS 

tool-chain which is illustrated in Figure 3.  The goal of the 

eMIPS tool-chain is to accelerate a pre-compiled 

application with the programmable extension logic in 

eMIPS.  The goal of M2V is automatically generate the 

hardware which will be loaded into the extension unit. 

Break MIPS Binary into Basic Blocks

Profile Application to get Hot Blocks

Use FPGA tool-chain to create bit file

Run M2V on Hot Blocks

Insert Extension Instructions into MIPS Binary

Load Binary into Memory and Bit File into FPGA

Run Accelerated Application
 

Figure 3: Tool chain for accelerating basic blocks on 

the eMIPS architecture. 

The eMIPS tool-chain includes the BB-Tools.  The 

BB-Tools identify the basic blocks and then profile them 

on the Giano simulator to get dynamic execution counts.  

The basic blocks with the highest execution time (the hot 

blocks) are selected for acceleration.  The BB-Tools 

generate an instruction encoding for the hot block and 

write out the BBW file (see section 4.1.1).  The BB-Tools 

also insert the extension instruction into the original 

binary and patch any branch and jump addresses.   
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The M2V compiler takes the description of the hot 

blocks in the BBW file and automatically generates 

synthesizable Verilog for the extension.  The Verilog for 

the extension can be synthesized with the standard FPGA 

synthesis tool-chain, which eventually produces a BIT 

file.  The BIT file contains all of the programming 

information for the FPGA to implement the hardware of 

the extension.  The BIT file can be statically loaded at 

reset of the FPGA or the operating system loader can 

dynamically load the BIT file using partial 

reconfiguration when the application is loaded into main 

memory.   

The M2V compiler makes three passes through the 

database as illustrated in Figure 4.  The first pass 

processes the BBW file and consists of three major steps: 

map the encoding for the extension instruction to the basic 

block, analyze the MIPS instructions, and build a circuit 

graph.  The second pass schedules the operations that are 

represented in the graph.  The third pass emits the Verilog 

that will be synthesized and placed in the eMIPS FPGA. 

Map Extension Encoding to Basic Block

Semantic Analysis of MIPS Instructions

Build Circuit Graph

Pass 1

Schedule Operations

Emit Synthesizable Verilog
 

Figure 4: Steps in M2V. 

As the algorithm is discussed, it is helpful to use an 

example to reinforce the concepts.  The example that was 

selected for this purpose comes from the analysis of video 

games and real-time applications [6].  This basic block 

implements part of a 64-bit divide on the 32-bit 

architecture of eMIPS.  The assembly code for the 

example is shown in Figure 5, where the bracketed 

number is the hexadecimal byte offset for the instruction: 

[   0 ] ext0 r4, r2, offset0 

[   4 ] sll r1, r1, 1 

[   8 ] srl r3, r2, 31 

[   c ] or r1, r1, r3 

[ 10 ] sll r2, r2, 1 

[ 14 ] srl r3, r4, 31 

[ 18 ] or r2, r2, r3 

[ 1c ] sll r4, r4, 1 

[ 20 ] srl r3, r5, 31 

[ 24 ] or r4, r4, r3 

[ 28 ] sltu r3, r1, r6 

[ 2c ] beq r0, r3, offset0 

[ 30 ] sll r5, r5, 1 

Figure 5: Example basic block. 

The instruction at address 0, ext0, is the extension 

instruction that is inserted by the BB-Tools and is not part 

of the original basic block.  The shift-left-logical 

instruction at address 30 is in the branch delay slot and it 

will be executed within the basic block before the 

instruction at the branch target is executed. 

 

4.1 Pass 1 – Process BBW File 
 

The BBW file is the interface between the BB-Tools 

and the M2V compiler.  The components in the BBW file 

relevant to M2V are as follows: extension instruction 

encoding, canonical register relationships, canonical value 

relationships, sequential MIPS instruction stream in the 

basic block, and the code size of the basic block.  The first 

pass in the M2V compiler is to parse and analyze the 

BBW file.  The BBW file for the example in Figure 5 is 

shown in Appendix III. 

  

4.1.1 Mapping Instruction Encoding to Basic Block 

 

For the first revision of M2V, the extension 

instruction is encoded as a MIPS instruction of the “I” 

format.  The instruction encoding is illustrated in Figure 

6.  In assembly, the “I” instruction is written: 

Opcode_name rt, rs, immediate. 

31:26 25:21 20:16 15:0

opcode rs rt immediate

 

Figure 6: MIPS "I" instruction format used for the 

extension instruction. 

The opcode that identifies the instruction must be 

unique or it will alias onto an existing instruction.  The rs 

and rt fields are used to map two actual registers to two 

canonical registers.  The immediate field is used for the 

branch relative address at the end of the basic block. 

When the original MIPS executable binary file is 

broken into basic blocks, the registers are canonicalized.  

Thus the first actual register in the basic block is assigned 
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canonical register R1, the second actual register is 

assigned canonical register R2, etc.  By using canonical 

registers, it is hoped that multiple basic blocks can be 

mapped to the same canonical basic block.  This gives 

more opportunities to accelerate the application.   

Basic blocks that are good candidates for acceleration 

will typically reference more than two registers.  Since the 

instruction encoding only has enough bits to encode two 

unique registers, all other registers must be relative to 

these two registers.  The relationships between rs, rt, and 

the other canonical registers are recorded in the BBW file 

and the relationships must be preserved in the hardware 

accelerator.   

Likewise, there are only enough bits in the extension 

encoding to store one immediate value.  If there are 

additional values in the basic block, they must be a 

constant for the basic block or the value must be relative 

to the encoded value.  The BBW file and the hardware 

accelerator have the ability to use relative relationships 

between canonical values. 

The relationships between the canonical registers and 

values are stored in a data structure that is later referenced 

when emitting Verilog.  The data structure is used to 

generate the proper address for the register when the 

register file is accessed. 

The code size for the basic block is not specifically 

part of the encoding, but the size is needed so that the 

program counter (PC) can be calculated for the fall-

through case of the basic block. 

 

4.1.2 Analyze MIPS Instructions 

 

The MIPS instructions must be analyzed to create the 

dependency graph, request pipeline resources, and emit 

the equivalent Verilog.  There are three instruction 

formats in the MIPS I and MIPS II instruction set 

architectures supported by M2V: “I,” “R,” and “J”.   

The MIPS “I” format is illustrated in Figure 6.  “I” 

instructions use a 16-bit immediate field as one of the 

operands.  Examples of “I” instructions are ADDI, ANDI, 

BEQ, LW, SW, XORI, etc.  Within the “I” instructions, 

ALU operations, branches, loads, and stores must be 

distinguished so that the correct dependencies can be 

built. 

The MIPS “R” format is illustrated in Figure 7.  “R” 

instructions read operands from registers and write results 

back to registers.  Examples of “R” instructions are ADD, 

AND, SLL, etc.  In assembly, the “R” instruction is 

written: 

Opcode_name rd, rs, rt. 

31:26 25:21 20:16

opcode rs rt

15:11 10:6

rd sa

5:0

function

 

Figure 7: MIPS "R" instruction format. 

The MIPS “J” format is illustrated in Figure 8.  “J” 

instructions modify the program counter (PC) using the 

address field in the instruction encoding.  Examples of “J” 

instructions are J and JAL.  In assembly, the “J” 

instruction is written: 

Opcode_name address. 

31:26 25:0

opcode address

 

Figure 8: MIPS "J" instruction format. 

Analysis of the instructions provides the register and 

constant operands, the function of the instruction, and the 

output register for the instruction.  The cost of the 

function is also part of the analysis.  The cost is an 

estimate of how much time the combinatorial logic in an 

instruction will take.  The cost is used when scheduling to 

determine when paths in the hardware need to be 

pipelined. 

 

4.1.3 Build the Circuit Graph 

 

The circuit graph is the core data structure for the 

second and third passes of M2V.  It is constructed using 

the analysis of the MIPS instructions to build 

dependencies between the instructions.  The graph is built 

in a single pass, as each instruction is sequentially read 

from the BBW file.  There are two types of nodes in the 

graph: register nodes and instruction nodes.   

Instruction nodes represent a single MIPS instruction.  

Edges into the instruction node are the operands for the 

instruction.  An edge out of the instruction node 

represents the result of the instruction being streamed to a 

register value.   

Register nodes represent a value that has been read or 

calculated in the basic block.  When the register node is a 

root of the circuit graph, it represents the basic block’s 

initial read from the register file.  To minimize contention 

on the register file, each register is read at most once from 

the register file and the value is stored locally in the 

accelerator.  There can be up to 31 roots in the circuit 

graph representing each of the MIPS registers.  An edge 

into the register node is a value coming from an 

instruction.  An edge out of the register node represents 

the value being used as an operand to an instruction.   
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In hardware, the register node may be realized with a 

pipeline stage from one operation to the next, or it may be 

a bus without a latch.  The scheduling pass determines 

whether the register node is pipelined or not.   

4.1.3.1 The Register Table 
The register table is an additional data structure that 

is not part of the circuit graph, but it is used to eliminate 

redundant register nodes and to determine which register 

nodes must be written back to the register file.  The 

register table has an entry for each MIPS register.  The 

table entry is initialized to be invalid.  When an 

instruction uses a MIPS register, the register table entry 

for that MIPS register is read.  If the entry is invalid then 

the value must be read from the register file and the entry 

will be updated with a pointer to the current register node.  

If the entry points to an existing register node, then an 

edge will be added from the register node to the 

instruction.  When an instruction calculates a value and 

writes it to a register node, the register table entry for that 

MIPS register is updated with a pointer to the register 

node. 

The register table therefore always contains the most 

current value for the MIPS registers.  When all 

instructions have been processed by M2V, a final scan of 

the register table will indicate the register nodes that 

contain the basic block’s final value for the MIPS 

registers.  Each of these register nodes must be written 

back to the register file.  A maximum of 31 writes, one for 

each MIPS register, will be sent to register file.  

The circuit graph is the final collection of instruction 

nodes, register nodes, and edges between these nodes. 

 

RF

Read 

R1

temp

Write/

Read 

R1

1.

2.

3.

[4]

SLL 1

 

Figure 9: Graph for: sll r1, r1, 1. 

 

4.1.3.2 Examples 
The procedure for building the circuit graph will now 

be illustrated with some examples. 

The instruction: [ 4 ] sll r1, r1, 1, is mapped to the 

graph illustrated in Figure 9.  The constant shift value, 1, 

is an operand to the SLL instruction but it is not a vertex 

on the graph.  Since M2V is producing custom hardware, 

a constant value can be easily optimized.  The instruction 

uses MIPS register R1 both as an operand and as a result 

register.  This creates two separate register nodes in the 

circuit graph.  When the R1 operand is read, the register 

table entry is invalid so the register file must be accessed.  

The register table is updated to point to register node 1.  

When the result from instruction node 2 is written back, 

the register table entry is written with a pointer to register 

node 3. 

The instruction: [ c ] or r1, r1, r3, is mapped to the 

graph illustrated in Figure 10.  When the MIPS register 

R1 operand is read, the register table entry points to 

register node 3.  This register node was generated from 

the sll instruction at address 4.  The two instructions can 

share the register node.  Since the register node is local to 

the hardware accelerator, the register file does not need to 

be accessed.  Reducing the register file bottleneck is one 

area where the accelerator improves performance. 

temp

Write/

Read 

R1

RF

Write/

Read 

R1

temp

Write/

Read 

R3

3. 6.

7.

8.

[c]

OR

 

Figure 10: Graph for: or r1, r1, r3. 

The circuit graph resulting from the two example 

instructions is illustrated in Figure 11.  The sharing of 

register node 3 is more explicit in this figure.   

The circuit graph for the entire example basic block 

can be found in Figure A-2 in Appendix I.  
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RF

Read 

R1

temp

Write/

Read 

R1

RF

Write/

Read 

R1

temp

Write/

Read 

R3

1.

2.

3. 6.

7.

8.

[4]

SLL 1

[c]

OR

 

Figure 11: Circuit graph for example instructions. 

 

4.2 Pass 2 - Schedule Operations 
 

After a circuit graph has been generated in pass 1 of 

M2V, the nodes in the graph can be scheduled.  There are 

two major constraints that the scheduler must consider.  

First, the cycle time for the chip must be met and no 

combinatorial path can exceed the cycle budget.  Second, 

the microarchitectural constraints of eMIPS must be 

respected.  There are limited read and write ports on the 

register file and limited ports on the memory management 

unit.  Also, the memory controller and the register file 

ports may not be accessible in every cycle due to the 

progress of instructions before and after the extension 

instruction through the RISC pipeline.   

Figure 2 and Figure A-1 illustrate the progression of 

instructions through the eMIPS pipeline. In a regular 

unaccelerated instruction, the register file read port is 

accessible in the ID pipeline stage, the register file write 

port is accessible in the WB pipeline stage, and the MMU 

is accessible in the MA pipeline stage.  The extension 

logic respects these constraints and resources are blocked 

from within the accelerator when they would conflict with 

an instruction in the main RISC pipeline.  A set of tables 

store the register file read ports, register file write ports, 

and MMU ports available to the extension logic on a cycle 

by cycle basis until steady-state is achieved.  Steady-state 

is when the extension logic has control over all pipeline 

resources.  Another set of tables store the resources that 

must be free at the end of the extension to prevent 

conflicts with trailing instructions. 

There are four main data structures that are used in 

the scheduling pass of M2V: the register read list (RRL), 

the next temporary register queue (NQ), the temporary 

register queue (TRQ), and the register write queue 

(RWQ). 

  The register read list (RRL) was built as the circuit 

graph was created.  The RRL contains all roots of the 

circuit graph and therefore represents all of the values that 

must be read from the register file.   

The next temporary register queue (NQ) is empty at 

the beginning of each cycle.  As the scheduling algorithm 

progresses, nodes are added to the NQ if the node has 

exceeded the cycle-time budget or if the node has unmet 

dependencies.  The NQ represents all nodes that may need 

to be pipelined before the next cycle.   

The temporary register queue (TRQ) is initially 

empty.  At the beginning of each cycle, the NQ from the 

previous cycle is copied to the TRQ.   

The register write queue (RWQ) is initially empty.  A 

register value is placed on the RWQ when it has been 

calculated and it needs to be written back to the register 

file. 

At the beginning of a clock cycle, the register file 

read ports, the register file write ports, and the MMU 

ports are calculated based on the values in the look up 

tables and the current cycle.  The register read ports for 

this cycle dictate the number of nodes that can be 

removed from the RRL in this cycle.  The register write 

ports for this cycle dictate the number of nodes that can be 

removed from the RWQ in this cycle.  All nodes can be 

removed from the TRQ in a cycle because the nodes are 

temporary calculations that are local to the accelerator. 

 Nodes are scheduled by covering the circuit graph 

using a depth-first traversal from the nodes that are 

available from the TRQ, the RRL, and the RWQ.  The 

traversal continues until a node is encountered with an 

unmet dependency or until the worst-case combinatorial 

delay from the last register exceeds the cycle budget.   An 

unmet dependency is defined as an operand that has not 
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been read or calculated yet.  A node is placed on the NQ 

when its traversal cannot continue. 

The cycle ends when the TRQ is empty and the 

available nodes from the RRL and RWQ have been 

traversed as far as possible.  The NQ is copied to the 

TRQ, the cycle is incremented, new resource constraints 

are calculated and the procedure repeats until the TRQ, 

the RRL, the RWQ, and the NQ are all empty. 

Nodes on the TRQ may need to be pipelined or they 

may get covered later in the same cycle.  Thus, when 

beginning the traversal of a node from the TRQ, the nodes 

should be examined to see if the original unmet 

dependency still exists.  If  the dependency exists the node 

will need to be pipelined, otherwise the node can be 

dropped. 

The M2V scheduler is greedy: it allocates resources 

to the nodes at the heads of the RRL and the RWQ.  A 

more optimal solution could potentially be found if 

different traversals were considered, although this could 

be more computationally expensive. 

Appendix I contains a complete example showing 

how the basic block in Figure 5 is scheduled.  Figure A-3 

shows the circuit graph in cycle 1, the ID stage for the 

accelerator.  Figure A-4 shows the circuit graph in cycle 

2, the EX1 stage for the accelerator.  Figure A-5 shows 

the circuit graph in cycle 3, the EX2 stage for the 

accelerator.  Figure A-6 shows the circuit graph in cycle 

4, the MA stage for the accelerator.  Figure A-7 shows the 

circuit graph in cycle 5, the WB stage for the accelerator.   

The unscheduled circuit graph is illustrated in Figure 

A-2.  We will reference the nodes within the graph by 

their sequence numbers, which are located to the upper 

left of the node.  At the beginning of the scheduling 

algorithm, all of the register read nodes (1, 4, 11, 18, 23, 

and 26) are on the RRL and the TRQ, NQ, and RWQ are 

empty.   

Figure A-3 shows the circuit graph in cycle 1, the 

accelerator’s ID stage.  Register file reads during this 

cycle are limited to the two read ports accessed by the 

RISC pipeline since the accelerator is snooping the results 

from the RISC pipeline.  The register read nodes 4 and 11 

are covered in this cycle.  Nodes 4 and 11 were removed 

from the RRL and placed on the NQ (the reads in the ID 

stage are placed on the NQ as a special case).  The TRQ 

and RWQ are still empty.   

Figure A-4 shows the circuit graph for cycle 2, the 

accelerator’s EX1 stage.  Two registers (nodes 1 and 18) 

were taken from the RRL and read from the register file, 

ten instructions (nodes 2, 5, 7, 9, 12, 14, 16, 19, 21, and 

28) are calculated, and four MIPS register values (nodes 

8, 15, 22, and 29) are calculated and placed on the RWQ.  

The NQ from cycle 1 was moved to the TRQ at the 

beginning of cycle 2.  The NQ at the end of cycle 2 

contains nodes 6, 8, 10, and 17.  Nodes 6, 10, and 17 were 

placed on the NQ speculatively because the operand 

nodes 3, 13, and 20 had not been read yet. 

Figure A-5 shows the circuit graph for cycle 3, the 

accelerator’s EX2 stage.  The final read nodes (23, 26) are 

taken from the RRL and read from the register file, the 

final instructions (24, 27) are calculated, and register write 

node 25 is placed on the RWQ.  The NQ from cycle 2 was 

copied to the TRQ at the beginning of cycle 3.  The 

speculative nodes (6, 10, 17) on the TRQ are pruned when 

we notice that the successor instruction is already 

covered. Node 8 is removed from the TRQ, but it is 

placed on the NQ since the TRQ is emptied before any 

nodes on the RRL can be removed.  The NQ also contains 

node 25 at the end of cycle 3.  One register write (15) is 

removed from the RWQ and is written back to the register 

file.  All nodes have been covered in cycles 1 through 

cycles 3, but the NQ and RWQ are not empty so the 

scheduling continues in the next cycle. 

Figure A-6 shows the circuit graph for cycle 4, the 

accelerator’s MA stage.  The NQ from cycle 3 is copied 

to the TRQ at the beginning of cycle 4.  Both nodes on the 

TRQ are pruned because the successor instruction node is 

covered.  Two nodes (8, 22) are removed from the RWQ 

and written back to the register file.  The RRL, TRQ, and 

NQ are empty.  The RWQ has two nodes left and so the 

scheduling algorithm continues for another cycle. 

Figure A-7 shows the circuit graph for cycle 5, the 

accelerator’s WB stage.  The final two nodes (25, 29) are 

removed from the RWQ and written back to the register 

file.  All queues are empty and the scheduling phase is 

complete. 

4.3 Pass 3 - Emit Verilog 
 

The third and final pass in M2V is emitting Verilog.  

There are four contributions to the final Verilog file: the 

eMIPS invariant code, the BBW dependent code, the 

circuit graph dependent code, and the cycle dependent 

code. 

The eMIPS invariant code, or boilerplate code, is the 

same for all eMIPS extensions.  This Verilog code 

contains the interface to the primary eMIPS pipeline, 

routing through the bus-macros for partial 

reconfigurability, and the logic that is common for all 

extensions. 

The BBW dependent code is Verilog that is specific 

to the instruction encoding and the register and value 

relationships encoded in the BBW file.  During pass 1, the 

BBW information was extracted and stored in a data 

structure.  The decode logic for the extension instruction 
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is generated using the opcode stored in the BBW file.  

The canonical register is sufficient as an identifier for 

temporary variables, but the actual register addresses must 

be used when accessing the register file.  A table lookup 

maps between canonical register addresses and actual 

MIPS register addresses. 

The circuit graph dependent code is generated with a 

final walk covering all the nodes in the circuit graph.  As 

nodes on the circuit graph were generated and scheduled, 

the nodes were decorated with information that is now 

used to generate the final Verilog code.  The circuit graph 

dependent code is: variable declarations for all register 

nodes, register file address and data logic, pipeline logic 

for register nodes that need it, and combinatorial logic for 

the instruction nodes. 

The cycle dependent code is code that is generated 

for the state machines in the extension.  This code is only 

dependent on the number of cycles in the extension and 

the general shape of the circuit graph is not important. 

The Verilog code emitted for the entire example basic 

block in Figure 5 can be found in Appendix II.  

Additional description for the Verilog implementation can 

be found in Section 7. 

 

5 Running the M2V Compiler 
 

The makefile supplied with the BB-Tools will also 

compile the M2V tool.  The command, “nmake”, will 

compile all of the BB-Tools including m2v.exe using the 

visual C++ compiler.  Alternatively, “nmake m2v.exe”, 

will compile just m2v and its dependencies.   

The command line for m2v is:  

m2v.exe [-v] infile [outfile]. 

Typing m2v by itself will give the usage for the 

command.  The optional verbose option, -v, sends 

information to standard out about how the compile is 

progressing.  Details about the extension encoding, 

construction of the circuit graph, and scheduling 

information are output.  The verbose option will also add 

comments to the combinatorial logic in the Verilog output 

so that a clear mapping between the MIPS binary and the 

Verilog can be seen. 

The infile argument is the name of the BBW (.bbw) 

file that is used as input to the m2v compiler.  The BBW 

file is generated by the BB-Tools.  The optional outfile 

argument is the file name for the Verilog output.  If an 

output file is not specified, the output is written to a.v. 

The synthesizable Verilog generated by M2V can be 

simulated in the eMIPS infrastructure and it can be 

synthesized with the standard FPGA design tools.  

Detailed instructions on how to synthesize an eMIPS 

Extension bit file are included in the eMIPS release 

documentation. 

 

6 M2V Implementation Details 
 

In this section we will discuss the structure of the 

M2V source code in more detail.  The majority of the 

code for M2V was written in C++.  The exception is the 

semantic analyzer, mips_dissect.c, which was written in 

C.  The main routine is in m2v.cpp.  Other files of interest 

are: Circuit.cpp, Instruction.cpp, Register.cpp, and 

RegTable.cpp.  Each of these files has a header file, *.h, 

associated with it as well.   

The main function in m2v calls the routines that step 

through each compilation pass.  The first pass scans the 

BBW file which details the encoding of the extension 

instruction and enables the building of the circuit graph.  

The second pass schedules the operations using 

Circuit.assignCycle and the third pass emits the Verilog 

using Circuit.emitVerilog.   

In pass 1, the parseEncoding procedure parses the 

extension instruction encoding from the BBW file.  The 

encoding gives the extended op-code for the instruction, 

the canonical registers in the RS and RT fields, and the 

canonical value in the immediate field.  There are not 

enough bits in the extension instruction to encode every 

canonical register in the basic block. To work around this 

problem, the basic block definition in the BBW file 

defines the fixed relationships between the registers that 

are actually encoded in the instruction and all the other 

canonical registers.  For example, RS may hold canonical 

register R2, and canonical R1 could be defined as R1 = 

R2 + 1.  The classes RegEncoding and ValEncoding (in 

m2v.h) store a single relationship and the BbwData class 

encapsulates all of the relationships which are needed 

when emitting Verilog in pass 3.   

The semantic analyzer in pass 1 is implemented in the 

MipsDissect procedure.  This procedure takes the binary 

encoding of a single MIPS instruction and produces the 

information needed to build the circuit graph and to emit 

the Verilog for this instruction in pass 3.  To build the 

circuit graph we must determine the register operands and 

the destination register for the instruction.  To emit the 

Verilog we need to record the function (semantic) of the 

instruction and the value of any immediate operands or 

constants.  This information is stored in the disRecord 

structure (mips_dissect.h), accessible via a pointer in the 

instruction node. This procedure creates one such 

structure for each instruction in the MIPS binary. 



 

 - 12 - 

The Circuit class contains the data structures and 

procedures for building, manipulating, and using the 

circuit graph.  The dis2nodes method completes pass 1 of 

the compilation. It uses the analysis from MipsDissect to 

build Register and Instruction nodes and connect them 

into a circuit graph.  The assignCycle and emitVerilog 

methods are used for compiler passes 2 and 3. 

 The dis2nodes method uses the analysis information 

in disRecord to further divide a single MIPS instruction 

into an Instruction node and a few Register nodes, 

building (a fragment of) the circuit graph.  Register nodes 

are needed for an instruction’s operands and to store its 

result.  When a Register node is created for the first read 

from the register file, dis2nodes pushes the node onto the 

register read queue, regRdVec, which is an entry point 

into the circuit graph.  The edges of the circuit graph 

represent the dependencies between instructions and data 

and are stored within the Instruction and the Register 

nodes. 

The Register class represents an intermediate value 

for a MIPS register.  A value may come directly from the 

register file or it may be the result of an instruction.  The 

value may need to be written back to the register file and 

it may be used as the operand to one or more instructions.  

The class maintains pointers to the source of the value and 

the destinations that use the value.  The value in a 

Register node may be pipelined to make the cycle-time or 

it could be strictly combinatorial.  A recursive walk 

method is used in pass 2 of the compilation to traverse the 

circuit graph when scheduling operations. 

The Instruction class stores the results of the analysis 

in MipsDissect and maintains pointers to operand and 

destination data.  A recursive walk method is used in the 

scheduling pass (pass 2) to traverse the circuit graph. 

The RegisterTable class is a compile time resource 

that stores the current location of a MIPS register value.  

There is an entry in the table for each MIPS register.  The 

entry is initially marked invalid.  When an instruction 

within the basic block uses a MIPS register for the first 

time, a Register node is created and the RegisterTable 

entry for that register number is modified to point to the 

new node.  Subsequent reads of the same register can then 

come from the Register node rather than from the register 

file.  When an instruction writes to a register, a pointer to 

the instruction’s result is stored in the RegisterTable 

entry.  Maintaining the RegisterTable allows instructions 

to share Register nodes when the instructions use the 

same value and it minimizes accesses to the register file.  

The setWriteBacks method is called at the beginning of 

the second pass to determine which registers have been 

written during the basic block’s execution.  These 

Register nodes are marked and will be the only values 

written back to the register file. 

Pass 2 of the compiler takes the circuit graph and 

generates a schedule for the operations.  The top-level 

code for pass 2 is the assignCycle method in the Circuit 

class.  The steps in pass 2 are to initialize the cycle-by-

cycle resource restrictions, determine the MIPS registers 

that need to be written back, walk the entire circuit graph 

to assign cycles, and potentially add extra cycles to the 

extension to maintain proper pipeline behavior. 

Access to the register file and to the memory 

controller is constrained because instructions in the 

eMIPS pipeline before or after the extension may own 

those resources.  Three classes of variables define the 

resources available in each cycle.  The init* arrays define 

the number of read ports, write ports, and load/store ports 

available in each cycle as the extension instruction starts. 

The ss* variables define the maximum number of 

resources available during steady-state execution.  The 

fin* variables define the resources available as the 

extension is completing.    

The array values used for register access are defined 

in the Circuit.h file.  The Circuit.h file contains the 

architecture specific constants for eMIPS.  By changing 

these constants, a different architecture could be 

supported.  For revision 1.0 of M2V, there are 2 reads 

allowed in each cycle of the extension.  There are 0 writes 

allowed in cycles 1 and 2, 1 write allowed in cycle 3, and 

2 writes allowed in steady-state. Architectural 

explorations are possible by changing the constants in 

Circuit.h.   

The walk of the circuit graph takes several iterations 

to complete, where each iteration represents a cycle in the 

hardware accelerator.  During a cycle, all nodes will be 

removed from the TRQ, regTmpVec, some nodes will be 

removed from the RRL, regRdVec, and some nodes may 

be removed from the RWQ, regWrVec.  The cycle 

number and the array values described above define how 

many nodes are removed from the RRL and RWQ.  

The walk of the graph begins in a register node and 

continues depth first until an instruction with an unmet 

dependency is found or until the cycle budget is exceeded.  

The walk methods in the Register and Instruction classes 

perform the traversal through the dependents until there is 

an unmet dependency, the cost function is exceeded, or 

there is no successor to the node.   

The cost is calculated by taking the cost from the 

previous node and adding the cost for this node.  The 

maximum cost defined in Circuit.h is roughly the 

estimated logic levels from the last register.  By keeping 

the logic levels within the cost function, the cycle budget 

should be met.  For an instruction node, the cost is 

calculated by taking the highest cost from all of its 

operands and adding the incremental cost for the 

instruction.  Since a register has a single entry point, the 
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cost is calculated by adding the incremental cost of the 

register node to the cost entering the node.  The 

incremental cost is a function of fan-out since high fan-

out will increase the wiring delay to subsequent nodes. 

The walk ends when the return code from the 

dependent node indicates failure due to excessive cost or 

an unmet dependency.  When the node receives a failure 

code from its dependent, the node is pushed to the NQ, 

nxtQ.   

The register and instruction nodes are decorated with 

cycle, cost, and pipeline information during the walk.  

The sum of the decorations creates the final schedule and 

they are used to emit the correct Verilog in the final pass 

of the circuit graph. 

When the allowed nodes have been removed from the 

TRQ, RRL, and RWQ in a given cycle, the next cycle can 

begin.  Every cycle begins by copying the NQ from the 

previous cycle to the TRQ for this cycle.  The scheduling 

pass is complete when the NQ, TRQ, RRL, and RWQ are 

empty. 

The final pass of the circuit graph emits the Verilog 

for the hardware accelerator.  The top-level method for 

this pass is Circuit.emitVerilog.  This method combines 

invariant, BBW dependent, circuit graph dependent, and 

cycle dependent code in the correct order to produce the 

Verilog code for the hardware accelerator.  The methods 

called by emitVerilog to produce the Verilog are described 

in Section 7.   

The invariant part of the extension is stored in three 

Verilog files.  The m2v_mod_bp.v file is the wrapper 

logic for the extension which contains the basic interface 

to the rest of eMIPS.  The m2v_ex_bp.v file contains the 

module inputs and outputs between the extension logic 

wrapper and the logic for the execution stage in the 

extension.  The m2v_state_mc.v file contains the 

declarations and logic for the read, write, and branch state 

machines that are the same for every extension. 

 

7 Hardware Implementation Details 
 

Appendix II lists the entire Verilog code that is 

generated by M2V for the basic block in Figure 5.  As 

discussed in Section 4.3, there are four contributions to 

the final Verilog file: the eMIPS invariant code, the BBW 

dependent code, the circuit graph dependent code, and the 

cycle dependent code. 

Lines 1-540 of the Verilog are the first lines of 

invariant code in the accelerator definition.  Lines 1-300 

define the extension’s top-level module, lines 301-425 

define the bus macros for the execution-to-write-back 

interface, and lines 426-540 define the bus macros for the 

instruction-decode-to-execution interface.  Lines 1-300 

are simply copied from m2v_mod_bp.v at runtime. 

The extension’s top-level module defines the 

interface signals between the extension and the rest of the 

eMIPS design.  It contains multiplexor logic for the 

shared data busses to the register file and the program 

counter update logic.  It also instantiates four modules that 

make up the core of the extension: the instruction decode 

logic, the execution logic, and the two bus macro 

modules. 

The bus macros provide connectivity between the 

extension logic and the primary eMIPS logic.  They 

represent physical routing locations and are required for 

partial reconfiguration. 

The instruction decode logic defined in lines 541-600 

is BBW dependent code.  This logic decodes the 

instruction in parallel with the primary RISC pipeline.  If 

the opcode of the instruction matches the opcode of the 

extension, the logic will assert the RI signal so that the 

extension logic can take control from the RISC pipeline.  

The fall-through address for the basic block is sent to the 

program counter.  The fields within the instruction are 

decoded and sent to the execution logic.  The first revision 

of M2V hardcodes the extension instruction to the MIPS 

“I” format.  The Circuit.emit_decode method generates 

this code. 

The extension execution logic is defined in lines 601-

1038. The execution logic is composed of invariant code, 

BBW dependent code, circuit graph dependent code, and 

cycle dependent code.   

Lines 601-666 define the interface signals between 

the execution logic and the rest of eMIPS.  It is invariant 

for every extension and is copied from m2v_ex_bp.v at 

runtime.   

Lines 667-695 define the Verilog registers that are 

used later in the execution logic.  This code is circuit 

graph and cycle dependent.  The registers for the register 

node values follow a convention to create an identifiable 

mapping between the generated logic and the circuit 

graph.  The format is rX_Y[_r], where X is the actual 

MIPS register, Y is the sequence number of the register 

node,  “_r” indicates that the value comes directly from a 

register, and the absence of “_r” indicates that the value 

comes from combinatorial logic.  Thus, r9_3 is a 

combinatorial value for MIPS register 9 that corresponds 

to the register node with sequence number 3.  The 

Circuit.emitVarDecl method generates this code. 

Lines 696-891 define the state machines that interface 

with the register file and the program counter logic.  This 

code is invariant and is copied from m2v_state_mc.v at 

runtime.  These state machines are eMIPS-specific. 
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Lines 892-924 define the register file and program 

counter usage for each cycle in the extension.  This 

information is used by the state machines defined in lines 

696-891.  This code is generated by the 

Circuit.emitCycState method.  

Lines 925-959 define the register file interface logic.  

Since there are limited ports on the register file, the read 

and write addresses are scheduled onto the register file 

address lines.  Likewise, read data from the register file 

must be routed to the correct register node, and write data 

to the register file must come from the correct calculation.  

The Circuit.emitRFLogic method generates this code.  

Lines 960-980 define the pipeline registers that are 

needed by the extension logic.  When a calculation must 

be pipelined, it is latched at the end of the calculation 

cycle and held for the remainder of the extension’s 

execution.  The Circuit.emitPipeReg method generates 

this code. 

Lines 981-1022 define the combinatorial logic for the 

instruction nodes.  This code is generated by the 

Circuit.emitInstLogic method. 

Lines 1023-1038 define the primary extension state 

machine.  The state machine is 1-hot encoded with one 

state representing one cycle in the schedule so the states 

can be directly used as control signals.  The machine is 

idle until an extension is successfully decoded and it steps 

through each cycle in the extension.  The 

Circuit.emitESM method generates this code. 

 

8 Experimental Results 
 

The compiler is at its very early stages of 

development, but nonetheless the first simple test we ran 

gave very positive indications. We used the basic block of 

Figure 5, for which we already had both a hand-written 

version of the eMIPS Extension and a test program that 

exercised it. The test program executes some 500+ 64-bit 

division tests, validating the results against the tabulated 

ones. It is one of the standard basic validation tests for the 

Microsoft Invisible Computing RTOS. 

 

 Hand-coded M2V generated 

Minimum Period 5.729 ns 5.886 ns 

Flip-Flops 755 494 

Slices 867 448 

4-Input LUTs 1542 810 

Table 1: Synthesis results. 

 

The hand-coded accelerator and the M2V-generated 

accelerator were synthesized and verified on the Virtex-4 

XC4LX25 FPGA, using Xilinx ISE v8.2i.  The synthesis 

results are summarized in Table 1.   

There are twelve instructions in the original basic 

block in Figure 5.  With a CPI of 1, it takes twelve cycles 

to complete the unaccelerated basic block.  M2V was able 

to accelerate the block such that it only needed five cycles 

resulting in a 2.4 speed-up, under idealized CPI 

conditions.   

The actual speed-up of the application is dependent 

on the number of times that the basic block is executed 

over the course of the application and on the actual CPI. 

Notice that memory does not need to be fetched for 

instructions in the accelerated block, whereas it does for 

the unaccelerated one. On the ML401 board the SRAM 

chips have a worst-case latency of 3 cycles and a 

pipelined latency of 1 cycle, but only for batch-mode 

fetches (e.g. cache refill). Since eMIPS does not currently 

have a cache each instruction fetch costs 3 cycles. This 

gives a speed-up of 12 from reduced I-fetches alone, and a 

projected speed-up of 4.5 for the basic block in isolation. 

The output and timing results from running the test 

program are shown in Appendix I, Figure A-14. Both 

versions obtained an overall speed-up of about 2.3 for the 

overall test program, over the unaccelerated version. 

Of particular interest on eMIPS is the cost of an 

Extension in terms of its area utilization. The FPGA chip 

used on the ML401 board has fairly limited resources, 

being as it is the second-smallest chip in the Virtex-4 

family of devices. The area we can devote to an Extension 

is consequently also limited. Figure A-8 is a rendition of 

the floor plan used for eMIPS, as depicted by the 

PlanAhead tool from Xilinx. On the left-hand side of the 

picture is the rectangle for the Extension logic. Figure A-9 

shows a detail of the Extension floor plan, indicating the 

area used for the bus macros – the inter-connection points 

between the TISA and the Extension. There are many 

signals in the interface, and consequently a high-price to 

pay for them.  

Per-iteration speedup, CPI=1 (idealized) 2.4 

Speedup from eliminated I-fetches 12.0 

Per-iteration speedup, CPI=3 (actual) 4.5 

Application speedup (actual) 2.3 

Area reduction factor 2 

Maximum frequency reduction 2.8% 

Table 2: Summary of  the performance results. 

Figure A-10 shows a few selected statistics generated 

by the PlanAhead tool for the resource utilizations of the 
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hand-generated test extension. Of notice is the 58% 

utilization of the LUTs available in the Extension area. 

Figure A-11 shows the same statistics for the M2V-

generated version, with a LUT utilization of only 30%. 

The synthesis reports (before place and route) from 

the Xilinx ISE v8.2-PR are shown in Figure A-12 for the 

hand-generated version and Figure A-13 for the M2V-

generated version, respectively. The reports confirm the 

PlanAhead indications of a factor of 2 area reduction. The 

timing reports show that the hand-generated version can 

potentially run at a higher frequency of about 175 MHz 

against 170 MHz for M2V. Both are well beyond the 

clock frequency of 100 MHz used on the ML401 board 

for eMIPS.  Table 2 summarizes the various performance 

indicators discussed above. 

 

9 Limitations and Future Directions 
 

The extension logic in eMIPS has direct access to the 

memory management unit (MMU), but M2V does not 

currently implement load and store instructions.  Load and 

store operations can be both supported and optimized in 

the M2V compiler.  Bandwidth to and from the memory 

can be increased by making the data path to memory 

wider than a conventional MIPS instruction would allow.  

For instance, an entire cache line could be read or written 

in a single cycle.  Reads and writes can be reordered in 

the instruction stream to better hide latencies.   

M2V must become aware of potential translation 

faults. The general scheme in eMIPS is to keep the 

original binary code in the executable, so that execution 

can be restarted from within it. M2V could keep a virtual 

program counter, associated with the register writebacks, 

to indicate where execution should restart in case of an 

MMU exception. This approach also solves the problem 

of handling external interrupts in a timely fashion. 

M2V currently generates Verilog that executes in the 

minimum number of cycles for the given resource 

constraints.  This can result in values being computed 

before they are needed.  An additional pass through the 

graph could delay calculation of results until they are 

actually needed, a just in time approach.  This would 

allow for idle hardware to be reused and could result in 

better overall utilization of the programmable logic.   

Multiple basic blocks could be combined into a single 

accelerator.  The state machines to control the control 

flow are simple, but multiple register tables might be 

needed to account for conditional branch instructions.   

M2V is the first implementation of the general idea of 

taking a binary executable image and converting it to 

hardware.  It understands MIPS instructions currently, but 

it could be extended so that the executable code could in 

fact be x86, ARM, or any other instruction set.  Rather 

than targeting synthesizable Verilog, M2V could be 

modified to generate gates using a standard cell library or 

a number of other hardware elements.  Note that if gates 

were to be generated directly, M2V would need additional 

optimization steps to improve the quality of the output. 

Currently, M2V takes advantage of the FPGA synthesis 

tools to perform a number of optimizations. 

 

10 Conclusions 
 

By realizing M2V we have demonstrated that it is 

possible to automatically generate efficient hardware 

accelerators, starting directly from binary code.  In 

contrast to existing approaches, M2V does not require any 

compiler modifications and therefore it supports any 

programming language and even cases where the code 

was directly written in assembly, or the sources are not 

available. 

The implementation shows that the execution 

acceleration is based on a number of factors.  Register file 

access is improved by scheduling register operations as 

soon and as efficiently as possible and by increasing the 

number of ports on the register file.  Also, temporary 

writes and reads to the register file can be avoided as all 

intermediate results are kept in the accelerated logic.   

Parallelism in the code is automatically extracted 

from the dependency graph.  Instructions are built to 

proceed in parallel, as soon as their operands are ready.  

There are more operands available at any given time, 

because temporary variables are streamed directly to the 

instruction(s) that need them and there are more ports on 

the register file. 

Multiple sequential instructions are executed in a 

single cycle when they fit within the cycle budget of the 

accelerator.  For example, the SLL instruction can be 

executed in zero time on the hardware because it is only 

redefining the numbering of the bits within the bus. 

The pressure on the memory bus and/or on the cache 

is greatly reduced. Memory bandwidth is freed up because 

the instructions in the accelerated basic block do not need 

to be fetched.  In future revisions of M2V, loads and 

stores can be scheduled to optimize bandwidth resources 

and wider data-paths to the memory can also help. 

References 
 

[ 1 ] Aho, A. V.., Lam, M. S., Sethi, R., Ullman, J. D. 

Compilers: Principles, Techniques, and Tools. 

Addison Wesley Publishers, Boston, MA.  2007. 



 

 - 16 - 

[ 2 ] Almeida, O., Forin, A., Garcia, P., Helander , J., 

Khantal, N.,  Lu, H., Meier, K., Mohan, S., Nielson, 

H., Pittman, R. N., Serg, R., Sukhwani, B., Veanes, 

M., Zorn, B., Berry, S., Boyce, C., Chaszar, D., 

Culrich, B., Kisin, M., Knezek, G., Linam-Church, 

W., Liu, S., Stewart, M., Toney, D.  Embedded 

Systems Research at DemoFest’07. Microsoft 

Research Technical Report MSR-TR-2007-94, July 

2007. 

[  3 ] Altera Corp. Excalibur Embedded Processor 

Solutions, 2005. 
         .http://www.altera.com/products/devices/excalibur/excindex.html,  

[ 4 ] Biswas, P., Banerjee, S., Dutt, N., Ienne, P., Pozzi, L. 

Performance and Energy Benefits of Instruction Set 

Extensions in an FPGA Soft Core VLSID’06, pag. 

651-656 

[ 5 ] Bonzini, P., Pozzi, L. Code Transformation 

Strategies for Extensible Embedded Processors 

CASES’06, pagg. 242-252. 

[ 6 ] Forin, A., Lynch, N., L., Pittman, R. N. eMIPS,A  

Dynamically Extensible Processor. Microsoft 

Research Technical Report MSR-TR-2006-143, 

October 2006. 

[ 7 ] Hauck, S. et al. The Chimaera Reconfigurable 

Functional Unit. IEEE VLSI, 2004. 

[ 8 ] Hauser, J. R., Wawrzynek, J. Garp: A MIPS 

Processor with a Reconfigurable Coprocessor.  

FCCM’97 pagg 12-21, April 1997. 

[  9 ] Hennessy, J. L., Patterson, D.A. Computer 

Organization and Design: The Hardware/Software 

Interface. Morgan Kaufmann Publishers, San 

Francisco, CA.  1998. 

[ 10 ] Kane, G., Heinrich, J. MIPS RISC Architecture. 

Prentice Hall, Upper Saddle River, NJ. 1992. 

[ 11 ] Kastner, R., Kaplan, A., Ogrenci Memik, S. 

Bozorgzadeh, E. Instruction generation for hybrid 

reconfigurable systems TODAES vol. 7, no. 4, pagg. 

605-632, October 2002. 

[ 12 ] Lau, D., Pritchard, O., Molson, P. Automated 

Generation of Hardware Accelerators with Direct  

Memory Access from ANSI/ISO Standard C 

Functions. FCCM’06, pagg. 45-54, April 2006. 

[ 13 ] Stretch, Inc. http://www.stretchinc.com  2006. 

[ 14 ] Tensilica, Inc. http://www.tensilica.com, 2006.  

[ 15 ] Xilinx Inc. Virtex 4 Family Overview. Xilinx Inc.,  

June 2005. Available at  

http://direct.xilinx.com/bvdocs/publications/ds112.pdf 

 

http://www.altera.com/products/devices/excalibur/excindex.html
http://www.stretchinc.com/
http://direct.xilinx.com/bvdocs/publications/ds112.pdf


 

 - 17 - 

Appendix I – Additional Figures 
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Figure A-1.  Extension Instruction and interaction with MIPS Pipeline. 
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Figure A-2.  Circuit Graph for Example Basic Block. 
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Figure A-3.  Circuit Graph for Example Basic Block in Cycle 1. 
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Figure A-4.  Circuit Graph for Example Basic Block in Cycle 2. 



 

 - 21 - 

 

cyc 3 cyc 3

cyc 3

cyc 2 cyc 2

cyc 1 cyc 1

RF

Read 

R1

temp

Write/

Read 

R1

RF

Write/

Read 

R1

RF

Read 

R6

RF

Read 

R2

temp

Write/

Read 

R3

temp

Write/

Read 

R2

RF

Write

R2

RF

Read 

R4

temp

Write/

Read 

R3

temp

Write/

Read 

R4

RF

Write

R4

RF

Read 

R5

temp

Write/

Read 

R3

RF

Write

R5

RF

Write/

Read 

R3

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

13.

12.

14.

15.

16.

17.

18.

19.

20.

21.

22.23.

24. 25. 27.

28.

29.

[4]

SLL

[30]

SLL

[20]

SRL

[24]

OR

[8]

SRL

[14]

SRL

[10]

SLL

[1c]

SLL

[c]

OR

[18]

OR

[28]

SLTU

[2c]

BEQ

RF

Read 

R0

26.

Not 

complete

Future 

RF

Register

Write

Future 

RF

Register

Read

Key:

Cycle 3Cycle 2Cycle 1 Cycle 4 Cycle 5

 

Figure A-5.  Circuit Graph for Example Basic Block in Cycle 3. 
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Figure A-6.  Circuit Graph for Example Basic Block in Cycle 4. 
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Figure A-7.  Circuit Graph for Example Basic Block in Cycle 5. 
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Figure A-8.  Floor-plan of the eMIPS processor. The area for the extension slot is the elongated purple vertical 

rectangle on the left side of the chip. 
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Figure A-9.  Detailed view of the top portion of the Extension area. Bus macros are visible (orange dots) on the 

right side of the extension. 
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Figure A-10.  Statistics from PlanAhead for the hand-generated version of the mmldiv64 extension. 

 

 
Figure A-11.  Statistics from PlanAhead for the M2V-generated version of the mmldiv64 extension. 
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Figure A-12.  Synthesis report for the hand-generated version of the mmldiv64 extension. 

 
Figure A-13.  Synthesis report for the M2V-generated version of the mmldiv64 extension. 
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Figure A-14.  Execution time results for the 64-bit division test program. The hand-generated version was run 

first, then the M2V-generated one
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Appendix II – Verilog Output for Example Basic Block 1 

 2 
// a.v 3 
// auto-generated by m2v revision 1 on Wed Sep 19 14:47:36 2007 4 
// 5 
// INFO: reading from m2v_mod_bp.v 6 
// 7 
// m2v_mod_bp.v 8 
// 8/15/07 9 
// Karl Meier, Neil Pittman 10 
// 11 
// MIPS to Verilog (m2v) module (_mod) boilerplate (_bp) 12 
// 13 
// Copyright (c) Microsoft Corporation. All rights reserved. 14 
 15 
`timescale 1ns / 1ps 16 
 17 
module mmlite_div64 ( 18 
/*****Ports****************************************************************/ 19 
 /* INPUT PORTS */ 20 
 input  CLK,   /* System Clock 50 - 100 MHZ */ 21 
 input  EN,   /* Enable */ 22 
 input  EXCEXT,   /* Exception Flush */ 23 
 input  EXTNOP_MA,  /* Extension Bubble in Memory Access Phase */ 24 
 input  GR,   /* Grant Pipeline Resources */ 25 
 input [31:0] INSTR,   /* Current Instruction */ 26 
 input [31:0] PC,   /* Current PC External */ 27 
 input  PCLK,   /* Pipeline Clock */ 28 
 input [31:0] RDREG1DATA,  /* Register Read Port 1 Register Data */ 29 
 input [31:0] RDREG2DATA,  /* Register Read Port 2 Register Data */ 30 
 input [31:0] RDREG3DATA,  /* Register Read Port 3 Register Data */ 31 
 input [31:0] RDREG4DATA,  /* Register Read Port 4 Register Data */ 32 
 input  REGEMPTY,  /* Register Write Buffer Empty */ 33 
 input  REGFULL,  /* Register Write Buffer Full */ 34 
 input  REGRDY,   /* Register Write Buffer Ready */ 35 
 input  RESET,   /* System Reset */ 36 
 /* OUTPUT PORTS */ 37 
 output   ACK,   /* Enable Acknowledged */ 38 
 output [31:0] EXTADD,   /* Extension Address */ 39 
      /* Multiplexed: */ 40 
      /*  Next PC */ 41 
      /*  Exception Address */ 42 
      /*  PC Memory Access Phase */ 43 
 output   PCNEXT,   /* Conditional PC Update */ 44 
 output [4:0] RDREG1,   /* Register Read Port 1 Register Number */ 45 
      /* Multiplexed: */ 46 
      /*  Read Port 1 Register Number */ 47 
      /*  Write Port 1 Register Number */ 48 
      /*  Write Register Memory Access Phase */ 49 
 output [4:0] RDREG2,   /* Read Port 2 Register Number */ 50 
      /* Multiplexed: */ 51 
      /*  Register Read Port 2 Register Number */ 52 
      /*  Register Write Port 2 Register Number */ 53 
      /* <0> Register Write Enable Memory Access Phase */ 54 
      /*  <1> Memory to Register Memory Acess Phase */ 55 
 output [4:0] RDREG3,   /* Register Read Port 3 Register Number */ 56 
      /* Multiplexed: */ 57 
      /*  Register Read Port 3 Register Number */ 58 
 output [4:0] RDREG4,   /* Register Read Port 4 Register Number Internal */ 59 
      /* Multiplexed: */ 60 
      /*  Register Read Port 4 Register Number */ 61 
      /*  <1:0> Data Address [1:0] Memory Access Phase */ 62 
      /* <2> Right/Left Unaligned Load/Store Memory Access Phase */ 63 
      /*  <3> Byte/Halfword Load/Store Memory Acess Phase */ 64 
 output   REGWRITE1,  /* Register Write Port 1 Write Enable */ 65 
 output   REGWRITE2,  /* Register Write Port 2 Write Enable */ 66 
 output   REWB,   /* Re-enter at Writeback */ 67 
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 output   RI,   /* Reserved/Recognized Instruction */ 68 
 output [31:0] WRDATA1,  /* Register Write Port 1 Data Internal */ 69 
      /* Multiplexed: */ 70 
      /*  Register Write Port 1 Data */ 71 
      /*  ALU Result Memory Access Phase */ 72 
 output [31:0] WRDATA2  /* Register Write Port 2 Data Internal */ 73 
      /* Multiplexed: */ 74 
      /*  Register Write Port 2 Data */ 75 
      /*  Memory Data Out Memory Access Phase */ 76 
 ); 77 
  78 
/*****Signals****************************************************************/ 79 
 80 
 wire [31:0] ALURESULT_WB;  /* ALU Result to Writeback Phase */ 81 
 wire   BHLS_WB;  /* Byte/Halfword Load/Store to Writeback Phase */ 82 
 wire [31:0] CJMPADD;  /* Conditional Jump address to offset from Current PC */ 83 
 wire [15:0] DIMM_EX;  /* Data Immediate Execute Phase */ 84 
 wire [15:0] DIMM_ID;  /* Data Immediate Instruction Decode Phase */ 85 
 wire [1:0]  DMADD_WB;  /* Least Significant Bits of Data Address to Writeback Phase */ 86 
 wire [31:0] DMDATAOUT_WB;  /* Memory Data Out to Writeback Phase */ 87 
 wire   DNE;   /* Execution Done */ 88 
 wire   EN_EX;   /* Enable Execute Phase */ 89 
 wire [31:0] JMPADD;   /* Jump address to end of basic block */ 90 
 wire   MEMTOREG_WB;  /* Memory to Register to Writeback Phase */ 91 
 wire [31:0] PC_EX;   /* PC Execute Phase */ 92 
 wire [31:0] PC_WB;   /* PC to Writeback Phase */ 93 
 wire [4:0]  RD_EX;   /* Destination Register Execution Phase */ 94 
 wire [4:0]  RDREG1_EX;  /* Register Read Port 1 Register Number Execute Phase */ 95 
 wire [31:0] RDREG1DATA_EX;  /* Register Read Port 1 Register Data Execute Phase */ 96 
 wire [4:0]  RDREG2_EX;  /* Register Read Port 2 Register Number Execute Phase */ 97 
 wire [31:0] RDREG2DATA_EX;  /* Register Read Port 2 Register Data Execute Phase */ 98 
 wire [4:0]  RDREG3_EX;  /* Register Read Port 3 Register Number Execute Phase */ 99 
 wire [4:0]  RDREG4_EX;  /* Register Read Port 4 Register Number Execute Phase */ 100 
 wire  REGWRITE_EX;  /* Register Write Execute Phase */ 101 
 wire  REGWRITE_ID;  /* Register Write Instruction Decode Phase */ 102 
 wire  REGWRITE_WB;  /* Register Write to Writeback Phase */ 103 
 wire  RESET_EX;  /* Reset Execute Phase */ 104 
 wire [31:0] RESULT_EX;  /* Result Execution Phase */ 105 
 wire  RNL_WB;   /* Right/Left Unaligned Load/Store to Writeback Phase */ 106 
 wire [4:0]  RS_EX;   /* Operand Register 1 Execute Phase */ 107 
 wire [4:0]  RS_ID;   /* Operand Register 1 Instruction Decode Phase */ 108 
 wire [4:0]  RT_EX;   /* Operand Register 2 Execute Phase */ 109 
 wire [4:0]  RT_ID;   /* Operand Register 2 Instruction Decode Phase */ 110 
 wire   SLL128_EX;  /* Shift Left Logical 128 bits Execute Phase */ 111 
 wire   SLL128_ID;  /* Shift Left Logical 128 bits Instruction Decode Phase */ 112 
 wire [31:0] WRDATA1_EX;  /* Register Write Port 1 Data Execute Phase */ 113 
 wire [31:0] WRDATA2_EX;  /* Register Write Port 2 Data Execute Phase */ 114 
 wire [4:0]  WRREG_WB;  /* Write Register Number to Writeback Phase */ 115 
 wire [4:0]  WRREG1_EX;  /* Register Write Port 1 Register Number Execute Phase */ 116 
 wire [4:0]  WRREG2_EX;  /* Register Write Port 2 Register Number Execute Phase */ 117 
 118 
/*****Registers****************************************************************/ 119 
 120 
 reg en_reg; /* Enable */ 121 
 reg gr_reg; /* Grant Pipeline Resources */ 122 
 123 
/*****Initialization****************************************************************/ 124 
/* 125 
 initial 126 
 begin 127 
  en_reg = 1'b0; 128 
  gr_reg = 1'b0; 129 
 end 130 
*/ 131 
  132 
/*********************************************************************/ 133 
 134 
 assign EXTADD = (en_reg)? JMPADD: 135 
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    (PCNEXT)? CJMPADD: 136 
    (REWB)? PC_WB: 137 
     32'hffffffff; 138 
 assign RDREG1 = (gr_reg & REGWRITE1)? WRREG1_EX: 139 
    (REWB & gr_reg)? WRREG_WB: 140 
    (gr_reg)? RDREG1_EX: 141 
     5'b11111;  142 
 assign RDREG2 = (gr_reg & REGWRITE2)? WRREG2_EX: 143 
    (REWB & gr_reg)? {3'b0,MEMTOREG_WB,REGWRITE_WB}: 144 
    (gr_reg)? RDREG2_EX: 145 
     5'b11111; 146 
 assign RDREG3 = (REWB & gr_reg)? 5'b0: 147 
    (gr_reg)? RDREG3_EX: 148 
     5'b11111; 149 
 assign RDREG4 = (REWB & gr_reg)? {1'b0,BHLS_WB,RNL_WB,DMADD_WB}: 150 
    (gr_reg)? RDREG4_EX: 151 
     5'b11111; 152 
 assign WRDATA1 =  (gr_reg & REGWRITE1)? WRDATA1_EX: 153 
   (REWB)? ALURESULT_WB: 154 
    32'hffffffff; 155 
 assign WRDATA2 =  (gr_reg & REGWRITE2)? WRDATA2_EX: 156 
   (REWB)? DMDATAOUT_WB: 157 
    32'hffffffff; 158 
 159 
 160 
   // 161 
   // instantiate the instruction decode module for the extension instruction 162 
   //   - the instruction decode module is auto generated and appended to the 163 
   //     end of the verilog file (a.v unless redefined) 164 
   // 165 
 166 
 ext_id id ( 167 
  .CLK(CLK), 168 
  .DIMM(DIMM_ID), 169 
  .EN(EN), 170 
  .JMPADD(JMPADD), 171 
  .INSTR(INSTR), 172 
  .PC(PC), 173 
  .REGWRITE(REGWRITE_ID), 174 
  .RESET(RESET), 175 
  .RI(RI), 176 
  .RS(RS_ID), 177 
  .RT(RT_ID), 178 
  .SLL128(SLL128_ID) 179 
  ); 180 
 181 
/*****Instruction Decode -> Execute****************************************************************/ 182 
 183 
 mmldiv64_toex to_ex( 184 
  .ACK(ACK), 185 
  .CLK(CLK), 186 
  .DIMM_EX(DIMM_EX),   187 
  .DIMM_ID(DIMM_ID), 188 
  .EN_EX(EN_EX), 189 
  .EN_ID(EN), 190 
  .EXCEXT(EXCEXT), 191 
  .PC_EX(PC_EX), 192 
  .PC_ID(PC), 193 
  .PCLK(PCLK), 194 
  .RDREG1DATA_EX(RDREG1DATA_EX), 195 
  .RDREG1DATA_ID(RDREG1DATA), 196 
  .RDREG2DATA_EX(RDREG2DATA_EX), 197 
  .RDREG2DATA_ID(RDREG2DATA), 198 
  .REGWRITE_EX(REGWRITE_EX), 199 
  .REGWRITE_ID(REGWRITE_ID), 200 
  .RESET(RESET), 201 
  .RESET_EX(RESET_EX), 202 
  .RS_EX(RS_EX), 203 
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  .RS_ID(RS_ID), 204 
  .RT_EX(RT_EX), 205 
  .RT_ID(RT_ID), 206 
  .SLL128_ID(SLL128_ID), 207 
  .SLL128_EX(SLL128_EX) 208 
  ); 209 
 210 
   211 
   // 212 
   // instantiate the execution module for the extension instruction 213 
   //   - the execution module is auto generated and appended to the 214 
   //     end of the verilog file (a.v unless redefined) 215 
   // 216 
 217 
 ext_ex ex( 218 
  .ACK(ACK), 219 
  .DIMM(DIMM_EX), 220 
  .DNE(DNE), 221 
  .CLK(CLK), 222 
  .CJMPADD(CJMPADD), 223 
  .EN(EN_EX), 224 
  .EXTNOP_MA(EXTNOP_MA), 225 
  .GR(GR), 226 
  .PC(PC_EX), 227 
  .PCLK(PCLK), 228 
  .PCNEXT(PCNEXT), 229 
  .RD(RD_EX), 230 
  .RDREG1(RDREG1_EX), 231 
  .RDREG1DATA(RDREG1DATA), 232 
  .RDREG1DATA_ID(RDREG1DATA_EX), 233 
  .RDREG2(RDREG2_EX), 234 
  .RDREG2DATA(RDREG2DATA), 235 
  .RDREG2DATA_ID(RDREG2DATA_EX), 236 
  .RDREG3(RDREG3_EX), 237 
  .RDREG3DATA(RDREG3DATA), 238 
  .RDREG4(RDREG4_EX), 239 
  .RDREG4DATA(RDREG4DATA), 240 
  .REGEMPTY(REGEMPTY), 241 
  .REGFULL(REGFULL), 242 
  .REGRDY(REGRDY), 243 
  .REGWRITE1(REGWRITE1), 244 
  .REGWRITE2(REGWRITE2), 245 
  .RESET(RESET_EX), 246 
  .RESULT(RESULT_EX), 247 
  .RS(RS_EX), 248 
  .RT(RT_EX), 249 
  .SLL128(SLL128_EX), 250 
  .WRDATA1(WRDATA1_EX), 251 
  .WRDATA2(WRDATA2_EX), 252 
  .WRREG1(WRREG1_EX), 253 
  .WRREG2(WRREG2_EX) 254 
  ); 255 
 256 
/*****Execute -> to Writeback****************************************************************/ 257 
 258 
 mmldiv64_topipe_wb to_wb( 259 
  .ACK(ACK), 260 
  .ALURESULT_WB(ALURESULT_WB), 261 
  .BHLS_WB(BHLS_WB), 262 
  .CLK(CLK), 263 
  .DMADD_WB(DMADD_WB), 264 
  .DMDATAOUT_WB(DMDATAOUT_WB), 265 
  .DNE(DNE), 266 
  .EN_EX(EN_EX), 267 
  .EXCEXT(EXCEXT), 268 
  .EXTNOP_MA(EXTNOP_MA), 269 
  .PC_EX(PC_EX), 270 
  .PC_WB(PC_WB), 271 
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  .PCLK(PCLK), 272 
  .MEMTOREG_WB(MEMTOREG_WB), 273 
  .RD_EX(RD_EX), 274 
  .REGWRITE_EX(REGWRITE_EX), 275 
  .REGWRITE_WB(REGWRITE_WB), 276 
  .RESET(RESET), 277 
  .RESULT_EX(RESULT_EX), 278 
  .REWB(REWB), 279 
  .RNL_WB(RNL_WB), 280 
  .WRREG_WB(WRREG_WB) 281 
  ); 282 
 283 
/*********************************************************************/ 284 
 285 
 always@(posedge CLK) 286 
 begin 287 
  if (RESET == 1'b0) 288 
  begin 289 
   en_reg <= 1'b0; 290 
   gr_reg <= 1'b0; 291 
  end 292 
  else 293 
  begin 294 
   en_reg <= EN; 295 
   gr_reg <= GR; 296 
  end 297 
 end 298 
 299 
endmodule 300 
 301 
 302 
 303 
/*****Execute -> to Writeback****************************************************************/ 304 
 305 
module mmldiv64_topipe_wb( 306 
/*****Ports****************************************************************/ 307 
 /* INPUT PORTS */ 308 
 input   ACK,   /* Enable Acknowledged */ 309 
 input   CLK,   /* System Clock 50 - 100 MHZ */ 310 
 input   DNE,   /* Execution Done */ 311 
 input   EN_EX,   /* Enable Execute Phase */ 312 
 input   EXCEXT,   /* Exception Flush */ 313 
 input   EXTNOP_MA,  /* Extension Bubble in Memory Access Phase */ 314 
 input [31:0] PC_EX,   /* Current PC Execute Phase */ 315 
 input   PCLK,   /* Pipeline Clock */ 316 
 input [4:0]  RD_EX,   /* Destination Register Execution Phase */ 317 
 input  REGWRITE_EX,  /* Register Write Execute Phase */ 318 
 input   RESET,   /* System Reset */ 319 
 input [31:0] RESULT_EX,  /* Result Execution Phase */ 320 
 /* OUTPUT PORTS */ 321 
 output [31:0] ALURESULT_WB,  /* ALU Result to Writeback Phase */ 322 
 output   BHLS_WB,  /* Byte/Halfword Load/Store to Writeback Phase */ 323 
 output [1:0] DMADD_WB,  /* Least Significant Bits of Data Address to Writeback Phase */ 324 
 output [31:0] DMDATAOUT_WB,  /* Memory Data Out to Writeback Phase */ 325 
 output   MEMTOREG_WB,  /* Memory to Register to Writeback Phase */ 326 
 output [31:0] PC_WB,   /* Current PC to Writeback Phase */ 327 
 output   REGWRITE_WB, / * Register Write to Writeback Phase */ 328 
 output   REWB,   /* Re-enter at Writeback */ 329 
 output   RNL_WB,   /* Right/Left Unaligned Load/Store to Writeback Phase */ 330 
 output [4:0] WRREG_WB  /* Write Register Number to Writeback Phase */ 331 
 ); 332 
  333 
/*****Signals****************************************************************/ 334 
 335 
 wire   EN_WB;   /* Enable to Writeback Phase */ 336 
 wire   RESET_WB;  /* Reset to Writeback Phase */ 337 
 338 
/*****Registers****************************************************************/ 339 
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 340 
 reg [70:0] ex_wb;  /* Execute -> to Writeback Pipeline Register */ 341 
 reg [1:0] pclkcnt;  /* Pipeline Clock edge detection */ 342 
 reg reset_reg;  /* Reset to Writeback Phase */ 343 
 reg rewb_reg;  /* Re-enter at Writeback */ 344 
 345 
/*****Initialization****************************************************************/ 346 
/* 347 
 initial 348 
 begin 349 
  ex_wb = 71'b0; 350 
  pclkcnt = 2'b0; 351 
  rewb_reg = 1'b0; 352 
  reset_reg = 1'b0; 353 
 end 354 
*/ 355 
/*********************************************************************/ 356 
 357 
 assign RESET_WB  = reset_reg; 358 
 assign REWB    =  rewb_reg & EN_WB; 359 
 assign EN_WB    = ex_wb[70];  //EN_EX; 360 
 assign REGWRITE_WB  = ex_wb[69];  //REGWRITE_EX; 361 
 assign MEMTOREG_WB  = 1'b0; 362 
 assign RNL_WB    = 1'b0; 363 
 assign BHLS_WB   = 1'b0; 364 
 assign DMADD_WB   = 2'b0; 365 
 assign WRREG_WB   = ex_wb[68:64]; //RD_EX; 366 
 assign ALURESULT_WB = ex_wb[63:32]; //RESULT_EX; 367 
 assign DMDATAOUT_WB  = 32'b0; 368 
 assign PC_WB   = ex_wb[31:0]; //PC_EX; 369 
 370 
/*********************************************************************/ 371 
 372 
 always@(posedge CLK) 373 
 begin 374 
  /* Pipeline Clock edge detection */ 375 
  pclkcnt = {pclkcnt[0],PCLK};   // karl, 9/19, change to non-blocking to 376 
                                        // match Neil 377 
 end 378 
 379 
 always@(posedge CLK) 380 
 begin 381 
  case(pclkcnt) 382 
  2'b01: begin 383 
    /* Synchronize Reset to Pipeline Clock */ 384 
    reset_reg <= RESET; 385 
   end 386 
  default: begin 387 
   end 388 
  endcase 389 
 end 390 
 391 
 always@(posedge CLK) 392 
 begin 393 
  /* Execute -> to Memory Access Pipeline Register */ 394 
  casex({pclkcnt,RESET_WB,EXTNOP_MA,rewb_reg,ACK,DNE,EXCEXT}) 395 
  8'bxx0xxxxx: begin 396 
     /* Reset */ 397 
     rewb_reg <= 1'b0; 398 
     ex_wb <= 71'b0; 399 
          end 400 
  8'b011xxxx1: begin 401 
     /* Exception in Pipeline, Flush */ 402 
     rewb_reg <= 1'b0; 403 
     ex_wb <= 71'b0; 404 
    end 405 
  8'bxx1x0110: begin 406 
     /* Latch Data and Control after Execution Finishes */ 407 
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     ex_wb <= {EN_EX,REGWRITE_EX,RD_EX,RESULT_EX,PC_EX}; 408 
    end 409 
  8'b101100x0: begin 410 
     /* Raise REWB at next Negedge of PCLK after ACK Lowers */ 411 
     rewb_reg <= 1'b1; 412 
    end 413 
  8'b011x1xx0: begin 414 
     /* Lower REWB at next Posedge and reset register */ 415 
     rewb_reg <= 1'b0; 416 
     ex_wb <= 71'b0; 417 
    end 418 
  default:  begin 419 
     /* NOP */ 420 
    end 421 
  endcase 422 
 end 423 
endmodule 424 
 425 
 426 
/*****Instruction Decode -> Execute****************************************************************/ 427 
 428 
module mmldiv64_toex( 429 
/*****Ports****************************************************************/ 430 
 /* INPUT PORTS */ 431 
 input   ACK,   /* Enable Acknowledged */ 432 
 input   CLK,   /* System Clock 50 - 100 MHZ */ 433 
 input [15:0] DIMM_ID,  /* Data Immediate Instruction Decode Phase */ 434 
 input   EN_ID,   /* Enable Instruction Decode Phase */ 435 
 input   EXCEXT,   /* Exception Flush */ 436 
 input [31:0] PC_ID,   /* Current PC Decode Phase */ 437 
 input   PCLK,   /* Pipeline Clock */ 438 
 input [31:0] RDREG1DATA_ID,  /* Register Read Port 1 Register Data Instruction Decode Phase */ 439 
 input [31:0] RDREG2DATA_ID,  /* Register Read Port 2 Register Data Instruction Decode Phase */ 440 
 input   REGWRITE_ID,  /* Register Write Instruction Decode Phase*/ 441 
 input   RESET,   /* System Reset */ 442 
 input [4:0]  RS_ID,   /* Operand Register 1 Instruction Decode Phase */ 443 
 input [4:0]  RT_ID,   /* Operand Register 2 Instruction Decode Phase */ 444 
 input   SLL128_ID,  /* Shift Left Logical 128 bits Instruction Decode Phase */ 445 
 /* OUTPUT PORTS */ 446 
 output [15:0] DIMM_EX,  /* Data Immediate Execute Phase */ 447 
 output   EN_EX,   /* Enable Execute Phase */ 448 
 output [31:0] PC_EX,   /* Current PC Instruction Decode Phase */ 449 
 output [31:0] RDREG1DATA_EX,  /* Register Read Port 1 Register Data Execute Phase */ 450 
 output [31:0] RDREG2DATA_EX,  /* Register Read Port 2 Register Data Execute Phase */ 451 
 output   REGWRITE_EX,  /* Register Write Execute Phase*/ 452 
 output   RESET_EX,  /* Reset Execute Phase */ 453 
 output [4:0] RS_EX,   /* Operand Register 1 Execute Phase */ 454 
 output [4:0] RT_EX,   /* Operand Register 2 Execute Phase */ 455 
 output   SLL128_EX  /* Shift Left Logical 128 bits Execute Phase */ 456 
 ); 457 
  458 
/*****Registers****************************************************************/ 459 
 460 
 reg [124:0] id_ex;  /* Instruction Decode -> Execute Pipeline Register */ 461 
 reg [1:0]  pclkcnt;  /* Pipeline Clock edge detection */ 462 
 reg  reset_reg;  /* Reset Execute Phase */ 463 
 464 
/*****Initialization****************************************************************/ 465 
 466 
/* 467 
 initial 468 
 begin 469 
  id_ex = 125'b0; 470 
  pclkcnt = 2'b0; 471 
  reset_reg = 1'b0; 472 
 end 473 
*/ 474 
 475 
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/*********************************************************************/ 476 
 477 
 assign RESET_EX  = reset_reg; 478 
 assign EN_EX   = id_ex[124];   //EN_ID; 479 
 assign SLL128_EX  = id_ex[123];   //SLL128_ID; 480 
 assign REGWRITE_EX = id_ex[122];   //REGWRITE_ID; 481 
 assign RS_EX    = id_ex[121:117]; //RS_ID; 482 
 assign RT_EX    = id_ex[116:112]; //RT_ID; 483 
 assign DIMM_EX   = id_ex[111:96];  //DIMM_ID; 484 
 assign PC_EX   = id_ex[95:64];  //PC_ID; 485 
 assign RDREG1DATA_EX = id_ex[63:32];  //RDREG1DATA_ID; 486 
 assign RDREG2DATA_EX = id_ex[31:0];  //RDREG2DATA_ID 487 
 488 
/*********************************************************************/ 489 
 490 
 always@(posedge CLK) 491 
 begin 492 
  /* Pipeline Clock edge detection */ 493 
  pclkcnt = {pclkcnt[0],PCLK};   // karl, 9/19, change to non-blocking to 494 
                                                  // match Neil 495 
 end 496 
 497 
 always@(posedge CLK) 498 
 begin 499 
  case(pclkcnt) 500 
  2'b01: begin 501 
    /* Synchronize Reset to Pipeline Clock */ 502 
    reset_reg <= RESET; 503 
   end 504 
  default: begin 505 
   end 506 
  endcase 507 
 end 508 
 509 
 always@(posedge CLK) 510 
 begin 511 
  /* Instruction Decode -> Execute Pipeline Register */ 512 
  casex({pclkcnt,RESET_EX,ACK,EXCEXT}) 513 
  5'bxx0xx: begin 514 
    /* Reset */ 515 
    id_ex <= 109'b0; 516 
   end 517 
  5'b011x1: begin 518 
    /* Exception in Pipeline, Flush */ 519 
    id_ex <= 109'b0; 520 
   end 521 
  5'bxx110: begin 522 
    /* Hold state during Execute Phase */ 523 
   end 524 
  5'b01100: begin 525 
    /* Clocking the Pipeline */ 526 
    id_ex <= 527 
{EN_ID,SLL128_ID,REGWRITE_ID,RS_ID,RT_ID,DIMM_ID,PC_ID,RDREG1DATA_ID,RDREG2DATA_ID}; 528 
   end 529 
  default: begin 530 
    /* NOP */ 531 
   end 532 
  endcase 533 
 end 534 
endmodule 535 
 536 
 537 
// 538 
// INFO: finished reading from m2v_mod_bp.v 539 
// 540 
 541 
// 542 
// extension instruction decode 543 
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// 544 
module ext_id( 545 
   input         CLK, 546 
   input         EN, 547 
   input [31:0]  INSTR, 548 
   input [31:0]  PC, 549 
   input         RESET, 550 
 551 
   output reg [15:0] DIMM, 552 
   output reg [31:0] JMPADD, 553 
   output reg        REGWRITE, 554 
   output reg        RI, 555 
   output reg [4:0]  RS, 556 
   output reg [4:0]  RT, 557 
   output reg        SLL128 558 
   ); 559 
 560 
   reg [31:0] jmpadd_c; 561 
   reg en_r; 562 
   reg [5:0] op_r; 563 
   reg [31:0] pc_r; 564 
   reg opcode_match; 565 
 566 
   // combinatorial logic for instruction decode 567 
   always @ (*) begin 568 
      jmpadd_c = pc_r + 48 + 4; 569 
      opcode_match = (op_r == 30); 570 
   end 571 
 572 
   // sequential logic for instruction decode 573 
   always @ (posedge CLK) begin 574 
      if (!RESET) begin 575 
         DIMM     <= 16'h0; 576 
         op_r     <= 6'h0; 577 
         RS       <= 5'h0; 578 
         RT       <= 5'h0; 579 
         en_r     <= 1'h0; 580 
         pc_r     <= 32'h0; 581 
         JMPADD   <= 32'h0; 582 
         RI       <= 1'h1; 583 
         SLL128   <= 1'h0; 584 
         REGWRITE <= 1'h0; 585 
      end else begin 586 
         DIMM     <= INSTR[15:0]; 587 
         op_r     <= INSTR[31:26]; 588 
         RS       <= INSTR[25:21]; 589 
         RT       <= INSTR[20:16]; 590 
         en_r     <= EN; 591 
         pc_r     <= PC; 592 
         JMPADD   <= jmpadd_c; 593 
         RI       <= ~opcode_match; 594 
         SLL128   <= en_r & opcode_match; 595 
         REGWRITE <= en_r & opcode_match; 596 
      end 597 
   end 598 
endmodule 599 
 600 
// 601 
// INFO: reading from m2v_ex_bp.v 602 
// 603 
// m2v_ex_bp.v 604 
// 8/15/07 605 
// Karl Meier, Neil Pittman 606 
// 607 
// MIPS to Verilog (m2v) execution (_ex) boilerplate (_bp) 608 
// 609 
// Copyright (c) Microsoft Corporation. All rights reserved. 610 
// 611 
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 612 
module ext_ex ( 613 
/*****Ports****************************************************************/ 614 
 /* INPUT PORTS */ 615 
 input   CLK,   /* System Clock 50 - 100 MHZ */ 616 
 input [15:0] DIMM,   /* Data Immediate */ 617 
 input   EN,   /* Enable  */ 618 
 input   EXTNOP_MA,  /* Extension Bubble in Memory Access Phase */ 619 
 input   GR,   /* Grant Pipeline Resources */ 620 
 input [31:0] PC,   /* Current PC */ 621 
 input   PCLK,   /* Pipeline Clock */ 622 
 input [31:0] RDREG1DATA,  /* Register Read Port 1 Register Data */ 623 
 input [31:0] RDREG1DATA_ID,  /* Register Read Port 1 Register Data Instruction Decode Phase */ 624 
 input [31:0] RDREG2DATA,  /* Register Read Port 2 Register Data */ 625 
 input [31:0] RDREG2DATA_ID,  /* Register Read Port 2 Register Data Instruction Decode Phase */ 626 
 input [31:0] RDREG3DATA,  /* Register Read Port 3 Register Data */ 627 
 input [31:0] RDREG4DATA,  /* Register Read Port 4 Register Data */ 628 
 input   REGEMPTY,  /* Register Write Buffer Empty */ 629 
 input   REGFULL,  /* Register Write Buffer Full */ 630 
 input   REGRDY,   /* Register Write Buffer Ready */ 631 
 input   RESET,   /* System Reset */ 632 
 input [4:0]  RS,   /* Operand Register 1 */ 633 
 input [4:0]  RT,   /* Operand Register 2 */ 634 
 input   SLL128,   /* Shift Left Logical 128 bits */ 635 
 636 
 /* OUTPUT PORTS */ 637 
 output reg   ACK,   /* Enable Acknowledged */ 638 
 output reg [31:0]  CJMPADD,  /* Conditional Jump address to offset from Current PC */ 639 
 output reg   DNE,   /* Execution Done */ 640 
 output reg   PCNEXT,   /* Conditional PC Update */ 641 
 output reg [4:0]  RD,   /* Destination Register */ 642 
 output reg   REGWRITE1,  /* Register Write Port 1 Write Enable */ 643 
 output reg   REGWRITE2,  /* Register Write Port 2 Write Enable */ 644 
 output reg [4:0]  RDREG1,   /* Register Read Port 1 Register Number */ 645 
 output reg [4:0]  RDREG2,   /* Register Read Port 2 Register Number */ 646 
 output reg [4:0]  RDREG3,   /* Register Read Port 3 Register Number */ 647 
 output reg [4:0]  RDREG4,   /* Register Read Port 4 Register Number */ 648 
 output reg [31:0] RESULT,   /* Result */ 649 
 output reg [31:0]  WRDATA1,  /* Register Write Port 1 Data */ 650 
 output reg [31:0] WRDATA2,  /* Register Write Port 2 Data */ 651 
 output reg [4:0]  WRREG1,   /* Register Write Port 1 Register Number */ 652 
 output reg [4:0]  WRREG2   /* Register Write Port 2 Register Number */ 653 
 ); 654 
 655 
   // tie off outputs that are not used in the automated accelerator 656 
   always @ (posedge CLK) begin 657 
      RD <= 0; 658 
      RESULT <= 0; 659 
   end 660 
 661 
/*********************************************************************/ 662 
 663 
// 664 
// INFO: finished reading from m2v_ex_bp.v 665 
// 666 
 667 
   // parameters for extension execution block 668 
   parameter MAX_STATE = 6; 669 
   parameter REG_READ_WAIT_STATES = 5; 670 
 671 
   // declarations for extension state machine 672 
   reg[MAX_STATE:1] state_r; 673 
   reg[5:1] branch_state_r; 674 
   reg[5:1] write_state_r; 675 
   reg[5:1] read_state_r; 676 
 677 
   // declarations for register read variables 678 
   reg[31:0] r9_1; 679 
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   reg[31:0] r8_4, r8_4_r; 680 
   reg[31:0] r4_11, r4_11_r; 681 
   reg[31:0] r5_18; 682 
   reg[31:0] r6_23; 683 
   // declarations for register temp variables 684 
   reg[31:0] r9_3; 685 
   reg[31:0] r11_6; 686 
   reg[31:0] r9_8, r9_8_r; 687 
   reg[31:0] r8_10; 688 
   reg[31:0] r11_13; 689 
   reg[31:0] r8_15, r8_15_r; 690 
   reg[31:0] r4_17; 691 
   reg[31:0] r11_20; 692 
   reg[31:0] r4_22, r4_22_r; 693 
   reg[31:0] r11_25, r11_25_r; 694 
   reg[31:0] r5_29, r5_29_r; 695 
// 696 
// INFO: reading from m2v_state_mc.v 697 
// 698 
   // m2v_state_mc.v 699 
   // 700 
   // Karl Meier 701 
   // 8/15/07 702 
   // 703 
   // invariant state machine logic for the read, write, and branch state 704 
   // machines 705 
   // 706 
 707 
   reg [1:0] pclk_del_r; 708 
   reg pclk_rise, pclk_fall; 709 
   reg en_r, sll128_r, gr_r, regrdy_r, regfull_r, regempty_r, extnop_ma_r; 710 
   reg clr_dne, DNE_c, ACK_c; 711 
   reg done_state, done_state_r; 712 
   reg wsm_idle, wsm_idle_r, wsm_pulse, wsm_pulse_r, wsm_wait, wsm_wait_r; 713 
   reg write_this_state, wsm_done; 714 
   reg rsm_idle, rsm_idle_r, rsm_latch, rsm_latch_r;  715 
   reg rsm_wait, rsm_wait_r, rsm_wait2, rsm_wait2_r; 716 
   reg [3:0] rsm_count, rsm_count_r; 717 
   reg read_this_state, rsm_done; 718 
   reg bsm_idle, bsm_idle_r, bsm_calc, bsm_calc_r;  719 
   reg bsm_wait, bsm_wait_r, bsm_waitpf, bsm_waitpf_r; 720 
   reg bsm_waitpr, bsm_waitpr_r; 721 
   reg branch_this_state, bsm_done; 722 
   reg fsm_idle, fsm_idle_r, fsm_wait2, fsm_wait2_r, fsm_wait, fsm_wait_r; 723 
   reg final_state, fsm_done; 724 
   reg take_branch, take_branch_r; 725 
 726 
   // state machine logic for compiled extension 727 
   always @ (*) begin 728 
      pclk_rise = (pclk_del_r == 2'b01); 729 
      pclk_fall = (pclk_del_r == 2'b10); 730 
 731 
      // start the extension instruction 732 
      clr_dne = state_r[1] & en_r & sll128_r; 733 
 734 
      // state machine for read logic 735 
      read_this_state = (| (state_r & read_state_r)); 736 
      rsm_wait = read_this_state &  737 
                 (rsm_idle_r & gr_r) | 738 
                 (rsm_wait_r & (rsm_count_r != REG_READ_WAIT_STATES)); 739 
      rsm_latch = rsm_wait_r & (rsm_count_r == REG_READ_WAIT_STATES); 740 
      rsm_wait2 = (rsm_wait2_r | rsm_latch_r) & ~done_state; 741 
      rsm_idle = ~rsm_wait & ~rsm_wait2 & ~rsm_latch; 742 
      rsm_count = rsm_idle_r ? 4'h0 : (rsm_count_r + 1); 743 
      rsm_done = ~read_this_state |  744 
                 (read_this_state & (rsm_latch_r | rsm_wait2_r)); 745 
                 746 
      // state machine for write logic 747 
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      write_this_state = (| (state_r & write_state_r)); 748 
      wsm_pulse = wsm_idle_r & write_this_state & gr_r & regrdy_r & ~regfull_r; 749 
      wsm_wait = (wsm_pulse_r & ~done_state) | 750 
                 (wsm_wait_r  & ~done_state); 751 
      wsm_idle = ~wsm_pulse & ~wsm_wait; 752 
      wsm_done = ~write_this_state |  753 
                 (write_this_state & (wsm_pulse_r | wsm_wait_r)); 754 
 755 
      // state machine for branch logic 756 
      branch_this_state = (| (state_r & branch_state_r)); 757 
      bsm_calc = bsm_idle_r & branch_this_state; 758 
      bsm_waitpf = (bsm_calc_r & take_branch_r) | 759 
                   (bsm_waitpf_r & ~pclk_fall); 760 
      bsm_waitpr = (bsm_waitpf_r & pclk_fall) | 761 
                   (bsm_waitpr_r & ~pclk_rise); 762 
      bsm_wait = (bsm_calc_r & ~take_branch_r & ~done_state) | 763 
                 (bsm_waitpr_r & pclk_rise & ~done_state) | 764 
                 (bsm_wait_r & ~done_state); 765 
      bsm_idle = ~bsm_calc & ~bsm_wait & ~bsm_waitpr & ~bsm_waitpf; 766 
      bsm_done = ~branch_this_state |  767 
                 (branch_this_state &  768 
                    ((bsm_calc_r & ~take_branch_r) | 769 
                     (bsm_waitpr_r & pclk_rise) | 770 
                      bsm_wait_r)); 771 
 772 
      // state machine to finish up the extension instruction 773 
      final_state = state_r[MAX_STATE]; 774 
      fsm_wait = final_state & rsm_idle_r | 775 
                 (fsm_wait_r & ~(gr_r & regempty_r & extnop_ma_r)); 776 
      fsm_wait2 = (fsm_wait_r & gr_r & regempty_r & extnop_ma_r) | 777 
                  (fsm_wait2_r & ~en_r); 778 
      fsm_idle = ~fsm_wait & ~fsm_wait2; 779 
      fsm_done = final_state & fsm_wait2_r & ~en_r; 780 
 781 
      // clear DNE as the extension instruction is entered 782 
      // set DNE as the extension instruction is exited 783 
      DNE_c = (DNE | (fsm_wait_r & gr_r & regempty_r & extnop_ma_r)) & ~clr_dne; 784 
      ACK_c = (ACK | (~DNE & ~ACK)) & ~(ACK & DNE & pclk_rise); 785 
   end 786 
                 787 
   always @ (*) begin 788 
      // true when all conditions for a state have been satisfied 789 
      done_state = clr_dne | 790 
                   (~state_r[1] & bsm_done & rsm_done & wsm_done); 791 
   end 792 
 793 
 794 
   // state to determine rising and falling edges of pclk 795 
   always @ (posedge CLK) begin 796 
      pclk_del_r <= {pclk_del_r[0], PCLK}; 797 
   end 798 
 799 
   // buffer signals that may be heavily loaded or come from a distance 800 
   //   - is this needed?  this is present to maintain compatibility with Neil 801 
   always @ (posedge CLK) begin 802 
      if (!RESET) begin 803 
         en_r <= 1'h0; 804 
         sll128_r <= 1'h0; 805 
         gr_r <= 1'h0; 806 
         regrdy_r <= 1'h0; 807 
         regfull_r <= 1'h0; 808 
         regempty_r <= 1'h0; 809 
         extnop_ma_r <= 1'h0; 810 
      end else begin 811 
         en_r <= EN; 812 
         sll128_r <= SLL128; 813 
         gr_r <= GR; 814 
         regrdy_r <= REGRDY; 815 
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         regfull_r <= REGFULL; 816 
         regempty_r <= REGEMPTY; 817 
         extnop_ma_r <= EXTNOP_MA; 818 
      end 819 
   end 820 
 821 
   // misc control for the extension 822 
   always @ (posedge CLK) begin 823 
      if (!RESET) begin 824 
         ACK <= 1'h0; 825 
         DNE <= 1'h1; 826 
         done_state_r <= 1'b0; 827 
 828 
         wsm_idle_r <= 1'b1; 829 
         wsm_pulse_r <= 1'b0; 830 
         wsm_wait_r <= 1'b0; 831 
 832 
         rsm_idle_r <= 1'b1; 833 
         rsm_latch_r <= 1'b0; 834 
         rsm_wait_r <= 1'b0; 835 
         rsm_wait2_r <= 1'b0; 836 
         rsm_count_r <= 4'b0; 837 
 838 
         bsm_idle_r <= 1'b1; 839 
         bsm_calc_r <= 1'b0; 840 
         bsm_wait_r <= 1'b0; 841 
         bsm_waitpr_r <= 1'b0; 842 
         bsm_waitpf_r <= 1'b0; 843 
         take_branch_r <= 1'h0; 844 
 845 
         fsm_idle_r <= 1'b1; 846 
         fsm_wait_r <= 1'b0; 847 
         fsm_wait2_r <= 1'b0; 848 
 849 
      end else begin 850 
         /* 851 
         // clear ack 852 
         if (ACK & DNE & pclk_rise) 853 
            ACK <= 1'h0; 854 
         // set ack 855 
         else if (~DNE & ~ACK) 856 
            ACK <= 1'h1; 857 
         */ 858 
 859 
         ACK <= ACK_c; 860 
         DNE <= DNE_c; 861 
         done_state_r <= done_state; 862 
 863 
         wsm_idle_r <= wsm_idle; 864 
         wsm_pulse_r <= wsm_pulse; 865 
         wsm_wait_r <= wsm_wait; 866 
 867 
         rsm_idle_r <= rsm_idle; 868 
         rsm_latch_r <= rsm_latch; 869 
         rsm_wait_r <= rsm_wait; 870 
         rsm_wait2_r <= rsm_wait2; 871 
         rsm_count_r <= rsm_count; 872 
 873 
         bsm_idle_r <= bsm_idle; 874 
         bsm_calc_r <= bsm_calc; 875 
         bsm_wait_r <= bsm_wait; 876 
         bsm_waitpr_r <= bsm_waitpr; 877 
         bsm_waitpf_r <= bsm_waitpf; 878 
         // if take_branch_r is ever used outside of the branch state machine, 879 
         // it may need to be cleared at the end of the branch operation 880 
         take_branch_r <= bsm_calc ? take_branch : take_branch_r; 881 
 882 
         fsm_idle_r <= fsm_idle; 883 
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         fsm_wait_r <= fsm_wait; 884 
         fsm_wait2_r <= fsm_wait2; 885 
      end 886 
   end 887 
 888 
// 889 
// INFO: finished reading from m2v_state_mc.v 890 
// 891 
 892 
 893 
   // registers that contain state about this cycle 894 
   always @ (posedge CLK) begin 895 
      if (~RESET) begin 896 
         branch_state_r[1] <= 1'b0; 897 
         write_state_r[1]  <= 1'b0; 898 
         read_state_r[1]   <= 1'b1; 899 
 900 
         branch_state_r[2] <= 1'b0; 901 
         write_state_r[2]  <= 1'b0; 902 
         read_state_r[2]   <= 1'b1; 903 
 904 
         branch_state_r[3] <= 1'b1; 905 
         write_state_r[3]  <= 1'b1; 906 
         read_state_r[3]   <= 1'b1; 907 
 908 
         branch_state_r[4] <= 1'b0; 909 
         write_state_r[4]  <= 1'b1; 910 
         read_state_r[4]   <= 1'b0; 911 
 912 
         branch_state_r[5] <= 1'b0; 913 
         write_state_r[5]  <= 1'b1; 914 
         read_state_r[5]   <= 1'b0; 915 
 916 
      end else begin 917 
         branch_state_r <= branch_state_r; 918 
         write_state_r  <= write_state_r; 919 
         read_state_r   <= read_state_r; 920 
      end 921 
   end 922 
 923 
 924 
   // combinatorial logic to/from the register file 925 
   always @ (*) begin 926 
      // combinatorial logic for register reads 927 
      // use read ports 3 & 4 to prevent write conflicts 928 
      RDREG1 = 0; 929 
      RDREG2 = 0; 930 
      r9_1 =  RDREG3DATA; 931 
      r8_4 =  RDREG2DATA_ID; 932 
      r4_11 =  RDREG1DATA_ID; 933 
      r5_18 =  RDREG4DATA; 934 
      r6_23 =  RDREG3DATA; 935 
      RDREG3 =  ({5{state_r[2]}} & (RT + 1)) 936 
              | ({5{state_r[1]}} & RT) 937 
              | ({5{state_r[3]}} & (RS + 2)); 938 
      RDREG4 =  ({5{state_r[1]}} & RS) 939 
              | ({5{state_r[2]}} & (RS + 1)); 940 
 941 
      // combinatorial logic for register writes 942 
      WRREG1 =  ({5{state_r[3]}} & RT) 943 
              | ({5{state_r[4]}} & (RT + 1)) 944 
              | ({5{state_r[5]}} & (RS + 1)); 945 
      WRDATA1 = ({32{state_r[3]}} & r8_15_r) 946 
              | ({32{state_r[4]}} & r9_8_r) 947 
              | ({32{state_r[5]}} & r5_29_r); 948 
      REGWRITE1 = wsm_pulse_r & (state_r[3] 949 
              | state_r[4] 950 
              | state_r[5]); 951 
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      WRREG2 =  ({5{state_r[4]}} & RS) 952 
              | ({5{state_r[5]}} & 11); 953 
      WRDATA2 = ({32{state_r[4]}} & r4_22_r) 954 
              | ({32{state_r[5]}} & r11_25_r); 955 
      REGWRITE2 = wsm_pulse_r & (state_r[4] 956 
              | state_r[5]); 957 
   end 958 
 959 
   // internal pipeline logic 960 
   always @ (posedge CLK) begin 961 
      if (~RESET) begin 962 
         r8_4_r <= 32'h0; 963 
         r4_11_r <= 32'h0; 964 
         r9_8_r <= 32'h0; 965 
         r8_15_r <= 32'h0; 966 
         r4_22_r <= 32'h0; 967 
         r11_25_r <= 32'h0; 968 
         r5_29_r <= 32'h0; 969 
      end else begin 970 
         r8_4_r <=  state_r[1] ? r8_4 : r8_4_r; 971 
         r4_11_r <=  state_r[1] ? r4_11 : r4_11_r; 972 
         r9_8_r <=  state_r[2] ? r9_8 : r9_8_r; 973 
         r8_15_r <=  state_r[2] ? r8_15 : r8_15_r; 974 
         r4_22_r <=  state_r[2] ? r4_22 : r4_22_r; 975 
         r11_25_r <=  state_r[3] ? r11_25 : r11_25_r; 976 
         r5_29_r <=  state_r[2] ? r5_29 : r5_29_r; 977 
      end 978 
   end 979 
 980 
   // combinatorial logic for the instruction nodes 981 
   always @ (*) begin 982 
      // [0x0] 0x10840 sll r9, r9, 1 983 
      r9_3 = r9_1 << 1; 984 
 985 
      // [0x4] 0x21fc2 srl r11, r8, 31 986 
      r11_6 = r8_4_r >> 31; 987 
 988 
      // [0x8] 0x230825 or r9, r9, r11 989 
      r9_8 = r9_3 | r11_6; 990 
 991 
      // [0xc] 0x21040 sll r8, r8, 1 992 
      r8_10 = r8_4_r << 1; 993 
 994 
      // [0x10] 0x41fc2 srl r11, r4, 31 995 
      r11_13 = r4_11_r >> 31; 996 
 997 
      // [0x14] 0x431025 or r8, r8, r11 998 
      r8_15 = r8_10 | r11_13; 999 
 1000 
      // [0x18] 0x42040 sll r4, r4, 1 1001 
      r4_17 = r4_11_r << 1; 1002 
 1003 
      // [0x1c] 0x51fc2 srl r11, r5, 31 1004 
      r11_20 = r5_18 >> 31; 1005 
 1006 
      // [0x20] 0x832025 or r4, r4, r11 1007 
      r4_22 = r4_17 | r11_20; 1008 
 1009 
      // [0x24] 0x26182b sltu r11, r9, r6 1010 
      r11_25 = ({1'b0, r9_8_r} < {1'b0, r6_23}) ? 1 : 0; 1011 
 1012 
      // [0x28] 0x10030005 beq r0, r11, 20 1013 
      take_branch = (32'h0 == r11_25); 1014 
      CJMPADD = take_branch ? (PC + 4 + {{16{DIMM[15]}},DIMM}) : PC; 1015 
      PCNEXT = state_r[3] & bsm_waitpr & take_branch; 1016 
 1017 
      // [0x2c] 0x52840 sll r5, r5, 1 1018 
      r5_29 = r5_18 << 1; 1019 
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 1020 
   end 1021 
 1022 
   // primary extension state machine 1023 
   always @ (posedge CLK) begin 1024 
      if (~RESET) begin 1025 
         state_r <= 1; 1026 
      end else begin 1027 
         if (en_r) begin 1028 
            if (done_state) 1029 
               state_r <= {state_r[MAX_STATE-1:1], 1'b0}; 1030 
         end 1031 
         else begin 1032 
            state_r <= 1; 1033 
         end 1034 
      end 1035 
   end 1036 
 1037 
endmodule 1038 
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Appendix III – BBW File for Example Basic Block 
 

[bbname __ull_div] 

MIPSBE 

[encoding] 

[r1=r2+1;r3=r0+11;r5=r4+1;r6=r5+1]b26.6:c011110;b21.5:r4;b16.5:r2;b0.16:v0; 

[code 48] 

40080100 

c21f0200 

25082300 

40100200 

c21f0400 

25104300 

40200400 

c21f0500 

25208300 

2b182600 

5000310 

40280500 

[disasm] 

sll r1,r1,1 

srl r3,r2,31 

or r1,r1,r3 

sll r2,r2,1 

srl r3,r4,31 

or r2,r2,r3 

sll r4,r4,1 

srl r3,r5,31 

or r4,r4,r3 

sltu r3,r1,r6 

beq r0,r3,40 

sll r5,r5,1 

[registers 7] 

0,9,8,11,4,5,6 

[valuess 1] 

{40,11,5} 



 

 - 46 - 

Appendix IV – Verbose Output from M2V for Example Basic Block 
 

c:\fpga\bb2\m2v.exe -v small.bbw  

Verbose output is enabled 

 

Basic Block Dump: 

Regs: 0 9 8 11 4 5 6 

Values: {28,b,5} 

Code: [  0]    10840 sll r1,r1,1 

 [  4]    21fc2 srl r3,r2,31 

 [  8]   230825 or r1,r1,r3 

 [  c]    21040 sll r2,r2,1 

 [ 10]    41fc2 srl r3,r4,31 

 [ 14]   431025 or r2,r2,r3 

 [ 18]    42040 sll r4,r4,1 

 [ 1c]    51fc2 srl r3,r5,31 

 [ 20]   832025 or r4,r4,r3 

 [ 24]   26182b sltu r3,r1,r6 

 [ 28] 10030005 beq r0,r3,40 

 [ 2c]    52840 sll r5,r5,1 

encoding of the extension instruction: 

   [r1=r2+1;r3=r0+11;r5=r4+1;r6=r5+1]b26.6:c011110;b21.5:r4;b16.5:r2;b0.16:v0; 

 

Parsing register relationships (pre-conditions) 

   r1 = r2 + 1 

   r3 = r0 + 11 

   r5 = r4 + 1 

   r6 = r5 + 1 

Parsing instruction encoding 

   extension is decoded as opcode = 30 

   RS register = r4 

   RT register = r2 

   immediate value in encoding = v0 

   extension is encoded as: 0x78820000 

Finished parsing instruction encoding 

 

Generating IL and Dependency Graph... 

............ 

 

Assigning cycles to Instructions and RegFile access...... 

 

**** Cycle 1 **** 

 

INFO: reading register RT 

NODE 4: Register  

   [0x4] Read r2 (canonical) from the RF 

      used by: [0xc]  

INFO: reading register RS 

NODE 11: Register  

   [0x10] Read r4 (canonical) from the RF 

      used by: [0x18]  

 

INFO: cycle 1 state: RF reads = 2, RF writes = 0, LS accesses = 0, may branch = 0 
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**** Cycle 2 **** 

 

NODE 4 is being pipelined 

NODE 5: Instruction 

   [0x4] 0x21fc2 srl r11, r8, 31 

cost = 4 

NODE 6: Register  

   [0x4] Write r3 (canonical)  

      used by: [0x8]  

NODE 9: Instruction 

   [0xc] 0x21040 sll r8, r8, 1 

cost = 4 

NODE 10: Register  

   [0xc] Write r2 (canonical)  

      used by: [0x14]  

NODE 11 is being pipelined 

NODE 12: Instruction 

   [0x10] 0x41fc2 srl r11, r4, 31 

cost = 4 

NODE 13: Register  

   [0x10] Write r3 (canonical)  

      used by: [0x14]  

NODE 14: Instruction 

   [0x14] 0x431025 or r8, r8, r11 

cost = 5 

NODE 15: Register  

   [0x14] Write r2 (canonical) to the RF 

NODE 16: Instruction 

   [0x18] 0x42040 sll r4, r4, 1 

cost = 4 

NODE 17: Register  

   [0x18] Write r4 (canonical)  

      used by: [0x20]  

 

INFO: reading register (RT + 1) 

NODE 1: Register  

   [0x0] Read r1 (canonical) from the RF 

NODE 2: Instruction 

   [0x0] 0x10840 sll r9, r9, 1 

cost = 4 

NODE 3: Register  

   [0x0] Write r1 (canonical)  

      used by: [0x8]  

NODE 7: Instruction 

   [0x8] 0x230825 or r9, r9, r11 

cost = 5 

NODE 8: Register  

   [0x8] Write r1 (canonical) to the RF 

      used by: [0x24]  

INFO: reading register (RS + 1) 

NODE 18: Register  

   [0x1c] Read r5 (canonical) from the RF 

      used by: [0x2c]  

NODE 19: Instruction 
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   [0x1c] 0x51fc2 srl r11, r5, 31 

cost = 4 

NODE 20: Register  

   [0x1c] Write r3 (canonical)  

      used by: [0x20]  

NODE 21: Instruction 

   [0x20] 0x832025 or r4, r4, r11 

cost = 5 

NODE 22: Register  

   [0x20] Write r4 (canonical) to the RF 

NODE 28: Instruction 

   [0x2c] 0x52840 sll r5, r5, 1 

cost = 4 

NODE 29: Register  

   [0x2c] Write r5 (canonical) to the RF 

 

INFO: cycle 2 state: RF reads = 2, RF writes = 0, LS accesses = 0, may branch = 0 

 

**** Cycle 3 **** 

 

NODE 8 is being pipelined 

 

INFO: reading register (RS + 2) 

NODE 23: Register  

   [0x24] Read r6 (canonical) from the RF 

NODE 24: Instruction 

   [0x24] 0x26182b sltu r11, r9, r6 

cost = 13 

NODE 25: Register  

   [0x24] Write r3 (canonical) to the RF 

      used by: [0x28]  

INFO: reading register 0 

NODE 26: Register  

   [0x28] Read r0 (canonical) from the RF 

NODE 27: Instruction 

   [0x28] 0x10030005 beq r0, r11, 20 

cost = 18 

 

NODE 15 is being pipelined 

NODE 15 written back to RF in cycle 3 

INFO: cycle 3 state: RF reads = 1, RF writes = 1, LS accesses = 0, may branch = 1 

 

**** Cycle 4 **** 

 

 

NODE 8 written back to RF in cycle 4 

NODE 22 is being pipelined 

NODE 22 written back to RF in cycle 4 

INFO: cycle 4 state: RF reads = 0, RF writes = 2, LS accesses = 0, may branch = 0 

 

**** Cycle 5 **** 

 

NODE 29 is being pipelined 

NODE 29 written back to RF in cycle 5 
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NODE 25 is being pipelined 

NODE 25 written back to RF in cycle 5 

INFO: cycle 5 state: RF reads = 0, RF writes = 2, LS accesses = 0, may branch = 0 

 

INFO: Extension requires 5 cycles 

 

Writing Verilog module, a, to a.v 

.......... 

PASS: m2v completed successfully 

 


