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Abstract

This paper presents an energy-efficient scheduling algorithm
for the data-communications of soft real-time periodic tasks
on multi-radio embedded devices. To cope with the dynamic
fluctuation of channel conditions, a feedback mechanism
that monitors radio throughput is introduced to guarantee
real-time behaviors. The paper also provides a formal anal-
ysis on the scheduling, exploring the relationship between
tardiness bounds and energy savings and that between
network stability and (m,k)-firm deadline guarantees.
This approach is applicable to real-time communication
scheduling problems in which background interference and
other environmental factors are not known a priori. The
algorithm is evaluated in the QualNet simulator, using data
measured from radio hardware.

1 Introduction

In this paper, we present an algorithm for the energy-efficient
scheduling of periodic soft real-time tasks on multiple, het-
erogeneous radios located within a single node of a network.
The algorithm allocates tasks to radios such that each block
of application data is transmitted by a radio within given tim-
ing constraints. Such constraints will take a form similar to
those that specify the processing requirements of periodic
tasks, e.g., “send twenty kilobytes of data every three sec-
onds.” Furthermore, this mechanism is implemented entirely
within a single node, rather than within a group of nodes
collaborating to meet their data-sending requirements. To
react to changes in the effective radio throughput due to var-
ious environmental factors, we use a feedback loop with a
dynamic radio throughput estimator. This feedback-based
scheduler enables us to make efficient scheduling decisions
with little a priori knowledge about the networking environ-
ment.

Some emerging applications for mobile and sensing de-
vices call for long-lived data transfers between a device and
the wireless networking infrastructure. For example, many
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music and video players wirelessly stream multimedia con-
tent from content servers. PDAs with wireless capability run
applications that periodically receive updates on stock prices,
traffic, and news stories. Sensors monitoring various physi-
cal phenomena periodically send sensed data for analysis by
scientists. We note that, even for applications that stream
data, the actual data transfer is composed of a “periodic”
stream of packets. Although the real-time nature of these
applications require that the data be delivered within some
deadline, these deadlines are soft in that a certain amount of
deadline tardiness may be tolerated, as long as it is bounded.
For example, the internal buffering of received data enables
a video playback application to tolerate a bounded variation
in communication delay. We also note that the time scale
of concern for sending data is substantially different than
those commonly considered for processor scheduling—we
consider periods and other time factors in units of seconds
instead of milliseconds or microseconds.

Long-running wireless data transfers result in significant
energy consumption by radios, thus substantially affecting
the battery life of mobile devices and sensor nodes. One
major opportunity for minimizing energy consumption is re-
lated to the availability of an increasing number of different
radio technologies within mobile devices, with varying en-
ergy and bandwidth characteristics. For example, a typical
smartphone may contain up to 4 different types of radios for
ubiquitous connectivity [9]; similarly, emerging sensor net-
work platforms also support multiple radios [18, 17]. Given
a device with such multiple radio technologies, and a collec-
tion of real-time tasks with different data rates and real-time
constraints, we present a scheduling algorithm that assigns
those tasks to different radios such that we minimize the
radio energy consumption while maintaining soft real-time
guarantees for task data transmission.

In the rest of this paper we consider a device with two
radios, one 802.11 radio and one 802.15.4 radio. Based
on typical device characteristics, the power consumption of
the 802.11 radio is an order of magnitude higher than the
802.15.4 radio when both radios are on and idle; however,
the additional energy beyond the idle energy that is required
to send a unit of data is higher for an 802.15.4 radio than



for an 802.11 radio, since the 802.11 radio sends data much
faster resulting in a much smaller transmission time. This
combined with the larger start up energy of 802.11 radio
makes the 802.15.4 radio more energy efficient for smaller
payloads, while the 802.11 radio is more energy efficient for
larger payloads. Since the 802.11 radio consumes a lot of
energy when powered on, we want to keep it powered down
when not sending data—if we need to keep a radio on and
listening (for requests from remote radios for example), then
the 802.15.4 radio should be used for this.

Given these radio characteristics, supporting real-time re-
quirements would seem straightforward—turn on the faster
802.11 radio immediately before sending data, and off imme-
diately after. In fact, supporting real-time constraints seems
completely decoupled from the problem of maximizing en-
ergy efficiency. Unfortunately, this is not the case. The
802.11 radio requires a non-negligible amount of time to
transition from the off-to-on state. Therefore, when data
needs to be sent out on a schedule to support some real-time
tasks, it may not be possible to turn off the radio during ev-
ery idle interval. Furthermore, the 802.11 radio consumes a
considerable amount of energy when transitioning from the
off-to-on state, so it must be determined whether it is energy
efficient to power down the radio, even when the idle interval
is large enough.

Since short idle times between data transmissions may
prevent us from turning off the radio, a possible approach
to reducing energy consumption is to buffer a large amount
of data, power on the 802.11 radio, and send out the data in
the buffer. This approach saves energy by eliminating short
idle times and multiple radio power on events associated with
sending small amounts of data. This approach also allows us
to exceed the threshold payload size that makes the 802.11
radio more efficient than the 802.15.4 radio. However, we
cannot blindly use this approach since we may violate ap-
plication timing guarantees. Instead, we apply this idea to
real-time task scheduling in a way that still allows formal
guarantees to be made, by showing a direct relationship be-
tween deadline tardiness bounds and energy savings. We
show that if we can tolerate a small amount of deadline tar-
diness, then in most cases, we can substantially improve the
energy efficiency of the radios. We also show that, as we
increase deadline tardiness, we observe diminishing returns
in energy savings; however, we continue to observe benefits
due to a reduction in the number of times we turn on the radio
to send data over any time interval.

Another concern when sending data using radios is that
the throughput, or the effective data rate a radio can support,
fluctuates substantially over time. This contrasts with pro-
cessor scheduling, where the capacity of the processor to do
work in a given power mode is typically known a priori. As
a result, some feedback mechanism is required to estimate
the current throughput of each radio and to determine the
real-time workload that we can support at the current time.

Without such a feedback mechanism, any scheduling algo-
rithm will be ineffective in practice, especially when used in
portable devices where the interference from other devices
and environmental factors is very dynamic. Our feedback
mechanism detects throughput overestimates by queue over-
flow events resulting from the mismatch between the current
throughput estimate and the rate at which a given radio is
sending out data. Since the effects due to throughput un-
derestimates cannot be directly observed, we periodically in-
crease our throughput estimate by a constant amount to avoid
persistent throughput underestimates. Note that a decrease in
the throughput estimate might result in a system that can no
longer support its real-time workload. In this case, we drop
tasks until the current workload can be supported given the
current throughput estimate.

Naturally, instability in our network or operating environ-
ment that causes throughput to change will make it more dif-
ficult to provide real-time guarantees. In our analysis, we
seek to contain the impact of throughput uncertainty on our
real-time workload by representing it as an alternating se-
ries of stable and unstable intervals, for which we can make
(m, k)-firm guarantees [8] (at least m of every k consecutive
jobs will meet their timing requirements). In environments
where the throughput uncertainty is too great, it may be dif-
ficult for any such guarantees to be made.

Contributions. Our contributions are as follows.

e We present an algorithm for scheduling periodic soft
real-time tasks on multiple, heterogeneous radios. Eval-
vation shows that this algorithm can substantially re-
duce energy consumption while being aware of the im-
pact that the large wake-up time of a high-power radio
has on the real-time guarantees that can be provided.

e We show that if we “aggregate” work over some num-
ber of hyperperiods into a single busy interval, then we
can take advantage of the resulting larger idle interval
to further improve energy efficiency, in exchange for
an increase in (bounded) deadline tardiness. This result
demonstrates a tradeoff between energy efficiency and
deadline tardiness that we explore both analytically and
empirically.

e We thoroughly evaluate our feedback mechanism,
which handles changes in perceived throughput, in
terms of its ability to minimize the disruption to our
real-time workload due to network interference. We
make several claims about how feedback parameters re-
late to how well we support our real-time workload.

e We state a relationship between network stability and
(m, k)-firm guarantees. We measure the sizes of sta-
ble and unstable intervals in experiments, and use them
to predict what types of (m, k)-firm guarantees we can
make in practice.



We implemented and evaluated our algorithm in QualNet, a
network simulator that simulates the entire wireless network
stack. We also used it to simulate multiple patterns of back-
ground traffic, including both constant and fluctuating levels
of interference over the course of an experiment.

The rest of this paper is organized as follows. Sec. 2 dis-
cusses related work. Sec. 3 introduces our task and radio
models. Sec. 4 describes our algorithm. Sec. 5 presents two
analytical relationships—the first between energy efficiency
and deadline tardiness, and the second between network sta-
bility and (m, k)-firm deadline guarantees. Sec. 6 presents
an experimental evaluation of our method in QualNet. Fi-
nally, Sec. 7 concludes and discusses several areas of future
work.

2 Related Work

In this section, we discuss related work. Due to the vast
amount of prior work that is related to this research, we only
attempt to provide an overview of this work with examples.

2.1 Soft Real-Time Guarantees

There exist various types of soft real-time guarantees that can
be made when it is not necessary for all real-time tasks to al-
ways meet their deadlines. Two types of soft real-time guar-
antees are used in this paper: tardiness bounds and (m, k)-
firm guarantees. A tardiness bound indicates the maximum
amount by which the deadline of any job may be missed. A
recent paper has shown that, for a large class of multipro-
cessor scheduling algorithms including most deadline-based
approaches, tardiness is always bounded [13]. An (m, k)-
firm guarantee [8] states that for a sequence of k£ consecutive
jobs, at least m of those jobs will meet their timing require-
ments, thus producing a useful result. Such a guarantee also
implies that & — m jobs in any sequence of k consecutive
jobs may miss their deadlines without causing the system to
fail. In this paper, we make use of this type of guarantee
when considering the impact of network instability on real-
time guarantees.

2.2 Feedback Control in Real-Time Systems

Work also exists in the area of incorporating feedback control
loops into real-time systems. For example, work in [16, 24]
adjusts the utilizations of periodic real-time tasks within
some range in response to fluctuating demands in a (dis-
tributed) system. Additionally, the work in [14, 15] uses
feedback control theory to determine the execution costs of
periodic tasks given an initial estimate of such costs. Both
works were some of the first to incorporate feedback con-
trol into the periodic task model. In this work, we take a
similar approach to providing feedback control within our
system, with two major differences. First, in our system,
while we can adjust to a dynamic workload through the use
of an admission control protocol, we are primarily attempt-
ing to estimate “supply” in terms of achieved throughput by

a particular radio, instead of demand. Therefore, the ini-
tial estimates in our system are for the throughput of each
radio rather than the execution requirements of each admit-
ted task. We also respond directly to dropped packets and
output queue overflow rather than waiting until the end of
a sampling period to react. Second, our method places no
bounds on the utilizations of tasks as a result of fluctuating
throughput—however, tasks may need to be “dropped” from
aradio that is over-utilized as a result of a change in through-
put. Such “dropped” tasks can be re-admitted onto another
radio, if possible, via our admission control protocol.

2.3 Real-Time Guaranteesin Networks

There exists much previous work related to providing real-
time or QoS guarantees in networks, particularly sensor
networks—examples of recent work include [20, 6, 4, 12,
11, 5]. The most important difference between the majority
of this work and ours is that considerable information about
the state of the entire network, such as network topology,
link latencies, and link capacities, is usually required to make
scheduling decisions for a collection of nodes in the network.
By contrast, our mechanism is per-node, where each node re-
lies only on local information to adapt to perceived changes
in throughput as a result of fluctuating network loads or en-
vironmental factors. As a result, it is better suited to en-
vironments where either much less is known about the net-
work a priori, or it is very difficult to get such network-wide
state information. Additionally, much prior work is not di-
rectly concerned with supporting the periodic task model for
scheduling the data-sending requirements of real-time tasks;
instead, the focus is on bounding or reducing network la-
tency, improving reliability, increasing network capacity, or
otherwise facilitating real-time support.

24 Energy-Aware Dual-Radio Nodes

Finally, some previous work has examined the use of multi-
ple radios to reduce energy consumption [22, 23, 19]. In this
approach, a high-power, 802.11 radio is powered-down when
not in use, and a low-bandwidth, low-power secondary radio
listens for incoming messages and “wakes” the 802.11 radio
as necessary. Our work is different since we are interested in
scheduling tasks on all available radios.

In the real-time community, an energy management
framework has been proposed for periodic tasks that takes
a system-level approach by including the impact of compo-
nents other than the CPU [3]. The energy consumption of the
system is divided into frequency-dependent and frequency-
independent components. Our work helps such a model to
achieve better results for multi-radio nodes by reducing the
energy consumed by the radios.

3 Modds

In this section, we introduce our task and radio models, in-
cluding several assumptions made throughout this paper.



3.1 Task Model

We consider the scheduling of a system 7 of periodic tasks,
denoted T7,...,TN, on two radios (though this could be
generally applied to m radios). T; is specified by its worst-
case (per-job) execution cost, e;, and its period p;. The j'"
job (or invocation) of task 7 is denoted T7. Such a job
Tij becomes available at its release time, or the start of the
jth period. A job should complete execution by its abso-
lute deadline, or its release time plus its period. Otherwise,
it is tardy. Task T;’s utilization is given by e;/p;. The hy-
perperiod of 7 is the least-common-multiple (LCM) of all
task periods. For a synchronous task set (all tasks start at the
same time), we often consider the scheduling of 7 over a sin-
gle hyperperiod, since no job of any task can be released in
one hyperperiod and have its deadline in the next. Instead, all
tasks will have a job deadline and release at each hyperperiod
boundary.

We make the following assumptions about the tasks in 7.
First, tasks can withstand occasional tardiness or dropped
jobs, thus it is reasonable to consider soft real-time guaran-
tees. Second, ¢; is a function of the amount of data that must
be sent k;, and the current throughput estimate of the radio
to which T is assigned—=F; is known a priori, but e; is not.
Tasks may have execution costs on the 802.15.4 radio that
result in task utilizations exceeding one—such tasks must
instead be assigned to the 802.11 radio. Third, the speci-
fied requirements say nothing about the CPU resource needs
of a task, only its radio needs. CPU scheduling can either
be considered separately (as long as a buffer always contains
sufficient data to send), or our methods can be incorporated
within a system-level scheduling framework. Finally, if data
packets associated with a job are lost during transmission, we
formally consider that job “dropped” (though less conserva-
tive assumptions could work, too); however, we still attempt
to send the remaining data associated with that job, hope-
fully to minimize the disruption within the system as a result
of losing data. We do not attempt to re-send packets, as do-
ing so might result in a task over-run and negatively impact
jobs that are otherwise executing correctly. This upholds the
paradigm that failures related to one task should not affect
the other tasks in the system.

3.2 RadioMod€

We assume dual-radio nodes containing both 802.11 and
802.15.4 radios, though our methods can be generalized to
more than two radios. Energy and time measurements for
the radios are shown in Table 1. Note that the measurements
here reinforce the statements made in Sec. 1. The energy
to send a packet is the total energy consumed by the radio
for the interval of time that it is sending the packet—the on
power stated is only applicable when the radio is idle. Nearly
all values represent measurements on real radios (a CC2420-
based 802.15.4 radio and a PRISM 2.5 chipset-based 802.11
radio) in the mPlatform sensor node [17] (these measure-

802.11 Radio 802.15.4 Radio
Radio on power 742.5 mW 1.65 mW
Radio off power 1 uW 1 uW
Max. payload size 1500 bytes 117 bytes

Energy to send packet
(payload of X bytes)

(0.617 - X + 168.3) uW | (2.6 - X + 50) W

Time to send packet
(payload of X bytes)

(0.733 - X +200) s | (41- X + 910) s

Off-to-on time ls negligible

Off-to-on energy 690 mW 4 pW

Table 1: Radio energy- and time-related attributes.

ments will be discussed in greater detail in a future paper).
The exceptions are off-to-on energy and time for the 802.11
radio, which are estimated with help from values provided
in [21]. We use these values when performing energy ac-
counting in our experiments—we periodically update energy
consumption depending on the radio state, and also perform
updates in response to sending packets or turning on the ra-
dio.

4 Scheduling Algorithm

We now present our algorithm, a diagram of which is shown
in Fig. 1, by discussing each component individually.

4.1 Task Scheduling

We use the partitioned earliest-deadline-first (EDF) algo-
rithm to schedule task sets. While a partitioned approach can
result in system under-utilization due to bin-packing limita-
tions (especially on heterogeneous platforms such as uniform
multiprocessors—see [7]), it greatly simplifies the schedul-
ing of tasks on heterogeneous radios, by allowing each radio
to be considered separately when handling network instabil-
ity and the resulting changes in estimated throughput. The
EDF algorithm allows us to fully utilize each radio, effec-
tively maximizing the size of each “bin.” EDF is also work-
conserving, which means that a radio is never idle when there
is data ready to be sent. We exploit this property of the algo-
rithm in Sec. 5 when determining the relationship between
tardiness bounds and energy consumption.

Admission control.  Our admission control policy seeks to
minimize the additional energy that will be consumed as the
result of admitting a real-time task. We first determine the
set of radios that could admit the task without being over-
utilized. (Recall that task execution times could vary sub-
stantially for each radio.) If this set is empty, then we must
reject the task. Otherwise, we estimate the additional energy
that would be required to support this task on each radio in
the set over a large interval. The interval that we choose is
equal to the hyperperiod of the tasks that are currently ad-
mitted onto any radio—this allows the comparison of energy
values for different radios to be meaningful. We include in
this estimate the additional energy required to send task data,
and when possible, the impact of smaller idle intervals on our
ability to conserve energy by turning off radios. (Note that
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Figure 1: The components of our algorithm (three admitted tasks).

we could get a better estimate by simulating the scheduling
of tasks over the hyperperiod; however, this would be im-
practical in many cases.) We then admit the task onto the ra-
dio for which the energy estimate is lowest. Note that it may
sometimes be useful to restrict the times at which a new task
can be admitted onto a radio, in order to provide stronger
analytical guarantees. In particular, we might want to ad-
mit tasks only at times that result in job release times and
deadlines that are equivalent to those in a synchronous task
system, which allows the tardiness result in Sec. 5 to hold.

Turning off radios. During each scheduling decision, ra-
dios that are idle may be turned off, provided that it is both
safe and efficient to do so. It is safe to turn off a radio if the
off-to-on time of the radio is smaller than the interval from
now until the next job release of any task. It is efficient to
turn off a radio if the energy consumed over the idle inter-
val when turning the radio off and back on (a function of the
power consumed when off and the off-to-on energy) is less
than the energy consumed if the radio is left on over the same
interval. Note that this decision is made online, so in the case
that jobs often complete much sooner than their worst-case
execution times would predict, we may be able to save con-
siderably more energy by turning off a radio than would be
predicted through analysis.

4.2 Feedback Mechanism

The throughput of a radio can fluctuate unpredictably over
time, and this fluctuation directly impacts the real-time guar-
antees that we can make. Thus, a feedback mechanism
is necessary for meaningful real-time guarantees to be es-
tablished. At the heart of our mechanism is a through-
put estimator with behavior similar to the additive-increase-
multiplicative-decrease (AIMD) protocol used to estimate
the capacity of a TCP connection [10].

Direct response mechanism. The direct response mecha-
nism is triggered by output queue overflow events. These
events occur when a packet must be dropped since it cannot
be placed in the output queue, due to insufficient space. Such
events indicate a mismatch between the throughput estimate

of our real-time scheduler and the actual rate at which the ra-
dio is able to send data. Thus, we immediately decrease our
throughput estimate by a multiplicative factor in response to
such events, which should reduce stress on the radio and al-
low the system to re-stabilize. Immediately after responding
to an overflow event, we ignore further such events for a short
interval in order to give the system some time to stabilize, af-
ter which we again respond to such events by adjusting our
throughput estimate.

Dropping tasks. As throughput decreases, the execution
costs of tasks assigned to the radio will increase. As a result,
the radio might become over-utilized. If this occurs, then
tasks must be dropped. When faced with this situation, we
drop tasks in the following order.

e Drop all tasks with utilizations greater than one (they
cannot be supported).

e Drop tasks in increasing order of some pre-determined
drop priority, so that less important (i.e., lower drop pri-
ority) tasks are dropped first.

e In the case of a tie in drop priority, or when drop pri-
orities are unspecified, we drop the task with utilization
closest to the current over-utilization of the radio.

The final rule should drop the smallest number of tasks when
the radio is heavily over-utilized, and typically ensures that
the radio does not become heavily under-utilized as a result
of dropping the wrong tasks. For example, two tasks of uti-
lization 90% and 20% will over-utilize the radio by 10%; our
approach would recognize that it makes more sense to drop
the 20%-utilization task and achieve nearly-full radio utiliza-
tion. Note that if we drop a task that is currently executing,
then we need to make a scheduling decision. Additionally,
we attempt to re-admit dropped tasks whenever the through-
put estimate of a radio increases or the size of the real-time
workload decreases.

Periodic mechanism. The periodic mechanism increases
the throughput estimate by some constant amount at every
quantum boundary, when no queue overflow events were ob-
served in the previous quantum, and the previous quantum
was fully utilized (since only then can be we reasonably sure
that data is being successfully sent by the radio at the esti-
mated rate). This increase occurs before scheduling or ad-
mission control decisions are made, to allow tasks to be ad-
mitted during this quantum as a result of the increase. Note
that as throughput increases, the execution costs of tasks as-
signed to the radio can only decrease, so there is no need to
drop tasks in this case.

5 Formal Analysis

In this section, we present two theorems that formalize some
of the relationships in our system. The first theorem demon-
strates a tradeoff between energy consumption and deadline



tardiness, and the second theorem establishes (m, k)-firm
guarantees in the presence of network instability.

5.1 Energy vs. Tardiness Tradeoff

We first discuss a relationship between deadline tardiness
and energy consumption. Given the power characteristics of
certain radios, particularly 802.11 radios, a large idle interval
may be required in order to making turning off the radio en-
ergy efficient. As a result, there may exist task sets for which
it is impossible to turn off the radio to save energy, as a large
enough idle interval cannot exist if all deadlines are to be met
(even if a work-conserving scheduling algorithm is used).

If deadlines may be missed by bounded amounts, then
this gives us additional scheduling flexibility that can be ex-
ploited to save energy. For a given scheduling hyperperiod,
we can combine all of the idle time into a single idle interval
of length I, and force the radio to be idle for I time units at
the beginning of the hyperperiod. Since the remaining time
in the hyperperiod s still sufficient to complete all jobs by the
end of the hyperperiod, such intervals are still self-contained
in that we only need to consider the schedule one hyperpe-
riod at a time. Furthermore, no task will miss its deadline by
more than I time units. We can further extend this method
to combine idle time over multiple hyperperiods, as neces-
sary to get the desired idle interval. Doing so will increase
deadline tardiness, but only by the size of the idle interval
generated. For example, if we combine idle time over ten
hyperperiods into a single three-second interval, then jobs
may miss deadlines by at most three seconds. Using this
method, we can generate large enough idle intervals so that
it becomes energy-efficient to turn off the radio, at the cost
of a higher tardiness bound. We refer to this method as idle-
time aggregation over X hyperperiods, where X > 0.

We now state and prove the following theorem, which for-
mally states the relationship between idle-time aggregation,
deadline tardiness, and energy savings. Let I be the aggre-
gated idle time over a single hyperperiod of a schedule, W,
and W, be the off-to-on energy and time of the radio, and 7
and O be the power consumption of the radio when idle and
off, respectively.

Theorem 1 If we perform idle-time aggregation over X hy-
perperiods, then (a) deadline tardiness is at most X - I'; and
(b) the energy savings £ over some Z-hyperperiod interval,
where X divides Z, is as follows.

. We—=W;-O
0, X I S —7-0
E={ Z-1-(T-0)-
(Z/X) - (W, —W;-0O), otherwise.
Proof: For part (a), consider a synchronous, EDF-

schedulable task system 7. Hyperperiod boundaries are
clearly defined for such a task system, since demand from
one hyperperiod does not exist in the next. To create a sched-
ule in which idle-time aggregation is employed, we start with
an EDF schedule over X hyperperiods, shift left all of the

idle periods in the schedule, and shift right all of the busy
periods in the schedule. (Note that we cannot shift the busy
periods left and the idle periods right, unless jobs can exe-
cute before their release times.) Since all modifications to
the schedule are contained within the X-hyperperiod inter-
val, the amount of idle and busy time within the interval re-
mains the same. Thus, all jobs still complete execution by
the end of the X -hyperperiod interval, and we can consider
each such interval separately due to this fact.

We next consider the impact of idle-time aggregation.
First, consider the case where we have an idle interval of
length X - I, and all job releases and deadlines have been
pushed back by X - [ time units. In this case, the entire
schedule is simply shifted right by X - I time units, and all
jobs meet their new deadlines. Now, assume that all jobs
were released at their original times. This is equivalent to
early releasing all jobs X - I time units before their shifted
release times. It has been shown in [2, 1] that early-releasing
jobs in global, deadline-based scheduling methods such as
EDF has no negative impact on the ability of jobs to meet
their deadlines, thus all jobs still meet their new deadlines.
Finally, a job that meets its new deadline will only miss its
original deadline by at most X - I time units. This, all jobs
released at their original times within the X -hyperperiod in-
terval will miss their deadlines by at most X - I time units
due to idle-time aggregation. (Note that a similar argument
relating shifting job releases and deadlines, early-releasing,
and tardiness bounds exists in [1].)

We prove part (b) as follows. Our idle interval length is
X - I; in order to achieve energy savings by turning off the
radio,Z-X -1 > O- (X -1 —W;)+ W,. That s, the energy
consumed by keeping the radio on and idle for X - I time
units must be greater than the energy to turn it off and back
on over the same amount of time. Solving for X - I, we get
X T > WeW-O

-0

If X - I is less than this value, our energy savings will be
zero. Otherwise, we will achieve energy savings for a Z-
hyperperiod interval equal to the energy saved over the inter-
val by turning the radio off (versus keeping it on and idle) mi-
nus the energy spent turning the radio on Z/X times, which
is equal to the equation shown in the second part of the def-
inition of £ above. As X increases, we achieve diminishing
returns as Z/ X approaches one. O

5.2 (m,k)-Firm Guarantees and | nstability

We next determine the impact of network instability on the
real-time guarantees that we can provide. Without loss of
generality, we can represent network stability for a radio over
time as an alternating sequence of stable and unstable inter-
vals. Stable intervals contain no queue overflow events that
would indicate an inaccurate throughput estimate; unstable
intervals may contain any number of such events, resulting
in lost data. The minimum stable interval C is the smallest
stable interval observed, and the maximum unstable inter-



val ~ is the largest observed unstable interval. Note that we
can combine small stable intervals and their adjacent unsta-
ble intervals into a single unstable interval, when doing so
increases C'; however, this may also increase . We consider
this to be a design decision that we explore further in Sec. 6.
We can state (m, k)-firm guarantees for each task in a task
set given the C' and + values of the radios on which it will
be scheduled—this is formalized in the theorem below. Note
that our analysis assumes that any job that overlaps with any
unstable interval will be dropped. In reality, this may be too
conservative, and we could re-define an unstable interval to
be any interval containing an event that would cause a job
overlapping that interval to be dropped. This new definition
might result in better network stability and (m, k)-firm guar-
antees.
Theorem 2 Givenatask 7);, C and vy as defined above, V' =
(k-p;j)mod(C+~), and no deadline tardiness: (a) no (m, k)-
firm guarantee can be made if C < pj;, since at least one
unstable interval will overlap with every job; and (b) if C' >

p;, thenatmost d = (L’”” J) X (L - | +2) + mazx (A, B)

Ctry

jobs of any k consecutive jobs are dropped due to dropped
packets, where A and B are defined below, thus resulting in
an (m, k)-firm guarantee where m = k — d.

JEE! ifvV<C
= I-VP—;CJ + 3, otherwise.
5 _17 ifvV=0
= LMJ +1, otherwise.

Proof: First, note that Lgfiy | is the minimum number of
(C + 7)-size intervals that will fully overlap with an interval
of length k - p; representing k consecutive jobs. Within each
fully overlapping interval, at most | JJ + 2 jobs will fully
or partially overlap with an unstable interval and be dropped.
Multiplying these terms, we get the first part of d; the sec-
ond part is determined by considering the (C' + ~)-size in-
tervals that may partially overlap at each end of the k-job
interval. Two extremes exist: on the left side of the interval,
the overlapping interval either is of size € or . The former
maximizes disturbance on the right side of the k-job interval,
while the latter maximizes disturbance on the left side. We
now consider each case separately.

Overlap by e: equation A. In this case, we assume that
the stable interval comes first in each interval of length C'+,
therefore exactly one job is dropped by a very small overlap-
ping unstable interval on the left side. On the right side, the
overlap is (k - pj)mod(C +v) —e =V —e. if V < C,
no additional dropped jobs occur. Otherwise, LVP—:CJ +2
additional jobs could be dropped.

Overlap by ~: equation B. This is equivalent to the case
where the start of the first (C' 4 ~)-size interval lines up
exactly with the start of the first job in the k-job interval,

thus there is no partial overlap on the left; and the unstable
interval comes first in each interval of length C' 4 . On
the right, there exists a partially overlapping interval of size
(k-pj)mod(C +~) = V. Therefore, at most L"”"(V 2|42
jobs could be dropped in the partially- overlapplng interval
on the right. If V' = 0, then no partial overlap exists and
no additional jobs are dropped. Due to the exact alignment
of both intervals on the left, we must also subtract one over-
lapping job regardless of the value of V/, since the unstable
interval on the left can partially overlap with only one, not
two, jobs.

Combining these cases, we get the equation for d stated in
the theorem. O

Note that we could potentially improve our (m, k)-firm
guarantees if we had more information about when each
task would be running—we might get such information by
generating an EDF schedule and overlapping that schedule
with our alternating stable and unstable intervals to deter-
mine when jobs would be dropped.

Determining C' and ~. In our implementation, we calcu-
late C' and ~ as part of our feedback mechanism. A queue
overflow event marks the end of a stable interval (or the con-
tinuation of an unstable interval, if we are incorporating the
previous stable interval into a longer unstable interval). The
start of the next stable interval is set to be the current time
plus the interval between which packets are sent (inversely
related to the current throughput estimate). The sizes of the
resulting stable and unstable intervals are measured, and C'
and +y are updated accordingly.

Combining Theorem 1 and Theorem 2. Combining the
results of both theorems is possible if Theorem 2 is modified
to allow for deadline tardiness. Dropped jobs will not cause
issues for Theorem 1, as demand will only be reduced by
such jobs, resulting in reduced deadline tardiness (dropped
and re-admitted tasks, on the other hand, could be problem-
atic if the system becomes asynchronous). To account for
deadline tardiness in Theorem 2, we first determine by how
many jobs we can be “behind” as a function of the tardiness
bound and the task period, and account for those jobs with
a series of intervals of length e; rather than p; (for a task
T}). The shorter intervals represent the fact that a series of
tardy jobs may execute sequentially without interruption—
their execution is not “spaced out” according to task period,
since all jobs are beyond their release times. The result
should be a somewhat more pessimistic (m, k)-firm guaran-
tee; however, if tardiness bounds are relatively low, or task
utilizations are high, the impact may not be dramatic.

6 Experimental Evaluation

In this section, we evaluate our algorithm in terms of its abil-
ity to support real-time workloads, save energy, and handle
various levels of network interference. All experiments were



conducted within the QualNet network simulator. QualNet
simulates the full network stack and exhibits network behav-
ior that is similar to a real network. Combined with back-
ground traffic, this results in a highly dynamic networking
environment. The QualNet implementation of our algorithm
consists of a separate network stack for each radio, with a
customized CBR application, for which the (uniform) data
rate is a function of the current throughput estimate, at the
top of each stack. UDP and IP are used at the transport and
network layers; the MAC and physical layers were different
for each radio. The energy accounting provided in QualNet
was not adequate for our purposes, so we implemented our
own accounting using the energy numbers from Table 1.

Our task sets are relatively static—all tasks arrive at the
start of the simulation and remain throughout unless they are
dropped or re-admitted due to a change in the throughput es-
timate of a radio. Tasks are periodic and attempt to send the
same amount of data every period, i.e., we do not simulate
task overruns or underruns; however, these may still occur
due to an inaccurate time estimate for sending data, as a re-
sult of fluctuating radio throughput. Note that, even though
task sets are technically static, network interference causes
them to appear to be highly dynamic; thus, we must be able
to handle such dynamic behavior.

6.1 Investigating Feedback Parameters

We first investigate how the choice of feedback parameters
impacts both energy savings and real-time guarantees. There
are three feedback parameters, as follows.

e Throughput increase factor: the amount by which we
increase throughput during stable intervals.

e Throughput decrease factor: the multiplicative factor by
which we decrease throughput during queue overflow.

e Minimum stable interval: the minimum interval that we
record as stable, instead of including it as part of an
unstable interval. These interval sizes do not change
scheduler behavior, but impact (m, k)-firm guarantees.

We ran experiments for randomly-generated task sets with a
variety of experimental parameters, as follows.

e Interference level: 1 through 5.

— 1: No background network traffic.

— 2: Medium—3 additional sender-receiver pairs.
3: High—>5 additional sender-receiver pairs.

4: Spike—Medium interference plus a spike.

5: Intense spike—Spike with heavier interference.

e Task periods: between 5-20 sec., with certain periods
removed so that the maximum hyperperiod is 720 sec.

e Maximum task utilization: 300% of the initial through-
put estimate of the 15.4 radio (3KB/sec).

e System utilization: {25, 75}% the combined initial
throughput of both radios (3 + 30 = 33KB/sec).

e Throughput increase factor: {100, 500} and {1000,
5000} bytes/sec. for the 802.15.4 and 802.11 radios.

e Throughput decrease factor: {2, 4}.
e Minimum stable interval: {1, 10, 100} sec.

A sender-receiver pair includes a sender that sends data us-
ing an 802.11 radio and an 802.15.4 radio, and a receiver
that passively accepts data from those radios. Each 802.11
(802.15.4) radio sends a 1000-byte (100-byte) packet every
20 ms. The size and frequency of interference was chosen
based on disruption levels observed from a variety of packet
sizes and sending frequencies within a separate set of exper-
iments on real hardware (the mPlatform). Spikes create a
60-second interval of high interference (5 additional sender-
receiver pairs) in the middle of each simulation. For an in-
tense spike, the sending frequency doubles during the spike.

For each combination of parameters, we ran ten 300-
second experiments. The size of a scheduling quantum was
one second, which may seem large, but we allow schedul-
ing decisions to occur between quantum boundaries when
a job completes early. Additionally, a scheduling quantum
of less than one second would make it difficult to provide
the real-time guarantees of interest to us within the simu-
lated network—very little data can be sent by an 802.15.4
radio in a few tens of milliseconds, and we wanted to use
the same quantum size for both radios. An exploration of
smaller quantum sizes, especially for the 802.11 radio, is left
as future work.

Results. We first discuss results related to task perfor-
mance. First, no deadline misses were observed for jobs that
were not dropped. Second, as we can see from Fig. 2, ag-
gressive throughput increase and decrease factors generally
resulted in worse task performance than conservative factors,
as might be expected. (Aggressive (conservative) throughput
factors are 500 bytes/sec. (100 bytes/sec.) increases and 4-
fold (2-fold) decreases.) Tasks are dropped more frequently
(inset (a)), and maintaining a sending rate for a task is more
difficult (inset (b)), when aggressive parameters are used, es-
pecially when the system is 75% utilized (even more so when
interference is heavy). The exception is for the case with no
background traffic, where aggressive parameters slightly out-
perform conservative ones. Since simulations stop at a some-
what arbitrary time (300 seconds), we expect that the last job
of most tasks will not execute completely, thus 100% of data
will not be sent; however, values very close to 100% should
be possible, and with higher throughput estimates, are more
probable. Third, in almost all cases, aggressive factors re-
sult in more dropped jobs (inset (C)), especially in the cases
where an interference spike is observed, and more aggres-
sive factors could result in an “overreaction” to a temporary
loss of throughput. In cases where dropped jobs actually
decrease when we use the aggressive factors, we speculate
that the decrease on system load caused by the dropping of
tasks results in a less-utilized system where jobs are dropped
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Figure 2: Statistics on (a) task drops per task; (b) percentage of
data sent; and (C) percentage of dropped jobs per task.

less frequently; however, this can result in both a highly-
underutilized system and trouble maintaining sending rates,

as can be observed in inset (b). Finally, note that perfor-
mance is worse along all metrics in Fig. 2 at 75% utilization
except for the number of dropped jobs. Again, this may be
due to the fact that the number of dropped tasks is vastly
higher at 75% versus 25% utilization.

We next determine both energy savings and the (m, k)-
firm guarantees that we can make. Fig. 3 shows the (m, k)-
firm guarantees for various task periods and values of k,
given the feedback parameters that provide the best such
guarantee at each interference level and system utilization;
this should help to determine if Theorem 2 is useful in prac-
tice. The energy savings resulting from using these parame-
ters is also shown, and compared to the most energy-efficient
parameters. In many cases, the increased energy savings
from parameters that resulted in a less-stable network is due
to an increase in dropped tasks or jobs, which reduces the
amount of data that must be sent and thus the amount of en-
ergy used.

First, note from insets (a) and (b) that the energy savings
is significant in all scenarios—in some cases, the savings is
quite dramatic. This remains true when comparing the en-
ergy savings of the parameters that produce the best (m, k)-
firm results to those that achieve the greatest energy savings
(typically at the detriment of other performance metrics).
Second, while the 802.11 radio experienced the greatest en-
ergy savings at lower levels of interference and lower utiliza-
tions, both absolute and relative to the most energy-efficient
parameters, the results seem to be reversed for the 802.15.4
radio. The 802.11 result is more intuitive—feedback param-
eters have the least impact on performance when interference
is low, and can result in many dropped tasks that result in an
increase in energy savings when interference is high. Addi-
tionally, it is much easier to save energy by turning off the
radio when system utilization is low.

For the 802.15.4 radio, our reverse results might be ex-
plained by considering the impact of the 802.11 radio on
the 802.15.4 radio. At high system utilizations, admission
control is more likely to determine that placing most of the
workload on the 802.11 radio is most energy-efficient. This
is particularly true when interference is high, because tasks
will be dropped more frequently, allowing for migrations be-
tween radios to occur when it is energy-efficient to do so.
Since tasks have relatively high utilizations on the 802.15.4
radio as compared with the 802.11 radio, dropped tasks are
much more likely to be re-admitted onto the 802.11 radio, es-
pecially during periods of high interference. Therefore, high
system utilizations may actually result in a lower 802.15.4
radio utilization, thus producing the counter-intuitive result.
Further, interference may cause migrations that force tasks
off of the 802.15.4 radio and onto the 802.11 radio, thus re-
ducing the opportunity for energy savings on that radio, but
increasing energy savings on the 802.15.4 radio. In the case
where no interference exists, task drops will occur less fre-
quently and will typically result in bandwidth fluctuations



802.11 Radio
Int. Level | Util. | Best (m, k) Feedback Params. | Avg. Energy Saved | Avg. Energy Saved | % Relative Savings
(best (m, k) result) | (most efficient) vs. Most Efficient
1 25% (any) 159.686 1/ 71.07% 71.07% 100.00%
1 75% | 100 inc, (any) dec, (any) min int | 74.61J/33.32% 41.11% 81.04%
2 25% 100 inc, 2 dec, 10 min int 129.16 J/ 57.55% 63.19% 91.07%
2 75% 100 inc, 4 dec, 10 min int 36.671/16.41% 25.82% 63.55%
3 25% 100 inc, 4 dec, 10 min int 47.541/43.54% 60.23% 72.28%
3 75% 100 inc, 4 dec, 10 min int 30.10J/14.98% 21.43% 69.91%
4 25% 100 inc, 4 dec, 100 min int 107.57 37 50.17% 64.02% 78.36%
4 75% 100 inc, 4 dec, 10 min int 31.151/14.62% 26.79% 54.57%
5 25% 100 inc, 2 dec, 1 min int 115.83J/51.67% 63.44% 81.45%
5 75% 100 inc, 4 dec, 1 min int 33.28J/15.57% 26.66% 58.38%
(a)
802.15.4 Radio
Int. Level | Util. | Best (m, k) Feedback Params. | Avg. Energy Saved | Avg. Energy Saved | % Relative Savings
(best (m, k) result) | (most efficient) vs. Most Efficient
1 25% 500 inc, 2 dec, 10 min int 81.92 mJ / 15.26% 31.75% 48.08%
1 75% 100 inc, 2 dec, 1 min int 152.17 mJ / 25.32% 41.14% 61.55%
2 25% 100 inc, 2 dec, 100 min int 27.36 mJ / 16.80% 50.16% 33.50%
2 75% 500 inc, 2 dec, 100 min int 169.33 mJ / 23.43% 42.15% 55.58%
3 25% 100 inc, 2 dec, 10 min int 168.00 mJ / 24.41% 26.88% 90.81%
3 75% 100 inc, 4 dec, 1 min int 252.27 mJ /29.52% 29.52% 100.00%
4 25% 100 inc, 4 dec, 1 min int 54.90 mJ / 36.16% 43.16% 83.78%
4 75% 100 inc, 4 dec, 100 min int 213.02 mJ / 38.60% 43.81% 88.10%
5 25% 100 inc, 4 dec, 1 min int 139.15 mJ / 30.46% 36.10% 84.37%
5 75% 100 inc, 4 dec, 1 min int 194.55 mJ / 26.70% 36.57% 73.02%
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Figure 3: (m, k)-firm guarantees with the best feedback parameters for each scenario, and energy savings for those parameters.

that do not force task migrations, and as a result, the relative
energy savings in those cases is lower.

In terms of stability guarantees, the best guarantees can
made when task periods are small, system utilization is low,
and interference is low (see insets (C) and (d)). In the case of
the 802.11 radio, heavy interference can make it difficult to
make any meaningful guarantee—however, note that in most
cases, we can make a guarantee that 50-90% of the jobs will
complete successfully. One exception is in the case of no
interference for the 802.15.4 radio. Again, this may be due
to the fact that migrations are never forced due to throughput

10

fluctuations, and thus, a slight over-estimate of bandwidth
can impact a lot of tasks, since the tasks have relatively high
utilization on the 802.15.4 radio, resulting in weaker (m, k)-
firm guarantees.

Note in insets (&) and (b) that the feedback parameters
that achieved the best (m, k)-firm guarantees were typically
conservative, and in most cases the 10-second minimum sta-
ble interval provided the best results. The 100-second mini-
mum interval was often too large for any stable interval to be
observed—instead, we observed one long unstable interval.
The one-second interval was best at high levels of interfer-
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Figure 4: Energy savings and tardiness bounds resulting from idle-time aggregation, for 25% (top) and 75% (bottom) system utilization.
The columns correspond (left to right) to 802.11 energy savings, 802.15.4 energy savings, and tardiness bounds.

ence and spikes, where large unstable intervals could occur
unless we allowed smaller stable intervals.

6.2 Deadline Tardinessvs. Energy Savings

We now investigate the tradeoff stated in Theorem 1 between
tardiness bounds and energy savings by calculating the en-
ergy saved per radio, and the resulting tardiness bounds, as
we increase the number of hyperperiods over which we per-
form idle-time aggregation. The results for a 30-sec. hy-
perperiod and two different system utilizations are shown
in Fig. 4, again assuming 300 seconds of run time. (Simi-
lar energy results were observed for other hyperperiod sizes;
however, tardiness bounds will be different.) The off-to-on
energy assumed was one, three, or ten times the actual value,
which allowed us to see the results of extremely high off-to-
on energy requirements. Note that, even at ten times normal
off-to-on energy, we almost always observe a large energy
savings after idle-time aggregation over one hyperperiod,
and quickly diminishing returns thereafter, relative to the in-
crease in tardiness bounds. For the 802.15.4 radio, this is
particularly apparent—we see virtually zero additional sav-
ings after one hyperperiod. This implies that there is a little
benefit to increasing the number of hyperperiods over which
we perform idle-time aggregation once the aggregated idle
time exceeds the minimum idle interval to achieve energy
savings by turning off the radio, as was discussed earlier in
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Sec. 5. Note, however, that even if we have to perform idle-
time aggregation over many hyperperiods in order to achieve
the minimum size idle interval, we can still miss deadlines
by at most the amount of idle time aggregated. For exam-
ple, if a three-second idle interval is required to turn off the
radio, and we achieve or exceed such an interval by aggre-
gating idle time over twenty hyperperiods, then we can still
miss deadlines by at most three seconds (or perhaps slightly
more depending on the size of the idle interval generated).
Ultimately, this method simply provides a way to turn off a
radio to save energy, in exchange for bounded tardiness by
an amount that is approximately the size of the required idle
interval—the number of hyperperiods over which we aggre-
gate idle time in order to achieve this interval is not as im-
portant.

7 Conclusion

We have presented an algorithm for real-time scheduling of
tasks on multiple heterogeneous radios. Our method is lo-
cal in that it does not require broad knowledge about the
networking environment, and is therefore suited to scenar-
ios where interference is unpredictable. We show that the
method results in significant energy savings by allowing ra-
dios to be turned off in ways that still allow real-time guar-
antees to be made. We also show that energy savings can



sometimes be significantly increased if we are willing to ac-
cept bounded deadline tardiness, but that such a method re-
sults in diminishing returns in energy savings as compared
with the rate at which tardiness grows. We also propose a
feedback mechanism that has been shown to effectively han-
dle network interference, and with the appropriate feedback
parameters, sufficient network stability is achieved to allow
(m, k)-firm guarantees to be made in most cases. The eval-
uation confirmed that the analytical results presented in this
paper are useful in practice.

There are several interesting areas of future work. First,
we would like to determine the feasibility of using both ra-
dios to send data for the same job in parallel, so that job
splitting could be used to alleviate task bin-packing issues.
(This would make the multiprocessor scheduling problem
fundamentally easier.) Second, we would like to explore
different feedback mechanisms that improve the accuracy of
our measurements and overall network stability. Third, we
want to experiment with more dynamic real-time workloads.
Fourth, we would like to explore methods for minimizing
energy consumption while taking into account other factors
such as the monetary cost of using a particular radio, or user
preferences; this could perhaps be accomplished through the
specification of an objective function. Finally, we would like
to investigate the performance impact of more sophisticated
energy accounting during admission control, such as simu-
lating scheduling out to a hyperperiod.
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