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Abstract 

 

eBug is a debugging solution for software developed  

on the eMIPS dynamically-extensible processor. The off-

chip portion of eBug is an application that performs tasks 

that would be too expensive or too inflexible to perform in 

hardware, such as implementing the communication 

protocols to interface to the client debuggers. The on-chip 

hardware portion of eBug is realized with a new 

approach: rather than being built into the base pipelined 

data path, it is a loadable logic module that uses the 

standard Extension interface of the processor. This 

accomplishes the three goals of area minimization and 

reuse, security in a general purpose, multi-user 

environment, and open-ended extensibility.  

When not in use, eBug is simply not present on the 

chip and its area is therefore reused.  eBug solves the 

security issues normally created by a hardware-level 

debug module because only the process that owns the 

eBug Extension can be affected by a debugging session. 

As an Extension, eBug is not compiled into the basic 

processor design and this makes it easy to add new 

features without affecting the core eMIPS design. 

Leveraging the high-visibility extension interface of 

eMIPS, eBug can realize arbitrarily complex features for 

high-level monitoring. In this paper we describe how we 

transparently added hardware watchpoints to the initial, 

simpler design. It is also possible to interface eBug with 

other eMIPS extensions such as those generated by P2V 

to improve its capabilities. eBug was written in Verilog 

and is usable both with the Giano system simulator and 

on the Xilinx ML401 FPGA board.  

 

1 Introduction 
 

Debugging is an important but tedious part of the 

software development process. To be profitable, it must 

be supported by appropriate tools. For instance, it is 

desirable to present the user with the status of the 

application as soon as the bug occurs, even though the 

user does not yet have a precise idea of what the error 

exactly is, let alone its cause. In embedded systems, 

debugging is performed using a remote client debugger 

that connects to the embedded processor using some 

communication protocol. The remote debugger can access 

the processor‟s resources with one of two approaches: 

software based and hardware based. In the first case, a 

piece of software called the “debug stub” runs on the 

target processor itself. The stub interfaces to the remote 

debugger by implementing the communication protocol 

and responding to the debugger‟s requests. In case of a 

hardware or software exception the stub is invoked and 

the event is reported to the debugger. No custom 

hardware is needed in this case, but there is some software 

overhead present. Moreover, the processor status is not 

observed in the actual moment that a trap occurs. In the 

second case, a custom hardware module (such as a JTAG 

interface) is coupled to the processor to access its 

resources and communicate with the debugger. This 

hardware module can be more or less complex, depending 

on the features that it implements. In general, this 

approach is not very flexible because adding any new 

feature implies a reimplementation of the whole hardware 

system. Furthermore, the hardware module is designed to 

unconditionally access all the processor resources, 

without any system software control. This causes security 

issues and is therefore never used in a general purpose, 

multi-user environment. In this environment, the common 

approach is to provide in hardware some minimal support 

for single-stepping and let the (system) software handle 

the rest. 

In this document we introduce eBug, a flexible, low 

overhead, security aware and easily extensible debugging 

support realized for the eMIPS processor [11]. eMIPS is 

composed of a fixed basic processor module that can be 

dynamically augmented with custom logic modules, using 

the FPGA partial reconfiguration feature. These modules 

are termed Extensions; they can access the internal 

processor pipeline and resources and perform special 
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purpose tasks, therefore adding new capabilities to the 

running system. The primary contribution of this paper is 

to show how flexible hardware debugging support can be 

realized as an Extension to eMIPS, without any changes 

to the fixed processor part. A number of debugging 

Extensions have been implemented, providing different 

levels of debugging support and therefore demonstrating 

the flexibility of the approach from the hardware 

standpoint. Software flexibility is provided by an 

intermediate software application that interposes between 

the actual debugger client and the eMIPS processor itself. 

 eBug creates little if any overhead. It is entirely optional, 

it uses very little area resources in one Extension slot, and 

does not affect the performance of the processor in any 

way. When an error occurs, eBug immediately halts the 

processor before a trap is generated. In addition to 

hardware exceptions, eBug can capture a variety of 

conditions at the hardware level, by passively observing 

the processor‟s execution. 

A second contribution of this work is to show how 

hardware debugging support can safely be confined 

within the security envelop of a (user mode) process, but 

without any loss in performance, extensibility or 

functionality. eMIPS Extensions load, unload and access 

the processor resources strictly under the control of the 

operating system. When a process is rescheduled its 

extensions are disabled and can no longer observe the 

processor's execution and resources. When the extension 

is enabled, its accesses to memory are filtered by the 

processor‟s MMU. 

eBug itself can be easily extended. The basic design is 

simple and modular. In this paper we show how to add an 

advanced feature such as data watchpoints with very little 

effort. eBug is small enough that much more functionality 

can be packed even into the relatively limited area 

available on the first eMIPS prototype. 

A third contribution of this work is a new linkage between 

the semi-formal debugging activities of a programmer 

with the more rigorous tools of temporal logic. eBug can 

work in concert with the P2V [6] zero-overhead, online 

program verification system. Temporal logic assertions 

are realized as program-specific Extensions that can 

trigger eBug whenever an assertion is violated. A 

programmer creates these assertions either before or after 

the program is compiled, possibly while debugging it, as a 

way to express the intended behavior of the program. 

Execution stops immediately once the program deviates 

from the expected behavior, without waiting for a 

hardware exception to occur. 

In this paper we describe the first implementation of 

eBug, and analyze its security capabilities and the 

extensibility features. In particular, we show how to 

improve the basic eBug functionality by adding hardware 

support for watchpoints and breakpoints, without any 

modification to the existing eMIPS design.  

The remainder of this document is structured as 

follows. Section 2 summarizes the related work. Section 3 

introduces the eMIPS processor. Section 4 gives an 

overview of eBug, and the eBug software and hardware 

components are then described in detail in Section 5 and 

Section 6. Section 7 shows how to use eBug in a practical 

setting. Section 8 describes how we added hardware 

support for watchpoints and breakpoints to the basic eBug 

extension. A quantitative evaluation of the design is 

presented in Section 9. Future work and conclusions are 

presented in Section 10. 

 

2 Related Work 
 

On-chip support for software debugging can be found 

in the Leon Processor [8], an open source 32-bit RISC 

CPU jointly designed by Gaisler Research and the 

European Space Agency. Leon is a Sparc V8 [14] 

instruction set compliant microprocessor. A debugging 

support unit (DSU) was introduced in the second revision 

(Leon2). The DSU provides a processor debug interface 

to the GDB debugger [3]. The DSU is available both on 

the real target hardware and on a simulator. In Leon2 the 

DSU communicates with the PC using a serial port 

whereas the Leon3 DSU is connected to the system bus as 

a slave device usable with different interfaces such as 

UART, JTAG, USB or Ethernet.  

Xilinx provides optional hardware support for 

debugging software on the Microblaze soft-core [22] and 

on the PPC hardcore [13]. The XMD (Xilinx 

Microprocessor Debugger) [20] is a software tool used to 

interface a GDB remote session with a processor running 

on the real FPGA or with a cycle-accurate PPC or 

Microblaze instruction set simulator. The PPC hardcore 

includes (fixed) logic that links with XMD using a JTAG 

link. The Microblaze can use both a software debug stub 

and a hardware debug module called MDM [21]. In the 

latter case MDM connects the Microblaze debug interface 

with XMD using the JTAG interface. 

Both the Leon and the Xilinx debugging support are 

optional features, but neither takes advantage of the 

FPGA reconfigurability features. Leon is an ASIC 

oriented design and, while FPGA implementations do 

exist, they do not exploit the FPGA partial reconfiguration 

feature to insert and remove the DSU at runtime. This is 

only possible at synthesis time, and only by reconfiguring 

the whole system. Once the DSU is included in the 

design, its area is wasted if debugging is not actually 

needed. Moreover, modifying the DSU design to 

http://en.wikipedia.org/wiki/Open_source_hardware
http://en.wikipedia.org/wiki/Open_source_hardware
http://en.wikipedia.org/wiki/Open_source_hardware
http://en.wikipedia.org/wiki/Reduced_Instruction_Set_Computer
http://en.wikipedia.org/wiki/Central_Processing_Unit
http://en.wikipedia.org/wiki/European_Space_Agency
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implement additional features impacts the whole 

processor, which must therefore be re-validated.  

The eBug hardware extension leverages the FPGA 

partial reconfiguration feature to reuse that portion of the 

device area when software debugging is not needed. This 

is a choice that is made at runtime, during execution, and 

not at design time. To this end, the eBug extension uses 

the same general purpose interface to the eMIPS datapath 

that is used by all the other eMIPS extensions. Using a 

standard interface provides additional benefits for testing 

and validation; only the specific extension must be re-

tested and not the rest of the system or any other 

extension. Therefore it is possible to add new features to 

eBug simply by re-implementing it, without affecting the 

rest of the system.  

Similar considerations apply to the Xilinx‟ debugging 

support. MDM is designed for Microblaze on FPGAs but 

it is not possible to remove it a run time. Moreover, MDM 

uses JTAG and this creates security issues. JTAG is a bus 

that provides low-level access to the entire system 

resources, not just the software under debugging. For 

instance, if the target processor is running a multitasking 

operating system there will be context-switching during a 

debug session. If the MDM is not properly used it can 

negatively affect the state of other processes and/or other 

parts on the system board. This is impossible with eBug 

because it is an extension owned exclusively by the 

process being debugged. When the operating system 

schedules another process all the extensions of the 

previous one are disabled and therefore they cannot affect 

any other software module. MDM is a proprietary system 

and it is not clear if it uses JTAG only to communicate 

with the host PC or also to access the processor resources 

like the register file. Compared to the processor clock, 

JTAG is a slow link and this can be a critical issue for 

remote debugging. For instance, realizing additional 

features such as watch-points remotely over the JTAG 

link would be problematic.  

 

3 The eMIPS Processor  
 

eMIPS [11] is a dynamically extensible microprocessor 

developed by the Microsoft Research Embedded Systems 

group.   Using the extensibility features, a user can 

dynamically add custom logic to the basic processor data 

path at all stages of the pipeline. The additional logic, 

which is termed an Extension, can be used to tailor the 

processor for particular tasks and to improve the overall 

performance. Extensions can be loaded on-chip 

dynamically during execution by the processor itself, and 

only when the processor actually needs them. 

 Figure 1 presents a block diagram of the eMIPS 

processor organization.  The base datapath pipeline 

stages, general purpose register file and memory interface 

match those of a „classic‟ CPU [5] and are depicted in 

lighter color in the diagram.  These pipeline stages 

constitute the Trusted ISA or TISA, the core portion of 

the architecture that is required for initial operation and to 

provide a level of trust in the functioning of the processor.  

These blocks cannot be removed or disabled and must be 

present at startup of the system.  These blocks constitute 

the fixed portion of the architecture and include all 

resources that are of a security sensitive nature, such as 

the system coprocessor.  The TISA also includes all the 

facilities for self-extension, including instructions for 

loading, unloading, disabling and controlling the 

unallocated blocks in the microprocessor.  At a functional 

level the pipeline blocks operate similarly to a „classic‟ 

CPU design, except their interconnections with respect to 

each other and other blocks differ.   

 

Figure 1: eMIPS Block Diagram 

A simple Extension such as those depicted in darker 

colors in Figure 1 includes an Instruction Decode (ID) 

stage and an Execution stage that can span to the Memory 

Access stage of the datapath. This allows the extension to 

perform dual cycle operations without affecting the 

normal CPU pipeline. To perform multi-cycle operations 

it is possible to modify the processor control flow by 

stalling the TISA and maintaining ownership of all the 

pipeline resources. Multi-cycle operations are needed for 

instance to access memory. Memory accesses go through 

the MMU and are therefore confined within the current 

process‟ address space. Privileged-mode resources such as 

the system coprocessor-0 registers are not usually 

accessible to an Extension, unless it is owned by 

privileged-mode software. The extension has otherwise 

access to all other non-privileged resources of the 

executing process, such as registers and memory. The 

extension sees each instruction as it enters the ID phase, 
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its program counter, the address of each memory access 

and the value exchanged with memory.  If system 

software allows it, it can claim ownership of regular 

instructions in additions to extended instructions. The 

Extension can provide a non-sequential next-PC, i.e. one 

that differs from the following instruction, and alter the 

program flow. 

An Extension is often a mean to add computational 

capabilities to the processor, but other uses are also 

possible. Extensions can be used to provide any kind of 

service, for instance to realize dynamically-loaded on-

chip peripherals [17].  In this work, we used the Extension 

interface to create an Extension that adds remote, JTAG-

like debugging support to the processor. 

 

4 eBug Overview 
 

The debugging support provided by eBug is realized 

by two communicating components; a software 

component (emips2gdb) and a hardware component (the 

eBug extension).  The two components cooperate in 

providing the necessary support for remote debugging of 

applications running on the eMIPS system.  We strived to 

minimize the size of the hardware component, moving 

much functionality into the software component, provided 

the performance was not impacted. For instance, it is the 

software component that implements the protocol required 

by the client debugger, such as the remote protocol in the 

case of the GDB client. 

The software component is depicted as the block 

emips2gdb in Figure 2 and Figure 3. It is implemented as 

a single application program, running under the host PC‟s 

operating system. As further explained in Section 5, it acts 

as an interface between a PC host running a debug client 

like GDB and a remote eMIPS target. The same program 

is used, whether the target is an actual hardware eMIPS 

FPGA implementation (Figure 2) or an eMIPS simulation 

model (Figure 3) running within the Giano simulator [10, 

2]. 

The hardware component is implemented as a  

Verilog module that can be synthesized either separately 

as an Extension (block “eBug Extension” in Figure 2) or 

loaded together with the rest of the eMIPS modules and 

peripherals inside the Giano simulator (Figure 3).  This 

component was developed as an eMIPS extension to 

achieve: 

1. Area reuse: The area used by eBug is used only 

when an executing program is being debugged. 

eBug uses only one of the available Extension 

slots. When a debugging session is not needed the 

extension slot can be used for other purposes. 

2. Security: The eMIPS processor can dynamically 

enable/disable individual extension slots, without 

reloading the Extensions in them. This feature can 

be used to activate the eBug extension only when 

the process being debugged is scheduled by the 

operating system. In this way any other process 

running on the system cannot be affected by the 

debugger.  Debug client commands affect only to 

the state (registers, memory) of the process that 

owns the extension. eBug accesses registers and 

memory using the extension interface instead of a 

lower level channel like JTAG. This gives full 

control to the target operating system and prevents 

unwanted accesses to processor resources by the 

debug client.  

3. Extensibility: The eBug hardware component is 

intended as an extensible Extension. The design 

makes it simple to add other debugging features to 

the base modules. In this way, eMIPS is not limited 

to a fixed debug hardware support but, depending 

on the user needs, it can evolve and provide more 

complex functionalities. The only constraint is the 

maximum area that an extension can take. Section 

8 shows some possible enhancements to the base 

eBug hardware support. 

 

 

Named

Pipe
emips2gdbGDB

Serial 

Line

eBug

Extension

 

Figure 2: Connection to Hardware 
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Pipe
emips2gdbGDB

eMIPS

Giano-Modelsim

Simulation

PLI

Named

Pipe

 

Figure 3: Connection to Simulation 

 

5 The emips2gdb Software Component 
 

The eBug software component is realized in the 

emips2gdb application program. As shown in Figure 2 

and Figure 3, it is possible to connect GDB to an actual 

eMIPS hardware implementation as well as to a Giano 

simulation session, using the same emips2gdb program. In 

the first case emips2gdb uses an actual serial line, in the 

latter case it uses a PLI-based [ 18 ] interface that 

simulates the transmit and receive pins of the UART 

inside a C-model. A typical eMIPS debug session starts 

with first running emips2gdb to create a server for GDB 

on one side and, according to the user request, a 

connection to a serial port or to a named pipe on the other 
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side. The GDB debugger is then executed and connected 

to emips2gdb, who acts as the remote target. Once the 

debug session is set, emips2gdb translates the GDB 

commands into the simpler protocol used by the eMIPS 

eBug Extension and performs the requested operations. 

 

Figure 4: Command byte formats 

Emips2gbd currently supports GDB as the client 

debugger but other debuggers, like WinDbg [19], can be 

supported quite simply by adding a class implementation 

that translates the new debugger‟s remote protocol into 

the serial protocol used by the extension.  

The GDB remote protocol is rather verbose and it is not 

area-efficient to parse it directly in hardware. To tackle 

this issue emips2gdb translates it into a more easy-to-

decode protocol. Using this protocol emips2gdb can: 

- Suspend and Resume the processor when the 

process that owns the debug extension is running, 

- Read and write eMIPS registers, 

- Fetch and Store values from and to memory.   

Using these basic operations the debugger can 

perform more complex ones, such as single stepping, 

inserting software breakpoints and realizing software 

watchpoints. Note that, as previously explained, it is also 

possible to add hardware support both for breakpoints and 

watchpoints, or other functionalities using additional basic 

operations. Section 8.1 expands on this notion. 

 

opcode option Operation 

Bytes 

returned 

 

x00 N/A Read from an eMIPS register 4 

x01 N/A Write to an eMIPS register 1 (Ack) 

010 0x0-

0x1F 

Fetch byte from memory variable 

011 0x0-

0x1F 

Store byte to memory  1 (Ack) 

110 00000 Suspend 1 (Ack) 

110 00001 Continue 1 (Ack) 

111 ----- Future Expansion ----- 

Table 1: Basic eBug commands 

The emips2gdb protocol is a stream of bytes that 

always begins with a command byte. As shown in Figure 

4, the command byte can have two possible formats. The 

first format uses three fields and is used to access the 

eMIPS registers. The second format uses two fields and is 

used for memory and control operations. In both formats 

the opcode field alone identifies the action to be 

performed. The current set of legal opcode values is 

depicted in the first column of Table 1. The second 

column  shows the range of values for the option field, if 

applicable. The last column shows the number of bytes 

expected in the eBug response. 

5.1 Control Operations 
 

To start debugging, the first step is to connect GDB 

to the emips2gdb server. Once the connection is 

established, emips2gdb sends a Suspend byte to the debug 

extension to force eMIPS to idle. When eMIPS is stalled 

an acknowledge byte is sent back to emips2gdb and the 

eMIPS resources can be managed by GDB. 

When a Continue command is issued, emips2gdb 

sends the corresponding command byte for putting eMIPS 

in the running state and waits for a session restart 

indication from eBug. This can be required, for instance, 

by the execution of a break instruction previously inserted 

by GDB. 

5.2 Register Operations. 
 

A register operation is indicated by bit one of the 

command byte being zero. In such a case, bit zero 

indicates whether a read or a write is desired. The 

remaining bits, i.e. the fSpecial bit and the nReg field in 

Figure 4, are used to identify an accessible eMIPS register 

as specified in Table 2.  

Once a register Read is recognized, the eBug 

extension does not wait for any other bytes from the serial 

line. It gets the value of the desired eMIPS register from 

the TISA, according to the fSpecial and nReg fields. Once 

the value is retrieved, the four bytes are sent back in big-

endian order to the emips2gdb application over the serial 

line. 

fSpecial nReg Register 

0 0-31 GPR file register number 

1 0 PC 

1 1 hi 

1 2 lo 

1 3 sr 

1 4 bad 

1 5 cause 

1 6 fsr 

1 7 fir 

Table 2: Register file encoding 
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If the command byte specifies a register Write 

operation, the eBug extension waits for the register value 

to be written. Emips2gdb sends the expected four bytes in 

big-endian order. Once the value is received and stored to 

the requested eMIPS register, an acknowledge byte 

(0xFF) is sent back to emips2gdb to notify that the eMIPS 

state has changed.  

Currently it is possible to perform both read and write 

operations on the general purpose registers and the PC 

whereas lo, hi and cp0 registers are read only.   

5.3 Memory Operations 
 

Emips2gdb sends a variable number of bytes to the 

eBug extension when the debugger wants to access the 

eMIPS memory subsystem. The first is the command 

byte.  The number of bytes that follows depends on the 

value of the command byte.  The command byte for Fetch 

and Store operations has a three bit opcode. The 

remaining 5 bits, i.e. the option filed, can have two sets of 

values: 

- 0: The two bytes that follow (big-endian ordered) 

indicate the size of the memory block that is to be 

read or written. A maximum block size of 64KB 

can be processed in a single transaction. In reality, 

the GDB remote protocol traces show that GDB 

uses a maximum block size of less than 400 bytes.  

- 1-31: This is the size of the memory block, no 

more bytes are needed. 

The four subsequent bytes (big-endian ordered), 

define the starting address of the memory transaction.   

In the case of a Read operation, emips2gdb does not 

send any more bytes and waits for the response from the 

eBug extension. After the last memory value is sent the 

transaction is concluded. No additional Acknowledge byte 

is sent. 

In the case of a Write operation, emips2gdb sends the 

bytes to be written to memory, starting at the address 

already specified. The eBug extension stores the data to 

memory and then sends an Acknowledge byte to conclude 

the transaction.  

 

6 The eBug Hardware Component 
 

The eBug extension is not a typical eMIPS extension. 

It does not execute any extended instruction and does not 

perform any real computational task. It does take control 

of the processor if one of the following two conditions 

occurs: 

1. A break instruction is in the ID stage, or 

2. The client debugger asks to Suspend the process 

that owns the eBug hardware extension. 

In either case, eBug stalls the TISA execution and takes 

control of the processor. This list could change if/when 

other features are added, for example with hardware 

breakpoint/watchpoint support.  Currently eBug only 

stalls the TISA before any trap occurs. If required, the 

extension interface has provision for causing traps as well.  

eBug relinquishes control back to the TISA if one of the 

following two conditions occurs: 

1. The operating system schedules another process, 

or 

2. The client debugger issues a Continue command. 

In all other respects, the eBug design follows the 

structure of any other eMIPS extension. Figure 9 details 

the internal structure of eBug and the relationships 

between the various modules. The top-level module 

(which must be called extension0), is a wrapper that 

exposes all the available TISA signals to the extension 

main module (debug_extension). This module is used in 

two different ways in synthesis and in simulation. In 

synthesis, it is the hard interface of the Extension and 

connects to the bus-macros that are the physical interface 

of the extension slot. In behavioral simulation, it is loaded 

along with the other TISA modules and directly interfaces 

with them.  Notice that even though only the input signals 

actually needed are connected, all the output signals must 

be driven to their correct idle logical values.  

The debug_extension module instantiates three 

modules. The first is the reset_manager module that deals 

with global reset management issues. The debug 

extension modules use an active high reset, whereas the 

TISA uses an active low reset; therefore, this module is a 

simple inverter of the TISA reset signal. The two other 

modules (ext_debug_control and Top_debug) deal with 

the TISA pipeline, with the registers and the memory 

interfaces and are depicted in Figure 5. 

 

eMIPS TISA

Top_debugext_debug_control

Pipeline  Interface Registers Interface Memory Interface

Serial Port

Control signals

Extension Slot

Figure 5: eBug External Interfaces 
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6.1 Interface to the Pipeline Arbiter  
 

The eMIPS processor can execute both standard 

MIPS instructions [7] and extended instructions (see 

Section 3). In the former case the execution is normally 

delegated to the base datapath, in the latter case the 

extensions are responsible for the extended instructions. 

When an instruction is in the ID stage, both the TISA and 

the extensions can actually recognize it by lowering the 

recognized instruction (RI) signal. The eMIPS pipeline 

arbiter then decides to give the control to the TISA or to 

one of the extensions that claim to recognize it. When 

collisions occur, a priority scheme establishes the pipeline 

owner. Normally, the TISA has priority over the 

extensions but individual slots can be assigned higher 

priority and therefore override the TISA. 

Using this mechanism it is possible for eBug to 

request a stall of the processor when a break instruction is 

encountered. Notice that this prevents the TISA from 

issuing a software trap, which would change the state of 

the processor and the register contents. The same 

mechanism is used if the debugger client sends a Suspend 

command, i.e. when it first tries to connect to eMIPS. In 

the latter case, the eBug extension unconditionally 

recognizes the instruction in the subsequent pipeline 

cycle. Notice that the instruction is therefore not executed, 

execution will restart from the current PC. The suspension 

mechanism must also deal with an issue specific to the 

MIPS architecture[7]. The MIPS processor uses delay-slot 

instructions, an instruction that immediately follows a 

branch but is executed as part of the branch itself. To 

simplify the design of eBug we implemented a 

mechanism that avoids stalling the processor when a delay 

slot instruction is in the ID stage.  In this way the 

extension can always use the correct restart PC value.  

 

 

Figure 6: Taking Control of the Pipeline 

Figure 6 depicts the handshaking signals between 

eBug and the pipeline arbiter. After the extension lowers 

the RI signal, the pipeline arbiter asserts the enable (EN) 

signal notifying the extension that its instruction was 

allowed. At the following positive edge of the pipeline 

synchronization clock (PCLK), the extension must release 

RI, setting it high. EN is also deasserted. The extension 

can now access the pipeline resources for multiple clock 

cycles (as eBug does) by asserting the acknowledge 

(ACK) signal. The pipeline arbiter grants control to the 

extension raising the GR signal. The processor is now 

stalled. To release the processor the extension must de-

assert ACK. For the meaning of the other signals please 

refer to eMIPS documentation [12]. 

All the tasks described so far in this section are 

performed by the ext_debug_control module. This module 

interfaces to the pipeline arbiter and to the Top_debug 

module.  More specifically, it interfaces to main_fsm (see 

Figure 7), a sub module of Top_debug. As explained in 

more details in the next subsection, one of the tasks of 

main_fsm is to support communication with emips2gdb. 

Every time a break instruction is in the ID stage a signal 

(break signal in Figure 7) is asserted and main_fsm in 

turn communicates it to emips2gdb, to restore the 

debugging session. Similarly, when emips2gdb sends a 

Suspend command main_fsm sends a signal (suspend 

signal in Figure 7) to take control of the eMIPS resources. 

Once the processor is stalled, the ext_debug_control 

module finite state machine sends an acknowledge 

(suspend_Ack in Figure 7) back to main_fsm.  

 

ext_debug_control_fsm

1

2 3

main_fsm

1

2 3

suspend

suspend_Ack

break

 

Figure 7: Suspension Protocol 

 

The module ext_debug_control is composed of three 

sub modules: 

- The finite state machine, implemented in 

ext_debug_control_fsm. A simplified diagram for 

this state machine is shown in Figure 11.  

- The instruction decode module, which is used to 

recognize break, conditional branch and jump 

instructions. 

- The nACK generator module. 
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The second module is responsible for the correct 

behavior of the system when a debugging session starts.  

The difficult case is when the ID stage holds an 

instruction located in a branch delay slot. The FSM of the 

ext_debug_control_fsm module lowers RI for the next ID 

stage instruction. Thus if a branch instruction is in the ID 

stage and a suspend signal is asserted, the processor is 

actually stalled when the delay slot instruction in the ID 

stage. When eBug releases the processor the execution 

would therefore normally restart from this instruction. 

Unfortunately, if the branch was taken the destination of 

the branch is now lost and the program control flow is 

altered. The instruction decode module is used to prevent 

this incorrect behavior. It generates a signal that delays 

the assertion of suspend if the instruction in ID is a 

conditional branch or jump instruction.    

The third module is used to generate the nACK byte, 

which is sent to emips2gdb as a reply to an unsupported 

command and when a break instruction is encountered. 

Different nACK codes are used to indicate different kind 

of break instructions. Table 3 shows the nACK codes 

currently used by eBug. 

 

 

Event nACK 

Command byte not supported 0 

Breakpoint 0 

Load software module 1 

Unload software module 2 

Other break codes  3 

Table 3: nACK encoding 

 

6.2 Datapath 
 

As shown in Figure 5, the module Top_debug is 

responsible for communication with the host PC over the 

Serial Port, for the register and memory interfaces, and it 

links with the ext_debug_control module. Internally, it is 

composed of two modules: the uart and the debug_core. 

The uart module is an implementation of the RS232 serial 

communication link, with a compile-time configurable 

baud rate. It lacks runtime configurability to simplify as 

much as possible the design. This leads to a very small 

area footprint of about 50 slices. Should a different baud 

rate or serial parameters be needed it is simpler and more 

effective to create a new eBug instance. To limit the serial 

line bottleneck effect, we use a default value of 115,200 

baud.   

The debug_core module is the main control center for 

the whole extension. The datapath is depicted in Figure 10 

and it is implemented in the debug_dp module. The upper 

side of the datapath communicates with the uart module 

and the lower side is interfaced with the TISA resources, 

namely the registers and memory subsystems.  The design 

of the datapath strives to minimize the area utilization. 

Pipelined registers and other critical path reduction 

techniques are not used. There are five registers in this 

first implementation:  

- InReg is used to store the command byte from the 

uart module. 

- fw_reg is used to pack four bytes into a 32 bit word. 

Bytes are expected in big-endian mode, i.e. the first 

is the most significant one. This register is used for 

write operations to registers and memory. 

- PC_Break is used to store the address of the 

instruction currently in the ID stage. Once a debug 

session starts PC_Break can be only changed by 

the debugger. This register is an image of the 

actual PC. When the program is restarted this is the 

value used to restart execution. 

- mem_addr is used to store the start address for 

memory operations. Like fw_reg it is built from 

four bytes of big-endian ordered data. 

- num_byte stores the number of bytes requested for a 

memory operation. 

The datapath additionally includes seven 

multiplexers, two decoders and a counter of the number of 

bytes read or written in a memory operation. The 

multiplexers are used as follows. 

- sel_addr and sel_m_byte: used in memory 

operations. The first feeds the mem_addr register 

with the initial or with the incremented address. 

The second initializes Addr_counter, driven by the 

decoder Dim_Block. The initial value for 

Addr_counter depends on the option field of the 

command byte. If option is greater than 0 then this 

is the initial value. If it is equal to zero then the 

num_byte register is used instead.   

- sel_tisa_pc: selects the path for updating the 

PC_Break register. This is either the current PC 

from the TISA or a new value from the debugger 

client. 

- sel_reg: a decoder selects its output from the TISA 

register read or the PC_Break value. 

- sel_out: feeds the uart transmit path with one of the 

registers read data, memory read data, ACK or 

nACK signals. 

- sel_byte: used to serialize a 32 bit word in four bytes.  
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- Mem_Addr[1:0]-1’b1: selects the correct byte out of 

a 32 bit word read from memory, depending on its 

address. We subtract one from the last two bit of 

the address to simplify the finite state machine that 

manages the memory operations. 

6.3 Control 
 

The control part of debug_core is implemented by the 

Debug_Control module, using three finite state machines: 

main_fsm, registers_fsm and memory_fsm.  The finite 

state machine implemented by the main_fsm module 

handles synchronization with the ext_debug_control_fsm 

module and communication with emips2gdb, as 

previously described. A simplified diagram of main_fsm 

is depicted in Figure 12. The complete diagram is shown 

in Figure 13.  

When in the IDLE state only two possible events can 

take place: a break instruction is executed, or an 

emips2gdb connection is requested. In the first case the 

debugger must be notified of the break instruction. With 

the processor already stalled, an opportune nACK code is 

sent to emips2gdb to notify it that the processor is waiting 

for debugging. In the second case, main_fsm assert the 

suspend signal to request a processor stall.  In either case, 

the finite state machine then goes into the “wait for 

emips2gdb commands” state. Once a command is 

received and recognized, for example for a “register 

access” operation, the state machine performs the 

operation and eventually comes back to this state. If the 

command is a Continue then main_fsm returns to the 

IDLE state, after notifying ext_debug_control_fsm to 

releases the TISA pipeline. If an incoming command is 

not recognized, main_fsm responds with a zero value 

(nACK) and then comes back to waiting for another 

emips2gdb command. An interesting case is if emips2gdb 

crashes while the processor is stalled and main_fsm is 

waiting for a command. If emips2gdb subsequently 

reconnects it sends a new Suspend command to eBug, 

who then replies with an ACK byte. The debug session is 

then correctly resumed. 

The state machines registers_fsm and memory_fsm 

(detailed diagrams are shown in Appendix A) implement 

the eMIPS compliant protocol to access the TISA 

registers and the memory subsystem. Memory_fsm is 

much more complex than registers_fsm because the 

emips2gdb protocol for memory operations is a variable-

length byte stream protocol. The state machine must 

control the flow of data through the datapath, correctly 

store the initial memory address and the number of bytes 

involved in the memory transaction, and eventually obey 

the memory subsystem protocol. The different phases are 

shown in the diagram with different colors. It is likely 

than in future eMIPS implementations both the register 

and memory access protocols will be modified to improve 

the performance. In that case registers_fsm and 

memory_fsm must be changed too. For example, in the 

current eMIPS implementation to read a general purpose 

register it takes four system clock cycles. In registers_fsm 

this value is known but it is parameterized; if it changes it 

is only a matter of changing the parameter declaration and 

to recompile eBug. 

 

7 Structure and Usage Models 
 

eBug is available in two slightly different versions. 

The first is for use with an actual hardware 

implementation of eMIPS whereas the second is for use 

with the Giano simulator framework. The main folder of 

the distribution is therefore divided in two subfolders: 

Implementation and Simulation. In the following 

subsections we describe the directory structure and the 

usage models of these two versions. 

7.1 Implementation 
 

7.1.1 Directory structure 

 

- eMIPSv1: All TISA files (partial  reconfiguration and 

non partial reconfiguration version) are located here 

- eBug_HW: Source files of the eBug extension.  

- eBug_SW: emips2gdb application folder. 

- Bit Files: FPGA configuration files folder. 

- Example: in this folder are located the 

DOWNLOAD.EXE and SERPLEXD.EXE   

applications, and a sample program that can be used 

to perform a test debug session. 

 

7.1.2 How to use eBug  

 

It is easier to start a debug session using the FPGA 

configuration files provided in the Bit Files folder. To 

rebuild the bitfiles, either with the partial or non partial 

reconfiguration flows, please refer to the eMIPS 

documentation [12]. 

The practical steps are: 

1. Connect the secondary serial port to the Sparkfun 

RS232 Shifter board [15] using the expansion slots of 

the ML401 board, as shown in Figure 8. Connect one 

of the 3.3V power and ground pins from the J3 

connector to the VCC and GND pins on the Shifter 

board. The red and black cables in Figure 8 are 

connected to the 3.3V power pair at J3.L14. Connect 
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the TX-O pin of the Shifter board to the J6 connector 

at pin 62 (green cable) and the RX-I pin to the J6 

connector at pin 64 (yellow cable). 

2. Configure the FPGA using the configuration file   

mipspl_fpga3_base_routed_full.bit. At the end of the 

configuration download both the TISA and the eBug 

extension are in FPGA and the boot loader is running. 

Make sure the option dip-switches are set to zero. 

3. Open a console and go to the Example folder. 

Download the software application to the FPGA by 

typing: “download.exe COM1: 

debug_extension_test.bin && serplexd.exe –n –r –s”. 

This assumes that the primary serial line of the FPGA 

board is connected to COM1. Once the file is 

downloaded the program begins to run. 

4. Open a new console and change the directory to 

eBug_SW. Then type: “emips2gdb COMx:” where x 

is the number associated to the PC serial port 

connected to the secondary serial line of the FPGA 

board (see point 1 above). 

5. Open a new console and change directory to eBug_SW. 

Start the GDB debugger by typing: “gdb.exe 

debug_extension_test”. If needed, give to gdb.exe the 

absolute path. At the GDB prompt type: “target 

remote \\.\pipe\eMips2Gdb”. The debugging sessions 

should start. If the emips2gdb application is running 

on a different computer (say OtherPc) use the full 

path for the named pipe: “target remote 

\\OtherPc\pipe\eMips2Gdb”. The debugger will 

connect to eMIPS and stop the running program. 

7.2 Simulation 
 

7.2.1 Directory structure 

 

- SIM: This is a blank folder used to create the Modelsim 

project. 

- TISA_ICE: TISA files for simulation modified as 

follow: 

1. all assignments in sequential blocks are 

changed from blocking to non-blocking 

2. prefetching is disabled in the module 

memory_arbiter_giano.v  

3. added a file address_translation_ext.v to 

translate virtual address outgoing from 

extension (This feature should be integrated 

with a single address translation unit) 

- eBug_HW: eBug extension source files. Files are the 

same of the implementation version. Only the 

datapath is different to be compliant with the Giano 

memory interface of the TISA.   

- TB: The testbench file is located in this folder. 

- PC_UART: The PLI based simulation model of the 

host PC serial line. 

- PLI: in this folder are all source, include, libraries and 

make files to build the vpi2sl.dll. 

- eBug_SW: emips2gdb.exe folder. 

- Example: an example application to debug and a Giano 

configuration file are in this folder. 

 

 

Figure 8: Cabling for the ML401 Board 

     

7.2.2 How to use eBug 

 

1. Create a new directory and copy all folders into it. 

2. Create a Modelsim project in the SIM subfolder and 

add to the project all the source files present in the 

subfolders eBug_HW, PC_UART, TB and TISA_ICE 

except for the files decode.v and decoder.v (located in 

TISA_ICE) that must be copied into the SIM folder as 

well as vpi2sl.dll (file located in   PLI\bin). Finally 

compile all the files with Modelsim. 82 files in total 

should compile without error. 

3. Open a console and change directory to Example. Run 

Giano with the following command: “giano.exe -

Platform Ml401_ice2.plx GPIO::ValueAtReset 4 

SRAM::PermanentStorage debug_extension_test.bin” 

4. Start a simulation in Modelsim with testMIPS as the 

testbench and including the vpi2g.dll and vpi2sl.dll as 

vsim -pli options. Then type “run –all” in the 

Modelsim console 

5. Once simulation is running the named pipe 

EnnePiPipe66 is created. Open a new console, change 

directory to eBug_SW and type: “emips2gdb 

\\.\pipe\EnnePiPipe66”. A dialog box about RootBus 

file:\\OtherPc\pipe\eMips2Gdb
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might appear, choose Ignore. Running emips2gdb on a 

different machine might slightly improve simulation 

performance. 

6. Open a new folder and change directory to Example. 

Run GDB: “gdb.exe debug_extension_test”. Then 

connect to the remote target typing on GDB console: 

“target remote \\.\pipe\eMips2Gdb”.The program 

running on the eMIPS simulation model should be 

stopped and the debug session can be started. 

 

It is possible to have a faster simulation by changing 

the baud rate of the PC_Uart and Debug UART modules. 

The default is 115,200 baud, the same used in the 

implementation version. 

Using a different version of the simulator requires 

recompilation of the vpi2sl PLI. The vpi2sl.dll in the 

distribution is compiled for Modelsim 6.2g. 

 

8 eBug Extensibility 
 

The eBug design is meant to be easily extended. 

Adding support for new features can potentially require 

modifying both the hardware side and the software side. It 

is desirable that only a well identified subset of modules 

requires modification to add new features, and that the 

design structure can be preserved. For example, in Figure 

18 we show  the modules that have been added (yellow 

boxes) and the modules that have been modified (red 

borders boxes) when implementing hardware breakpoints 

and watchpoints. The red lines connect modules in which 

only individual ports or instances were modified to keep 

them coherent with the rest of design. 

In this section we present two examples of extensions 

to eBug. The first is an internal set of changes made to 

realize breakpoints and watchpoints in hardware. 

Hardware support for watchpoints provides performance 

gains that strongly affect the user‟s experience. The 

second is a connection to the eMIPS extensions generated 

by P2V [6].  Using eBug in concert with P2V provides 

very sophisticated, high-lever debugging facilities which 

are especially useful in the case of embedded and real-

time applications. 

8.1 Hardware watchpoints 

The debug target can dynamically declare to the GDB 

debugger that hardware watchpoints and/or breakpoints 

are supported. In this case, GDB uses different commands 

in its remote protocol to notify the target of the insertion 

or deletion of a breakpoint or watchpoint. To support 

these operations, the emips2gdb protocol was extended 

using the opcode for Extended operations (111) and 

choosing an appropriate value for the option field. We 

selected the value 5‟b00001, therefore the command byte 

used for enabling or disabling both a watchpoint and a 

breakpoint has the value 0x0F. Additional information is 

sent to the eBug extension following this command byte. 

The next byte is called the ControlByte, and the encoding 

is shown in Table 4. 

Bits Meaning 

3-0 Slot number 

4 Watchpoint (1) or Breakpoint (0) 

5 Enable(1) or Disable (0) 

7-6 Access (00-write, 01-read, 11-all) 

Table 4: ControlByte 

The least significant four bits hold the hardware slot 

number to be used. When GDB inserts or deletes a 

breakpoint or a watchpoint, it identifies it only by its 

address. If this information is sent directly to the hardware 

a complex logic would be needed to identify the 

corresponding hardware slot. To avoid the extra costs in 

area we modified emips2gdb instead, adding a simple data 

structure to the class that implements the protocol.  This 

table keeps track of the address and all the other 

information related to the hardware slots, and it is used by 

software to translate an address in a slot number. When 

emips2gdb initially makes a new connection to eBug it 

synchronizes this data structure with the hardware slot 

information. 

Bit 4 in the ControlByte is used to indicate to eBug if an 

insertion of a watchpoint or a breakpoint is requested. In 

the first case, bits 7-6 are used to indicate the watchpoint 

type, since eBug can selectively watch for read or write 

accesses (or both). Finally bit 5 is used to enable or 

disable a slot. When a slot is disabled only the slot field 

and bit 5 hold significant information, the other bits are 

not used. If a slot is enabled, emips2gdb follows the 

ControlByte with a 4 byte address, big-endian ordered. 

  

8.1.1 Datapath 

 

The original eBug datapath was augmented as shown 

in Figure 19. The area highlighted in yellow is an instance 

of the wbpoints_dp module and provides new ports for the 

additional control signals. The wbpoints_dp module is 

composed of a control register (CR), a decoder and one or 

more wp_bel module instances according to the desired 

number of slots. The CR register is used to store the 

ControlByte sent by emips2gdb. The decoder selects the 

control signals and feeds them to the right slot, according 

to the slot number stored in the CR.  
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Wp_bel is the basic module that implements both the 

watchpoint and the breakpoint logic. Its diagram is 

depicted in Figure 20. It is composed of four registers: 

- Wp_reg stores the address of the watchpoint or 

breakpoint. It is used with a comparator to assert 

an address match. 

- En_reg is used as global enable. If it holds a low 

logical value the slot is disabled and no hit can 

occur. 

- Sel_addr_reg stores the slot usage type (watchpoint 

or breakpoint); it is used for snooping on the 

address bus or the PC bus. It is also used as an 

enable signal for the watchpoint or the breakpoint 

enable logic blocks. 

-  Wp_type_reg stores the type of watchpoint (read, 

write and read/write). 

The watchpoint and breakpoint enable logic boxes are 

used to enable or disable an address match. In both 

modules en_reg and sel_addr_reg act as enable signals. In 

addition, the watchpoint enable logic uses wp_type_reg 

and the snooped write_enable signal to consider the 

watchpoint type. The bp_hit and wp_hit output signals 

from the wbpoints_dp module are used to initiate the 

processor stalling handshake. 

 

8.1.2 Control 

 

The control modifications for the new feature include 

small changes to the main_fsm and the 

ext_debug_control_fsm modules and the addition of a new 

finite state machine. As shown in Figure 22, we added a 

new state to main_fsm to decode the new emips2gdb 

command. Figure 23 shows the changes in 

ext_debug_control_fsm. In the transition from the IDLE 

state to the RI_ASSERT state we now consider the bp_hit 

and wp_hit signals.  

To perform the actual insertion or deletion of a 

watchpoint or a breakpoint we added the wbpoints_fsm 

finite state machine, shown in Figure 21. This finite-state 

machine manages the byte stream from the serial line to 

store data in the correct registers. 

8.2 Adding features via other extensions 
 

eBug can also be extended by leveraging other, 

separately developed eMIPS extensions. One example is 

the extensions generated by the P2V compiler [6].  The 

PSL-to-Verilog (P2V) compiler can translate a set of 

assertions about a block-structured software program, 

expressed in the simple subset of the Property 

Specification Language PSL, into an eMIPS extension 

that observes the program‟s execution and validates the 

assertions. PSL is based on the LTL temporal logic, and 

can therefore express the complex patterns that define the 

behavioral correctness of the software program in a 

natural and compact form.  

As a simple example, suppose we want to check if a 

program‟s variable is within a desired range, but without 

recompiling and without altering the program‟s temporal 

behavior in any way. Note that currently P2V is the only 

system that can do this. It does so by creating a 

specialized eMIPS extension that passively monitors the 

program execution. If the variable is assigned an illegal 

value, the P2V extension will signal the violation in some 

unspecified way. For instance, it could assert a trap and let 

the operating system  manage it according to its own 

policies. There are two limitations, however, in this 

approach. In the first place, it is not possible to observe 

the state of the system at the exact moment when the 

assertion is violated, but only later, after the operating 

system‟s trap handler has captured it and only limited to 

what software can self-observe. In the second place, we 

lack an explanation for why the program attempted the 

illegal assignment.  

We can easily overcome these limitations with eBug. 

Rather than using the trap signal, P2V can insert a break 

instruction in the ID pipeline stage. This produces exactly 

the same trap behavior when eBug is not present. When 

eBug is present, it takes control of the processor in the 

actual moment the failure occurs, and without otherwise 

affecting the state of the system. The failure is reported to 

the debugger and the user can explore the system‟s state at 

length and discover the reason for the erroneous behavior. 

We can go further. P2V is implemented in Python, 

using an interpreter. We can connect the GDB command 

line interpreter to the Python interpreter, and generate the 

P2V extensions on-the-fly, while debugging the program. 

The user types the PSL assertions about the running 

program while it is suspended, a new extension is created 

and loaded in a separate extension slot, and execution is 

then resumed. An interesting side-effect of this approach 

is that the user can produce and test a new/additional set 

of formal declarations about the program‟s properties as a 

natural result of debugging it. This has the additional 

benefits of quantifying the extent of the testing actually 

performed, and of creating input data for even more 

sophisticated program analysis tools, such as theorem 

provers and symbolic execution. 

 

9 Results 
 

In this section we show two separate measures that 

quantify the performance of eBug. In both cases, we 

analyze the effects of adding one single feature, namely 
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hardware watchpoints. We first look at the area and 

frequency results in the synthesis of different 

implementation of the eBug extension. This quantifies the 

impact of the feature from a hardware point of view. We 

then measure the changes in response time, from the 

user‟s point of view, when adding the feature to eBug.  

9.1 Synthesis Results 
 

All designs were implemented using a Xilinx ML401 

prototyping board. The board is built around the Xilinx 

Virtex4 device, model XC4VLX25-10ff668. To 

synthesize, implement and build the configuration files we 

used the Xilinx ISE version 8.2.01i, with the partial 

reconfiguration overlay applied. The synthesis results are 

summarized in Table 5 and Table 6. The first row in the 

two tables corresponds to the basic design, where 

hardware support for watchpoints is missing and must be 

realized in software. Additional rows correspond to 

designs that support two, four and eight hardware 

watchpoints, respectively. Table 5 details the results in 

area and maximum frequency for the various designs. 

 

 Area 

optimization 

Speed 

optimization 

 Area f(MHz) Area f(MHz) 

SW WP 273 112,96 316 175,04 

2 HW WP 359 88,51 381 175,00 

4 HW WP 422 89,70 451 174,93 

8 HW WP 568 61,13 603 174,61 

Table 5: Synthesis results 

When optimizing for area, the maximum frequency of 

the design decreases dramatically against an increasing 

number of watchpoints, without providing an equally 

significant saving in area. Table 6 stresses this point by 

comparing the percentages in area savings and frequency 

reduction of the first column in Table 5 against the second 

column. The best tradeoff is given by the speed 

optimization option, confirming that the design was 

targeted towards a small area footprint.  

 % Area Savings % Freq. Reduction 

SW WP 13.6 35.47 

2 HW WP 5.77 49.42 

4 HW WP 6.43 48.72 

8 HW WP 5.80 64.99 

Table 6: Area versus speed trade-offs 

The extension slot in the first eMIPS implementation has 

an available area of about 1,300 slices. Extrapolating on 

the trend visible in Table 5, we can estimate that an eBug 

implementation could provide a maximum number of 

about 27 hardware watchpoints. When hardware 

watchpoints are not desired eBug uses only 21% of the 

available extension slot, leaving about 80% of the area for 

other uses.  P2V assertions can fit comfortably in this 

area. 

9.2 Response Time 
 

We measured the time response of the debugger 

client in a simple test, comparing the software and 

hardware watchpoint implementations. The goal was to 

quantify the impact of the added feature from the point of 

view of the actual user. The test was performed using a 

simple C program that loops incrementing a variable and 

printing a message on the console, as follows: 

while(1){ 

   i=i+20; 

     Puts("Ciao!\n"); 

   PutWord(i); 

   } 

We instructed GDB to insert a watchpoint for the 

variable i by issuing a “watch i” command while the 

program was suspended at some arbitrary loop iteration. 

We then took the time from a “continue” command to the 

subsequent suspension with the new variable value. 

Measurements were repeated five times and the average is 

reported in Table 7. There was very little variance in the 

measured results. The test was repeated using two 

different machine configurations. The Machine1 setup is a 

single machine with a dual-core Intel Centrino 

Core2/6600 processor operating at 2.4GHz and running 

the Windows XP SP2 operating system. An ML401 board 

is connected to the machine using a serial cable with a 

baud rate of 115,200 baud. The Machine2 setup includes 

two separate machines, one running the GDB debugger 

and the other the emips2gdb server, connected in turn to 

the ML401 board using a serial cable and the same baud 

rate. The first machine uses a dual Intel Xeon processor 

operating at 2.8GHz and running the Windows Server 

2003 SP2 operating system. The second machine uses an 

old Intel Pentium3 processor operating at 800MHz and 

running the Windows 2000 SP4 operating system.  

 

 Software Hardware Speedup 

Machine 1 272 sec 1,1 sec 247 

Machine 2 44 sec 0,4 sec 110 

Table 7: User-perceived performance gain 
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The performance difference between the two machine 

setups appears to be due more to operating system 

scheduling issues (i.e. in the case of Machine1) than to 

eBug itself. In all cases, the CPU load of the GDB and 

emips2gdb processes is at most 1%.  

The 100-fold speedups provided by the hardware 

watchpoints are impressive, but of more practical 

importance are the absolute values. A user is unlikely to 

use a feature that costs almost a minute per loop iteration, 

whereas a cost of less than a second makes it quite 

feasible to use that feature extensively. 

 

10 Conclusions and Future Work  
 

We have introduced eBug, a hardware Extension for 

the eMIPS processor that provides in-process debugging 

support to a client debugger such as GDB. eBug was 

conceived as an Extension rather than a fixed hardware 

module to achieve three main goals: area reuse, security 

and extensibility. eBug uses the area already devoted to an 

Extension slot on eMIPS, without changes to the base 

processor pipeline. When not in use, eBug is simply not 

present on chip and its area is therefore reused, e.g. in the 

final product. eBug is security-aware because it can only 

access and modify the status of the process that owns it, 

privileged or not that it might be. eBug is extensible 

because it makes it easy to add new features without 

changing the whole design or the interface to the 

processor. When a new feature is added only the eBug 

extension must be regenerated. We proved this point by 

adding hardware support for watchpoints and breakpoints 

to the basic design, and measuring the difference  in terms 

of area occupation, speed performance and improved 

debugging capabilities.  

Because of the extensibility feature, adding new 

features to eBug is straightforward. For instance, it is easy 

to implement a value-based watchpoint that observes the 

actual data written to a program variable, rather than just 

the address. Adding hardware support for variable size 

watchpoints can be achieved by changing the watchpoint 

logic to use two watchpoint slots and look at an address 

range rather than a single address mask. This allows 

monitoring more complex data types like C arrays and 

structures and C++ classes. Multiple conditions could be 

matched in hardware, by making one match be the enabler 

for subsequent ones. Possible additional features are not 

limited to the debugging aspects. Ethernet or USB 

interfaces could replace the simple but slow serial line 

currently used. Other communication protocols could be 

added to the software component of eBug. Additional 

functionalites, such as tracing and performance profiling, 

could be added by modifying both the hardware and the 

software components. 
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Figure 9 : Module hierarchy 
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Figure 10: Debug_dp module 
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Figure 14: ext_debug_control_fsm detailed
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Figure 15: Interaction between main_fsm and ext_debug_control_fsm
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Figure 16: registers_fsm
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Figure 17: memory_fsm
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Figure 18: Module hierarchy after addition of watchpoint support 
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Figure 19: Debug_dp module with watchpoint support 
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Figure 20: wp_bel module 



 

 - 30 - 

CHECK_WP

000000000

IDLE

10000000

@Else

Moore Outputs = {wp_done, ld_CR, sh_wp_reg, ld_wp_type, set_wp_type, rst_wp_type, count_up, is_wp_on, is_wp_off}

1

@Else

WAIT_CR

000000000

wp_op

@Else

STORE_CR

010000000

valid

1

SET_WP

000000010

SET_BP

000000001

COUNT

000000100

WAIT_BYTE

000000000

1

is_wp~is_wp

wp_enwp_en

SHIFT_WP_

REG

001000000

EN_STO_ 

TYPE

000110000

valid

end_count

1

WBP_

DISABLE

000001000

~wp_en ~wp_en

 

 

Figure 21: wbpoints_fsm 
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Figure 22: main_fsm modified for watchpoint support 
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Figure 23: ext_debug_control_fsm modified for watchpoints support 

 


