

MIPS-to-Verilog, Hardware Compilation for the eMIPS
Processor

Karl Meier, Alessandro Forin

Microsoft Research

September 2007

Technical Report

MSR-TR-2007-128

Microsoft Research

Microsoft Corporation

One Microsoft Way

Redmond, WA 98052

 - 2 -

 - 3 -

MIPS-to-Verilog, Hardware Compilation for the eMIPS Processor

Karl Meier, Alessandro Forin

Microsoft Research

Abstract

The MIPS-to-Verilog (M2V) compiler translates

blocks of MIPS machine code into a hardware design

represented in Verilog. The design constitutes an

Extension for the eMIPS processor, a dynamically

extensible processor realized on the Virtex-4 XC4LX25

FPGA. The Extension interacts closely with the basic

pipeline of the microprocessor and recognizes special

Extension Instructions, instructions that are not part of

the basic MIPS ISA. Each instruction is semantically

equivalent to one or more blocks of MIPS code. The

purpose of the M2V compiler is to automate the process

of creating Extensions for the specific purpose of

accelerating the execution of software programs.

M2V is a three-pass compiler that accepts as input

basic blocks in the form generated by the eMIPS BB-

Tools, a set of programs for the analysis and

instrumentation of MIPS ELF images. Pass 1 of M2V

generates a circuit graph that is semantically equivalent

to the basic block that is being accelerated. Pass 2

schedules the operations in the circuit graph under the

microarchitectural constraints of the eMIPS processor.

Pass 3 emits synthesizable Verilog that constitutes the

hardware accelerator that runs in the eMIPS extension

slot.

The compiler was implemented from scratch in C++

and despite its current limitations it can already compile

a few simple examples. The quality of the synthesizable

Verilog that is generated by M2V compares favorably

with hand-generated code for the same input. On a 64-bit

division test M2V generates an Extension that performs at

the same speed but uses half the area of the hand-

generated version.

1 Introduction

An embedded system typically runs a small set of

applications and has tight power, cost, and performance

criteria. Using a general purpose CPU for these systems

can help meet the performance goals, but inefficiency can

result when specialized resources, such as a floating point

unit (FPU), are present but seldom, if ever, used. A lower

power processor with a reduced instruction set

architecture (ISA) and without a FPU may suffer from

poor performance.

Extensible processors try to compromise between

general purpose CPUs and minimal RISC

implementations. Extensible processors have a simple

RISC pipeline and the ability to augment the ISA with

custom instructions. The ISA can be augmented

statically, at tape-out, or it can be augmented dynamically

when applications are loaded. The eMIPS processor is an

example of a dynamically extensible processor.

Extensible processors take advantage of the fact that a

small amount of code takes the majority of execution time

in a typical program. The code that executes most often is

a candidate for hardware acceleration. The code must be

identified by a special instruction that will initiate the

accelerator.

Selection of the best code to accelerate is an active

area of research. The eMIPS tool-chain restricts the code

selection problem to the set of basic blocks in the

application. Using the strict definition in [1], the basic

block is a directed acyclic graph (DAG). The BB-Tools

select the basic blocks to accelerate and patch the binary

image with the special instructions for the accelerator.

The M2V compiler automatically generates the hardware

accelerator.

The accelerator can be statically loaded when eMIPS

is reset or it can be dynamically loaded when an

application is loaded using partial reconfiguration of the

FPGA. By dynamically loading and unloading

accelerators, programmable hardware can be minimized.

In previous versions of eMIPS, the accelerator blocks

could be specified and given to a hardware designer to

hand design the accelerator. While this can lead to an

efficient implementation, it does not scale well as

dynamically extensible processors are more widely used.

The use of tools like M2V can expand the use of hardware

acceleration.

M2V accelerates applications from their compiled

machine code. This is the only option when an

application’s source code is unavailable, such as when a

third-party writes the application and keeps the sources.

Accelerating from binaries can also be advantageous if

multiple front-ends are used for development. A

developer could use C, LISP, Perl, or any other high-level

 - 4 -

programming language for their development, but they all

must be compiled to machine code.

The remainder of this document is structured as

follows. Section 2 discusses related work, Section 3 gives

an overview of the eMIPS hardware platform, Section 4

goes through the M2V data structures and algorithms in

detail. Section 5 explains how to run the M2V tool when

a BBW source file has been generated. Section 6 goes

through the source code implementation for M2V and

Section 7 explains the hardware that is generated from

M2V in more detail. Section 8 discusses the experimental

results, Section 9 gives future research directions, and

Section 10 concludes the report. Appendix I contains

figures that illustrate scheduling for the primary example

in the report. Appendix II contains the Verilog output

from M2V for the example in the report. Appendix III

contains the BBW file for the example basic block and

Appendix IV lists the output from M2V when using the

example basic block as input.

2 Related Work

Work on extensible processors can be divided in

several ways. One avenue of exploration is to define the

underlying hardware. Chimaera [7] and GARP [8] are

two examples of extensible hardware from the late

1990’s. Commercial FPGA manufacturers today all

provide examples of soft-cores, microprocessor designs

that the customer can modify and extend for their

application [15, 3, 13]. M2V uses the eMIPS processor

[6] as its underlying hardware platform. eMIPS is the first

design that is secure for general purpose multi-user loads,

and the set of potential applications is therefore more

open-ended than those found in the typical embedded

system alone.

A common approach to generate code for an

extensible processor is to modify an existing C compiler.

Tensilica [14] regenerates a full GNU compilation system

given the RTL of the new instruction. Ienne et al. [4] use

the SUIF compiler. To the best of our knowledge, M2V is

the first compiler that accepts as input binary machine

code rather than source code. There are trade-offs

between accelerating from source code in a high-level

language or from binaries. One of the major advantages

when accelerating from binaries is that any application

can be accelerated, even applications where the source

code is controlled by an outside party and not available to

the system developer. A disadvantage is that some of the

information that has been discarded must be

reconstructed, and there are limits to this reversal process.

Another avenue of research in extensible processors

is the identification of the instruction set extensions (ISE)

that most benefit a given program, see for instance [5] for

a recent overview. Bonzini [5] advocates generating the

ISE from within the compiler, Tensilica [14] from

profiling data. M2V currently follows the application

profiling approach; it uses the BB-Tools and dynamic

full-system simulation with Giano to select the candidate

basic blocks. A possible extension to our work is to use

M2V in concert with a high-level compiler. Once the ISE

is identified from within the compiler, its definition could

be output in the form of a BBW file.

A related area is the generation of HDL code from C,

the so-called C-to-gates design flows [11, 12]. The input

to M2V is binary code, but the target is similar.

3 eMIPS Hardware Overview

The extensible MIPS (eMIPS) processor [6] has been

developed at Microsoft Research as an example of a RISC

processor integrated with programmable logic. The

programmable logic has many uses, such as: extensible

on-line peripherals, zero overhead online verification of

software, hardware acceleration of general-purpose

applications, and in-process software debugging [2]. This

report is concerned with automatically generating

hardware accelerators.

The instruction set for the eMIPS processor is the

instruction set for the R4000 MIPS processor [10]. The

R4000 is an example of a classic RISC architecture. The

eMIPS pipeline follows the classic RISC pipeline [9]

consisting of five stages: instruction fetch (IF), instruction

decode (ID), execute (EX), memory access (MA), and

register write-back (WB).

Figure 1: Block diagram of the eMIPS architecture.

The eMIPS processor departs from a standard RISC

processor by adding an interface to programmable logic.

The programmable logic is tightly integrated with the

 - 5 -

RISC pipeline, it can synchronize with it and it can access

the same resources as the RISC pipeline. Figure 1 shows

a logical block diagram for the eMIPS processor, a

physical view of the prototype is depicted in Figure A-8

and Figure A-9. The tight coupling of the pipeline and

programmable logic creates a very low latency interface

between the accelerator and the RISC pipeline.

Figure 2 (and a repeated, larger, version in Figure A-

1) illustrates the pipelining of instructions through eMIPS.

The decode logic in the extension logic is always an

observer of the main pipeline and is trying to decode the

instruction in the instruction decode (ID) phase of the

pipeline. When the instruction is not an extension

instruction, the extension fails to decode it and it is

executed in the main pipeline. When the instruction is

successfully decoded by the extension logic, the extension

logic is activated and the hardware accelerator is used.

Instructions flowing through the main RISC pipeline prior

to the extension instruction complete normally.

Instructions following the extension are stalled until the

extension is near completion, in the EXn-1 cycle.

IF ID EX MA

EX1

WB

IF ID EX MA WB

IF ID EX2 MA WBEXn-1Exn-2 EXn...

IF ID EX MA WB

IF ID EX MA WB

Instruction m-2

Instruction m-1

Extension Instruction m

Instruction j

Instruction j+1

Cycle Number 0 1 2 3 4 5 n+2 n+3 n+4 n+5 n+6 n+7 n+8...

IFInstruction m+1

Figure 2: Instruction flow through eMIPS pipeline.

The RISC pipeline imposes microarchitectural

constraints on the extension logic, for instance in the

arbitration for access to the register file and other

resources. The extension logic needs to read and write the

register file and access the memory management unit

(MMU). These accesses by the extension logic are

scheduled by M2V so as not to conflict with the primary

RISC pipeline.

The primary RISC pipeline uses two read ports on the

register file when an instruction is in the ID stage, it uses

one MMU port when in the MA stage, and it uses one

write port on the register file when in the WB stage. The

eMIPS register file has four ports which are multiplexed

between four read ports and two write ports. The

extension logic has the potential to use all of the eMIPS

register file ports, but it must not conflict with the primary

RISC pipeline. Thus, register writes must be delayed by

the extension until previous instructions are retired and

register reads must be finished a couple of cycles before

trailing instructions get to the ID stage.

As a specific example, when the extension instruction

is in the EX1 cycle of execution, instruction m-1 is in the

MA pipeline stage and so instruction m-1 has access to

the MMU. Instruction m-2 is in the WB pipeline stage

and it has control of the register file write ports. The

extension instruction does not have control of all the

resources until stage EX3 when the previous instructions

have been retired.

The eMIPS processor has been implemented on a

Xilinx Virtex 4 FPGA using the ML401 evaluation board.

The partial reconfiguration capabilities of this FPGA

allow software to load dynamically the hardware for the

instruction extensions.

4 The M2V Compiler

The M2V compiler is one element of a larger eMIPS

tool-chain which is illustrated in Figure 3. The goal of the

eMIPS tool-chain is to accelerate a pre-compiled

application with the programmable extension logic in

eMIPS. The goal of M2V is automatically generate the

hardware which will be loaded into the extension unit.

Break MIPS Binary into Basic Blocks

Profile Application to get Hot Blocks

Use FPGA tool-chain to create bit file

Run M2V on Hot Blocks

Insert Extension Instructions into MIPS Binary

Load Binary into Memory and Bit File into FPGA

Run Accelerated Application

Figure 3: Tool chain for accelerating basic blocks on

the eMIPS architecture.

The eMIPS tool-chain includes the BB-Tools. The

BB-Tools identify the basic blocks and then profile them

on the Giano simulator to get dynamic execution counts.

The basic blocks with the highest execution time (the hot

blocks) are selected for acceleration. The BB-Tools

generate an instruction encoding for the hot block and

write out the BBW file (see section 4.1.1). The BB-Tools

also insert the extension instruction into the original

binary and patch any branch and jump addresses.

 - 6 -

The M2V compiler takes the description of the hot

blocks in the BBW file and automatically generates

synthesizable Verilog for the extension. The Verilog for

the extension can be synthesized with the standard FPGA

synthesis tool-chain, which eventually produces a BIT

file. The BIT file contains all of the programming

information for the FPGA to implement the hardware of

the extension. The BIT file can be statically loaded at

reset of the FPGA or the operating system loader can

dynamically load the BIT file using partial

reconfiguration when the application is loaded into main

memory.

The M2V compiler makes three passes through the

database as illustrated in Figure 4. The first pass

processes the BBW file and consists of three major steps:

map the encoding for the extension instruction to the basic

block, analyze the MIPS instructions, and build a circuit

graph. The second pass schedules the operations that are

represented in the graph. The third pass emits the Verilog

that will be synthesized and placed in the eMIPS FPGA.

Map Extension Encoding to Basic Block

Semantic Analysis of MIPS Instructions

Build Circuit Graph

Pass 1

Schedule Operations

Emit Synthesizable Verilog

Figure 4: Steps in M2V.

As the algorithm is discussed, it is helpful to use an

example to reinforce the concepts. The example that was

selected for this purpose comes from the analysis of video

games and real-time applications [6]. This basic block

implements part of a 64-bit divide on the 32-bit

architecture of eMIPS. The assembly code for the

example is shown in Figure 5, where the bracketed

number is the hexadecimal byte offset for the instruction:

[0] ext0 r4, r2, offset0

[4] sll r1, r1, 1

[8] srl r3, r2, 31

[c] or r1, r1, r3

[10] sll r2, r2, 1

[14] srl r3, r4, 31

[18] or r2, r2, r3

[1c] sll r4, r4, 1

[20] srl r3, r5, 31

[24] or r4, r4, r3

[28] sltu r3, r1, r6

[2c] beq r0, r3, offset0

[30] sll r5, r5, 1

Figure 5: Example basic block.

The instruction at address 0, ext0, is the extension

instruction that is inserted by the BB-Tools and is not part

of the original basic block. The shift-left-logical

instruction at address 30 is in the branch delay slot and it

will be executed within the basic block before the

instruction at the branch target is executed.

4.1 Pass 1 – Process BBW File

The BBW file is the interface between the BB-Tools

and the M2V compiler. The components in the BBW file

relevant to M2V are as follows: extension instruction

encoding, canonical register relationships, canonical value

relationships, sequential MIPS instruction stream in the

basic block, and the code size of the basic block. The first

pass in the M2V compiler is to parse and analyze the

BBW file. The BBW file for the example in Figure 5 is

shown in Appendix III.

4.1.1 Mapping Instruction Encoding to Basic Block

For the first revision of M2V, the extension

instruction is encoded as a MIPS instruction of the “I”

format. The instruction encoding is illustrated in Figure

6. In assembly, the “I” instruction is written:

Opcode_name rt, rs, immediate.

31:26 25:21 20:16 15:0

opcode rs rt immediate

Figure 6: MIPS "I" instruction format used for the

extension instruction.

The opcode that identifies the instruction must be

unique or it will alias onto an existing instruction. The rs

and rt fields are used to map two actual registers to two

canonical registers. The immediate field is used for the

branch relative address at the end of the basic block.

When the original MIPS executable binary file is

broken into basic blocks, the registers are canonicalized.

Thus the first actual register in the basic block is assigned

 - 7 -

canonical register R1, the second actual register is

assigned canonical register R2, etc. By using canonical

registers, it is hoped that multiple basic blocks can be

mapped to the same canonical basic block. This gives

more opportunities to accelerate the application.

Basic blocks that are good candidates for acceleration

will typically reference more than two registers. Since the

instruction encoding only has enough bits to encode two

unique registers, all other registers must be relative to

these two registers. The relationships between rs, rt, and

the other canonical registers are recorded in the BBW file

and the relationships must be preserved in the hardware

accelerator.

Likewise, there are only enough bits in the extension

encoding to store one immediate value. If there are

additional values in the basic block, they must be a

constant for the basic block or the value must be relative

to the encoded value. The BBW file and the hardware

accelerator have the ability to use relative relationships

between canonical values.

The relationships between the canonical registers and

values are stored in a data structure that is later referenced

when emitting Verilog. The data structure is used to

generate the proper address for the register when the

register file is accessed.

The code size for the basic block is not specifically

part of the encoding, but the size is needed so that the

program counter (PC) can be calculated for the fall-

through case of the basic block.

4.1.2 Analyze MIPS Instructions

The MIPS instructions must be analyzed to create the

dependency graph, request pipeline resources, and emit

the equivalent Verilog. There are three instruction

formats in the MIPS I and MIPS II instruction set

architectures supported by M2V: “I,” “R,” and “J”.

The MIPS “I” format is illustrated in Figure 6. “I”

instructions use a 16-bit immediate field as one of the

operands. Examples of “I” instructions are ADDI, ANDI,

BEQ, LW, SW, XORI, etc. Within the “I” instructions,

ALU operations, branches, loads, and stores must be

distinguished so that the correct dependencies can be

built.

The MIPS “R” format is illustrated in Figure 7. “R”

instructions read operands from registers and write results

back to registers. Examples of “R” instructions are ADD,

AND, SLL, etc. In assembly, the “R” instruction is

written:

Opcode_name rd, rs, rt.

31:26 25:21 20:16

opcode rs rt

15:11 10:6

rd sa

5:0

function

Figure 7: MIPS "R" instruction format.

The MIPS “J” format is illustrated in Figure 8. “J”

instructions modify the program counter (PC) using the

address field in the instruction encoding. Examples of “J”

instructions are J and JAL. In assembly, the “J”

instruction is written:

Opcode_name address.

31:26 25:0

opcode address

Figure 8: MIPS "J" instruction format.

Analysis of the instructions provides the register and

constant operands, the function of the instruction, and the

output register for the instruction. The cost of the

function is also part of the analysis. The cost is an

estimate of how much time the combinatorial logic in an

instruction will take. The cost is used when scheduling to

determine when paths in the hardware need to be

pipelined.

4.1.3 Build the Circuit Graph

The circuit graph is the core data structure for the

second and third passes of M2V. It is constructed using

the analysis of the MIPS instructions to build

dependencies between the instructions. The graph is built

in a single pass, as each instruction is sequentially read

from the BBW file. There are two types of nodes in the

graph: register nodes and instruction nodes.

Instruction nodes represent a single MIPS instruction.

Edges into the instruction node are the operands for the

instruction. An edge out of the instruction node

represents the result of the instruction being streamed to a

register value.

Register nodes represent a value that has been read or

calculated in the basic block. When the register node is a

root of the circuit graph, it represents the basic block’s

initial read from the register file. To minimize contention

on the register file, each register is read at most once from

the register file and the value is stored locally in the

accelerator. There can be up to 31 roots in the circuit

graph representing each of the MIPS registers. An edge

into the register node is a value coming from an

instruction. An edge out of the register node represents

the value being used as an operand to an instruction.

 - 8 -

In hardware, the register node may be realized with a

pipeline stage from one operation to the next, or it may be

a bus without a latch. The scheduling pass determines

whether the register node is pipelined or not.

4.1.3.1 The Register Table
The register table is an additional data structure that

is not part of the circuit graph, but it is used to eliminate

redundant register nodes and to determine which register

nodes must be written back to the register file. The

register table has an entry for each MIPS register. The

table entry is initialized to be invalid. When an

instruction uses a MIPS register, the register table entry

for that MIPS register is read. If the entry is invalid then

the value must be read from the register file and the entry

will be updated with a pointer to the current register node.

If the entry points to an existing register node, then an

edge will be added from the register node to the

instruction. When an instruction calculates a value and

writes it to a register node, the register table entry for that

MIPS register is updated with a pointer to the register

node.

The register table therefore always contains the most

current value for the MIPS registers. When all

instructions have been processed by M2V, a final scan of

the register table will indicate the register nodes that

contain the basic block’s final value for the MIPS

registers. Each of these register nodes must be written

back to the register file. A maximum of 31 writes, one for

each MIPS register, will be sent to register file.

The circuit graph is the final collection of instruction

nodes, register nodes, and edges between these nodes.

RF

Read

R1

temp

Write/

Read

R1

1.

2.

3.

[4]

SLL 1

Figure 9: Graph for: sll r1, r1, 1.

4.1.3.2 Examples
The procedure for building the circuit graph will now

be illustrated with some examples.

The instruction: [4] sll r1, r1, 1, is mapped to the

graph illustrated in Figure 9. The constant shift value, 1,

is an operand to the SLL instruction but it is not a vertex

on the graph. Since M2V is producing custom hardware,

a constant value can be easily optimized. The instruction

uses MIPS register R1 both as an operand and as a result

register. This creates two separate register nodes in the

circuit graph. When the R1 operand is read, the register

table entry is invalid so the register file must be accessed.

The register table is updated to point to register node 1.

When the result from instruction node 2 is written back,

the register table entry is written with a pointer to register

node 3.

The instruction: [c] or r1, r1, r3, is mapped to the

graph illustrated in Figure 10. When the MIPS register

R1 operand is read, the register table entry points to

register node 3. This register node was generated from

the sll instruction at address 4. The two instructions can

share the register node. Since the register node is local to

the hardware accelerator, the register file does not need to

be accessed. Reducing the register file bottleneck is one

area where the accelerator improves performance.

temp

Write/

Read

R1

RF

Write/

Read

R1

temp

Write/

Read

R3

3. 6.

7.

8.

[c]

OR

Figure 10: Graph for: or r1, r1, r3.

The circuit graph resulting from the two example

instructions is illustrated in Figure 11. The sharing of

register node 3 is more explicit in this figure.

The circuit graph for the entire example basic block

can be found in Figure A-2 in Appendix I.

 - 9 -

RF

Read

R1

temp

Write/

Read

R1

RF

Write/

Read

R1

temp

Write/

Read

R3

1.

2.

3. 6.

7.

8.

[4]

SLL 1

[c]

OR

Figure 11: Circuit graph for example instructions.

4.2 Pass 2 - Schedule Operations

After a circuit graph has been generated in pass 1 of

M2V, the nodes in the graph can be scheduled. There are

two major constraints that the scheduler must consider.

First, the cycle time for the chip must be met and no

combinatorial path can exceed the cycle budget. Second,

the microarchitectural constraints of eMIPS must be

respected. There are limited read and write ports on the

register file and limited ports on the memory management

unit. Also, the memory controller and the register file

ports may not be accessible in every cycle due to the

progress of instructions before and after the extension

instruction through the RISC pipeline.

Figure 2 and Figure A-1 illustrate the progression of

instructions through the eMIPS pipeline. In a regular

unaccelerated instruction, the register file read port is

accessible in the ID pipeline stage, the register file write

port is accessible in the WB pipeline stage, and the MMU

is accessible in the MA pipeline stage. The extension

logic respects these constraints and resources are blocked

from within the accelerator when they would conflict with

an instruction in the main RISC pipeline. A set of tables

store the register file read ports, register file write ports,

and MMU ports available to the extension logic on a cycle

by cycle basis until steady-state is achieved. Steady-state

is when the extension logic has control over all pipeline

resources. Another set of tables store the resources that

must be free at the end of the extension to prevent

conflicts with trailing instructions.

There are four main data structures that are used in

the scheduling pass of M2V: the register read list (RRL),

the next temporary register queue (NQ), the temporary

register queue (TRQ), and the register write queue

(RWQ).

 The register read list (RRL) was built as the circuit

graph was created. The RRL contains all roots of the

circuit graph and therefore represents all of the values that

must be read from the register file.

The next temporary register queue (NQ) is empty at

the beginning of each cycle. As the scheduling algorithm

progresses, nodes are added to the NQ if the node has

exceeded the cycle-time budget or if the node has unmet

dependencies. The NQ represents all nodes that may need

to be pipelined before the next cycle.

The temporary register queue (TRQ) is initially

empty. At the beginning of each cycle, the NQ from the

previous cycle is copied to the TRQ.

The register write queue (RWQ) is initially empty. A

register value is placed on the RWQ when it has been

calculated and it needs to be written back to the register

file.

At the beginning of a clock cycle, the register file

read ports, the register file write ports, and the MMU

ports are calculated based on the values in the look up

tables and the current cycle. The register read ports for

this cycle dictate the number of nodes that can be

removed from the RRL in this cycle. The register write

ports for this cycle dictate the number of nodes that can be

removed from the RWQ in this cycle. All nodes can be

removed from the TRQ in a cycle because the nodes are

temporary calculations that are local to the accelerator.

 Nodes are scheduled by covering the circuit graph

using a depth-first traversal from the nodes that are

available from the TRQ, the RRL, and the RWQ. The

traversal continues until a node is encountered with an

unmet dependency or until the worst-case combinatorial

delay from the last register exceeds the cycle budget. An

unmet dependency is defined as an operand that has not

 - 10 -

been read or calculated yet. A node is placed on the NQ

when its traversal cannot continue.

The cycle ends when the TRQ is empty and the

available nodes from the RRL and RWQ have been

traversed as far as possible. The NQ is copied to the

TRQ, the cycle is incremented, new resource constraints

are calculated and the procedure repeats until the TRQ,

the RRL, the RWQ, and the NQ are all empty.

Nodes on the TRQ may need to be pipelined or they

may get covered later in the same cycle. Thus, when

beginning the traversal of a node from the TRQ, the nodes

should be examined to see if the original unmet

dependency still exists. If the dependency exists the node

will need to be pipelined, otherwise the node can be

dropped.

The M2V scheduler is greedy: it allocates resources

to the nodes at the heads of the RRL and the RWQ. A

more optimal solution could potentially be found if

different traversals were considered, although this could

be more computationally expensive.

Appendix I contains a complete example showing

how the basic block in Figure 5 is scheduled. Figure A-3

shows the circuit graph in cycle 1, the ID stage for the

accelerator. Figure A-4 shows the circuit graph in cycle

2, the EX1 stage for the accelerator. Figure A-5 shows

the circuit graph in cycle 3, the EX2 stage for the

accelerator. Figure A-6 shows the circuit graph in cycle

4, the MA stage for the accelerator. Figure A-7 shows the

circuit graph in cycle 5, the WB stage for the accelerator.

The unscheduled circuit graph is illustrated in Figure

A-2. We will reference the nodes within the graph by

their sequence numbers, which are located to the upper

left of the node. At the beginning of the scheduling

algorithm, all of the register read nodes (1, 4, 11, 18, 23,

and 26) are on the RRL and the TRQ, NQ, and RWQ are

empty.

Figure A-3 shows the circuit graph in cycle 1, the

accelerator’s ID stage. Register file reads during this

cycle are limited to the two read ports accessed by the

RISC pipeline since the accelerator is snooping the results

from the RISC pipeline. The register read nodes 4 and 11

are covered in this cycle. Nodes 4 and 11 were removed

from the RRL and placed on the NQ (the reads in the ID

stage are placed on the NQ as a special case). The TRQ

and RWQ are still empty.

Figure A-4 shows the circuit graph for cycle 2, the

accelerator’s EX1 stage. Two registers (nodes 1 and 18)

were taken from the RRL and read from the register file,

ten instructions (nodes 2, 5, 7, 9, 12, 14, 16, 19, 21, and

28) are calculated, and four MIPS register values (nodes

8, 15, 22, and 29) are calculated and placed on the RWQ.

The NQ from cycle 1 was moved to the TRQ at the

beginning of cycle 2. The NQ at the end of cycle 2

contains nodes 6, 8, 10, and 17. Nodes 6, 10, and 17 were

placed on the NQ speculatively because the operand

nodes 3, 13, and 20 had not been read yet.

Figure A-5 shows the circuit graph for cycle 3, the

accelerator’s EX2 stage. The final read nodes (23, 26) are

taken from the RRL and read from the register file, the

final instructions (24, 27) are calculated, and register write

node 25 is placed on the RWQ. The NQ from cycle 2 was

copied to the TRQ at the beginning of cycle 3. The

speculative nodes (6, 10, 17) on the TRQ are pruned when

we notice that the successor instruction is already

covered. Node 8 is removed from the TRQ, but it is

placed on the NQ since the TRQ is emptied before any

nodes on the RRL can be removed. The NQ also contains

node 25 at the end of cycle 3. One register write (15) is

removed from the RWQ and is written back to the register

file. All nodes have been covered in cycles 1 through

cycles 3, but the NQ and RWQ are not empty so the

scheduling continues in the next cycle.

Figure A-6 shows the circuit graph for cycle 4, the

accelerator’s MA stage. The NQ from cycle 3 is copied

to the TRQ at the beginning of cycle 4. Both nodes on the

TRQ are pruned because the successor instruction node is

covered. Two nodes (8, 22) are removed from the RWQ

and written back to the register file. The RRL, TRQ, and

NQ are empty. The RWQ has two nodes left and so the

scheduling algorithm continues for another cycle.

Figure A-7 shows the circuit graph for cycle 5, the

accelerator’s WB stage. The final two nodes (25, 29) are

removed from the RWQ and written back to the register

file. All queues are empty and the scheduling phase is

complete.

4.3 Pass 3 - Emit Verilog

The third and final pass in M2V is emitting Verilog.

There are four contributions to the final Verilog file: the

eMIPS invariant code, the BBW dependent code, the

circuit graph dependent code, and the cycle dependent

code.

The eMIPS invariant code, or boilerplate code, is the

same for all eMIPS extensions. This Verilog code

contains the interface to the primary eMIPS pipeline,

routing through the bus-macros for partial

reconfigurability, and the logic that is common for all

extensions.

The BBW dependent code is Verilog that is specific

to the instruction encoding and the register and value

relationships encoded in the BBW file. During pass 1, the

BBW information was extracted and stored in a data

structure. The decode logic for the extension instruction

 - 11 -

is generated using the opcode stored in the BBW file.

The canonical register is sufficient as an identifier for

temporary variables, but the actual register addresses must

be used when accessing the register file. A table lookup

maps between canonical register addresses and actual

MIPS register addresses.

The circuit graph dependent code is generated with a

final walk covering all the nodes in the circuit graph. As

nodes on the circuit graph were generated and scheduled,

the nodes were decorated with information that is now

used to generate the final Verilog code. The circuit graph

dependent code is: variable declarations for all register

nodes, register file address and data logic, pipeline logic

for register nodes that need it, and combinatorial logic for

the instruction nodes.

The cycle dependent code is code that is generated

for the state machines in the extension. This code is only

dependent on the number of cycles in the extension and

the general shape of the circuit graph is not important.

The Verilog code emitted for the entire example basic

block in Figure 5 can be found in Appendix II.

Additional description for the Verilog implementation can

be found in Section 7.

5 Running the M2V Compiler

The makefile supplied with the BB-Tools will also

compile the M2V tool. The command, “nmake”, will

compile all of the BB-Tools including m2v.exe using the

visual C++ compiler. Alternatively, “nmake m2v.exe”,

will compile just m2v and its dependencies.

The command line for m2v is:

m2v.exe [-v] infile [outfile].

Typing m2v by itself will give the usage for the

command. The optional verbose option, -v, sends

information to standard out about how the compile is

progressing. Details about the extension encoding,

construction of the circuit graph, and scheduling

information are output. The verbose option will also add

comments to the combinatorial logic in the Verilog output

so that a clear mapping between the MIPS binary and the

Verilog can be seen.

The infile argument is the name of the BBW (.bbw)

file that is used as input to the m2v compiler. The BBW

file is generated by the BB-Tools. The optional outfile

argument is the file name for the Verilog output. If an

output file is not specified, the output is written to a.v.

The synthesizable Verilog generated by M2V can be

simulated in the eMIPS infrastructure and it can be

synthesized with the standard FPGA design tools.

Detailed instructions on how to synthesize an eMIPS

Extension bit file are included in the eMIPS release

documentation.

6 M2V Implementation Details

In this section we will discuss the structure of the

M2V source code in more detail. The majority of the

code for M2V was written in C++. The exception is the

semantic analyzer, mips_dissect.c, which was written in

C. The main routine is in m2v.cpp. Other files of interest

are: Circuit.cpp, Instruction.cpp, Register.cpp, and

RegTable.cpp. Each of these files has a header file, *.h,

associated with it as well.

The main function in m2v calls the routines that step

through each compilation pass. The first pass scans the

BBW file which details the encoding of the extension

instruction and enables the building of the circuit graph.

The second pass schedules the operations using

Circuit.assignCycle and the third pass emits the Verilog

using Circuit.emitVerilog.

In pass 1, the parseEncoding procedure parses the

extension instruction encoding from the BBW file. The

encoding gives the extended op-code for the instruction,

the canonical registers in the RS and RT fields, and the

canonical value in the immediate field. There are not

enough bits in the extension instruction to encode every

canonical register in the basic block. To work around this

problem, the basic block definition in the BBW file

defines the fixed relationships between the registers that

are actually encoded in the instruction and all the other

canonical registers. For example, RS may hold canonical

register R2, and canonical R1 could be defined as R1 =

R2 + 1. The classes RegEncoding and ValEncoding (in

m2v.h) store a single relationship and the BbwData class

encapsulates all of the relationships which are needed

when emitting Verilog in pass 3.

The semantic analyzer in pass 1 is implemented in the

MipsDissect procedure. This procedure takes the binary

encoding of a single MIPS instruction and produces the

information needed to build the circuit graph and to emit

the Verilog for this instruction in pass 3. To build the

circuit graph we must determine the register operands and

the destination register for the instruction. To emit the

Verilog we need to record the function (semantic) of the

instruction and the value of any immediate operands or

constants. This information is stored in the disRecord

structure (mips_dissect.h), accessible via a pointer in the

instruction node. This procedure creates one such

structure for each instruction in the MIPS binary.

 - 12 -

The Circuit class contains the data structures and

procedures for building, manipulating, and using the

circuit graph. The dis2nodes method completes pass 1 of

the compilation. It uses the analysis from MipsDissect to

build Register and Instruction nodes and connect them

into a circuit graph. The assignCycle and emitVerilog

methods are used for compiler passes 2 and 3.

 The dis2nodes method uses the analysis information

in disRecord to further divide a single MIPS instruction

into an Instruction node and a few Register nodes,

building (a fragment of) the circuit graph. Register nodes

are needed for an instruction’s operands and to store its

result. When a Register node is created for the first read

from the register file, dis2nodes pushes the node onto the

register read queue, regRdVec, which is an entry point

into the circuit graph. The edges of the circuit graph

represent the dependencies between instructions and data

and are stored within the Instruction and the Register

nodes.

The Register class represents an intermediate value

for a MIPS register. A value may come directly from the

register file or it may be the result of an instruction. The

value may need to be written back to the register file and

it may be used as the operand to one or more instructions.

The class maintains pointers to the source of the value and

the destinations that use the value. The value in a

Register node may be pipelined to make the cycle-time or

it could be strictly combinatorial. A recursive walk

method is used in pass 2 of the compilation to traverse the

circuit graph when scheduling operations.

The Instruction class stores the results of the analysis

in MipsDissect and maintains pointers to operand and

destination data. A recursive walk method is used in the

scheduling pass (pass 2) to traverse the circuit graph.

The RegisterTable class is a compile time resource

that stores the current location of a MIPS register value.

There is an entry in the table for each MIPS register. The

entry is initially marked invalid. When an instruction

within the basic block uses a MIPS register for the first

time, a Register node is created and the RegisterTable

entry for that register number is modified to point to the

new node. Subsequent reads of the same register can then

come from the Register node rather than from the register

file. When an instruction writes to a register, a pointer to

the instruction’s result is stored in the RegisterTable

entry. Maintaining the RegisterTable allows instructions

to share Register nodes when the instructions use the

same value and it minimizes accesses to the register file.

The setWriteBacks method is called at the beginning of

the second pass to determine which registers have been

written during the basic block’s execution. These

Register nodes are marked and will be the only values

written back to the register file.

Pass 2 of the compiler takes the circuit graph and

generates a schedule for the operations. The top-level

code for pass 2 is the assignCycle method in the Circuit

class. The steps in pass 2 are to initialize the cycle-by-

cycle resource restrictions, determine the MIPS registers

that need to be written back, walk the entire circuit graph

to assign cycles, and potentially add extra cycles to the

extension to maintain proper pipeline behavior.

Access to the register file and to the memory

controller is constrained because instructions in the

eMIPS pipeline before or after the extension may own

those resources. Three classes of variables define the

resources available in each cycle. The init* arrays define

the number of read ports, write ports, and load/store ports

available in each cycle as the extension instruction starts.

The ss* variables define the maximum number of

resources available during steady-state execution. The

fin* variables define the resources available as the

extension is completing.

The array values used for register access are defined

in the Circuit.h file. The Circuit.h file contains the

architecture specific constants for eMIPS. By changing

these constants, a different architecture could be

supported. For revision 1.0 of M2V, there are 2 reads

allowed in each cycle of the extension. There are 0 writes

allowed in cycles 1 and 2, 1 write allowed in cycle 3, and

2 writes allowed in steady-state. Architectural

explorations are possible by changing the constants in

Circuit.h.

The walk of the circuit graph takes several iterations

to complete, where each iteration represents a cycle in the

hardware accelerator. During a cycle, all nodes will be

removed from the TRQ, regTmpVec, some nodes will be

removed from the RRL, regRdVec, and some nodes may

be removed from the RWQ, regWrVec. The cycle

number and the array values described above define how

many nodes are removed from the RRL and RWQ.

The walk of the graph begins in a register node and

continues depth first until an instruction with an unmet

dependency is found or until the cycle budget is exceeded.

The walk methods in the Register and Instruction classes

perform the traversal through the dependents until there is

an unmet dependency, the cost function is exceeded, or

there is no successor to the node.

The cost is calculated by taking the cost from the

previous node and adding the cost for this node. The

maximum cost defined in Circuit.h is roughly the

estimated logic levels from the last register. By keeping

the logic levels within the cost function, the cycle budget

should be met. For an instruction node, the cost is

calculated by taking the highest cost from all of its

operands and adding the incremental cost for the

instruction. Since a register has a single entry point, the

 - 13 -

cost is calculated by adding the incremental cost of the

register node to the cost entering the node. The

incremental cost is a function of fan-out since high fan-

out will increase the wiring delay to subsequent nodes.

The walk ends when the return code from the

dependent node indicates failure due to excessive cost or

an unmet dependency. When the node receives a failure

code from its dependent, the node is pushed to the NQ,

nxtQ.

The register and instruction nodes are decorated with

cycle, cost, and pipeline information during the walk.

The sum of the decorations creates the final schedule and

they are used to emit the correct Verilog in the final pass

of the circuit graph.

When the allowed nodes have been removed from the

TRQ, RRL, and RWQ in a given cycle, the next cycle can

begin. Every cycle begins by copying the NQ from the

previous cycle to the TRQ for this cycle. The scheduling

pass is complete when the NQ, TRQ, RRL, and RWQ are

empty.

The final pass of the circuit graph emits the Verilog

for the hardware accelerator. The top-level method for

this pass is Circuit.emitVerilog. This method combines

invariant, BBW dependent, circuit graph dependent, and

cycle dependent code in the correct order to produce the

Verilog code for the hardware accelerator. The methods

called by emitVerilog to produce the Verilog are described

in Section 7.

The invariant part of the extension is stored in three

Verilog files. The m2v_mod_bp.v file is the wrapper

logic for the extension which contains the basic interface

to the rest of eMIPS. The m2v_ex_bp.v file contains the

module inputs and outputs between the extension logic

wrapper and the logic for the execution stage in the

extension. The m2v_state_mc.v file contains the

declarations and logic for the read, write, and branch state

machines that are the same for every extension.

7 Hardware Implementation Details

Appendix II lists the entire Verilog code that is

generated by M2V for the basic block in Figure 5. As

discussed in Section 4.3, there are four contributions to

the final Verilog file: the eMIPS invariant code, the BBW

dependent code, the circuit graph dependent code, and the

cycle dependent code.

Lines 1-540 of the Verilog are the first lines of

invariant code in the accelerator definition. Lines 1-300

define the extension’s top-level module, lines 301-425

define the bus macros for the execution-to-write-back

interface, and lines 426-540 define the bus macros for the

instruction-decode-to-execution interface. Lines 1-300

are simply copied from m2v_mod_bp.v at runtime.

The extension’s top-level module defines the

interface signals between the extension and the rest of the

eMIPS design. It contains multiplexor logic for the

shared data busses to the register file and the program

counter update logic. It also instantiates four modules that

make up the core of the extension: the instruction decode

logic, the execution logic, and the two bus macro

modules.

The bus macros provide connectivity between the

extension logic and the primary eMIPS logic. They

represent physical routing locations and are required for

partial reconfiguration.

The instruction decode logic defined in lines 541-600

is BBW dependent code. This logic decodes the

instruction in parallel with the primary RISC pipeline. If

the opcode of the instruction matches the opcode of the

extension, the logic will assert the RI signal so that the

extension logic can take control from the RISC pipeline.

The fall-through address for the basic block is sent to the

program counter. The fields within the instruction are

decoded and sent to the execution logic. The first revision

of M2V hardcodes the extension instruction to the MIPS

“I” format. The Circuit.emit_decode method generates

this code.

The extension execution logic is defined in lines 601-

1038. The execution logic is composed of invariant code,

BBW dependent code, circuit graph dependent code, and

cycle dependent code.

Lines 601-666 define the interface signals between

the execution logic and the rest of eMIPS. It is invariant

for every extension and is copied from m2v_ex_bp.v at

runtime.

Lines 667-695 define the Verilog registers that are

used later in the execution logic. This code is circuit

graph and cycle dependent. The registers for the register

node values follow a convention to create an identifiable

mapping between the generated logic and the circuit

graph. The format is rX_Y[_r], where X is the actual

MIPS register, Y is the sequence number of the register

node, “_r” indicates that the value comes directly from a

register, and the absence of “_r” indicates that the value

comes from combinatorial logic. Thus, r9_3 is a

combinatorial value for MIPS register 9 that corresponds

to the register node with sequence number 3. The

Circuit.emitVarDecl method generates this code.

Lines 696-891 define the state machines that interface

with the register file and the program counter logic. This

code is invariant and is copied from m2v_state_mc.v at

runtime. These state machines are eMIPS-specific.

 - 14 -

Lines 892-924 define the register file and program

counter usage for each cycle in the extension. This

information is used by the state machines defined in lines

696-891. This code is generated by the

Circuit.emitCycState method.

Lines 925-959 define the register file interface logic.

Since there are limited ports on the register file, the read

and write addresses are scheduled onto the register file

address lines. Likewise, read data from the register file

must be routed to the correct register node, and write data

to the register file must come from the correct calculation.

The Circuit.emitRFLogic method generates this code.

Lines 960-980 define the pipeline registers that are

needed by the extension logic. When a calculation must

be pipelined, it is latched at the end of the calculation

cycle and held for the remainder of the extension’s

execution. The Circuit.emitPipeReg method generates

this code.

Lines 981-1022 define the combinatorial logic for the

instruction nodes. This code is generated by the

Circuit.emitInstLogic method.

Lines 1023-1038 define the primary extension state

machine. The state machine is 1-hot encoded with one

state representing one cycle in the schedule so the states

can be directly used as control signals. The machine is

idle until an extension is successfully decoded and it steps

through each cycle in the extension. The

Circuit.emitESM method generates this code.

8 Experimental Results

The compiler is at its very early stages of

development, but nonetheless the first simple test we ran

gave very positive indications. We used the basic block of

Figure 5, for which we already had both a hand-written

version of the eMIPS Extension and a test program that

exercised it. The test program executes some 500+ 64-bit

division tests, validating the results against the tabulated

ones. It is one of the standard basic validation tests for the

Microsoft Invisible Computing RTOS.

 Hand-coded M2V generated

Minimum Period 5.729 ns 5.886 ns

Flip-Flops 755 494

Slices 867 448

4-Input LUTs 1542 810

Table 1: Synthesis results.

The hand-coded accelerator and the M2V-generated

accelerator were synthesized and verified on the Virtex-4

XC4LX25 FPGA, using Xilinx ISE v8.2i. The synthesis

results are summarized in Table 1.

There are twelve instructions in the original basic

block in Figure 5. With a CPI of 1, it takes twelve cycles

to complete the unaccelerated basic block. M2V was able

to accelerate the block such that it only needed five cycles

resulting in a 2.4 speed-up, under idealized CPI

conditions.

The actual speed-up of the application is dependent

on the number of times that the basic block is executed

over the course of the application and on the actual CPI.

Notice that memory does not need to be fetched for

instructions in the accelerated block, whereas it does for

the unaccelerated one. On the ML401 board the SRAM

chips have a worst-case latency of 3 cycles and a

pipelined latency of 1 cycle, but only for batch-mode

fetches (e.g. cache refill). Since eMIPS does not currently

have a cache each instruction fetch costs 3 cycles. This

gives a speed-up of 12 from reduced I-fetches alone, and a

projected speed-up of 4.5 for the basic block in isolation.

The output and timing results from running the test

program are shown in Appendix I, Figure A-14. Both

versions obtained an overall speed-up of about 2.3 for the

overall test program, over the unaccelerated version.

Of particular interest on eMIPS is the cost of an

Extension in terms of its area utilization. The FPGA chip

used on the ML401 board has fairly limited resources,

being as it is the second-smallest chip in the Virtex-4

family of devices. The area we can devote to an Extension

is consequently also limited. Figure A-8 is a rendition of

the floor plan used for eMIPS, as depicted by the

PlanAhead tool from Xilinx. On the left-hand side of the

picture is the rectangle for the Extension logic. Figure A-9

shows a detail of the Extension floor plan, indicating the

area used for the bus macros – the inter-connection points

between the TISA and the Extension. There are many

signals in the interface, and consequently a high-price to

pay for them.

Per-iteration speedup, CPI=1 (idealized) 2.4

Speedup from eliminated I-fetches 12.0

Per-iteration speedup, CPI=3 (actual) 4.5

Application speedup (actual) 2.3

Area reduction factor 2

Maximum frequency reduction 2.8%

Table 2: Summary of the performance results.

Figure A-10 shows a few selected statistics generated

by the PlanAhead tool for the resource utilizations of the

 - 15 -

hand-generated test extension. Of notice is the 58%

utilization of the LUTs available in the Extension area.

Figure A-11 shows the same statistics for the M2V-

generated version, with a LUT utilization of only 30%.

The synthesis reports (before place and route) from

the Xilinx ISE v8.2-PR are shown in Figure A-12 for the

hand-generated version and Figure A-13 for the M2V-

generated version, respectively. The reports confirm the

PlanAhead indications of a factor of 2 area reduction. The

timing reports show that the hand-generated version can

potentially run at a higher frequency of about 175 MHz

against 170 MHz for M2V. Both are well beyond the

clock frequency of 100 MHz used on the ML401 board

for eMIPS. Table 2 summarizes the various performance

indicators discussed above.

9 Limitations and Future Directions

The extension logic in eMIPS has direct access to the

memory management unit (MMU), but M2V does not

currently implement load and store instructions. Load and

store operations can be both supported and optimized in

the M2V compiler. Bandwidth to and from the memory

can be increased by making the data path to memory

wider than a conventional MIPS instruction would allow.

For instance, an entire cache line could be read or written

in a single cycle. Reads and writes can be reordered in

the instruction stream to better hide latencies.

M2V must become aware of potential translation

faults. The general scheme in eMIPS is to keep the

original binary code in the executable, so that execution

can be restarted from within it. M2V could keep a virtual

program counter, associated with the register writebacks,

to indicate where execution should restart in case of an

MMU exception. This approach also solves the problem

of handling external interrupts in a timely fashion.

M2V currently generates Verilog that executes in the

minimum number of cycles for the given resource

constraints. This can result in values being computed

before they are needed. An additional pass through the

graph could delay calculation of results until they are

actually needed, a just in time approach. This would

allow for idle hardware to be reused and could result in

better overall utilization of the programmable logic.

Multiple basic blocks could be combined into a single

accelerator. The state machines to control the control

flow are simple, but multiple register tables might be

needed to account for conditional branch instructions.

M2V is the first implementation of the general idea of

taking a binary executable image and converting it to

hardware. It understands MIPS instructions currently, but

it could be extended so that the executable code could in

fact be x86, ARM, or any other instruction set. Rather

than targeting synthesizable Verilog, M2V could be

modified to generate gates using a standard cell library or

a number of other hardware elements. Note that if gates

were to be generated directly, M2V would need additional

optimization steps to improve the quality of the output.

Currently, M2V takes advantage of the FPGA synthesis

tools to perform a number of optimizations.

10 Conclusions

By realizing M2V we have demonstrated that it is

possible to automatically generate efficient hardware

accelerators, starting directly from binary code. In

contrast to existing approaches, M2V does not require any

compiler modifications and therefore it supports any

programming language and even cases where the code

was directly written in assembly, or the sources are not

available.

The implementation shows that the execution

acceleration is based on a number of factors. Register file

access is improved by scheduling register operations as

soon and as efficiently as possible and by increasing the

number of ports on the register file. Also, temporary

writes and reads to the register file can be avoided as all

intermediate results are kept in the accelerated logic.

Parallelism in the code is automatically extracted

from the dependency graph. Instructions are built to

proceed in parallel, as soon as their operands are ready.

There are more operands available at any given time,

because temporary variables are streamed directly to the

instruction(s) that need them and there are more ports on

the register file.

Multiple sequential instructions are executed in a

single cycle when they fit within the cycle budget of the

accelerator. For example, the SLL instruction can be

executed in zero time on the hardware because it is only

redefining the numbering of the bits within the bus.

The pressure on the memory bus and/or on the cache

is greatly reduced. Memory bandwidth is freed up because

the instructions in the accelerated basic block do not need

to be fetched. In future revisions of M2V, loads and

stores can be scheduled to optimize bandwidth resources

and wider data-paths to the memory can also help.

References

[1] Aho, A. V.., Lam, M. S., Sethi, R., Ullman, J. D.

Compilers: Principles, Techniques, and Tools.

Addison Wesley Publishers, Boston, MA. 2007.

 - 16 -

[2] Almeida, O., Forin, A., Garcia, P., Helander , J.,

Khantal, N., Lu, H., Meier, K., Mohan, S., Nielson,

H., Pittman, R. N., Serg, R., Sukhwani, B., Veanes,

M., Zorn, B., Berry, S., Boyce, C., Chaszar, D.,

Culrich, B., Kisin, M., Knezek, G., Linam-Church,

W., Liu, S., Stewart, M., Toney, D. Embedded

Systems Research at DemoFest’07. Microsoft

Research Technical Report MSR-TR-2007-94, July

2007.

[3] Altera Corp. Excalibur Embedded Processor

Solutions, 2005.
 .http://www.altera.com/products/devices/excalibur/excindex.html,

[4] Biswas, P., Banerjee, S., Dutt, N., Ienne, P., Pozzi, L.

Performance and Energy Benefits of Instruction Set

Extensions in an FPGA Soft Core VLSID’06, pag.

651-656

[5] Bonzini, P., Pozzi, L. Code Transformation

Strategies for Extensible Embedded Processors

CASES’06, pagg. 242-252.

[6] Forin, A., Lynch, N., L., Pittman, R. N. eMIPS,A

Dynamically Extensible Processor. Microsoft

Research Technical Report MSR-TR-2006-143,

October 2006.

[7] Hauck, S. et al. The Chimaera Reconfigurable

Functional Unit. IEEE VLSI, 2004.

[8] Hauser, J. R., Wawrzynek, J. Garp: A MIPS

Processor with a Reconfigurable Coprocessor.

FCCM’97 pagg 12-21, April 1997.

[9] Hennessy, J. L., Patterson, D.A. Computer

Organization and Design: The Hardware/Software

Interface. Morgan Kaufmann Publishers, San

Francisco, CA. 1998.

[10] Kane, G., Heinrich, J. MIPS RISC Architecture.

Prentice Hall, Upper Saddle River, NJ. 1992.

[11] Kastner, R., Kaplan, A., Ogrenci Memik, S.

Bozorgzadeh, E. Instruction generation for hybrid

reconfigurable systems TODAES vol. 7, no. 4, pagg.

605-632, October 2002.

[12] Lau, D., Pritchard, O., Molson, P. Automated

Generation of Hardware Accelerators with Direct

Memory Access from ANSI/ISO Standard C

Functions. FCCM’06, pagg. 45-54, April 2006.

[13] Stretch, Inc. http://www.stretchinc.com 2006.

[14] Tensilica, Inc. http://www.tensilica.com, 2006.

[15] Xilinx Inc. Virtex 4 Family Overview. Xilinx Inc.,

June 2005. Available at

http://direct.xilinx.com/bvdocs/publications/ds112.pdf

http://www.altera.com/products/devices/excalibur/excindex.html
http://www.stretchinc.com/
http://direct.xilinx.com/bvdocs/publications/ds112.pdf

 - 17 -

Appendix I – Additional Figures

IF ID EX MA

EX1

WB

IF ID EX MA WB

IF ID EX2 MA WBEXn-1Exn-2 EXn...

IF ID EX MA WB

IF ID EX MA WB

Instruction m-2

Instruction m-1

Extension Instruction m

Instruction j

Instruction j+1

Cycle Number 0 1 2 3 4 5 n+2 n+3 n+4 n+5 n+6 n+7 n+8...

IFInstruction m+1

Figure A-1. Extension Instruction and interaction with MIPS Pipeline.

 - 18 -

RF

Read

R1

temp

Write/

Read

R1

RF

Write/

Read

R1

RF

Read

R6

RF

Read

R2

temp

Write/

Read

R3

temp

Write/

Read

R2

RF

Write

R2

RF

Read

R4

temp

Write/

Read

R3

temp

Write/

Read

R4

RF

Write

R4

RF

Read

R5

temp

Write/

Read

R3

RF

Write

R5

RF

Write/

Read

R3

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

13.

12.

14.

15.

16.

17.

18.

19.

20.

21.

22.23.

24. 25. 27.

28.

29.

[4]

SLL

[30]

SLL

[20]

SRL

[24]

OR

[8]

SRL

[14]

SRL

[10]

SLL

[1c]

SLL

[c]

OR

[18]

OR

[28]

SLTU

[2c]

BEQ

RF

Read

R0

26.

Temp

Register

storage

RF

Register

Write

Instruction

RF

Register

Read

Key:

Figure A-2. Circuit Graph for Example Basic Block.

 - 19 -

cyc 1 cyc 1

RF

Read

R1

temp

Write/

Read

R1

RF

Write/

Read

R1

RF

Read

R6

RF

Read

R2

temp

Write/

Read

R3

temp

Write/

Read

R2

RF

Write

R2

RF

Read

R4

temp

Write/

Read

R3

temp

Write/

Read

R4

RF

Write

R4

RF

Read

R5

temp

Write/

Read

R3

RF

Write

R5

RF

Write/

Read

R3

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

13.

12.

14.

15.

16.

17.

18.

19.

20.

21.

22.23.

24. 25. 27.

28.

29.

[4]

SLL

[30]

SLL

[20]

SRL

[24]

OR

[8]

SRL

[14]

SRL

[10]

SLL

[1c]

SLL

[c]

OR

[18]

OR

[28]

SLTU

[2c]

BEQ

RF

Read

R0

26.

Not

complete

Future

RF

Register

Write

Future

RF

Register

Read

Key:

Cycle 3Cycle 2Cycle 1 Cycle 4 Cycle 5

Figure A-3. Circuit Graph for Example Basic Block in Cycle 1.

 - 20 -

cyc 2 cyc 2

cyc 1 cyc 1

RF

Read

R1

temp

Write/

Read

R1

RF

Write/

Read

R1

RF

Read

R6

RF

Read

R2

temp

Write/

Read

R3

temp

Write/

Read

R2

RF

Write

R2

RF

Read

R4

temp

Write/

Read

R3

temp

Write/

Read

R4

RF

Write

R4

RF

Read

R5

temp

Write/

Read

R3

RF

Write

R5

RF

Write/

Read

R3

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

13.

12.

14.

15.

16.

17.

18.

19.

20.

21.

22.23.

24. 25. 27.

28.

29.

[4]

SLL

[30]

SLL

[20]

SRL

[24]

OR

[8]

SRL

[14]

SRL

[10]

SLL

[1c]

SLL

[c]

OR

[18]

OR

[28]

SLTU

[2c]

BEQ

RF

Read

R0

26.

Not

complete

Future

RF

Register

Write

Future

RF

Register

Read

Key:

Cycle 3Cycle 2Cycle 1 Cycle 4 Cycle 5

Figure A-4. Circuit Graph for Example Basic Block in Cycle 2.

 - 21 -

cyc 3 cyc 3

cyc 3

cyc 2 cyc 2

cyc 1 cyc 1

RF

Read

R1

temp

Write/

Read

R1

RF

Write/

Read

R1

RF

Read

R6

RF

Read

R2

temp

Write/

Read

R3

temp

Write/

Read

R2

RF

Write

R2

RF

Read

R4

temp

Write/

Read

R3

temp

Write/

Read

R4

RF

Write

R4

RF

Read

R5

temp

Write/

Read

R3

RF

Write

R5

RF

Write/

Read

R3

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

13.

12.

14.

15.

16.

17.

18.

19.

20.

21.

22.23.

24. 25. 27.

28.

29.

[4]

SLL

[30]

SLL

[20]

SRL

[24]

OR

[8]

SRL

[14]

SRL

[10]

SLL

[1c]

SLL

[c]

OR

[18]

OR

[28]

SLTU

[2c]

BEQ

RF

Read

R0

26.

Not

complete

Future

RF

Register

Write

Future

RF

Register

Read

Key:

Cycle 3Cycle 2Cycle 1 Cycle 4 Cycle 5

Figure A-5. Circuit Graph for Example Basic Block in Cycle 3.

 - 22 -

cyc 4cyc 4

cyc 3 cyc 3

cyc 3

cyc 2 cyc 2

cyc 1 cyc 1

RF

Read

R1

temp

Write/

Read

R1

RF

Write/

Read

R1

RF

Read

R6

RF

Read

R2

temp

Write/

Read

R3

temp

Write/

Read

R2

RF

Write

R2

RF

Read

R4

temp

Write/

Read

R3

temp

Write/

Read

R4

RF

Write

R4

RF

Read

R5

temp

Write/

Read

R3

RF

Write

R5

RF

Write/

Read

R3

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

13.

12.

14.

15.

16.

17.

18.

19.

20.

21.

22.23.

24. 25. 27.

28.

29.

[4]

SLL

[30]

SLL

[20]

SRL

[24]

OR

[8]

SRL

[14]

SRL

[10]

SLL

[1c]

SLL

[c]

OR

[18]

OR

[28]

SLTU

[2c]

BEQ

RF

Read

R0

26.

Not

complete

Future

RF

Register

Write

Future

RF

Register

Read

Key:

Cycle 3Cycle 2Cycle 1 Cycle 4 Cycle 5

Figure A-6. Circuit Graph for Example Basic Block in Cycle 4.

 - 23 -

cyc 5

cyc 5

cyc 4cyc 4

cyc 3 cyc 3

cyc 3

cyc 2 cyc 2

cyc 1 cyc 1

RF

Read

R1

temp

Write/

Read

R1

RF

Write/

Read

R1

RF

Read

R6

RF

Read

R2

temp

Write/

Read

R3

temp

Write/

Read

R2

RF

Write

R2

RF

Read

R4

temp

Write/

Read

R3

temp

Write/

Read

R4

RF

Write

R4

RF

Read

R5

temp

Write/

Read

R3

RF

Write

R5

RF

Write/

Read

R3

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

13.

12.

14.

15.

16.

17.

18.

19.

20.

21.

22.23.

24. 25. 27.

28.

29.

[4]

SLL

[30]

SLL

[20]

SRL

[24]

OR

[8]

SRL

[14]

SRL

[10]

SLL

[1c]

SLL

[c]

OR

[18]

OR

[28]

SLTU

[2c]

BEQ

RF

Read

R0

26.

Not

complete

Future

RF

Register

Write

Future

RF

Register

Read

Key:

Cycle 3Cycle 2Cycle 1 Cycle 4 Cycle 5

Figure A-7. Circuit Graph for Example Basic Block in Cycle 5.

 - 24 -

Figure A-8. Floor-plan of the eMIPS processor. The area for the extension slot is the elongated purple vertical

rectangle on the left side of the chip.

 - 25 -

Figure A-9. Detailed view of the top portion of the Extension area. Bus macros are visible (orange dots) on the

right side of the extension.

 - 26 -

Figure A-10. Statistics from PlanAhead for the hand-generated version of the mmldiv64 extension.

Figure A-11. Statistics from PlanAhead for the M2V-generated version of the mmldiv64 extension.

 - 27 -

Figure A-12. Synthesis report for the hand-generated version of the mmldiv64 extension.

Figure A-13. Synthesis report for the M2V-generated version of the mmldiv64 extension.

 - 28 -

Figure A-14. Execution time results for the 64-bit division test program. The hand-generated version was run

first, then the M2V-generated one

 - 29 -

Appendix II – Verilog Output for Example Basic Block 1

 2
// a.v 3
// auto-generated by m2v revision 1 on Wed Sep 19 14:47:36 2007 4
// 5
// INFO: reading from m2v_mod_bp.v 6
// 7
// m2v_mod_bp.v 8
// 8/15/07 9
// Karl Meier, Neil Pittman 10
// 11
// MIPS to Verilog (m2v) module (_mod) boilerplate (_bp) 12
// 13
// Copyright (c) Microsoft Corporation. All rights reserved. 14
 15
`timescale 1ns / 1ps 16
 17
module mmlite_div64 (18
/*****Ports**/ 19
 /* INPUT PORTS */ 20
 input CLK, /* System Clock 50 - 100 MHZ */ 21
 input EN, /* Enable */ 22
 input EXCEXT, /* Exception Flush */ 23
 input EXTNOP_MA, /* Extension Bubble in Memory Access Phase */ 24
 input GR, /* Grant Pipeline Resources */ 25
 input [31:0] INSTR, /* Current Instruction */ 26
 input [31:0] PC, /* Current PC External */ 27
 input PCLK, /* Pipeline Clock */ 28
 input [31:0] RDREG1DATA, /* Register Read Port 1 Register Data */ 29
 input [31:0] RDREG2DATA, /* Register Read Port 2 Register Data */ 30
 input [31:0] RDREG3DATA, /* Register Read Port 3 Register Data */ 31
 input [31:0] RDREG4DATA, /* Register Read Port 4 Register Data */ 32
 input REGEMPTY, /* Register Write Buffer Empty */ 33
 input REGFULL, /* Register Write Buffer Full */ 34
 input REGRDY, /* Register Write Buffer Ready */ 35
 input RESET, /* System Reset */ 36
 /* OUTPUT PORTS */ 37
 output ACK, /* Enable Acknowledged */ 38
 output [31:0] EXTADD, /* Extension Address */ 39
 /* Multiplexed: */ 40
 /* Next PC */ 41
 /* Exception Address */ 42
 /* PC Memory Access Phase */ 43
 output PCNEXT, /* Conditional PC Update */ 44
 output [4:0] RDREG1, /* Register Read Port 1 Register Number */ 45
 /* Multiplexed: */ 46
 /* Read Port 1 Register Number */ 47
 /* Write Port 1 Register Number */ 48
 /* Write Register Memory Access Phase */ 49
 output [4:0] RDREG2, /* Read Port 2 Register Number */ 50
 /* Multiplexed: */ 51
 /* Register Read Port 2 Register Number */ 52
 /* Register Write Port 2 Register Number */ 53
 /* <0> Register Write Enable Memory Access Phase */ 54
 /* <1> Memory to Register Memory Acess Phase */ 55
 output [4:0] RDREG3, /* Register Read Port 3 Register Number */ 56
 /* Multiplexed: */ 57
 /* Register Read Port 3 Register Number */ 58
 output [4:0] RDREG4, /* Register Read Port 4 Register Number Internal */ 59
 /* Multiplexed: */ 60
 /* Register Read Port 4 Register Number */ 61
 /* <1:0> Data Address [1:0] Memory Access Phase */ 62
 /* <2> Right/Left Unaligned Load/Store Memory Access Phase */ 63
 /* <3> Byte/Halfword Load/Store Memory Acess Phase */ 64
 output REGWRITE1, /* Register Write Port 1 Write Enable */ 65
 output REGWRITE2, /* Register Write Port 2 Write Enable */ 66
 output REWB, /* Re-enter at Writeback */ 67

 - 30 -

 output RI, /* Reserved/Recognized Instruction */ 68
 output [31:0] WRDATA1, /* Register Write Port 1 Data Internal */ 69
 /* Multiplexed: */ 70
 /* Register Write Port 1 Data */ 71
 /* ALU Result Memory Access Phase */ 72
 output [31:0] WRDATA2 /* Register Write Port 2 Data Internal */ 73
 /* Multiplexed: */ 74
 /* Register Write Port 2 Data */ 75
 /* Memory Data Out Memory Access Phase */ 76
); 77
 78
/*****Signals**/ 79
 80
 wire [31:0] ALURESULT_WB; /* ALU Result to Writeback Phase */ 81
 wire BHLS_WB; /* Byte/Halfword Load/Store to Writeback Phase */ 82
 wire [31:0] CJMPADD; /* Conditional Jump address to offset from Current PC */ 83
 wire [15:0] DIMM_EX; /* Data Immediate Execute Phase */ 84
 wire [15:0] DIMM_ID; /* Data Immediate Instruction Decode Phase */ 85
 wire [1:0] DMADD_WB; /* Least Significant Bits of Data Address to Writeback Phase */ 86
 wire [31:0] DMDATAOUT_WB; /* Memory Data Out to Writeback Phase */ 87
 wire DNE; /* Execution Done */ 88
 wire EN_EX; /* Enable Execute Phase */ 89
 wire [31:0] JMPADD; /* Jump address to end of basic block */ 90
 wire MEMTOREG_WB; /* Memory to Register to Writeback Phase */ 91
 wire [31:0] PC_EX; /* PC Execute Phase */ 92
 wire [31:0] PC_WB; /* PC to Writeback Phase */ 93
 wire [4:0] RD_EX; /* Destination Register Execution Phase */ 94
 wire [4:0] RDREG1_EX; /* Register Read Port 1 Register Number Execute Phase */ 95
 wire [31:0] RDREG1DATA_EX; /* Register Read Port 1 Register Data Execute Phase */ 96
 wire [4:0] RDREG2_EX; /* Register Read Port 2 Register Number Execute Phase */ 97
 wire [31:0] RDREG2DATA_EX; /* Register Read Port 2 Register Data Execute Phase */ 98
 wire [4:0] RDREG3_EX; /* Register Read Port 3 Register Number Execute Phase */ 99
 wire [4:0] RDREG4_EX; /* Register Read Port 4 Register Number Execute Phase */ 100
 wire REGWRITE_EX; /* Register Write Execute Phase */ 101
 wire REGWRITE_ID; /* Register Write Instruction Decode Phase */ 102
 wire REGWRITE_WB; /* Register Write to Writeback Phase */ 103
 wire RESET_EX; /* Reset Execute Phase */ 104
 wire [31:0] RESULT_EX; /* Result Execution Phase */ 105
 wire RNL_WB; /* Right/Left Unaligned Load/Store to Writeback Phase */ 106
 wire [4:0] RS_EX; /* Operand Register 1 Execute Phase */ 107
 wire [4:0] RS_ID; /* Operand Register 1 Instruction Decode Phase */ 108
 wire [4:0] RT_EX; /* Operand Register 2 Execute Phase */ 109
 wire [4:0] RT_ID; /* Operand Register 2 Instruction Decode Phase */ 110
 wire SLL128_EX; /* Shift Left Logical 128 bits Execute Phase */ 111
 wire SLL128_ID; /* Shift Left Logical 128 bits Instruction Decode Phase */ 112
 wire [31:0] WRDATA1_EX; /* Register Write Port 1 Data Execute Phase */ 113
 wire [31:0] WRDATA2_EX; /* Register Write Port 2 Data Execute Phase */ 114
 wire [4:0] WRREG_WB; /* Write Register Number to Writeback Phase */ 115
 wire [4:0] WRREG1_EX; /* Register Write Port 1 Register Number Execute Phase */ 116
 wire [4:0] WRREG2_EX; /* Register Write Port 2 Register Number Execute Phase */ 117
 118
/*****Registers**/ 119
 120
 reg en_reg; /* Enable */ 121
 reg gr_reg; /* Grant Pipeline Resources */ 122
 123
/*****Initialization**/ 124
/* 125
 initial 126
 begin 127
 en_reg = 1'b0; 128
 gr_reg = 1'b0; 129
 end 130
*/ 131
 132
/***/ 133
 134
 assign EXTADD = (en_reg)? JMPADD: 135

 - 31 -

 (PCNEXT)? CJMPADD: 136
 (REWB)? PC_WB: 137
 32'hffffffff; 138
 assign RDREG1 = (gr_reg & REGWRITE1)? WRREG1_EX: 139
 (REWB & gr_reg)? WRREG_WB: 140
 (gr_reg)? RDREG1_EX: 141
 5'b11111; 142
 assign RDREG2 = (gr_reg & REGWRITE2)? WRREG2_EX: 143
 (REWB & gr_reg)? {3'b0,MEMTOREG_WB,REGWRITE_WB}: 144
 (gr_reg)? RDREG2_EX: 145
 5'b11111; 146
 assign RDREG3 = (REWB & gr_reg)? 5'b0: 147
 (gr_reg)? RDREG3_EX: 148
 5'b11111; 149
 assign RDREG4 = (REWB & gr_reg)? {1'b0,BHLS_WB,RNL_WB,DMADD_WB}: 150
 (gr_reg)? RDREG4_EX: 151
 5'b11111; 152
 assign WRDATA1 = (gr_reg & REGWRITE1)? WRDATA1_EX: 153
 (REWB)? ALURESULT_WB: 154
 32'hffffffff; 155
 assign WRDATA2 = (gr_reg & REGWRITE2)? WRDATA2_EX: 156
 (REWB)? DMDATAOUT_WB: 157
 32'hffffffff; 158
 159
 160
 // 161
 // instantiate the instruction decode module for the extension instruction 162
 // - the instruction decode module is auto generated and appended to the 163
 // end of the verilog file (a.v unless redefined) 164
 // 165
 166
 ext_id id (167
 .CLK(CLK), 168
 .DIMM(DIMM_ID), 169
 .EN(EN), 170
 .JMPADD(JMPADD), 171
 .INSTR(INSTR), 172
 .PC(PC), 173
 .REGWRITE(REGWRITE_ID), 174
 .RESET(RESET), 175
 .RI(RI), 176
 .RS(RS_ID), 177
 .RT(RT_ID), 178
 .SLL128(SLL128_ID) 179
); 180
 181
/*****Instruction Decode -> Execute**/ 182
 183
 mmldiv64_toex to_ex(184
 .ACK(ACK), 185
 .CLK(CLK), 186
 .DIMM_EX(DIMM_EX), 187
 .DIMM_ID(DIMM_ID), 188
 .EN_EX(EN_EX), 189
 .EN_ID(EN), 190
 .EXCEXT(EXCEXT), 191
 .PC_EX(PC_EX), 192
 .PC_ID(PC), 193
 .PCLK(PCLK), 194
 .RDREG1DATA_EX(RDREG1DATA_EX), 195
 .RDREG1DATA_ID(RDREG1DATA), 196
 .RDREG2DATA_EX(RDREG2DATA_EX), 197
 .RDREG2DATA_ID(RDREG2DATA), 198
 .REGWRITE_EX(REGWRITE_EX), 199
 .REGWRITE_ID(REGWRITE_ID), 200
 .RESET(RESET), 201
 .RESET_EX(RESET_EX), 202
 .RS_EX(RS_EX), 203

 - 32 -

 .RS_ID(RS_ID), 204
 .RT_EX(RT_EX), 205
 .RT_ID(RT_ID), 206
 .SLL128_ID(SLL128_ID), 207
 .SLL128_EX(SLL128_EX) 208
); 209
 210
 211
 // 212
 // instantiate the execution module for the extension instruction 213
 // - the execution module is auto generated and appended to the 214
 // end of the verilog file (a.v unless redefined) 215
 // 216
 217
 ext_ex ex(218
 .ACK(ACK), 219
 .DIMM(DIMM_EX), 220
 .DNE(DNE), 221
 .CLK(CLK), 222
 .CJMPADD(CJMPADD), 223
 .EN(EN_EX), 224
 .EXTNOP_MA(EXTNOP_MA), 225
 .GR(GR), 226
 .PC(PC_EX), 227
 .PCLK(PCLK), 228
 .PCNEXT(PCNEXT), 229
 .RD(RD_EX), 230
 .RDREG1(RDREG1_EX), 231
 .RDREG1DATA(RDREG1DATA), 232
 .RDREG1DATA_ID(RDREG1DATA_EX), 233
 .RDREG2(RDREG2_EX), 234
 .RDREG2DATA(RDREG2DATA), 235
 .RDREG2DATA_ID(RDREG2DATA_EX), 236
 .RDREG3(RDREG3_EX), 237
 .RDREG3DATA(RDREG3DATA), 238
 .RDREG4(RDREG4_EX), 239
 .RDREG4DATA(RDREG4DATA), 240
 .REGEMPTY(REGEMPTY), 241
 .REGFULL(REGFULL), 242
 .REGRDY(REGRDY), 243
 .REGWRITE1(REGWRITE1), 244
 .REGWRITE2(REGWRITE2), 245
 .RESET(RESET_EX), 246
 .RESULT(RESULT_EX), 247
 .RS(RS_EX), 248
 .RT(RT_EX), 249
 .SLL128(SLL128_EX), 250
 .WRDATA1(WRDATA1_EX), 251
 .WRDATA2(WRDATA2_EX), 252
 .WRREG1(WRREG1_EX), 253
 .WRREG2(WRREG2_EX) 254
); 255
 256
/*****Execute -> to Writeback**/ 257
 258
 mmldiv64_topipe_wb to_wb(259
 .ACK(ACK), 260
 .ALURESULT_WB(ALURESULT_WB), 261
 .BHLS_WB(BHLS_WB), 262
 .CLK(CLK), 263
 .DMADD_WB(DMADD_WB), 264
 .DMDATAOUT_WB(DMDATAOUT_WB), 265
 .DNE(DNE), 266
 .EN_EX(EN_EX), 267
 .EXCEXT(EXCEXT), 268
 .EXTNOP_MA(EXTNOP_MA), 269
 .PC_EX(PC_EX), 270
 .PC_WB(PC_WB), 271

 - 33 -

 .PCLK(PCLK), 272
 .MEMTOREG_WB(MEMTOREG_WB), 273
 .RD_EX(RD_EX), 274
 .REGWRITE_EX(REGWRITE_EX), 275
 .REGWRITE_WB(REGWRITE_WB), 276
 .RESET(RESET), 277
 .RESULT_EX(RESULT_EX), 278
 .REWB(REWB), 279
 .RNL_WB(RNL_WB), 280
 .WRREG_WB(WRREG_WB) 281
); 282
 283
/***/ 284
 285
 always@(posedge CLK) 286
 begin 287
 if (RESET == 1'b0) 288
 begin 289
 en_reg <= 1'b0; 290
 gr_reg <= 1'b0; 291
 end 292
 else 293
 begin 294
 en_reg <= EN; 295
 gr_reg <= GR; 296
 end 297
 end 298
 299
endmodule 300
 301
 302
 303
/*****Execute -> to Writeback**/ 304
 305
module mmldiv64_topipe_wb(306
/*****Ports**/ 307
 /* INPUT PORTS */ 308
 input ACK, /* Enable Acknowledged */ 309
 input CLK, /* System Clock 50 - 100 MHZ */ 310
 input DNE, /* Execution Done */ 311
 input EN_EX, /* Enable Execute Phase */ 312
 input EXCEXT, /* Exception Flush */ 313
 input EXTNOP_MA, /* Extension Bubble in Memory Access Phase */ 314
 input [31:0] PC_EX, /* Current PC Execute Phase */ 315
 input PCLK, /* Pipeline Clock */ 316
 input [4:0] RD_EX, /* Destination Register Execution Phase */ 317
 input REGWRITE_EX, /* Register Write Execute Phase */ 318
 input RESET, /* System Reset */ 319
 input [31:0] RESULT_EX, /* Result Execution Phase */ 320
 /* OUTPUT PORTS */ 321
 output [31:0] ALURESULT_WB, /* ALU Result to Writeback Phase */ 322
 output BHLS_WB, /* Byte/Halfword Load/Store to Writeback Phase */ 323
 output [1:0] DMADD_WB, /* Least Significant Bits of Data Address to Writeback Phase */ 324
 output [31:0] DMDATAOUT_WB, /* Memory Data Out to Writeback Phase */ 325
 output MEMTOREG_WB, /* Memory to Register to Writeback Phase */ 326
 output [31:0] PC_WB, /* Current PC to Writeback Phase */ 327
 output REGWRITE_WB, / * Register Write to Writeback Phase */ 328
 output REWB, /* Re-enter at Writeback */ 329
 output RNL_WB, /* Right/Left Unaligned Load/Store to Writeback Phase */ 330
 output [4:0] WRREG_WB /* Write Register Number to Writeback Phase */ 331
); 332
 333
/*****Signals**/ 334
 335
 wire EN_WB; /* Enable to Writeback Phase */ 336
 wire RESET_WB; /* Reset to Writeback Phase */ 337
 338
/*****Registers**/ 339

 - 34 -

 340
 reg [70:0] ex_wb; /* Execute -> to Writeback Pipeline Register */ 341
 reg [1:0] pclkcnt; /* Pipeline Clock edge detection */ 342
 reg reset_reg; /* Reset to Writeback Phase */ 343
 reg rewb_reg; /* Re-enter at Writeback */ 344
 345
/*****Initialization**/ 346
/* 347
 initial 348
 begin 349
 ex_wb = 71'b0; 350
 pclkcnt = 2'b0; 351
 rewb_reg = 1'b0; 352
 reset_reg = 1'b0; 353
 end 354
*/ 355
/***/ 356
 357
 assign RESET_WB = reset_reg; 358
 assign REWB = rewb_reg & EN_WB; 359
 assign EN_WB = ex_wb[70]; //EN_EX; 360
 assign REGWRITE_WB = ex_wb[69]; //REGWRITE_EX; 361
 assign MEMTOREG_WB = 1'b0; 362
 assign RNL_WB = 1'b0; 363
 assign BHLS_WB = 1'b0; 364
 assign DMADD_WB = 2'b0; 365
 assign WRREG_WB = ex_wb[68:64]; //RD_EX; 366
 assign ALURESULT_WB = ex_wb[63:32]; //RESULT_EX; 367
 assign DMDATAOUT_WB = 32'b0; 368
 assign PC_WB = ex_wb[31:0]; //PC_EX; 369
 370
/***/ 371
 372
 always@(posedge CLK) 373
 begin 374
 /* Pipeline Clock edge detection */ 375
 pclkcnt = {pclkcnt[0],PCLK}; // karl, 9/19, change to non-blocking to 376
 // match Neil 377
 end 378
 379
 always@(posedge CLK) 380
 begin 381
 case(pclkcnt) 382
 2'b01: begin 383
 /* Synchronize Reset to Pipeline Clock */ 384
 reset_reg <= RESET; 385
 end 386
 default: begin 387
 end 388
 endcase 389
 end 390
 391
 always@(posedge CLK) 392
 begin 393
 /* Execute -> to Memory Access Pipeline Register */ 394
 casex({pclkcnt,RESET_WB,EXTNOP_MA,rewb_reg,ACK,DNE,EXCEXT}) 395
 8'bxx0xxxxx: begin 396
 /* Reset */ 397
 rewb_reg <= 1'b0; 398
 ex_wb <= 71'b0; 399
 end 400
 8'b011xxxx1: begin 401
 /* Exception in Pipeline, Flush */ 402
 rewb_reg <= 1'b0; 403
 ex_wb <= 71'b0; 404
 end 405
 8'bxx1x0110: begin 406
 /* Latch Data and Control after Execution Finishes */ 407

 - 35 -

 ex_wb <= {EN_EX,REGWRITE_EX,RD_EX,RESULT_EX,PC_EX}; 408
 end 409
 8'b101100x0: begin 410
 /* Raise REWB at next Negedge of PCLK after ACK Lowers */ 411
 rewb_reg <= 1'b1; 412
 end 413
 8'b011x1xx0: begin 414
 /* Lower REWB at next Posedge and reset register */ 415
 rewb_reg <= 1'b0; 416
 ex_wb <= 71'b0; 417
 end 418
 default: begin 419
 /* NOP */ 420
 end 421
 endcase 422
 end 423
endmodule 424
 425
 426
/*****Instruction Decode -> Execute**/ 427
 428
module mmldiv64_toex(429
/*****Ports**/ 430
 /* INPUT PORTS */ 431
 input ACK, /* Enable Acknowledged */ 432
 input CLK, /* System Clock 50 - 100 MHZ */ 433
 input [15:0] DIMM_ID, /* Data Immediate Instruction Decode Phase */ 434
 input EN_ID, /* Enable Instruction Decode Phase */ 435
 input EXCEXT, /* Exception Flush */ 436
 input [31:0] PC_ID, /* Current PC Decode Phase */ 437
 input PCLK, /* Pipeline Clock */ 438
 input [31:0] RDREG1DATA_ID, /* Register Read Port 1 Register Data Instruction Decode Phase */ 439
 input [31:0] RDREG2DATA_ID, /* Register Read Port 2 Register Data Instruction Decode Phase */ 440
 input REGWRITE_ID, /* Register Write Instruction Decode Phase*/ 441
 input RESET, /* System Reset */ 442
 input [4:0] RS_ID, /* Operand Register 1 Instruction Decode Phase */ 443
 input [4:0] RT_ID, /* Operand Register 2 Instruction Decode Phase */ 444
 input SLL128_ID, /* Shift Left Logical 128 bits Instruction Decode Phase */ 445
 /* OUTPUT PORTS */ 446
 output [15:0] DIMM_EX, /* Data Immediate Execute Phase */ 447
 output EN_EX, /* Enable Execute Phase */ 448
 output [31:0] PC_EX, /* Current PC Instruction Decode Phase */ 449
 output [31:0] RDREG1DATA_EX, /* Register Read Port 1 Register Data Execute Phase */ 450
 output [31:0] RDREG2DATA_EX, /* Register Read Port 2 Register Data Execute Phase */ 451
 output REGWRITE_EX, /* Register Write Execute Phase*/ 452
 output RESET_EX, /* Reset Execute Phase */ 453
 output [4:0] RS_EX, /* Operand Register 1 Execute Phase */ 454
 output [4:0] RT_EX, /* Operand Register 2 Execute Phase */ 455
 output SLL128_EX /* Shift Left Logical 128 bits Execute Phase */ 456
); 457
 458
/*****Registers**/ 459
 460
 reg [124:0] id_ex; /* Instruction Decode -> Execute Pipeline Register */ 461
 reg [1:0] pclkcnt; /* Pipeline Clock edge detection */ 462
 reg reset_reg; /* Reset Execute Phase */ 463
 464
/*****Initialization**/ 465
 466
/* 467
 initial 468
 begin 469
 id_ex = 125'b0; 470
 pclkcnt = 2'b0; 471
 reset_reg = 1'b0; 472
 end 473
*/ 474
 475

 - 36 -

/***/ 476
 477
 assign RESET_EX = reset_reg; 478
 assign EN_EX = id_ex[124]; //EN_ID; 479
 assign SLL128_EX = id_ex[123]; //SLL128_ID; 480
 assign REGWRITE_EX = id_ex[122]; //REGWRITE_ID; 481
 assign RS_EX = id_ex[121:117]; //RS_ID; 482
 assign RT_EX = id_ex[116:112]; //RT_ID; 483
 assign DIMM_EX = id_ex[111:96]; //DIMM_ID; 484
 assign PC_EX = id_ex[95:64]; //PC_ID; 485
 assign RDREG1DATA_EX = id_ex[63:32]; //RDREG1DATA_ID; 486
 assign RDREG2DATA_EX = id_ex[31:0]; //RDREG2DATA_ID 487
 488
/***/ 489
 490
 always@(posedge CLK) 491
 begin 492
 /* Pipeline Clock edge detection */ 493
 pclkcnt = {pclkcnt[0],PCLK}; // karl, 9/19, change to non-blocking to 494
 // match Neil 495
 end 496
 497
 always@(posedge CLK) 498
 begin 499
 case(pclkcnt) 500
 2'b01: begin 501
 /* Synchronize Reset to Pipeline Clock */ 502
 reset_reg <= RESET; 503
 end 504
 default: begin 505
 end 506
 endcase 507
 end 508
 509
 always@(posedge CLK) 510
 begin 511
 /* Instruction Decode -> Execute Pipeline Register */ 512
 casex({pclkcnt,RESET_EX,ACK,EXCEXT}) 513
 5'bxx0xx: begin 514
 /* Reset */ 515
 id_ex <= 109'b0; 516
 end 517
 5'b011x1: begin 518
 /* Exception in Pipeline, Flush */ 519
 id_ex <= 109'b0; 520
 end 521
 5'bxx110: begin 522
 /* Hold state during Execute Phase */ 523
 end 524
 5'b01100: begin 525
 /* Clocking the Pipeline */ 526
 id_ex <= 527
{EN_ID,SLL128_ID,REGWRITE_ID,RS_ID,RT_ID,DIMM_ID,PC_ID,RDREG1DATA_ID,RDREG2DATA_ID}; 528
 end 529
 default: begin 530
 /* NOP */ 531
 end 532
 endcase 533
 end 534
endmodule 535
 536
 537
// 538
// INFO: finished reading from m2v_mod_bp.v 539
// 540
 541
// 542
// extension instruction decode 543

 - 37 -

// 544
module ext_id(545
 input CLK, 546
 input EN, 547
 input [31:0] INSTR, 548
 input [31:0] PC, 549
 input RESET, 550
 551
 output reg [15:0] DIMM, 552
 output reg [31:0] JMPADD, 553
 output reg REGWRITE, 554
 output reg RI, 555
 output reg [4:0] RS, 556
 output reg [4:0] RT, 557
 output reg SLL128 558
); 559
 560
 reg [31:0] jmpadd_c; 561
 reg en_r; 562
 reg [5:0] op_r; 563
 reg [31:0] pc_r; 564
 reg opcode_match; 565
 566
 // combinatorial logic for instruction decode 567
 always @ (*) begin 568
 jmpadd_c = pc_r + 48 + 4; 569
 opcode_match = (op_r == 30); 570
 end 571
 572
 // sequential logic for instruction decode 573
 always @ (posedge CLK) begin 574
 if (!RESET) begin 575
 DIMM <= 16'h0; 576
 op_r <= 6'h0; 577
 RS <= 5'h0; 578
 RT <= 5'h0; 579
 en_r <= 1'h0; 580
 pc_r <= 32'h0; 581
 JMPADD <= 32'h0; 582
 RI <= 1'h1; 583
 SLL128 <= 1'h0; 584
 REGWRITE <= 1'h0; 585
 end else begin 586
 DIMM <= INSTR[15:0]; 587
 op_r <= INSTR[31:26]; 588
 RS <= INSTR[25:21]; 589
 RT <= INSTR[20:16]; 590
 en_r <= EN; 591
 pc_r <= PC; 592
 JMPADD <= jmpadd_c; 593
 RI <= ~opcode_match; 594
 SLL128 <= en_r & opcode_match; 595
 REGWRITE <= en_r & opcode_match; 596
 end 597
 end 598
endmodule 599
 600
// 601
// INFO: reading from m2v_ex_bp.v 602
// 603
// m2v_ex_bp.v 604
// 8/15/07 605
// Karl Meier, Neil Pittman 606
// 607
// MIPS to Verilog (m2v) execution (_ex) boilerplate (_bp) 608
// 609
// Copyright (c) Microsoft Corporation. All rights reserved. 610
// 611

 - 38 -

 612
module ext_ex (613
/*****Ports**/ 614
 /* INPUT PORTS */ 615
 input CLK, /* System Clock 50 - 100 MHZ */ 616
 input [15:0] DIMM, /* Data Immediate */ 617
 input EN, /* Enable */ 618
 input EXTNOP_MA, /* Extension Bubble in Memory Access Phase */ 619
 input GR, /* Grant Pipeline Resources */ 620
 input [31:0] PC, /* Current PC */ 621
 input PCLK, /* Pipeline Clock */ 622
 input [31:0] RDREG1DATA, /* Register Read Port 1 Register Data */ 623
 input [31:0] RDREG1DATA_ID, /* Register Read Port 1 Register Data Instruction Decode Phase */ 624
 input [31:0] RDREG2DATA, /* Register Read Port 2 Register Data */ 625
 input [31:0] RDREG2DATA_ID, /* Register Read Port 2 Register Data Instruction Decode Phase */ 626
 input [31:0] RDREG3DATA, /* Register Read Port 3 Register Data */ 627
 input [31:0] RDREG4DATA, /* Register Read Port 4 Register Data */ 628
 input REGEMPTY, /* Register Write Buffer Empty */ 629
 input REGFULL, /* Register Write Buffer Full */ 630
 input REGRDY, /* Register Write Buffer Ready */ 631
 input RESET, /* System Reset */ 632
 input [4:0] RS, /* Operand Register 1 */ 633
 input [4:0] RT, /* Operand Register 2 */ 634
 input SLL128, /* Shift Left Logical 128 bits */ 635
 636
 /* OUTPUT PORTS */ 637
 output reg ACK, /* Enable Acknowledged */ 638
 output reg [31:0] CJMPADD, /* Conditional Jump address to offset from Current PC */ 639
 output reg DNE, /* Execution Done */ 640
 output reg PCNEXT, /* Conditional PC Update */ 641
 output reg [4:0] RD, /* Destination Register */ 642
 output reg REGWRITE1, /* Register Write Port 1 Write Enable */ 643
 output reg REGWRITE2, /* Register Write Port 2 Write Enable */ 644
 output reg [4:0] RDREG1, /* Register Read Port 1 Register Number */ 645
 output reg [4:0] RDREG2, /* Register Read Port 2 Register Number */ 646
 output reg [4:0] RDREG3, /* Register Read Port 3 Register Number */ 647
 output reg [4:0] RDREG4, /* Register Read Port 4 Register Number */ 648
 output reg [31:0] RESULT, /* Result */ 649
 output reg [31:0] WRDATA1, /* Register Write Port 1 Data */ 650
 output reg [31:0] WRDATA2, /* Register Write Port 2 Data */ 651
 output reg [4:0] WRREG1, /* Register Write Port 1 Register Number */ 652
 output reg [4:0] WRREG2 /* Register Write Port 2 Register Number */ 653
); 654
 655
 // tie off outputs that are not used in the automated accelerator 656
 always @ (posedge CLK) begin 657
 RD <= 0; 658
 RESULT <= 0; 659
 end 660
 661
/***/ 662
 663
// 664
// INFO: finished reading from m2v_ex_bp.v 665
// 666
 667
 // parameters for extension execution block 668
 parameter MAX_STATE = 6; 669
 parameter REG_READ_WAIT_STATES = 5; 670
 671
 // declarations for extension state machine 672
 reg[MAX_STATE:1] state_r; 673
 reg[5:1] branch_state_r; 674
 reg[5:1] write_state_r; 675
 reg[5:1] read_state_r; 676
 677
 // declarations for register read variables 678
 reg[31:0] r9_1; 679

 - 39 -

 reg[31:0] r8_4, r8_4_r; 680
 reg[31:0] r4_11, r4_11_r; 681
 reg[31:0] r5_18; 682
 reg[31:0] r6_23; 683
 // declarations for register temp variables 684
 reg[31:0] r9_3; 685
 reg[31:0] r11_6; 686
 reg[31:0] r9_8, r9_8_r; 687
 reg[31:0] r8_10; 688
 reg[31:0] r11_13; 689
 reg[31:0] r8_15, r8_15_r; 690
 reg[31:0] r4_17; 691
 reg[31:0] r11_20; 692
 reg[31:0] r4_22, r4_22_r; 693
 reg[31:0] r11_25, r11_25_r; 694
 reg[31:0] r5_29, r5_29_r; 695
// 696
// INFO: reading from m2v_state_mc.v 697
// 698
 // m2v_state_mc.v 699
 // 700
 // Karl Meier 701
 // 8/15/07 702
 // 703
 // invariant state machine logic for the read, write, and branch state 704
 // machines 705
 // 706
 707
 reg [1:0] pclk_del_r; 708
 reg pclk_rise, pclk_fall; 709
 reg en_r, sll128_r, gr_r, regrdy_r, regfull_r, regempty_r, extnop_ma_r; 710
 reg clr_dne, DNE_c, ACK_c; 711
 reg done_state, done_state_r; 712
 reg wsm_idle, wsm_idle_r, wsm_pulse, wsm_pulse_r, wsm_wait, wsm_wait_r; 713
 reg write_this_state, wsm_done; 714
 reg rsm_idle, rsm_idle_r, rsm_latch, rsm_latch_r; 715
 reg rsm_wait, rsm_wait_r, rsm_wait2, rsm_wait2_r; 716
 reg [3:0] rsm_count, rsm_count_r; 717
 reg read_this_state, rsm_done; 718
 reg bsm_idle, bsm_idle_r, bsm_calc, bsm_calc_r; 719
 reg bsm_wait, bsm_wait_r, bsm_waitpf, bsm_waitpf_r; 720
 reg bsm_waitpr, bsm_waitpr_r; 721
 reg branch_this_state, bsm_done; 722
 reg fsm_idle, fsm_idle_r, fsm_wait2, fsm_wait2_r, fsm_wait, fsm_wait_r; 723
 reg final_state, fsm_done; 724
 reg take_branch, take_branch_r; 725
 726
 // state machine logic for compiled extension 727
 always @ (*) begin 728
 pclk_rise = (pclk_del_r == 2'b01); 729
 pclk_fall = (pclk_del_r == 2'b10); 730
 731
 // start the extension instruction 732
 clr_dne = state_r[1] & en_r & sll128_r; 733
 734
 // state machine for read logic 735
 read_this_state = (| (state_r & read_state_r)); 736
 rsm_wait = read_this_state & 737
 (rsm_idle_r & gr_r) | 738
 (rsm_wait_r & (rsm_count_r != REG_READ_WAIT_STATES)); 739
 rsm_latch = rsm_wait_r & (rsm_count_r == REG_READ_WAIT_STATES); 740
 rsm_wait2 = (rsm_wait2_r | rsm_latch_r) & ~done_state; 741
 rsm_idle = ~rsm_wait & ~rsm_wait2 & ~rsm_latch; 742
 rsm_count = rsm_idle_r ? 4'h0 : (rsm_count_r + 1); 743
 rsm_done = ~read_this_state | 744
 (read_this_state & (rsm_latch_r | rsm_wait2_r)); 745
 746
 // state machine for write logic 747

 - 40 -

 write_this_state = (| (state_r & write_state_r)); 748
 wsm_pulse = wsm_idle_r & write_this_state & gr_r & regrdy_r & ~regfull_r; 749
 wsm_wait = (wsm_pulse_r & ~done_state) | 750
 (wsm_wait_r & ~done_state); 751
 wsm_idle = ~wsm_pulse & ~wsm_wait; 752
 wsm_done = ~write_this_state | 753
 (write_this_state & (wsm_pulse_r | wsm_wait_r)); 754
 755
 // state machine for branch logic 756
 branch_this_state = (| (state_r & branch_state_r)); 757
 bsm_calc = bsm_idle_r & branch_this_state; 758
 bsm_waitpf = (bsm_calc_r & take_branch_r) | 759
 (bsm_waitpf_r & ~pclk_fall); 760
 bsm_waitpr = (bsm_waitpf_r & pclk_fall) | 761
 (bsm_waitpr_r & ~pclk_rise); 762
 bsm_wait = (bsm_calc_r & ~take_branch_r & ~done_state) | 763
 (bsm_waitpr_r & pclk_rise & ~done_state) | 764
 (bsm_wait_r & ~done_state); 765
 bsm_idle = ~bsm_calc & ~bsm_wait & ~bsm_waitpr & ~bsm_waitpf; 766
 bsm_done = ~branch_this_state | 767
 (branch_this_state & 768
 ((bsm_calc_r & ~take_branch_r) | 769
 (bsm_waitpr_r & pclk_rise) | 770
 bsm_wait_r)); 771
 772
 // state machine to finish up the extension instruction 773
 final_state = state_r[MAX_STATE]; 774
 fsm_wait = final_state & rsm_idle_r | 775
 (fsm_wait_r & ~(gr_r & regempty_r & extnop_ma_r)); 776
 fsm_wait2 = (fsm_wait_r & gr_r & regempty_r & extnop_ma_r) | 777
 (fsm_wait2_r & ~en_r); 778
 fsm_idle = ~fsm_wait & ~fsm_wait2; 779
 fsm_done = final_state & fsm_wait2_r & ~en_r; 780
 781
 // clear DNE as the extension instruction is entered 782
 // set DNE as the extension instruction is exited 783
 DNE_c = (DNE | (fsm_wait_r & gr_r & regempty_r & extnop_ma_r)) & ~clr_dne; 784
 ACK_c = (ACK | (~DNE & ~ACK)) & ~(ACK & DNE & pclk_rise); 785
 end 786
 787
 always @ (*) begin 788
 // true when all conditions for a state have been satisfied 789
 done_state = clr_dne | 790
 (~state_r[1] & bsm_done & rsm_done & wsm_done); 791
 end 792
 793
 794
 // state to determine rising and falling edges of pclk 795
 always @ (posedge CLK) begin 796
 pclk_del_r <= {pclk_del_r[0], PCLK}; 797
 end 798
 799
 // buffer signals that may be heavily loaded or come from a distance 800
 // - is this needed? this is present to maintain compatibility with Neil 801
 always @ (posedge CLK) begin 802
 if (!RESET) begin 803
 en_r <= 1'h0; 804
 sll128_r <= 1'h0; 805
 gr_r <= 1'h0; 806
 regrdy_r <= 1'h0; 807
 regfull_r <= 1'h0; 808
 regempty_r <= 1'h0; 809
 extnop_ma_r <= 1'h0; 810
 end else begin 811
 en_r <= EN; 812
 sll128_r <= SLL128; 813
 gr_r <= GR; 814
 regrdy_r <= REGRDY; 815

 - 41 -

 regfull_r <= REGFULL; 816
 regempty_r <= REGEMPTY; 817
 extnop_ma_r <= EXTNOP_MA; 818
 end 819
 end 820
 821
 // misc control for the extension 822
 always @ (posedge CLK) begin 823
 if (!RESET) begin 824
 ACK <= 1'h0; 825
 DNE <= 1'h1; 826
 done_state_r <= 1'b0; 827
 828
 wsm_idle_r <= 1'b1; 829
 wsm_pulse_r <= 1'b0; 830
 wsm_wait_r <= 1'b0; 831
 832
 rsm_idle_r <= 1'b1; 833
 rsm_latch_r <= 1'b0; 834
 rsm_wait_r <= 1'b0; 835
 rsm_wait2_r <= 1'b0; 836
 rsm_count_r <= 4'b0; 837
 838
 bsm_idle_r <= 1'b1; 839
 bsm_calc_r <= 1'b0; 840
 bsm_wait_r <= 1'b0; 841
 bsm_waitpr_r <= 1'b0; 842
 bsm_waitpf_r <= 1'b0; 843
 take_branch_r <= 1'h0; 844
 845
 fsm_idle_r <= 1'b1; 846
 fsm_wait_r <= 1'b0; 847
 fsm_wait2_r <= 1'b0; 848
 849
 end else begin 850
 /* 851
 // clear ack 852
 if (ACK & DNE & pclk_rise) 853
 ACK <= 1'h0; 854
 // set ack 855
 else if (~DNE & ~ACK) 856
 ACK <= 1'h1; 857
 */ 858
 859
 ACK <= ACK_c; 860
 DNE <= DNE_c; 861
 done_state_r <= done_state; 862
 863
 wsm_idle_r <= wsm_idle; 864
 wsm_pulse_r <= wsm_pulse; 865
 wsm_wait_r <= wsm_wait; 866
 867
 rsm_idle_r <= rsm_idle; 868
 rsm_latch_r <= rsm_latch; 869
 rsm_wait_r <= rsm_wait; 870
 rsm_wait2_r <= rsm_wait2; 871
 rsm_count_r <= rsm_count; 872
 873
 bsm_idle_r <= bsm_idle; 874
 bsm_calc_r <= bsm_calc; 875
 bsm_wait_r <= bsm_wait; 876
 bsm_waitpr_r <= bsm_waitpr; 877
 bsm_waitpf_r <= bsm_waitpf; 878
 // if take_branch_r is ever used outside of the branch state machine, 879
 // it may need to be cleared at the end of the branch operation 880
 take_branch_r <= bsm_calc ? take_branch : take_branch_r; 881
 882
 fsm_idle_r <= fsm_idle; 883

 - 42 -

 fsm_wait_r <= fsm_wait; 884
 fsm_wait2_r <= fsm_wait2; 885
 end 886
 end 887
 888
// 889
// INFO: finished reading from m2v_state_mc.v 890
// 891
 892
 893
 // registers that contain state about this cycle 894
 always @ (posedge CLK) begin 895
 if (~RESET) begin 896
 branch_state_r[1] <= 1'b0; 897
 write_state_r[1] <= 1'b0; 898
 read_state_r[1] <= 1'b1; 899
 900
 branch_state_r[2] <= 1'b0; 901
 write_state_r[2] <= 1'b0; 902
 read_state_r[2] <= 1'b1; 903
 904
 branch_state_r[3] <= 1'b1; 905
 write_state_r[3] <= 1'b1; 906
 read_state_r[3] <= 1'b1; 907
 908
 branch_state_r[4] <= 1'b0; 909
 write_state_r[4] <= 1'b1; 910
 read_state_r[4] <= 1'b0; 911
 912
 branch_state_r[5] <= 1'b0; 913
 write_state_r[5] <= 1'b1; 914
 read_state_r[5] <= 1'b0; 915
 916
 end else begin 917
 branch_state_r <= branch_state_r; 918
 write_state_r <= write_state_r; 919
 read_state_r <= read_state_r; 920
 end 921
 end 922
 923
 924
 // combinatorial logic to/from the register file 925
 always @ (*) begin 926
 // combinatorial logic for register reads 927
 // use read ports 3 & 4 to prevent write conflicts 928
 RDREG1 = 0; 929
 RDREG2 = 0; 930
 r9_1 = RDREG3DATA; 931
 r8_4 = RDREG2DATA_ID; 932
 r4_11 = RDREG1DATA_ID; 933
 r5_18 = RDREG4DATA; 934
 r6_23 = RDREG3DATA; 935
 RDREG3 = ({5{state_r[2]}} & (RT + 1)) 936
 | ({5{state_r[1]}} & RT) 937
 | ({5{state_r[3]}} & (RS + 2)); 938
 RDREG4 = ({5{state_r[1]}} & RS) 939
 | ({5{state_r[2]}} & (RS + 1)); 940
 941
 // combinatorial logic for register writes 942
 WRREG1 = ({5{state_r[3]}} & RT) 943
 | ({5{state_r[4]}} & (RT + 1)) 944
 | ({5{state_r[5]}} & (RS + 1)); 945
 WRDATA1 = ({32{state_r[3]}} & r8_15_r) 946
 | ({32{state_r[4]}} & r9_8_r) 947
 | ({32{state_r[5]}} & r5_29_r); 948
 REGWRITE1 = wsm_pulse_r & (state_r[3] 949
 | state_r[4] 950
 | state_r[5]); 951

 - 43 -

 WRREG2 = ({5{state_r[4]}} & RS) 952
 | ({5{state_r[5]}} & 11); 953
 WRDATA2 = ({32{state_r[4]}} & r4_22_r) 954
 | ({32{state_r[5]}} & r11_25_r); 955
 REGWRITE2 = wsm_pulse_r & (state_r[4] 956
 | state_r[5]); 957
 end 958
 959
 // internal pipeline logic 960
 always @ (posedge CLK) begin 961
 if (~RESET) begin 962
 r8_4_r <= 32'h0; 963
 r4_11_r <= 32'h0; 964
 r9_8_r <= 32'h0; 965
 r8_15_r <= 32'h0; 966
 r4_22_r <= 32'h0; 967
 r11_25_r <= 32'h0; 968
 r5_29_r <= 32'h0; 969
 end else begin 970
 r8_4_r <= state_r[1] ? r8_4 : r8_4_r; 971
 r4_11_r <= state_r[1] ? r4_11 : r4_11_r; 972
 r9_8_r <= state_r[2] ? r9_8 : r9_8_r; 973
 r8_15_r <= state_r[2] ? r8_15 : r8_15_r; 974
 r4_22_r <= state_r[2] ? r4_22 : r4_22_r; 975
 r11_25_r <= state_r[3] ? r11_25 : r11_25_r; 976
 r5_29_r <= state_r[2] ? r5_29 : r5_29_r; 977
 end 978
 end 979
 980
 // combinatorial logic for the instruction nodes 981
 always @ (*) begin 982
 // [0x0] 0x10840 sll r9, r9, 1 983
 r9_3 = r9_1 << 1; 984
 985
 // [0x4] 0x21fc2 srl r11, r8, 31 986
 r11_6 = r8_4_r >> 31; 987
 988
 // [0x8] 0x230825 or r9, r9, r11 989
 r9_8 = r9_3 | r11_6; 990
 991
 // [0xc] 0x21040 sll r8, r8, 1 992
 r8_10 = r8_4_r << 1; 993
 994
 // [0x10] 0x41fc2 srl r11, r4, 31 995
 r11_13 = r4_11_r >> 31; 996
 997
 // [0x14] 0x431025 or r8, r8, r11 998
 r8_15 = r8_10 | r11_13; 999
 1000
 // [0x18] 0x42040 sll r4, r4, 1 1001
 r4_17 = r4_11_r << 1; 1002
 1003
 // [0x1c] 0x51fc2 srl r11, r5, 31 1004
 r11_20 = r5_18 >> 31; 1005
 1006
 // [0x20] 0x832025 or r4, r4, r11 1007
 r4_22 = r4_17 | r11_20; 1008
 1009
 // [0x24] 0x26182b sltu r11, r9, r6 1010
 r11_25 = ({1'b0, r9_8_r} < {1'b0, r6_23}) ? 1 : 0; 1011
 1012
 // [0x28] 0x10030005 beq r0, r11, 20 1013
 take_branch = (32'h0 == r11_25); 1014
 CJMPADD = take_branch ? (PC + 4 + {{16{DIMM[15]}},DIMM}) : PC; 1015
 PCNEXT = state_r[3] & bsm_waitpr & take_branch; 1016
 1017
 // [0x2c] 0x52840 sll r5, r5, 1 1018
 r5_29 = r5_18 << 1; 1019

 - 44 -

 1020
 end 1021
 1022
 // primary extension state machine 1023
 always @ (posedge CLK) begin 1024
 if (~RESET) begin 1025
 state_r <= 1; 1026
 end else begin 1027
 if (en_r) begin 1028
 if (done_state) 1029
 state_r <= {state_r[MAX_STATE-1:1], 1'b0}; 1030
 end 1031
 else begin 1032
 state_r <= 1; 1033
 end 1034
 end 1035
 end 1036
 1037
endmodule 1038

 - 45 -

Appendix III – BBW File for Example Basic Block

[bbname __ull_div]

MIPSBE

[encoding]

[r1=r2+1;r3=r0+11;r5=r4+1;r6=r5+1]b26.6:c011110;b21.5:r4;b16.5:r2;b0.16:v0;

[code 48]

40080100

c21f0200

25082300

40100200

c21f0400

25104300

40200400

c21f0500

25208300

2b182600

5000310

40280500

[disasm]

sll r1,r1,1

srl r3,r2,31

or r1,r1,r3

sll r2,r2,1

srl r3,r4,31

or r2,r2,r3

sll r4,r4,1

srl r3,r5,31

or r4,r4,r3

sltu r3,r1,r6

beq r0,r3,40

sll r5,r5,1

[registers 7]

0,9,8,11,4,5,6

[valuess 1]

{40,11,5}

 - 46 -

Appendix IV – Verbose Output from M2V for Example Basic Block

c:\fpga\bb2\m2v.exe -v small.bbw

Verbose output is enabled

Basic Block Dump:

Regs: 0 9 8 11 4 5 6

Values: {28,b,5}

Code: [0] 10840 sll r1,r1,1

 [4] 21fc2 srl r3,r2,31

 [8] 230825 or r1,r1,r3

 [c] 21040 sll r2,r2,1

 [10] 41fc2 srl r3,r4,31

 [14] 431025 or r2,r2,r3

 [18] 42040 sll r4,r4,1

 [1c] 51fc2 srl r3,r5,31

 [20] 832025 or r4,r4,r3

 [24] 26182b sltu r3,r1,r6

 [28] 10030005 beq r0,r3,40

 [2c] 52840 sll r5,r5,1

encoding of the extension instruction:

 [r1=r2+1;r3=r0+11;r5=r4+1;r6=r5+1]b26.6:c011110;b21.5:r4;b16.5:r2;b0.16:v0;

Parsing register relationships (pre-conditions)

 r1 = r2 + 1

 r3 = r0 + 11

 r5 = r4 + 1

 r6 = r5 + 1

Parsing instruction encoding

 extension is decoded as opcode = 30

 RS register = r4

 RT register = r2

 immediate value in encoding = v0

 extension is encoded as: 0x78820000

Finished parsing instruction encoding

Generating IL and Dependency Graph...

............

Assigning cycles to Instructions and RegFile access......

**** Cycle 1 ****

INFO: reading register RT

NODE 4: Register

 [0x4] Read r2 (canonical) from the RF

 used by: [0xc]

INFO: reading register RS

NODE 11: Register

 [0x10] Read r4 (canonical) from the RF

 used by: [0x18]

INFO: cycle 1 state: RF reads = 2, RF writes = 0, LS accesses = 0, may branch = 0

 - 47 -

**** Cycle 2 ****

NODE 4 is being pipelined

NODE 5: Instruction

 [0x4] 0x21fc2 srl r11, r8, 31

cost = 4

NODE 6: Register

 [0x4] Write r3 (canonical)

 used by: [0x8]

NODE 9: Instruction

 [0xc] 0x21040 sll r8, r8, 1

cost = 4

NODE 10: Register

 [0xc] Write r2 (canonical)

 used by: [0x14]

NODE 11 is being pipelined

NODE 12: Instruction

 [0x10] 0x41fc2 srl r11, r4, 31

cost = 4

NODE 13: Register

 [0x10] Write r3 (canonical)

 used by: [0x14]

NODE 14: Instruction

 [0x14] 0x431025 or r8, r8, r11

cost = 5

NODE 15: Register

 [0x14] Write r2 (canonical) to the RF

NODE 16: Instruction

 [0x18] 0x42040 sll r4, r4, 1

cost = 4

NODE 17: Register

 [0x18] Write r4 (canonical)

 used by: [0x20]

INFO: reading register (RT + 1)

NODE 1: Register

 [0x0] Read r1 (canonical) from the RF

NODE 2: Instruction

 [0x0] 0x10840 sll r9, r9, 1

cost = 4

NODE 3: Register

 [0x0] Write r1 (canonical)

 used by: [0x8]

NODE 7: Instruction

 [0x8] 0x230825 or r9, r9, r11

cost = 5

NODE 8: Register

 [0x8] Write r1 (canonical) to the RF

 used by: [0x24]

INFO: reading register (RS + 1)

NODE 18: Register

 [0x1c] Read r5 (canonical) from the RF

 used by: [0x2c]

NODE 19: Instruction

 - 48 -

 [0x1c] 0x51fc2 srl r11, r5, 31

cost = 4

NODE 20: Register

 [0x1c] Write r3 (canonical)

 used by: [0x20]

NODE 21: Instruction

 [0x20] 0x832025 or r4, r4, r11

cost = 5

NODE 22: Register

 [0x20] Write r4 (canonical) to the RF

NODE 28: Instruction

 [0x2c] 0x52840 sll r5, r5, 1

cost = 4

NODE 29: Register

 [0x2c] Write r5 (canonical) to the RF

INFO: cycle 2 state: RF reads = 2, RF writes = 0, LS accesses = 0, may branch = 0

**** Cycle 3 ****

NODE 8 is being pipelined

INFO: reading register (RS + 2)

NODE 23: Register

 [0x24] Read r6 (canonical) from the RF

NODE 24: Instruction

 [0x24] 0x26182b sltu r11, r9, r6

cost = 13

NODE 25: Register

 [0x24] Write r3 (canonical) to the RF

 used by: [0x28]

INFO: reading register 0

NODE 26: Register

 [0x28] Read r0 (canonical) from the RF

NODE 27: Instruction

 [0x28] 0x10030005 beq r0, r11, 20

cost = 18

NODE 15 is being pipelined

NODE 15 written back to RF in cycle 3

INFO: cycle 3 state: RF reads = 1, RF writes = 1, LS accesses = 0, may branch = 1

**** Cycle 4 ****

NODE 8 written back to RF in cycle 4

NODE 22 is being pipelined

NODE 22 written back to RF in cycle 4

INFO: cycle 4 state: RF reads = 0, RF writes = 2, LS accesses = 0, may branch = 0

**** Cycle 5 ****

NODE 29 is being pipelined

NODE 29 written back to RF in cycle 5

 - 49 -

NODE 25 is being pipelined

NODE 25 written back to RF in cycle 5

INFO: cycle 5 state: RF reads = 0, RF writes = 2, LS accesses = 0, may branch = 0

INFO: Extension requires 5 cycles

Writing Verilog module, a, to a.v

..........

PASS: m2v completed successfully

