

eBug: Debugging Extensions for the eMIPS Dynamically
Extensible Processor

Giovanni Busonera, Alessandro Forin, Richard Neil Pittman

Microsoft Research

November 2007

Technical Report

MSR-TR-2007-155

Microsoft Research

Microsoft Corporation

One Microsoft Way

Redmond, WA 98052

 - 2 -

 - 3 -

eBug: Debugging Extensions for the eMIPS Dynamically
Extensible Processor

Giovanni Busonera, Alessandro Forin, Richard Neil Pittman

Microsoft Research

Abstract

eBug is a debugging solution for software developed

on the eMIPS dynamically-extensible processor. The off-

chip portion of eBug is an application that performs tasks

that would be too expensive or too inflexible to perform in

hardware, such as implementing the communication

protocols to interface to the client debuggers. The on-chip

hardware portion of eBug is realized with a new

approach: rather than being built into the base pipelined

data path, it is a loadable logic module that uses the

standard Extension interface of the processor. This

accomplishes the three goals of area minimization and

reuse, security in a general purpose, multi-user

environment, and open-ended extensibility.

When not in use, eBug is simply not present on the

chip and its area is therefore reused. eBug solves the

security issues normally created by a hardware-level

debug module because only the process that owns the

eBug Extension can be affected by a debugging session.

As an Extension, eBug is not compiled into the basic

processor design and this makes it easy to add new

features without affecting the core eMIPS design.

Leveraging the high-visibility extension interface of

eMIPS, eBug can realize arbitrarily complex features for

high-level monitoring. In this paper we describe how we

transparently added hardware watchpoints to the initial,

simpler design. It is also possible to interface eBug with

other eMIPS extensions such as those generated by P2V

to improve its capabilities. eBug was written in Verilog

and is usable both with the Giano system simulator and

on the Xilinx ML401 FPGA board.

1 Introduction

Debugging is an important but tedious part of the

software development process. To be profitable, it must

be supported by appropriate tools. For instance, it is

desirable to present the user with the status of the

application as soon as the bug occurs, even though the

user does not yet have a precise idea of what the error

exactly is, let alone its cause. In embedded systems,

debugging is performed using a remote client debugger

that connects to the embedded processor using some

communication protocol. The remote debugger can access

the processor‟s resources with one of two approaches:

software based and hardware based. In the first case, a

piece of software called the “debug stub” runs on the

target processor itself. The stub interfaces to the remote

debugger by implementing the communication protocol

and responding to the debugger‟s requests. In case of a

hardware or software exception the stub is invoked and

the event is reported to the debugger. No custom

hardware is needed in this case, but there is some software

overhead present. Moreover, the processor status is not

observed in the actual moment that a trap occurs. In the

second case, a custom hardware module (such as a JTAG

interface) is coupled to the processor to access its

resources and communicate with the debugger. This

hardware module can be more or less complex, depending

on the features that it implements. In general, this

approach is not very flexible because adding any new

feature implies a reimplementation of the whole hardware

system. Furthermore, the hardware module is designed to

unconditionally access all the processor resources,

without any system software control. This causes security

issues and is therefore never used in a general purpose,

multi-user environment. In this environment, the common

approach is to provide in hardware some minimal support

for single-stepping and let the (system) software handle

the rest.

In this document we introduce eBug, a flexible, low

overhead, security aware and easily extensible debugging

support realized for the eMIPS processor [11]. eMIPS is

composed of a fixed basic processor module that can be

dynamically augmented with custom logic modules, using

the FPGA partial reconfiguration feature. These modules

are termed Extensions; they can access the internal

processor pipeline and resources and perform special

 - 4 -

purpose tasks, therefore adding new capabilities to the

running system. The primary contribution of this paper is

to show how flexible hardware debugging support can be

realized as an Extension to eMIPS, without any changes

to the fixed processor part. A number of debugging

Extensions have been implemented, providing different

levels of debugging support and therefore demonstrating

the flexibility of the approach from the hardware

standpoint. Software flexibility is provided by an

intermediate software application that interposes between

the actual debugger client and the eMIPS processor itself.

 eBug creates little if any overhead. It is entirely optional,

it uses very little area resources in one Extension slot, and

does not affect the performance of the processor in any

way. When an error occurs, eBug immediately halts the

processor before a trap is generated. In addition to

hardware exceptions, eBug can capture a variety of

conditions at the hardware level, by passively observing

the processor‟s execution.

A second contribution of this work is to show how

hardware debugging support can safely be confined

within the security envelop of a (user mode) process, but

without any loss in performance, extensibility or

functionality. eMIPS Extensions load, unload and access

the processor resources strictly under the control of the

operating system. When a process is rescheduled its

extensions are disabled and can no longer observe the

processor's execution and resources. When the extension

is enabled, its accesses to memory are filtered by the

processor‟s MMU.

eBug itself can be easily extended. The basic design is

simple and modular. In this paper we show how to add an

advanced feature such as data watchpoints with very little

effort. eBug is small enough that much more functionality

can be packed even into the relatively limited area

available on the first eMIPS prototype.

A third contribution of this work is a new linkage between

the semi-formal debugging activities of a programmer

with the more rigorous tools of temporal logic. eBug can

work in concert with the P2V [6] zero-overhead, online

program verification system. Temporal logic assertions

are realized as program-specific Extensions that can

trigger eBug whenever an assertion is violated. A

programmer creates these assertions either before or after

the program is compiled, possibly while debugging it, as a

way to express the intended behavior of the program.

Execution stops immediately once the program deviates

from the expected behavior, without waiting for a

hardware exception to occur.

In this paper we describe the first implementation of

eBug, and analyze its security capabilities and the

extensibility features. In particular, we show how to

improve the basic eBug functionality by adding hardware

support for watchpoints and breakpoints, without any

modification to the existing eMIPS design.

The remainder of this document is structured as

follows. Section 2 summarizes the related work. Section 3

introduces the eMIPS processor. Section 4 gives an

overview of eBug, and the eBug software and hardware

components are then described in detail in Section 5 and

Section 6. Section 7 shows how to use eBug in a practical

setting. Section 8 describes how we added hardware

support for watchpoints and breakpoints to the basic eBug

extension. A quantitative evaluation of the design is

presented in Section 9. Future work and conclusions are

presented in Section 10.

2 Related Work

On-chip support for software debugging can be found

in the Leon Processor [8], an open source 32-bit RISC

CPU jointly designed by Gaisler Research and the

European Space Agency. Leon is a Sparc V8 [14]

instruction set compliant microprocessor. A debugging

support unit (DSU) was introduced in the second revision

(Leon2). The DSU provides a processor debug interface

to the GDB debugger [3]. The DSU is available both on

the real target hardware and on a simulator. In Leon2 the

DSU communicates with the PC using a serial port

whereas the Leon3 DSU is connected to the system bus as

a slave device usable with different interfaces such as

UART, JTAG, USB or Ethernet.

Xilinx provides optional hardware support for

debugging software on the Microblaze soft-core [22] and

on the PPC hardcore [13]. The XMD (Xilinx

Microprocessor Debugger) [20] is a software tool used to

interface a GDB remote session with a processor running

on the real FPGA or with a cycle-accurate PPC or

Microblaze instruction set simulator. The PPC hardcore

includes (fixed) logic that links with XMD using a JTAG

link. The Microblaze can use both a software debug stub

and a hardware debug module called MDM [21]. In the

latter case MDM connects the Microblaze debug interface

with XMD using the JTAG interface.

Both the Leon and the Xilinx debugging support are

optional features, but neither takes advantage of the

FPGA reconfigurability features. Leon is an ASIC

oriented design and, while FPGA implementations do

exist, they do not exploit the FPGA partial reconfiguration

feature to insert and remove the DSU at runtime. This is

only possible at synthesis time, and only by reconfiguring

the whole system. Once the DSU is included in the

design, its area is wasted if debugging is not actually

needed. Moreover, modifying the DSU design to

http://en.wikipedia.org/wiki/Open_source_hardware
http://en.wikipedia.org/wiki/Open_source_hardware
http://en.wikipedia.org/wiki/Open_source_hardware
http://en.wikipedia.org/wiki/Reduced_Instruction_Set_Computer
http://en.wikipedia.org/wiki/Central_Processing_Unit
http://en.wikipedia.org/wiki/European_Space_Agency

 - 5 -

implement additional features impacts the whole

processor, which must therefore be re-validated.

The eBug hardware extension leverages the FPGA

partial reconfiguration feature to reuse that portion of the

device area when software debugging is not needed. This

is a choice that is made at runtime, during execution, and

not at design time. To this end, the eBug extension uses

the same general purpose interface to the eMIPS datapath

that is used by all the other eMIPS extensions. Using a

standard interface provides additional benefits for testing

and validation; only the specific extension must be re-

tested and not the rest of the system or any other

extension. Therefore it is possible to add new features to

eBug simply by re-implementing it, without affecting the

rest of the system.

Similar considerations apply to the Xilinx‟ debugging

support. MDM is designed for Microblaze on FPGAs but

it is not possible to remove it a run time. Moreover, MDM

uses JTAG and this creates security issues. JTAG is a bus

that provides low-level access to the entire system

resources, not just the software under debugging. For

instance, if the target processor is running a multitasking

operating system there will be context-switching during a

debug session. If the MDM is not properly used it can

negatively affect the state of other processes and/or other

parts on the system board. This is impossible with eBug

because it is an extension owned exclusively by the

process being debugged. When the operating system

schedules another process all the extensions of the

previous one are disabled and therefore they cannot affect

any other software module. MDM is a proprietary system

and it is not clear if it uses JTAG only to communicate

with the host PC or also to access the processor resources

like the register file. Compared to the processor clock,

JTAG is a slow link and this can be a critical issue for

remote debugging. For instance, realizing additional

features such as watch-points remotely over the JTAG

link would be problematic.

3 The eMIPS Processor

eMIPS [11] is a dynamically extensible microprocessor

developed by the Microsoft Research Embedded Systems

group. Using the extensibility features, a user can

dynamically add custom logic to the basic processor data

path at all stages of the pipeline. The additional logic,

which is termed an Extension, can be used to tailor the

processor for particular tasks and to improve the overall

performance. Extensions can be loaded on-chip

dynamically during execution by the processor itself, and

only when the processor actually needs them.

 Figure 1 presents a block diagram of the eMIPS

processor organization. The base datapath pipeline

stages, general purpose register file and memory interface

match those of a „classic‟ CPU [5] and are depicted in

lighter color in the diagram. These pipeline stages

constitute the Trusted ISA or TISA, the core portion of

the architecture that is required for initial operation and to

provide a level of trust in the functioning of the processor.

These blocks cannot be removed or disabled and must be

present at startup of the system. These blocks constitute

the fixed portion of the architecture and include all

resources that are of a security sensitive nature, such as

the system coprocessor. The TISA also includes all the

facilities for self-extension, including instructions for

loading, unloading, disabling and controlling the

unallocated blocks in the microprocessor. At a functional

level the pipeline blocks operate similarly to a „classic‟

CPU design, except their interconnections with respect to

each other and other blocks differ.

Figure 1: eMIPS Block Diagram

A simple Extension such as those depicted in darker

colors in Figure 1 includes an Instruction Decode (ID)

stage and an Execution stage that can span to the Memory

Access stage of the datapath. This allows the extension to

perform dual cycle operations without affecting the

normal CPU pipeline. To perform multi-cycle operations

it is possible to modify the processor control flow by

stalling the TISA and maintaining ownership of all the

pipeline resources. Multi-cycle operations are needed for

instance to access memory. Memory accesses go through

the MMU and are therefore confined within the current

process‟ address space. Privileged-mode resources such as

the system coprocessor-0 registers are not usually

accessible to an Extension, unless it is owned by

privileged-mode software. The extension has otherwise

access to all other non-privileged resources of the

executing process, such as registers and memory. The

extension sees each instruction as it enters the ID phase,

 - 6 -

its program counter, the address of each memory access

and the value exchanged with memory. If system

software allows it, it can claim ownership of regular

instructions in additions to extended instructions. The

Extension can provide a non-sequential next-PC, i.e. one

that differs from the following instruction, and alter the

program flow.

An Extension is often a mean to add computational

capabilities to the processor, but other uses are also

possible. Extensions can be used to provide any kind of

service, for instance to realize dynamically-loaded on-

chip peripherals [17]. In this work, we used the Extension

interface to create an Extension that adds remote, JTAG-

like debugging support to the processor.

4 eBug Overview

The debugging support provided by eBug is realized

by two communicating components; a software

component (emips2gdb) and a hardware component (the

eBug extension). The two components cooperate in

providing the necessary support for remote debugging of

applications running on the eMIPS system. We strived to

minimize the size of the hardware component, moving

much functionality into the software component, provided

the performance was not impacted. For instance, it is the

software component that implements the protocol required

by the client debugger, such as the remote protocol in the

case of the GDB client.

The software component is depicted as the block

emips2gdb in Figure 2 and Figure 3. It is implemented as

a single application program, running under the host PC‟s

operating system. As further explained in Section 5, it acts

as an interface between a PC host running a debug client

like GDB and a remote eMIPS target. The same program

is used, whether the target is an actual hardware eMIPS

FPGA implementation (Figure 2) or an eMIPS simulation

model (Figure 3) running within the Giano simulator [10,

2].

The hardware component is implemented as a

Verilog module that can be synthesized either separately

as an Extension (block “eBug Extension” in Figure 2) or

loaded together with the rest of the eMIPS modules and

peripherals inside the Giano simulator (Figure 3). This

component was developed as an eMIPS extension to

achieve:

1. Area reuse: The area used by eBug is used only

when an executing program is being debugged.

eBug uses only one of the available Extension

slots. When a debugging session is not needed the

extension slot can be used for other purposes.

2. Security: The eMIPS processor can dynamically

enable/disable individual extension slots, without

reloading the Extensions in them. This feature can

be used to activate the eBug extension only when

the process being debugged is scheduled by the

operating system. In this way any other process

running on the system cannot be affected by the

debugger. Debug client commands affect only to

the state (registers, memory) of the process that

owns the extension. eBug accesses registers and

memory using the extension interface instead of a

lower level channel like JTAG. This gives full

control to the target operating system and prevents

unwanted accesses to processor resources by the

debug client.

3. Extensibility: The eBug hardware component is

intended as an extensible Extension. The design

makes it simple to add other debugging features to

the base modules. In this way, eMIPS is not limited

to a fixed debug hardware support but, depending

on the user needs, it can evolve and provide more

complex functionalities. The only constraint is the

maximum area that an extension can take. Section

8 shows some possible enhancements to the base

eBug hardware support.

Named

Pipe
emips2gdbGDB

Serial

Line

eBug

Extension

Figure 2: Connection to Hardware

Named

Pipe
emips2gdbGDB

eMIPS

Giano-Modelsim

Simulation

PLI

Named

Pipe

Figure 3: Connection to Simulation

5 The emips2gdb Software Component

The eBug software component is realized in the

emips2gdb application program. As shown in Figure 2

and Figure 3, it is possible to connect GDB to an actual

eMIPS hardware implementation as well as to a Giano

simulation session, using the same emips2gdb program. In

the first case emips2gdb uses an actual serial line, in the

latter case it uses a PLI-based [18] interface that

simulates the transmit and receive pins of the UART

inside a C-model. A typical eMIPS debug session starts

with first running emips2gdb to create a server for GDB

on one side and, according to the user request, a

connection to a serial port or to a named pipe on the other

 - 7 -

side. The GDB debugger is then executed and connected

to emips2gdb, who acts as the remote target. Once the

debug session is set, emips2gdb translates the GDB

commands into the simpler protocol used by the eMIPS

eBug Extension and performs the requested operations.

Figure 4: Command byte formats

Emips2gbd currently supports GDB as the client

debugger but other debuggers, like WinDbg [19], can be

supported quite simply by adding a class implementation

that translates the new debugger‟s remote protocol into

the serial protocol used by the extension.

The GDB remote protocol is rather verbose and it is not

area-efficient to parse it directly in hardware. To tackle

this issue emips2gdb translates it into a more easy-to-

decode protocol. Using this protocol emips2gdb can:

- Suspend and Resume the processor when the

process that owns the debug extension is running,

- Read and write eMIPS registers,

- Fetch and Store values from and to memory.

Using these basic operations the debugger can

perform more complex ones, such as single stepping,

inserting software breakpoints and realizing software

watchpoints. Note that, as previously explained, it is also

possible to add hardware support both for breakpoints and

watchpoints, or other functionalities using additional basic

operations. Section 8.1 expands on this notion.

opcode option Operation

Bytes

returned

x00 N/A Read from an eMIPS register 4

x01 N/A Write to an eMIPS register 1 (Ack)

010 0x0-

0x1F

Fetch byte from memory variable

011 0x0-

0x1F

Store byte to memory 1 (Ack)

110 00000 Suspend 1 (Ack)

110 00001 Continue 1 (Ack)

111 ----- Future Expansion -----

Table 1: Basic eBug commands

The emips2gdb protocol is a stream of bytes that

always begins with a command byte. As shown in Figure

4, the command byte can have two possible formats. The

first format uses three fields and is used to access the

eMIPS registers. The second format uses two fields and is

used for memory and control operations. In both formats

the opcode field alone identifies the action to be

performed. The current set of legal opcode values is

depicted in the first column of Table 1. The second

column shows the range of values for the option field, if

applicable. The last column shows the number of bytes

expected in the eBug response.

5.1 Control Operations

To start debugging, the first step is to connect GDB

to the emips2gdb server. Once the connection is

established, emips2gdb sends a Suspend byte to the debug

extension to force eMIPS to idle. When eMIPS is stalled

an acknowledge byte is sent back to emips2gdb and the

eMIPS resources can be managed by GDB.

When a Continue command is issued, emips2gdb

sends the corresponding command byte for putting eMIPS

in the running state and waits for a session restart

indication from eBug. This can be required, for instance,

by the execution of a break instruction previously inserted

by GDB.

5.2 Register Operations.

A register operation is indicated by bit one of the

command byte being zero. In such a case, bit zero

indicates whether a read or a write is desired. The

remaining bits, i.e. the fSpecial bit and the nReg field in

Figure 4, are used to identify an accessible eMIPS register

as specified in Table 2.

Once a register Read is recognized, the eBug

extension does not wait for any other bytes from the serial

line. It gets the value of the desired eMIPS register from

the TISA, according to the fSpecial and nReg fields. Once

the value is retrieved, the four bytes are sent back in big-

endian order to the emips2gdb application over the serial

line.

fSpecial nReg Register

0 0-31 GPR file register number

1 0 PC

1 1 hi

1 2 lo

1 3 sr

1 4 bad

1 5 cause

1 6 fsr

1 7 fir

Table 2: Register file encoding

 - 8 -

If the command byte specifies a register Write

operation, the eBug extension waits for the register value

to be written. Emips2gdb sends the expected four bytes in

big-endian order. Once the value is received and stored to

the requested eMIPS register, an acknowledge byte

(0xFF) is sent back to emips2gdb to notify that the eMIPS

state has changed.

Currently it is possible to perform both read and write

operations on the general purpose registers and the PC

whereas lo, hi and cp0 registers are read only.

5.3 Memory Operations

Emips2gdb sends a variable number of bytes to the

eBug extension when the debugger wants to access the

eMIPS memory subsystem. The first is the command

byte. The number of bytes that follows depends on the

value of the command byte. The command byte for Fetch

and Store operations has a three bit opcode. The

remaining 5 bits, i.e. the option filed, can have two sets of

values:

- 0: The two bytes that follow (big-endian ordered)

indicate the size of the memory block that is to be

read or written. A maximum block size of 64KB

can be processed in a single transaction. In reality,

the GDB remote protocol traces show that GDB

uses a maximum block size of less than 400 bytes.

- 1-31: This is the size of the memory block, no

more bytes are needed.

The four subsequent bytes (big-endian ordered),

define the starting address of the memory transaction.

In the case of a Read operation, emips2gdb does not

send any more bytes and waits for the response from the

eBug extension. After the last memory value is sent the

transaction is concluded. No additional Acknowledge byte

is sent.

In the case of a Write operation, emips2gdb sends the

bytes to be written to memory, starting at the address

already specified. The eBug extension stores the data to

memory and then sends an Acknowledge byte to conclude

the transaction.

6 The eBug Hardware Component

The eBug extension is not a typical eMIPS extension.

It does not execute any extended instruction and does not

perform any real computational task. It does take control

of the processor if one of the following two conditions

occurs:

1. A break instruction is in the ID stage, or

2. The client debugger asks to Suspend the process

that owns the eBug hardware extension.

In either case, eBug stalls the TISA execution and takes

control of the processor. This list could change if/when

other features are added, for example with hardware

breakpoint/watchpoint support. Currently eBug only

stalls the TISA before any trap occurs. If required, the

extension interface has provision for causing traps as well.

eBug relinquishes control back to the TISA if one of the

following two conditions occurs:

1. The operating system schedules another process,

or

2. The client debugger issues a Continue command.

In all other respects, the eBug design follows the

structure of any other eMIPS extension. Figure 9 details

the internal structure of eBug and the relationships

between the various modules. The top-level module

(which must be called extension0), is a wrapper that

exposes all the available TISA signals to the extension

main module (debug_extension). This module is used in

two different ways in synthesis and in simulation. In

synthesis, it is the hard interface of the Extension and

connects to the bus-macros that are the physical interface

of the extension slot. In behavioral simulation, it is loaded

along with the other TISA modules and directly interfaces

with them. Notice that even though only the input signals

actually needed are connected, all the output signals must

be driven to their correct idle logical values.

The debug_extension module instantiates three

modules. The first is the reset_manager module that deals

with global reset management issues. The debug

extension modules use an active high reset, whereas the

TISA uses an active low reset; therefore, this module is a

simple inverter of the TISA reset signal. The two other

modules (ext_debug_control and Top_debug) deal with

the TISA pipeline, with the registers and the memory

interfaces and are depicted in Figure 5.

eMIPS TISA

Top_debugext_debug_control

Pipeline Interface Registers Interface Memory Interface

Serial Port

Control signals

Extension Slot

Figure 5: eBug External Interfaces

 - 9 -

6.1 Interface to the Pipeline Arbiter

The eMIPS processor can execute both standard

MIPS instructions [7] and extended instructions (see

Section 3). In the former case the execution is normally

delegated to the base datapath, in the latter case the

extensions are responsible for the extended instructions.

When an instruction is in the ID stage, both the TISA and

the extensions can actually recognize it by lowering the

recognized instruction (RI) signal. The eMIPS pipeline

arbiter then decides to give the control to the TISA or to

one of the extensions that claim to recognize it. When

collisions occur, a priority scheme establishes the pipeline

owner. Normally, the TISA has priority over the

extensions but individual slots can be assigned higher

priority and therefore override the TISA.

Using this mechanism it is possible for eBug to

request a stall of the processor when a break instruction is

encountered. Notice that this prevents the TISA from

issuing a software trap, which would change the state of

the processor and the register contents. The same

mechanism is used if the debugger client sends a Suspend

command, i.e. when it first tries to connect to eMIPS. In

the latter case, the eBug extension unconditionally

recognizes the instruction in the subsequent pipeline

cycle. Notice that the instruction is therefore not executed,

execution will restart from the current PC. The suspension

mechanism must also deal with an issue specific to the

MIPS architecture[7]. The MIPS processor uses delay-slot

instructions, an instruction that immediately follows a

branch but is executed as part of the branch itself. To

simplify the design of eBug we implemented a

mechanism that avoids stalling the processor when a delay

slot instruction is in the ID stage. In this way the

extension can always use the correct restart PC value.

Figure 6: Taking Control of the Pipeline

Figure 6 depicts the handshaking signals between

eBug and the pipeline arbiter. After the extension lowers

the RI signal, the pipeline arbiter asserts the enable (EN)

signal notifying the extension that its instruction was

allowed. At the following positive edge of the pipeline

synchronization clock (PCLK), the extension must release

RI, setting it high. EN is also deasserted. The extension

can now access the pipeline resources for multiple clock

cycles (as eBug does) by asserting the acknowledge

(ACK) signal. The pipeline arbiter grants control to the

extension raising the GR signal. The processor is now

stalled. To release the processor the extension must de-

assert ACK. For the meaning of the other signals please

refer to eMIPS documentation [12].

All the tasks described so far in this section are

performed by the ext_debug_control module. This module

interfaces to the pipeline arbiter and to the Top_debug

module. More specifically, it interfaces to main_fsm (see

Figure 7), a sub module of Top_debug. As explained in

more details in the next subsection, one of the tasks of

main_fsm is to support communication with emips2gdb.

Every time a break instruction is in the ID stage a signal

(break signal in Figure 7) is asserted and main_fsm in

turn communicates it to emips2gdb, to restore the

debugging session. Similarly, when emips2gdb sends a

Suspend command main_fsm sends a signal (suspend

signal in Figure 7) to take control of the eMIPS resources.

Once the processor is stalled, the ext_debug_control

module finite state machine sends an acknowledge

(suspend_Ack in Figure 7) back to main_fsm.

ext_debug_control_fsm

1

2 3

main_fsm

1

2 3

suspend

suspend_Ack

break

Figure 7: Suspension Protocol

The module ext_debug_control is composed of three

sub modules:

- The finite state machine, implemented in

ext_debug_control_fsm. A simplified diagram for

this state machine is shown in Figure 11.

- The instruction decode module, which is used to

recognize break, conditional branch and jump

instructions.

- The nACK generator module.

 - 10 -

The second module is responsible for the correct

behavior of the system when a debugging session starts.

The difficult case is when the ID stage holds an

instruction located in a branch delay slot. The FSM of the

ext_debug_control_fsm module lowers RI for the next ID

stage instruction. Thus if a branch instruction is in the ID

stage and a suspend signal is asserted, the processor is

actually stalled when the delay slot instruction in the ID

stage. When eBug releases the processor the execution

would therefore normally restart from this instruction.

Unfortunately, if the branch was taken the destination of

the branch is now lost and the program control flow is

altered. The instruction decode module is used to prevent

this incorrect behavior. It generates a signal that delays

the assertion of suspend if the instruction in ID is a

conditional branch or jump instruction.

The third module is used to generate the nACK byte,

which is sent to emips2gdb as a reply to an unsupported

command and when a break instruction is encountered.

Different nACK codes are used to indicate different kind

of break instructions. Table 3 shows the nACK codes

currently used by eBug.

Event nACK

Command byte not supported 0

Breakpoint 0

Load software module 1

Unload software module 2

Other break codes 3

Table 3: nACK encoding

6.2 Datapath

As shown in Figure 5, the module Top_debug is

responsible for communication with the host PC over the

Serial Port, for the register and memory interfaces, and it

links with the ext_debug_control module. Internally, it is

composed of two modules: the uart and the debug_core.

The uart module is an implementation of the RS232 serial

communication link, with a compile-time configurable

baud rate. It lacks runtime configurability to simplify as

much as possible the design. This leads to a very small

area footprint of about 50 slices. Should a different baud

rate or serial parameters be needed it is simpler and more

effective to create a new eBug instance. To limit the serial

line bottleneck effect, we use a default value of 115,200

baud.

The debug_core module is the main control center for

the whole extension. The datapath is depicted in Figure 10

and it is implemented in the debug_dp module. The upper

side of the datapath communicates with the uart module

and the lower side is interfaced with the TISA resources,

namely the registers and memory subsystems. The design

of the datapath strives to minimize the area utilization.

Pipelined registers and other critical path reduction

techniques are not used. There are five registers in this

first implementation:

- InReg is used to store the command byte from the

uart module.

- fw_reg is used to pack four bytes into a 32 bit word.

Bytes are expected in big-endian mode, i.e. the first

is the most significant one. This register is used for

write operations to registers and memory.

- PC_Break is used to store the address of the

instruction currently in the ID stage. Once a debug

session starts PC_Break can be only changed by

the debugger. This register is an image of the

actual PC. When the program is restarted this is the

value used to restart execution.

- mem_addr is used to store the start address for

memory operations. Like fw_reg it is built from

four bytes of big-endian ordered data.

- num_byte stores the number of bytes requested for a

memory operation.

The datapath additionally includes seven

multiplexers, two decoders and a counter of the number of

bytes read or written in a memory operation. The

multiplexers are used as follows.

- sel_addr and sel_m_byte: used in memory

operations. The first feeds the mem_addr register

with the initial or with the incremented address.

The second initializes Addr_counter, driven by the

decoder Dim_Block. The initial value for

Addr_counter depends on the option field of the

command byte. If option is greater than 0 then this

is the initial value. If it is equal to zero then the

num_byte register is used instead.

- sel_tisa_pc: selects the path for updating the

PC_Break register. This is either the current PC

from the TISA or a new value from the debugger

client.

- sel_reg: a decoder selects its output from the TISA

register read or the PC_Break value.

- sel_out: feeds the uart transmit path with one of the

registers read data, memory read data, ACK or

nACK signals.

- sel_byte: used to serialize a 32 bit word in four bytes.

 - 11 -

- Mem_Addr[1:0]-1’b1: selects the correct byte out of

a 32 bit word read from memory, depending on its

address. We subtract one from the last two bit of

the address to simplify the finite state machine that

manages the memory operations.

6.3 Control

The control part of debug_core is implemented by the

Debug_Control module, using three finite state machines:

main_fsm, registers_fsm and memory_fsm. The finite

state machine implemented by the main_fsm module

handles synchronization with the ext_debug_control_fsm

module and communication with emips2gdb, as

previously described. A simplified diagram of main_fsm

is depicted in Figure 12. The complete diagram is shown

in Figure 13.

When in the IDLE state only two possible events can

take place: a break instruction is executed, or an

emips2gdb connection is requested. In the first case the

debugger must be notified of the break instruction. With

the processor already stalled, an opportune nACK code is

sent to emips2gdb to notify it that the processor is waiting

for debugging. In the second case, main_fsm assert the

suspend signal to request a processor stall. In either case,

the finite state machine then goes into the “wait for

emips2gdb commands” state. Once a command is

received and recognized, for example for a “register

access” operation, the state machine performs the

operation and eventually comes back to this state. If the

command is a Continue then main_fsm returns to the

IDLE state, after notifying ext_debug_control_fsm to

releases the TISA pipeline. If an incoming command is

not recognized, main_fsm responds with a zero value

(nACK) and then comes back to waiting for another

emips2gdb command. An interesting case is if emips2gdb

crashes while the processor is stalled and main_fsm is

waiting for a command. If emips2gdb subsequently

reconnects it sends a new Suspend command to eBug,

who then replies with an ACK byte. The debug session is

then correctly resumed.

The state machines registers_fsm and memory_fsm

(detailed diagrams are shown in Appendix A) implement

the eMIPS compliant protocol to access the TISA

registers and the memory subsystem. Memory_fsm is

much more complex than registers_fsm because the

emips2gdb protocol for memory operations is a variable-

length byte stream protocol. The state machine must

control the flow of data through the datapath, correctly

store the initial memory address and the number of bytes

involved in the memory transaction, and eventually obey

the memory subsystem protocol. The different phases are

shown in the diagram with different colors. It is likely

than in future eMIPS implementations both the register

and memory access protocols will be modified to improve

the performance. In that case registers_fsm and

memory_fsm must be changed too. For example, in the

current eMIPS implementation to read a general purpose

register it takes four system clock cycles. In registers_fsm

this value is known but it is parameterized; if it changes it

is only a matter of changing the parameter declaration and

to recompile eBug.

7 Structure and Usage Models

eBug is available in two slightly different versions.

The first is for use with an actual hardware

implementation of eMIPS whereas the second is for use

with the Giano simulator framework. The main folder of

the distribution is therefore divided in two subfolders:

Implementation and Simulation. In the following

subsections we describe the directory structure and the

usage models of these two versions.

7.1 Implementation

7.1.1 Directory structure

- eMIPSv1: All TISA files (partial reconfiguration and

non partial reconfiguration version) are located here

- eBug_HW: Source files of the eBug extension.

- eBug_SW: emips2gdb application folder.

- Bit Files: FPGA configuration files folder.

- Example: in this folder are located the

DOWNLOAD.EXE and SERPLEXD.EXE

applications, and a sample program that can be used

to perform a test debug session.

7.1.2 How to use eBug

It is easier to start a debug session using the FPGA

configuration files provided in the Bit Files folder. To

rebuild the bitfiles, either with the partial or non partial

reconfiguration flows, please refer to the eMIPS

documentation [12].

The practical steps are:

1. Connect the secondary serial port to the Sparkfun

RS232 Shifter board [15] using the expansion slots of

the ML401 board, as shown in Figure 8. Connect one

of the 3.3V power and ground pins from the J3

connector to the VCC and GND pins on the Shifter

board. The red and black cables in Figure 8 are

connected to the 3.3V power pair at J3.L14. Connect

 - 12 -

the TX-O pin of the Shifter board to the J6 connector

at pin 62 (green cable) and the RX-I pin to the J6

connector at pin 64 (yellow cable).

2. Configure the FPGA using the configuration file

mipspl_fpga3_base_routed_full.bit. At the end of the

configuration download both the TISA and the eBug

extension are in FPGA and the boot loader is running.

Make sure the option dip-switches are set to zero.

3. Open a console and go to the Example folder.

Download the software application to the FPGA by

typing: “download.exe COM1:

debug_extension_test.bin && serplexd.exe –n –r –s”.

This assumes that the primary serial line of the FPGA

board is connected to COM1. Once the file is

downloaded the program begins to run.

4. Open a new console and change the directory to

eBug_SW. Then type: “emips2gdb COMx:” where x

is the number associated to the PC serial port

connected to the secondary serial line of the FPGA

board (see point 1 above).

5. Open a new console and change directory to eBug_SW.

Start the GDB debugger by typing: “gdb.exe

debug_extension_test”. If needed, give to gdb.exe the

absolute path. At the GDB prompt type: “target

remote \\.\pipe\eMips2Gdb”. The debugging sessions

should start. If the emips2gdb application is running

on a different computer (say OtherPc) use the full

path for the named pipe: “target remote

\\OtherPc\pipe\eMips2Gdb”. The debugger will

connect to eMIPS and stop the running program.

7.2 Simulation

7.2.1 Directory structure

- SIM: This is a blank folder used to create the Modelsim

project.

- TISA_ICE: TISA files for simulation modified as

follow:

1. all assignments in sequential blocks are

changed from blocking to non-blocking

2. prefetching is disabled in the module

memory_arbiter_giano.v

3. added a file address_translation_ext.v to

translate virtual address outgoing from

extension (This feature should be integrated

with a single address translation unit)

- eBug_HW: eBug extension source files. Files are the

same of the implementation version. Only the

datapath is different to be compliant with the Giano

memory interface of the TISA.

- TB: The testbench file is located in this folder.

- PC_UART: The PLI based simulation model of the

host PC serial line.

- PLI: in this folder are all source, include, libraries and

make files to build the vpi2sl.dll.

- eBug_SW: emips2gdb.exe folder.

- Example: an example application to debug and a Giano

configuration file are in this folder.

Figure 8: Cabling for the ML401 Board

7.2.2 How to use eBug

1. Create a new directory and copy all folders into it.

2. Create a Modelsim project in the SIM subfolder and

add to the project all the source files present in the

subfolders eBug_HW, PC_UART, TB and TISA_ICE

except for the files decode.v and decoder.v (located in

TISA_ICE) that must be copied into the SIM folder as

well as vpi2sl.dll (file located in PLI\bin). Finally

compile all the files with Modelsim. 82 files in total

should compile without error.

3. Open a console and change directory to Example. Run

Giano with the following command: “giano.exe -

Platform Ml401_ice2.plx GPIO::ValueAtReset 4

SRAM::PermanentStorage debug_extension_test.bin”

4. Start a simulation in Modelsim with testMIPS as the

testbench and including the vpi2g.dll and vpi2sl.dll as

vsim -pli options. Then type “run –all” in the

Modelsim console

5. Once simulation is running the named pipe

EnnePiPipe66 is created. Open a new console, change

directory to eBug_SW and type: “emips2gdb

\\.\pipe\EnnePiPipe66”. A dialog box about RootBus

file:\\OtherPc\pipe\eMips2Gdb

 - 13 -

might appear, choose Ignore. Running emips2gdb on a

different machine might slightly improve simulation

performance.

6. Open a new folder and change directory to Example.

Run GDB: “gdb.exe debug_extension_test”. Then

connect to the remote target typing on GDB console:

“target remote \\.\pipe\eMips2Gdb”.The program

running on the eMIPS simulation model should be

stopped and the debug session can be started.

It is possible to have a faster simulation by changing

the baud rate of the PC_Uart and Debug UART modules.

The default is 115,200 baud, the same used in the

implementation version.

Using a different version of the simulator requires

recompilation of the vpi2sl PLI. The vpi2sl.dll in the

distribution is compiled for Modelsim 6.2g.

8 eBug Extensibility

The eBug design is meant to be easily extended.

Adding support for new features can potentially require

modifying both the hardware side and the software side. It

is desirable that only a well identified subset of modules

requires modification to add new features, and that the

design structure can be preserved. For example, in Figure

18 we show the modules that have been added (yellow

boxes) and the modules that have been modified (red

borders boxes) when implementing hardware breakpoints

and watchpoints. The red lines connect modules in which

only individual ports or instances were modified to keep

them coherent with the rest of design.

In this section we present two examples of extensions

to eBug. The first is an internal set of changes made to

realize breakpoints and watchpoints in hardware.

Hardware support for watchpoints provides performance

gains that strongly affect the user‟s experience. The

second is a connection to the eMIPS extensions generated

by P2V [6]. Using eBug in concert with P2V provides

very sophisticated, high-lever debugging facilities which

are especially useful in the case of embedded and real-

time applications.

8.1 Hardware watchpoints

The debug target can dynamically declare to the GDB

debugger that hardware watchpoints and/or breakpoints

are supported. In this case, GDB uses different commands

in its remote protocol to notify the target of the insertion

or deletion of a breakpoint or watchpoint. To support

these operations, the emips2gdb protocol was extended

using the opcode for Extended operations (111) and

choosing an appropriate value for the option field. We

selected the value 5‟b00001, therefore the command byte

used for enabling or disabling both a watchpoint and a

breakpoint has the value 0x0F. Additional information is

sent to the eBug extension following this command byte.

The next byte is called the ControlByte, and the encoding

is shown in Table 4.

Bits Meaning

3-0 Slot number

4 Watchpoint (1) or Breakpoint (0)

5 Enable(1) or Disable (0)

7-6 Access (00-write, 01-read, 11-all)

Table 4: ControlByte

The least significant four bits hold the hardware slot

number to be used. When GDB inserts or deletes a

breakpoint or a watchpoint, it identifies it only by its

address. If this information is sent directly to the hardware

a complex logic would be needed to identify the

corresponding hardware slot. To avoid the extra costs in

area we modified emips2gdb instead, adding a simple data

structure to the class that implements the protocol. This

table keeps track of the address and all the other

information related to the hardware slots, and it is used by

software to translate an address in a slot number. When

emips2gdb initially makes a new connection to eBug it

synchronizes this data structure with the hardware slot

information.

Bit 4 in the ControlByte is used to indicate to eBug if an

insertion of a watchpoint or a breakpoint is requested. In

the first case, bits 7-6 are used to indicate the watchpoint

type, since eBug can selectively watch for read or write

accesses (or both). Finally bit 5 is used to enable or

disable a slot. When a slot is disabled only the slot field

and bit 5 hold significant information, the other bits are

not used. If a slot is enabled, emips2gdb follows the

ControlByte with a 4 byte address, big-endian ordered.

8.1.1 Datapath

The original eBug datapath was augmented as shown

in Figure 19. The area highlighted in yellow is an instance

of the wbpoints_dp module and provides new ports for the

additional control signals. The wbpoints_dp module is

composed of a control register (CR), a decoder and one or

more wp_bel module instances according to the desired

number of slots. The CR register is used to store the

ControlByte sent by emips2gdb. The decoder selects the

control signals and feeds them to the right slot, according

to the slot number stored in the CR.

 - 14 -

Wp_bel is the basic module that implements both the

watchpoint and the breakpoint logic. Its diagram is

depicted in Figure 20. It is composed of four registers:

- Wp_reg stores the address of the watchpoint or

breakpoint. It is used with a comparator to assert

an address match.

- En_reg is used as global enable. If it holds a low

logical value the slot is disabled and no hit can

occur.

- Sel_addr_reg stores the slot usage type (watchpoint

or breakpoint); it is used for snooping on the

address bus or the PC bus. It is also used as an

enable signal for the watchpoint or the breakpoint

enable logic blocks.

- Wp_type_reg stores the type of watchpoint (read,

write and read/write).

The watchpoint and breakpoint enable logic boxes are

used to enable or disable an address match. In both

modules en_reg and sel_addr_reg act as enable signals. In

addition, the watchpoint enable logic uses wp_type_reg

and the snooped write_enable signal to consider the

watchpoint type. The bp_hit and wp_hit output signals

from the wbpoints_dp module are used to initiate the

processor stalling handshake.

8.1.2 Control

The control modifications for the new feature include

small changes to the main_fsm and the

ext_debug_control_fsm modules and the addition of a new

finite state machine. As shown in Figure 22, we added a

new state to main_fsm to decode the new emips2gdb

command. Figure 23 shows the changes in

ext_debug_control_fsm. In the transition from the IDLE

state to the RI_ASSERT state we now consider the bp_hit

and wp_hit signals.

To perform the actual insertion or deletion of a

watchpoint or a breakpoint we added the wbpoints_fsm

finite state machine, shown in Figure 21. This finite-state

machine manages the byte stream from the serial line to

store data in the correct registers.

8.2 Adding features via other extensions

eBug can also be extended by leveraging other,

separately developed eMIPS extensions. One example is

the extensions generated by the P2V compiler [6]. The

PSL-to-Verilog (P2V) compiler can translate a set of

assertions about a block-structured software program,

expressed in the simple subset of the Property

Specification Language PSL, into an eMIPS extension

that observes the program‟s execution and validates the

assertions. PSL is based on the LTL temporal logic, and

can therefore express the complex patterns that define the

behavioral correctness of the software program in a

natural and compact form.

As a simple example, suppose we want to check if a

program‟s variable is within a desired range, but without

recompiling and without altering the program‟s temporal

behavior in any way. Note that currently P2V is the only

system that can do this. It does so by creating a

specialized eMIPS extension that passively monitors the

program execution. If the variable is assigned an illegal

value, the P2V extension will signal the violation in some

unspecified way. For instance, it could assert a trap and let

the operating system manage it according to its own

policies. There are two limitations, however, in this

approach. In the first place, it is not possible to observe

the state of the system at the exact moment when the

assertion is violated, but only later, after the operating

system‟s trap handler has captured it and only limited to

what software can self-observe. In the second place, we

lack an explanation for why the program attempted the

illegal assignment.

We can easily overcome these limitations with eBug.

Rather than using the trap signal, P2V can insert a break

instruction in the ID pipeline stage. This produces exactly

the same trap behavior when eBug is not present. When

eBug is present, it takes control of the processor in the

actual moment the failure occurs, and without otherwise

affecting the state of the system. The failure is reported to

the debugger and the user can explore the system‟s state at

length and discover the reason for the erroneous behavior.

We can go further. P2V is implemented in Python,

using an interpreter. We can connect the GDB command

line interpreter to the Python interpreter, and generate the

P2V extensions on-the-fly, while debugging the program.

The user types the PSL assertions about the running

program while it is suspended, a new extension is created

and loaded in a separate extension slot, and execution is

then resumed. An interesting side-effect of this approach

is that the user can produce and test a new/additional set

of formal declarations about the program‟s properties as a

natural result of debugging it. This has the additional

benefits of quantifying the extent of the testing actually

performed, and of creating input data for even more

sophisticated program analysis tools, such as theorem

provers and symbolic execution.

9 Results

In this section we show two separate measures that

quantify the performance of eBug. In both cases, we

analyze the effects of adding one single feature, namely

 - 15 -

hardware watchpoints. We first look at the area and

frequency results in the synthesis of different

implementation of the eBug extension. This quantifies the

impact of the feature from a hardware point of view. We

then measure the changes in response time, from the

user‟s point of view, when adding the feature to eBug.

9.1 Synthesis Results

All designs were implemented using a Xilinx ML401

prototyping board. The board is built around the Xilinx

Virtex4 device, model XC4VLX25-10ff668. To

synthesize, implement and build the configuration files we

used the Xilinx ISE version 8.2.01i, with the partial

reconfiguration overlay applied. The synthesis results are

summarized in Table 5 and Table 6. The first row in the

two tables corresponds to the basic design, where

hardware support for watchpoints is missing and must be

realized in software. Additional rows correspond to

designs that support two, four and eight hardware

watchpoints, respectively. Table 5 details the results in

area and maximum frequency for the various designs.

 Area

optimization

Speed

optimization

 Area f(MHz) Area f(MHz)

SW WP 273 112,96 316 175,04

2 HW WP 359 88,51 381 175,00

4 HW WP 422 89,70 451 174,93

8 HW WP 568 61,13 603 174,61

Table 5: Synthesis results

When optimizing for area, the maximum frequency of

the design decreases dramatically against an increasing

number of watchpoints, without providing an equally

significant saving in area. Table 6 stresses this point by

comparing the percentages in area savings and frequency

reduction of the first column in Table 5 against the second

column. The best tradeoff is given by the speed

optimization option, confirming that the design was

targeted towards a small area footprint.

 % Area Savings % Freq. Reduction

SW WP 13.6 35.47

2 HW WP 5.77 49.42

4 HW WP 6.43 48.72

8 HW WP 5.80 64.99

Table 6: Area versus speed trade-offs

The extension slot in the first eMIPS implementation has

an available area of about 1,300 slices. Extrapolating on

the trend visible in Table 5, we can estimate that an eBug

implementation could provide a maximum number of

about 27 hardware watchpoints. When hardware

watchpoints are not desired eBug uses only 21% of the

available extension slot, leaving about 80% of the area for

other uses. P2V assertions can fit comfortably in this

area.

9.2 Response Time

We measured the time response of the debugger

client in a simple test, comparing the software and

hardware watchpoint implementations. The goal was to

quantify the impact of the added feature from the point of

view of the actual user. The test was performed using a

simple C program that loops incrementing a variable and

printing a message on the console, as follows:

while(1){

 i=i+20;

 Puts("Ciao!\n");

 PutWord(i);

 }

We instructed GDB to insert a watchpoint for the

variable i by issuing a “watch i” command while the

program was suspended at some arbitrary loop iteration.

We then took the time from a “continue” command to the

subsequent suspension with the new variable value.

Measurements were repeated five times and the average is

reported in Table 7. There was very little variance in the

measured results. The test was repeated using two

different machine configurations. The Machine1 setup is a

single machine with a dual-core Intel Centrino

Core2/6600 processor operating at 2.4GHz and running

the Windows XP SP2 operating system. An ML401 board

is connected to the machine using a serial cable with a

baud rate of 115,200 baud. The Machine2 setup includes

two separate machines, one running the GDB debugger

and the other the emips2gdb server, connected in turn to

the ML401 board using a serial cable and the same baud

rate. The first machine uses a dual Intel Xeon processor

operating at 2.8GHz and running the Windows Server

2003 SP2 operating system. The second machine uses an

old Intel Pentium3 processor operating at 800MHz and

running the Windows 2000 SP4 operating system.

 Software Hardware Speedup

Machine 1 272 sec 1,1 sec 247

Machine 2 44 sec 0,4 sec 110

Table 7: User-perceived performance gain

 - 16 -

The performance difference between the two machine

setups appears to be due more to operating system

scheduling issues (i.e. in the case of Machine1) than to

eBug itself. In all cases, the CPU load of the GDB and

emips2gdb processes is at most 1%.

The 100-fold speedups provided by the hardware

watchpoints are impressive, but of more practical

importance are the absolute values. A user is unlikely to

use a feature that costs almost a minute per loop iteration,

whereas a cost of less than a second makes it quite

feasible to use that feature extensively.

10 Conclusions and Future Work

We have introduced eBug, a hardware Extension for

the eMIPS processor that provides in-process debugging

support to a client debugger such as GDB. eBug was

conceived as an Extension rather than a fixed hardware

module to achieve three main goals: area reuse, security

and extensibility. eBug uses the area already devoted to an

Extension slot on eMIPS, without changes to the base

processor pipeline. When not in use, eBug is simply not

present on chip and its area is therefore reused, e.g. in the

final product. eBug is security-aware because it can only

access and modify the status of the process that owns it,

privileged or not that it might be. eBug is extensible

because it makes it easy to add new features without

changing the whole design or the interface to the

processor. When a new feature is added only the eBug

extension must be regenerated. We proved this point by

adding hardware support for watchpoints and breakpoints

to the basic design, and measuring the difference in terms

of area occupation, speed performance and improved

debugging capabilities.

Because of the extensibility feature, adding new

features to eBug is straightforward. For instance, it is easy

to implement a value-based watchpoint that observes the

actual data written to a program variable, rather than just

the address. Adding hardware support for variable size

watchpoints can be achieved by changing the watchpoint

logic to use two watchpoint slots and look at an address

range rather than a single address mask. This allows

monitoring more complex data types like C arrays and

structures and C++ classes. Multiple conditions could be

matched in hardware, by making one match be the enabler

for subsequent ones. Possible additional features are not

limited to the debugging aspects. Ethernet or USB

interfaces could replace the simple but slow serial line

currently used. Other communication protocols could be

added to the software component of eBug. Additional

functionalites, such as tracing and performance profiling,

could be added by modifying both the hardware and the

software components.

References

[1] Dean, J., et al. ProfileMe: Hardware Support for Instruction-Level

Profiling on Out-of-Order Processors. MICRO, 1997.

[2] Forin, A., Neekzad, B., Lynch, N., L. Giano: The Two-Headed

Simulator. Microsoft Research Technical Report MSR-TR-2006-

130, September 2006.

[3] GDB: The GNU Project Debugger.

 Available at http://www.gnu.org/software/gdb/

[4] Graham, S.L., P.B. Kessler and M.K. McKusick. gprof: a Call

Graph Execution Profiler. SIGPLAN Symp. on Compiler

Construction, pp. 120-126, 1982.

[5] Hennessy, J. L., Patterson, D.A. Computer Organization and

Design: The Hardware/Software Interface. Morgan Kaufmann

Publishers, San Francisco, CA. 1998.

[6] Hong Lu, Alessandro Forin, P2V: An Architecture for Zero-

Overhead Online Verification of Software Programs, Workshop

on Application Specific Processors, WASP 2007

[7] Kane, G., Heinrich, J. MIPS RISC Architecture. Prentice Hall,

Upper Saddle River, NJ. 1992.

[8] Leon Processor user manual.

 Available at http://www.gaisler.com/cms/

[9] Mentor Graphics ModelSim at

http://www.mentor.com/products/fpga_pld/simulation/index.cfm

[10] Microsoft Giano at http://research.microsoft.com/downloads/ and

http://www.ece.umd.edu/~behnam/giano.html

[11] Pittman, R., N., Lynch, N., L, Forin, A. eMIPS, A Dynamically

Extensible Processor Microsoft Research Technical Report MSR-

TR-2006-143, October 2006.

[12] Pittman, R., N., Forin, A. Microsoft eMIPS Release v1.0 Microsoft

Research, Fall 2007.

[13] PowerPC processor in Xilinx FPGAs. Available at

http://www.xilinx.com/products/silicon_solutions/fpgas/virtex/vir

tex4/capabilities/powerpc.htm

[14] Sparc processor architecture. Available at http://www.sparc.org/

[15] Sparkfun Electronics RS232 Shifter SMD, SKU#PRT-00449.

Available at

http://www.sparkfun.com/commerce/product_info.php?products_i

d=449

[16] Stretch, Inc. http://www.stretchinc.com 2006.

[17] Sukhwani, B., Forin, A., Pittman, R. N. Extensible On-Chip

Peripherals Microsoft Research Technical Report MSR-TR-

2007-120, September 2007.

[18] Sutherland, S. The Verilog PLI Handbook, 2nd ed. Kluwer

Academic Publishers, Norwell, MA. 2002.

[19] WinDbg multipurpose debugger. Available at

http://www.microsoft.com/whdc/devtools/debugging/default.mspx

[20] Xilinx Embedded System Tools reference. Available at

 http://www.xilinx.com/ise/embedded/edk91i_docs/est_rm.pdf

[21] Xilinx Microblaze Debug Module MDM. Available at

 http://www.xilinx.com/bvdocs/ipcenter/data_sheet/opb_mdm.pdf

[22] Xilinx Microblaze soft processor core. Available at

http://www.xilinx.com/products/ipcenter/micro_blaze.htm

[23] Zagha, M., B. Larson, S. Turner, and M. Itzkowitz. Performance

Analysis Using the MIPS R10000 Performance Counters.

Supercomputing, Nov. 1996.

[24] Zhang, X., et al. System Support for automatic Profiling and

Optimization. Proceedings of the 16th Symposium on Operating

Systems Principles, 1997.

[25] Zilles, C.B. and G.S. Sohi. A Programmable Co-processor for

Profiling. International Symposium on High-Performance

Computer Architectures, 2001.

http://www.gnu.org/software/gdb/
http://www.gaisler.com/cms/
http://research.microsoft.com/downloads/
http://www.ece.umd.edu/~behnam/giano.html
http://www.xilinx.com/products/silicon_solutions/fpgas/virtex/virtex4/capabilities/powerpc.htm
http://www.xilinx.com/products/silicon_solutions/fpgas/virtex/virtex4/capabilities/powerpc.htm
http://www.sparc.org/
http://www.sparkfun.com/commerce/product_info.php?products_id=449
http://www.sparkfun.com/commerce/product_info.php?products_id=449
http://www.stretchinc.com/
http://research.microsoft.com/research/EmbeddedSystems/eMIPS/TR-2007-120.pdf
http://research.microsoft.com/research/EmbeddedSystems/eMIPS/TR-2007-120.pdf
http://approjects.co.za/?big=whdc/devtools/debugging/default.mspx
http://www.xilinx.com/ise/embedded/edk91i_docs/est_rm.pdf
http://www.xilinx.com/bvdocs/ipcenter/data_sheet/opb_mdm.pdf
http://www.xilinx.com/products/ipcenter/micro_blaze.htm

 - 17 -

Appendix A: Diagrams

 - 18 -

ex
te

ns
io

n0

ex
t_

de
bu

g_
co

nt
ro

l

de
bu

g_
ex

te
ns

io
n

re
se

t_
m

an
ag

er

ex
t_

de
bu

g_
co

nt
ro

l

 _
fs

m

br
an

ch
_b

re
ak

_

de
te

ct
or

ua
rt

de
bu

g_
co

re

re
ce

iv
er

_d
b

ba
ud

_g
en

tra
ns

m
itt

er
_d

b

D
eb

ug
_d

p

va
lid

_g
en

D
eb

ug
_C

on
tro

l

To
p_

D
eb

ug

m
ai

n_
fs

m

re
gi

st
er

s_
fs

m

m
em

or
y_

fs
m

co
un

te
r

co
un

te
r_

no
_o

ut

de
co

de
r_

se
l_

re
g

de
co

de
r_

se
l_

m
_b

yt
e

re

ce
iv

er
_f

sm

re
ce

iv
er

_d
p

tra
ns

m
itt

er
_f

sm

tra
ns

m
itt

er
_d

p

sy
nc

hr
on

iz
er

nA
ck

_g
en

er
at

or

Figure 9 : Module hierarchy

 - 19 -

0 1 2 3

0 1 2 3

0 1

32

32

32

8

8

8

[7:0][31:24]

nACK

A
C

K

sel_out

sel_byte

sel_reg

8

TxD_Data

InReg
ld_inreg

8

RnW: InReg[0]

opcode: InReg[2:0]

options: InReg[7:3]

nReg: InReg[6:2]

fspecial: InReg[7]

fw_reg
fw_clr

fw_shift

DECODER

Registers

UART

Side

Debug_

Core side

32

EXT0

Side

TISA

Side

Byte_Data

F
ro

m
_

G
P

R
&

R
e

g
s

F
ro

m
_

P
C

F
ro

m
_
M

e
m

 (
L

S
B

y
te

)

n
R

e
g

fs
p

e
c
ia

l

re
g
_

w
e

G
P

R
&

R
e

g
s
_

w
e

P
C

_
w

e

T
o

_
G

P
R

&
R

e
g

s

T
o

_
P

C

5

n
R

e
g

fs
p

e
c
ia

l

32

T
o

_
M

e
m

_
D

a
ta

 =
 {

2
4

'b
0

,
B

y
te

_
D

a
ta

}

1 0 1 0

mem_addr

16

+

1
'b

1

o
p

ti
o

n
s

sel_addr

sel_m_byte

32

T
o

_
M

e
m

_
A

d
d

r

num_byte
num_shift

Addr_Counter

end_mem

addr_init

addr_count

16

DECODER

Dim_Block5

PC_break

0 1sel_tisa_pc

PC_we || (pclkedge ==

2'b01 && sel_tisa_PC) 0 1 2 3

Mem_addr[1:0]

-1'b1

32

32

M
A

D
D

R
_

IN

W
E

_
IN

Figure 10: Debug_dp module

 - 20 -

Processor

stall request

(ACK

assertion)

RI assertion

IDLE

Connects to

emips2gdb

Debugging

Activity

Set the

restart PC

value and

ACK

deassertion

Break isntr || emips2gdb

connection

Pipeline arbiter EN == 1

Pipeline arbiter GR == 1

&& Break Instruction

Pipeline arbiter GR == 1

&& emips2gdb connection

emips2gdb

connection

enstablished

End of

debugging

sessoion

(continue)

Figure 11: ext_debug_control_fsm

 - 21 -

Wait for

emips2gdb

commands

Send Ack to

emips2gdb

and stall

request

IDLE

Register

Access

Command

byte Decode

Memory

Access

Uart incoming byte ==

suspend command byte

suspendAck == 1

(signal from

ext_debug_control_fsm)

Uart incoming byte

Register

operations
Memory

operations

Notify

emips2gdb

about a

break

instruction

Break instruction in ID

stage (signal from

ext_debug_control_fsm)

S
to

p
de

bu
gg

in
g:

C
on

tin
ue

co
m

m
an

d

Reg ops

done

Mem ops

done

1

Figure 12: main_fsm

 - 22 -

SEND_ACK

1_10_1

BREAK

1_11_0

IDLE

0_xx_0

REG

ACCESS

0_00_1

DECODE

0_xx_1

MEM

ACCESS

0_10_1

break/000

GET

0_xx_0

Valid/100

opcode == `INTERRUPT

&& option == 5'bxxxx0/000

WAIT_

nBUSY

0_10_1

~busy/000

WAIT_GDB

0_xx_1

SEND_

nACK

1_11_0

@Else/000

1/000

@Else/000

@Else/000

SEND_

nACK_2

1_11_1@Else/000

1/000

opcode == `INTERRUPT

&& option == 5'bxxxx1/000

1/000

@Else/000

o
p
c
o
d
e
 =

=
 `

G
E

T
R

E
G

 |
|

o
p
c
o
d
e
 =

=
 `

S
E

T
R

E
G

/0
1
0

o
p
c
o
d
e
 =

=
 `F

E
T

C
H

 ||

o
p
c
o
d
e
 =

=
 `S

T
O

R
E

/0
0
1

V
a

lid
/1

0
0

o
p

c
o

d
e

 =
=

 `
IN

T
E

R
R

U
P

T

&
&

 (
o

p
ti
o

n
 =

=
 5

'b
x
x
x
x
1

 |
|

o
p

ti
o

n
 =

=
 5

'b
x
x
x
x
0

)
/0

0
0

@Else/000

S
u

s
p

e
n

d
_
A

C
K

/1
0

0

re
g
_
d
o
n
e
 &

&
 R

n
W

/0
0
0

re
g
_
d
o
n
e
 &

&
 ~

R
n
W

/0
0
0

m
e
m

_
d
o
n
e
 &

&
 R

n
W

/0
0
0

m
e
m

_
d
o
n
e
 &

&
 ~

R
n
W

/0
0
0

@Else/000 @Else/000

Moore Outputs = {TxD_Start_main, sel_out, suspend}

Mealy Outputs = {ld_inreg, reg_access, mem_access}

Figure 13: main_fsm detailed

 - 23 -

ACK_HIGH

000110

IDLE

010100

SET_PC

010111

WAIT_PCLK

_NEG

000110

WAIT_PCLK

010100

RI_ASSERT

010000

break_instr || (suspend && pclk_posedge && ~Is_branch)
pclk_posedge && ~EN

STALLED

001110

@Else

GR && ~suspend

@Else

@Else

Moore Outputs = {break, sel_tisa_PC, suspend_ACK, RI, ACK, PC_NEXT}

@Else

pck_posedge && EN

SEND_

BREAK

100110

suspend

@Else

GR && suspend

~suspend

@Else

@Else

pclk_negedge

pclk_posedge

Figure 14: ext_debug_control_fsm detailed

 - 24 -

A
C

K
_

H
IG

H

0
0

0
1

1
0

ID
L

E

0
1

0
1

0
0

S
E

T
_

P
C

0
1

0
1

1
1

W
A

IT
_

P
C

L
K

_
N

E
G

0
0

0
1

1
0

W
A

IT
_

P
C

L
K

0
1

0
1

0
0

R
I_

A
S

S
E

R
T

0
1

0
0

0
0

b
re

a
k
_

in
s
tr

 |
|
(s

u
s
p

e
n

d
 &

&
 p

c
lk

_
p

o
s
e

d
g

e
 &

&
 ~

Is
_

b
ra

n
c
h
)

p
c
lk

_
p

o
s
e

d
g

e
 &

&
 ~

E
N

S
T

A
L

L
E

D

0
0

1
1

1
0

@
E

ls
e

G
R

 &
&

~

s
u

s
p

e
n

d

@
E

ls
e

@
E

ls
e

M
o

o
re

 O
u

tp
u

ts
 =

 {
b

re
a

k
,
s
e

l_
ti
s
a

_
P

C
,

s
u

s
p

e
n

d
_

A
C

K
,

R
I,
 A

C
K

,
P

C
_

N
E

X
T

}

@
E

ls
e

p
c
k
_

p
o

s
e

d
g

e
 &

&
 E

N

S
E

N
D

_

B
R

E
A

K

1
0

0
1

1
0

s
u

s
p

e
n

d

@
E

ls
e

G
R

 &
&

s
u

s
p

e
n

d

~
s
u

s
p

e
n

d

@
E

ls
e

@
E

ls
e

p
c
lk

_
n

e
g

e
d

g
e

p
c
lk

_
p

o
s
e

d
g

e

S
E

N
D

_
A

C
K

1
_

1
0
_

1

B
R

E
A

K

1
_

1
1

_
0

ID
L

E

0
_

x
x
_

0

R
E

G

A
C

C
E

S
S

0
_

0
0

_
1

D
E

C
O

D
E

0
_

x
x
_

1

M
E

M

A
C

C
E

S
S

0
_

1
0

_
1

b
re

a
k
/0

0
0

G
E

T

0
_

x
x
_

0

V
a

lid
/1

0
0

o
p

c
o

d
e

 =
=

 `
IN

T
E

R
R

U
P

T

&
&

 o
p

ti
o

n
 =

=
 5

'b
x
x
x
x
0

/0
0

0

W
A

IT
_

n
B

U
S

Y

0
_

1
0

_
1~

b
u

s
y
/0

0
0

W
A

IT
_

G
D

B

0
_

x
x
_

1

S
E

N
D

_

n
A

C
K

1
_

1
1
_

0

@
E

ls
e
/0

0
01
/0

0
0

@
E

ls
e
/0

0
0

@
E

ls
e

/0
0

0

S
E

N
D

_

n
A

C
K

_
2

1
_

1
1

_
1

@
E

ls
e
/0

0
0

1
/0

0
0

o
p

c
o

d
e

 =
=

 `
IN

T
E

R
R

U
P

T

&
&

 o
p

ti
o

n
 =

=
 5

'b
x
x
x
x
1
/0

0
0

1
/0

0
0

@
E

ls
e
/0

0
0

opcode == `GETREG ||

opcode == `SETREG/010

opcode == `FETCH ||

opcode == `STORE/001

Valid/100

opcode == `INTERRUPT

&& (option == 5'bxxxx1 ||

option == 5'bxxxx0) /000

@
E

ls
e
/0

0
0

Suspend_ACK/100

reg_done && RnW/000

reg_done && ~RnW/000

mem_done && RnW/000

mem_done && ~RnW/000

@
E

ls
e

/0
0

0
@

E
ls

e
/0

0
0

M
o

o
re

 O
u

tp
u

ts
 =

 {
T

x
D

_
S

ta
rt

_
m

a
in

,
s
e

l_
o

u
t,
 s

u
s
p

e
n

d
}

M
e

a
ly

 O
u

tp
u

ts
 =

 {
ld

_
in

re
g

,
re

g
_

a
c
c
e

s
s
,

m
e

m
_

a
c
c
e

s
s
}

s
u

s
p

e
n

d
_

A
c
k

s
u

s
p

e
n

d

b
re

a
k

Figure 15: Interaction between main_fsm and ext_debug_control_fsm

 - 25 -

VALID

00000000

IDLE

00100010

DONE

01000000

COUNT

00000100

reg_access && ~RnW

SET

00001000

@Else

@Else

Moore Outputs = {TxD_Start_reg, reg_done, fw_clr, fw_shift, reg_we, count_reg, init_latency, count_latency}

1

SHIFT

00010000

e
n
d
_
c
o
u
n
t &

&
 fs

p
e
c
ia

l

@Else

regrdy

1

reg_access && RnW

WAIT_FOR

00000001

valid

CHECKREG

_RDY

00000000

end_count && ~fspecial

1

GET

10000100

BUSY

00000000

data_ready

1

~
b

u
s
y
 &

&
 ~

e
n

d
_

c
o

u
n

t

busy && ~end_count

e
n
d
_
c
o
u
n
t

Figure 16: registers_fsm

 - 26 -

IDLE

100_x000_

0000

@Else

Moore Outputs = {mem_done, TxD_Start_mem, num_shift, sel_addr, addr_init, addr_count, fw_shift_mem, MOE, mwm_we, count_mem, ld_mem_addr}

mem_access && sel_m_byte

SET_HI_

NUM

001_x000_

0000

1

WAIT_HI

_NUM

000_x000_

0000

SET_LO_

NUM

001_x000_

0000

ADDR_CNT

_INIT

000_x100_

0000

GET_ADDR

_COUNT

000_x000_

0010

end_count

WAIT_

VALID

000_x000_

0000

SET_MEM_

ADDR

000_0000_

0001

WAIT_PCLK

_POS

000_x000_

0000

SET_MOE

000_x000_

1000

ADDR_

UPDATE

000_1010_

0001

WAIT_NEXT

000_x000_

0000

WAIT_LO_

NUM

000_x000_

0000

valid

1

1

m
e

m
_

a
c
c
e

s
s
 &

&
 ~

s
e

l_
m

_
b

y
te

@Else

@Else

1

@Else

SHIFT_

FW_REG

000_x001_

0000

@Else

valid1

@Else

WAIT_DATA

000_x000_

0000

~RnW && ~valid

valid

@Else

@Else

SET_MWE

000_x000_

0100

end_mem

~RnW && pclk_posedge
RnW && pclk_posedge

pclk_negedge pclk_negedge

1

~RnW
SEND_

BYTE

010_x000_

0000

RnW && MDATA_VLD

WAIT_

nBUSY

000_x000_

0000

1

~end_mem && ~busy

e
n

d
_
m

e
m

 &
&

 ~
b

u
s
y

busy

Figure 17: memory_fsm

 - 27 -

ex
te

ns
io

n0

ex
t_

de
bu

g_
co

nt
ro

l

de
bu

g_
ex

te
ns

io
n

re
se

t_
m

an
ag

er

ex
t_

de
bu

g_
co

nt
ro

l

 _
fs

m

br
an

ch
_b

re
ak

_

de
te

ct
or

ua
rt

de
bu

g_
co

re

re
ce

iv
er

_d
b

ba
ud

_g
en

tra
ns

m
itt

er
_d

b

D
eb

ug
_d

p

va
lid

_g
en

D
eb

ug
_C

on
tro

l

To
p_

D
eb

ug

m
ai

n_
fs

m

re
gi

st
er

s_
fs

m

m
em

or
y_

fs
m

co
un

te
r

co
un

te
r_

no
_o

ut

de
co

de
r_

se
l_

re
g

de
co

de
r_

se
l_

m
_b

yt
e

re

ce
iv

er
_f

sm

re
ce

iv
er

_d
p

tra
ns

m
itt

er
_f

sm

tra
ns

m
itt

er
_d

p

sy
nc

hr
on

iz
er

nA
ck

_g
en

er
at

or

w
bp

oi
nt

er
_f

sm

w
bp

oi
nt

s_
dp

w
p_

be
l

de

co
de

r_
w

p_
cn

t

Figure 18: Module hierarchy after addition of watchpoint support

 - 28 -

0 1 2 3

0 1 2 3

0 1

32

32

32

8

8

8

[7:0][31:24]

nACK

A
C

K

sel_out

sel_byte

sel_reg

8

TxD_Data

InReg
ld_inreg

8

RnW: InReg[0]

opcode: InReg[2:0]

options: InReg[7:3]

nReg: InReg[6:2]

fspecial: InReg[7]

fw_reg
fw_clr

fw_shift

DECODER

Registers

UART

Side

Debug_

Core side

32

EXT0

Side

TISA

Side

Byte_Data

F
ro

m
_

G
P

R
&

R
e

g
s

F
ro

m
_

P
C

F
ro

m
_

M
e

m
 (

L
S

B
y
te

)

n
R

e
g

fs
p

e
c
ia

l

re
g
_

w
e

G
P

R
&

R
e

g
s
_

w
e

P
C

_
w

e

T
o

_
G

P
R

&
R

e
g

s

T
o
_

P
C

5

n
R

e
g

fs
p

e
c
ia

l

32

T
o

_
M

e
m

_
D

a
ta

 =
 {

2
4

'b
0

,
B

y
te

_
D

a
ta

}

1 0 1 0

mem_addr

16

+

1
'b

1

o
p

ti
o

n
s

sel_addr

sel_m_byte

32

T
o

_
M

e
m

_
A

d
d

r

num_byte
num_shift

Addr_Counter

end_mem

addr_init

addr_count

16

DECODER

Dim_Block5

PC_break

0 1sel_tisa_pc

PC_we || (pclkedge ==

2'b01 && sel_tisa_PC) 0 1 2 3

Mem_addr[1:0]

-1'b1

32

32

wbpoints_dp

M
A

D
D

R
_

IN

W
E

_
IN

Control

Side

32

2

{wp_hit, bp_hit}

Control

signals to

wbpoints_fsm

Control

signals from

wbpoints_fsm

CR

wp_bel0 wp_bel1 decoder_wp_cnt

wp_type

{is_wp,

wp_en}

w
p

_
n

u
m

7

Figure 19: Debug_dp module with watchpoint support

 - 29 -

32

8

32

w
p

_
re

g
_

in

F
ro

m
_

P
C

M
D

A
T

A
_

IN

=

wp_reg

1 0

32

sh_wp_reg

sel_addr_reg

sel_wp

sel_bp

Watchpoint

enable logic

Breakpoint

enable logic

en_reg

set_wp_en rst_wp_en

wp_type_regld_wp_type

2

w
p

_
h

it

b
p

_
h

it

w
p

_
ty

p
e

_
in

w
ri
te

_
e

n

address_matched

Figure 20: wp_bel module

 - 30 -

CHECK_WP

000000000

IDLE

10000000

@Else

Moore Outputs = {wp_done, ld_CR, sh_wp_reg, ld_wp_type, set_wp_type, rst_wp_type, count_up, is_wp_on, is_wp_off}

1

@Else

WAIT_CR

000000000

wp_op

@Else

STORE_CR

010000000

valid

1

SET_WP

000000010

SET_BP

000000001

COUNT

000000100

WAIT_BYTE

000000000

1

is_wp~is_wp

wp_enwp_en

SHIFT_WP_

REG

001000000

EN_STO_

TYPE

000110000

valid

end_count

1

WBP_

DISABLE

000001000

~wp_en ~wp_en

Figure 21: wbpoints_fsm

 - 31 -

SEND_ACK

1_10_1

BREAK

1_11_0

IDLE

0_xx_0

REG

ACCESS

0_00_1

DECODE

0_xx_1

MEM

ACCESS

0_10_1

break/0000

GET

0_xx_0

Valid/1000

opcode == `INTERRUPT &&

option == 5'bxxxx0/0000

WAIT_

nBUSY

0_10_1

~busy/0000

WAIT_GDB

0_xx_1

SEND_

nACK

1_11_0

@Else/0000

1/0000

@Else/0000

@Else/0000

SEND_

nACK_2

1_11_1@Else/0000

1/0000

opcode == `INTERRUPT &&

option == 5'bxxxx1/0000

1/0000

@Else/0000

o
p
c
o
d
e
 =

=
 `

G
E

T
R

E
G

 |
|

o
p
c
o
d
e
 =

=
 `

S
E

T
R

E
G

/0
1
0
0 o

p
c
o
d
e
 =

=
 `F

E
T

C
H

 ||

o
p
c
o
d
e
 =

=
 `S

T
O

R
E

/0
0
1
0

V
a

lid
/1

0
0
0

o
p

c
o

d
e

 =
=

 `
IN

T
E

R
R

U
P

T

&
&

 (
o

p
ti
o

n
 =

=
 5

'b
x
x
x
x
1

 |
|

o
p

ti
o

n
 =

=
 5

'b
x
x
x
x
0

)
/0

0
0

0
@Else/0000

S
u

s
p

e
n

d
_

A
C

K
/1

0
0

0

re
g
_
d
o
n
e
 &

&
 R

n
W

/0
0
0
0

re
g
_
d
o
n
e
 &

&
 ~

R
n
W

/0
0
0
0

m
e
m

_
d
o
n
e
 &

&
 R

n
W

/0
0
0
0

m
e
m

_
d
o
n
e
 &

&
 ~

R
n
W

/0
0
0
0

@Else/0000 @Else/0000

Moore Outputs = {TxD_Start_main, sel_out, suspend}

Mealy Outputs = {ld_inreg, reg_access, mem_access, wp_op}

WBP_OP

0_11_1

o
p

c
o

d
e

 =
=

 `
E

X
T

E
N

D
E

D
 &

&
|

o
p

ti
o

n
s
 =

=
 `

W
B

P
O

IN
T

/0
1

0
0

@Else/0000 wp_done/0000

Figure 22: main_fsm modified for watchpoint support

 - 32 -

ACK_HIGH

000110

IDLE

010100

SET_PC

010111

WAIT_PCLK

_NEG

000110

WAIT_PCLK

010100

RI_ASSERT

010000

break_instr || (suspend && pclk_posedge && ~Is_branch)

|| bp_hit || wp_hit pclk_posedge && ~EN

STALLED

001110

@Else

GR && ~suspend

@Else

@Else

Moore Outputs = {break, sel_tisa_PC, suspend_ACK, RI, ACK, PC_NEXT}

@Else

pck_posedge && EN

SEND_

BREAK

100110

suspend

@Else

GR && suspend

~suspend

@Else

@Else

pclk_negedge

pclk_posedge

Figure 23: ext_debug_control_fsm modified for watchpoints support

