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ABSTRACT

Geographic routing is a useful and scalable point-to-point commu-
nication primitive for wireless sensor networks. However, previous
work on geographic routing makes the unrealistic assumption that
all the nodes in the network are awake during routing. This over-
looks the common deployment scenario where sensor nodes are
duty-cycled to save energy. In this paper we investigate several im-
portant aspects of geographic routing over duty-cycled nodes. First,
we extend existing geographic routing algorithms to handle the
highly dynamic networks resulting from duty-cycling. Second, we
provide the first formal analysis of the performance of geographic
routing on duty-cycled nodes. Third, we use this analysis to de-
velop an efficient decentralized sleep scheduling algorithm for re-
ducing the number of awake nodes while maintaining both network
coverage and a (tunable) target routing latency. Finally, we evalu-
ate via simulation the performance of our approach versus running
existing geographic routing algorithms on sensors duty-cycled ac-
cording to previous sleep scheduling algorithms. Our results show,
perhaps surprisingly, that a network of duty-cycled nodes can have
slightly better routing performance than a static network that uses
comparable energy. Our results further show that, compared to pre-
vious algorithms, our sleep scheduling algorithm significantly im-
proves routing latency and network lifetime.

Categories and Subject Descriptors: C.2.1 [Network Architec-

ture and Design]: Wireless communication, C.3 [Special-Purpose

and Application-Based Systems]: Real-time and embedded sys-
tems, D.4.1 [Process Management]: Scheduling

General Terms: Algorithms, Performance, Theory.

Keywords: geographic routing, sleep-scheduling algorithm.

1. INTRODUCTION
Geographic routing algorithms [11, 12, 13, 14] are attractive so-

lutions for point-to-point communication in wireless sensor net-
works, because they scale better: the routing state maintained per
node is dependent only on the local network density and not on
the network size. Geographic routing algorithms have also been
proposed as a routing primitive for data-centric storage [18], in-
network indexing for multi-dimensional range queries [15], geo-
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Figure 1: Geographic routing on duty-cycled nodes. Each let-

ter represents a sensor node; awake nodes are in boxes. En-

route from A to D, node B must decide between waiting for C
to wake up or routing the long way around the obstacle (i.e.,

routing along the path B, E, G, I, L, D).

spatial queries [6], etc. Recent work on geographic routing [12,
13] has shown that such routing can be done quite efficiently, even
in the presence of irregular radio ranges and localization errors.

A key drawback of previous work on geographic routing is that
all existing geographic routing algorithms and their analysis as-

sume all the nodes in the network are awake during routing. How-
ever, in practical deployments sensors are duty-cycled to save en-
ergy [7]. With duty-cycling, nodes are awake or asleep in each time
epoch (like fireflies flashing on and off) according to some schedul-
ing algorithm, making the networks highly dynamic in terms of
both global connectivity and the number of (awake) neighbors per
node. We say such networks experience time-varying connectiv-

ity (TVC). TVC networks raise routing issues not present in the
previously-studied setting. As illustrated in Figure 1, in a TVC net-
work, a message can either be forwarded over the currently awake
nodes by using opportunistic routing algorithms [2] (e.g., take the
long path in the figure), or be temporarily buffered in enroute nodes
until a better next hop node wakes up (e.g., wait for C to wake up).
In the former case, the number of hops may increase significantly
incurring high energy overheads. In the latter case, the end-to-end
latency may increase significantly (e.g., if C is not scheduled to
wake up for many epochs) and the buffering requirements and wak-
ing times also increase.

In this paper, we study several important questions related to
geographic routing on duty-cycled nodes. First, how does duty-

cycling affect the performance of geographic routing? Intuitively,
routing latency increases with the fraction of sleeping nodes be-
cause of sub-optimal routes or enroute buffering, but existing liter-
ature does not provide sufficient insights to formally reason about
the relationship between sleep scheduling and routing latency. For
example, it is not clear how much a geographic routing algorithm
will suffer if a 5000-node multi-hop network chooses to keep only
10% of its nodes awake in each epoch. Moreover, in contrast to the
all-nodes-awake scenarios studied previously, TVC networks expe-
rience transient connectivity structures (such as the local minimum



node B in Figure 1). It is not clear how these affect routing per-
formance. Understanding these aspects can help system designers
predict routing latency and network lifetime for a duty-cycled net-
work, or choose appropriate duty-cycling parameters to achieve a
target routing latency and network lifetime.

The second question we address is: do existing sleep schedul-

ing algorithms [1, 3, 8, 22], which optimize mainly for coverage

and detection latency, provide good routing performance? Exist-
ing work shows that geographic routing performs almost optimally
when the average node degree is more than 12 [14]. Our results
confirm the intuition that the performance of geographic routing
depends not only on the average node degree, but also on the dis-

tribution of node degrees. Consider a dense deployment of 5000
sensors placed randomly in a 10 unit by 10 unit space such that
each node has a transmission radius of 1 unit. Assume that nodes
use a simple random sleep scheduling algorithm where each node
independently decides to wake up in every epoch (like ExScal sen-
sors [7]) with probability 1

10
. In such a network, although the aver-

age node degree (number of awake nodes) in an epoch is around 14,
some of the nodes have very high (> 25) degree while others have
small degree (< 5)1 (details of the result are in Section 7.6). Small-
degree nodes tend to be easily disconnected from the network, mak-
ing routing failures likely. On the other hand, high-degree nodes
suffer from high traffic contention and tend to draw a large portion
of the routing load, running out of battery power faster than other
nodes. These problems can be avoided by ensuring a more uni-
form node degree. Existing sleep-scheduling algorithms do not aim
to optimize the node degree distribution and hence are susceptible
to the above problems. For example, under one of our evaluation
scenarios, the simple random scheduling scheme mentioned above
generates networks that are disconnected ≈ 5% of the time and
where a few nodes experience as much as 10× more routing load
than a few other nodes.

We address the above problems in the final question: how can we

design a sleep scheduling algorithm that provides good routing per-

formance? In light of the above discussions, in order to optimize
routing performance, a sleep scheduling algorithm should seek to
maintain a uniform degree distribution around an appropriate mean
value. Moreover, because the network is deployed for sensing ac-
tivities such as sample collection, event detection or tracking, the
network should also be connected and span the deployment space
on every epoch. Satisfying all these requirements with a decentral-
ized sleep scheduling algorithm is challenging.

In addressing the above questions, we make the following con-
tributions. First, we extend existing geographic routing algorithms
to handle the TVC networks resulting from duty-cycling.

Second, we provide the first formal analysis of the performance
of geographic routing on duty-cycled nodes. Specifically, we an-
alyze the expected increase in routing latency as the number of
awake neighbors decreases. Our results can be used as tools to
select sleep scheduling parameters that achieve a desired routing
performance, or to predict routing performance for a particular pa-
rameter setting.

Third, we provide a scheduling algorithm that can be tuned to
achieve a certain routing performance. For that, we consider the
problem of minimizing the number of awake nodes while main-
taining at all times (i) a small target number of awake neighbors for
each awake node and (ii) network coverage of the deployment. A
network with these two properties shows significantly better rout-
ing performance than networks generated by existing sleep schedul-
ing algorithms. We show that the problem is NP-Complete and

1Similar results have been shown analytically and experimentally
with more realistic communication models [10].

present a decentralized sleep scheduling algorithm that achieves (i)
and (ii) using a number of awake nodes that is guaranteed, with
high probability, to be within a logarithmic factor of optimal.

Finally, we evaluate via simulation the performance of our ap-
proach versus running existing geographic routing algorithms on
sensors duty-cycled according to previous sleep scheduling algo-
rithms. Our results show, perhaps surprisingly, that a network of
duty-cycled nodes can have slightly better routing performance than
a static network that uses comparable energy (e.g., 500 randomly
awake nodes per epoch in random locations outperforms 500 always-
on nodes in random locations). Our results further show that, com-
pared to previous algorithms, our sleep scheduling algorithm sig-
nificantly improves routing latency and network lifetime.

In the rest of the paper, we first present background and related
work in Section 2. Section 3 presents geographic routing over TVC
networks. Section 4 presents our sleep scheduling algorithm. In
Section 5 we formally analyze the interaction between routing la-
tency and sleep scheduling. Section 6 presents several important
optimizations and Section 7 presents the evaluation results.

2. BACKGROUND AND RELATED WORK
This section discusses related work on sleep scheduling and ge-

ographic routing in wireless sensor networks. The traditional ap-
proach to designing routing protocols for sensor networks has been
to decouple these two components: duty-cycling is typically done
at the MAC layer while routing is done by the routing layer.

2.1 Sleep Scheduling
A sleep scheduler selects a subset of nodes to remain awake in a

given epoch, placing the remaining nodes in a minimal power sleep
state. The subset of awake nodes may change from epoch to epoch,
in order to increase network lifetime by distributing the sensing,
processing, and routing load across all the nodes in the network.

Existing works on sleep scheduling aim to achieve point cover-

age and/or node coverage. In point coverage (also called spatial

coverage), the set of awake nodes in an epoch are chosen so that
every point of the deployment space is covered; this enables fast
and reliable detection of any event in the space. Existing point cov-
erage algorithms differ in their goals of minimizing energy con-
sumption [8, 22], minimizing average event detection latency [3],
achieving good detection quality [1], etc. In this paper, we focus
on improving routing performance—point coverage is considered
only if requested by the application.

In node coverage (also called network coverage) algorithms, awake
nodes are chosen so that (1) they construct a connected backbone

and (2) sleeping nodes are immediate neighbors of at least one
awake node [4, 21, 25]. The goal of such coverage is to ensure that
any two nodes in the network can communicate with each other
through the connected backbone. However, there are no require-
ments/guarantees on the routing performance (beyond maintaining
connectivity). We aim to provide good routing performance be-
tween any two (awake) nodes in the network, and therefore, our
requirement is stronger than that of node coverage algorithms.

A few recent works have addressed both point and node cover-
age [24], again without routing performance guarantees. A special
case of the approach we present provides a probabilistic guarantee
of point coverage, in addition to node coverage.

2.2 Geographic Routing
Geographic routing algorithms use node position information to

forward a message to its destination. Such algorithms use small
(constant-size) per-node state and scale very well for point-to-point
communication in wireless networks.



Geographic routing algorithms use greedy routing where possi-
ble. In greedy routing, each message is stamped with the coordi-
nates of its destination, all nodes know their own coordinates, and
a node forwards the message to the neighbor that is geographically
closest to the destination. Local minima may exist where no neigh-
bor is closer to the destination. In such cases, greedy forwarding
fails, and another backup strategy must be used to continue making
progress toward the destination. The early proposals for geographic
routing did not have any such backup strategy, and therefore could
not guarantee message delivery [21].

The first geographic routing algorithm to provide guaranteed de-
livery in any connected network was face routing [11]. It uses geo-
metric rules to route around voids near local minima. Face routing
and its variants require that the network graph is first converted
to a planar graph by using a suitable planarization algorithm [23]
or that problematic cross links are removed from the network as
needed [12, 13]. Recently proposed hull routing [14] does not re-
quire the network graph to be planar; it uses predefined spanning
trees to route messages when they end up at local minima.

Opportunistic routing protocols [2, 5, 27] extend geographic rout-
ing by dynamically choosing the forwarding node based on the best
node that heard the transmitted message. These protocols typically
consider link uncertainty, and adapt routing accordingly. Our ap-
proach is complimentary to this; we consider node uncertainty due
to duty-cycling. Moreover, we try to adapt the sleep scheduling so
that opportunistic routing performs well over the resulting set of
awake nodes. The existing literature does not provide any formal
analysis of the interaction between the performance of opportunis-
tic routing and the underlying sleep scheduling algorithm.

3. GEOGRAPHIC ROUTING ON A TVC

NETWORK
Throughout the paper, we make the following assumptions. Each

node knows its geographic location within the deployment area.
Nodes are loosely time synchronized. Time is divided into discrete
epochs such that on every epoch each node, according to some de-
centralized scheduling protocol, decides to wake up or to sleep for
the duration of the epoch. A node can participate in sensing, pro-
cessing, and communication only when it is awake. A node can
communicate only with its awake neighbors, and thus the commu-
nication graph of the network changes from epoch to epoch: the
network has time-varying connectivity (TVC).

Routing on a TVC network mostly resembles routing on a static
network. The algorithm first tries to route a message greedily: a
message at x is forwarded to the awake neighbor y who, among all
x’s awake neighbors, is the closest to the destination. However, a
TVC network raises a few challenges that must be addressed in the
routing algorithm.

3.1 Choosing the Next Hop Node
Consider a message at node x for final destination d. Transmis-

sion from node x may be received by many neighbors; however,
only one node y (e.g., the one closest to d) forwards the mes-
sage while the rest of the nodes simply ignore the message. In a
static network, x’s awake neighbors remain the same over time,
and hence x can determine the best next hop node y from its neigh-
borhood information (set of neighbors and their locations). Thus,
x can stamp the message with address y so that nodes other than y
can ignore it.

However, in a TVC network, x may not know the current best
next hop node y, because the subset of awake neighbors changes
over time. Therefore, x may not be able to put any specific next

hop address in the message. Special techniques are required to
avoid multiple neighbors transmitting the same message. ExOR [2]
uses a light-weight consensus protocol to determine a single trans-
mitting node. To avoid this overhead, we can use an optimization
described in Section 6.1 that enables node x to locally decide which
of its neighbors are awake in an epoch; therefore, node x can de-
termine the best next hop awake node y and put it in the message.
Nodes other than y who receive the message simply ignore it.

3.2 (Transient) Local Minima
During the routing, a message may end up in a local minimum

node x in which all its neighbors, asleep or awake, are further than
x from the destination. As discussed in Section 2.2, existing so-
lutions to route out of local minima include face routing [11, 12,
13] and hull routing [14]. We use hull routing in our experiments
because of its simplicity and robustness. During this hull routing
phase, a node is forced to buffer the message until the next hop
node (indicated by the hull routing rule) wakes up.

With TVC networks, a message may also end up in a transient

local minimum: x is a local minimum (among the awake nodes) in
this epoch but not in all epochs (recall Figure 1). The message can
either (1) be buffered at x until a better neighbor wakes up, or (2) be
forwarded to a best awake neighbor y despite sending the message
in the wrong direction. We say such routing decisions are subopti-

mal. Our evaluation shows that the second “hot potato” approach,
with a good scheduling protocol, shows comparable latency to the
first approach, although the second approach slightly increases the
total number of hops to the destination. Intuitively, the scheduling
protocol ensures that such suboptimal decisions do not happen of-
ten, and even if a message is forwarded to a suboptimal next hop,
subsequent hops make progress toward the destination with high
probability. Moreover, with the hot potato approach, nodes do not
have to buffer messages (which can cause long latency and mes-
sage drop because of the limited buffer space) and nodes with high
degree suffer less from becoming routing hot spots and running out
of energy. Therefore, we consider the hot potato approach in the
rest of the paper.

3.3 Suboptimal Decisions with High Penalty
If the deployment is irregular with large obstacles or voids, a

suboptimal decision during hot potato routing may incur a high
penalty. Figure 1 gives an example if C wakes up soon after B
chooses E as its next hop. In general, a node does not know the
topology beyond its local neighborhood (e.g., beyond its 1-hop and
possibly 2-hop neighbors), in order to keep its routing state min-
imal and because the network has TVC. Hence the node can not
a priori distinguish between a long detour and a short one (e.g., if
D were only 2 hops from E). Because it may happen frequently
in TVC networks, we developed the following simple backtracking
strategy to limit the “damage”: if the number of subsequent sub-
optimal decisions crosses a threshold, we fall back to hull routing.
Our evaluation shows that when used in conjunction with a good
scheduling protocol, this strategy is quite effective.

4. A SLEEP SCHEDULER TUNED FOR

GEOGRAPHIC ROUTING
In this section, we develop a sleep scheduling algorithm that can

be tuned to achieve a target routing performance. As we will show
in Section 5, the latency of geographic routing in a TVC network
can be controlled by tuning the minimum number, k, of awake
neighbors in an epoch for all nodes in the network. Thus, our al-
gorithm enables tuning the value of k, in order to achieve a target
routing performance.



Our desired sleep scheduling algorithm will have the following
properties. First, each node u with du neighbors in total must have
at least min(k, du) awake neighbors in each epoch. Although our
algorithm will be effective in a wide variety of scenarios, we pri-
marily focus on dense deployments where only a small fraction of
the nodes are awake each epoch; in such scenarios, nearly all the
nodes have du ≫ k. Second, the algorithm will minimize the aver-
age number of awake nodes per epoch. In particular, all the nodes
will have roughly the same number of awake neighbors (the distri-
bution will be sharply concentrated just above k), a desirable prop-
erty not ensured by existing algorithms. Third, the algorithm will
guarantee node coverage—all awake nodes will be connected and
every node (awake or not) will have an awake neighbor. Finally,
the set of awake nodes will change from epoch to epoch.

These properties imply that a node will have neither too few
(to hurt routing performance) nor too many (to make routing load
skewed) awake neighbors. Another consequence is that a higher
fraction of the nodes in sparser regions must be kept awake com-
pared to denser regions. This is in contrast to purely random sleep
scheduling. This consequence appears unavoidable if one wants to
ensure good routing properties through sparse regions.

We also intend each sleeping node u to have not just 1 awake
neighbor (as is guaranteed by node connectivity) but at least k of
them. We want this for several reasons. First, if u decides to wake
up to forward a time-critical message, it will have at least k awake
neighbors. Second, the redundancy of awake neighbors increases
the probability of point coverage, i.e., the sensing area of u is cov-
ered by awake neighbors when u is sleeping.

4.1 Connected k-Neighborhood Problem
We now formalize the problem of choosing awake nodes such

that they satisfy the above mentioned properties.
The Connected k-Neighborhood (CKN) Problem: Given a con-
stant k and an undirected graph G = (V, E), find a subset of nodes
C ⊆ V such that C is a minimum connected k-neighborhood. In
a connected k-neighborhood (CKN), (i) each node v ∈ V has at
least m = min(k, dv) neighbors from C, where dv is the degree of
v in the G, and (ii) the nodes in C are connected. C is a minimum
CKN if no CKN has a smaller number of nodes.

Our desired sleep scheduling algorithm computes a random CKN
instance C every epoch such that only the nodes in C wake up; the
nodes not in C go to sleep. Note that even a sleeping node u has at
least min(k, du) neighbors in C.

Note that the CKN problem is different from the k-connectivity
problem, which is well studied in the context of fault-tolerant ad-
hoc wireless networks [16, 17]. While CKN requires a local prop-
erty of k neighbors per node, k-connectivity requires a global prop-
erty of k vertex-disjoint paths between any two nodes. From a
previous study [20], we observe that when k ≤ 10, a CKN is ap-
proximately (k/2)-connected.

The CKN Problem is NP-Complete. When k = 1, the CKN prob-
lem reduces to the Minimum Connected Dominating Set (MCDS)
problem [19], a widely studied problem in the ad hoc wireless net-
work community (e.g., an MCDS can be used as a connected vir-
tual backbone for a broadcast process). It is known that the MCDS
problem is NP-Complete [9], implying that the CKN problem is
also NP-complete.

In the next section we develop an approximation algorithm that
provides a near-optimal solution to the CKN problem. Moreover,
our algorithm is distributed and incurs modest communication, com-
putation, and memory costs (particularly when using the optimiza-
tions presented in Section 6).

4.2 Our CKN Algorithm
A scalable distributed solution to the CKN problem is challeng-

ing for several reasons. First, a node can go to sleep assuming that
at least k of its neighbors will remain awake to keep it k-connected;
however, all the neighbors can think alike and go to sleep, making
the node disconnected. A consensus is needed among the nodes to
decide who goes to sleep and who remains awake. Second, the out-
come of the consensus must change over epochs, so that all nodes
have an opportunity to sleep. Finally, even though nodes decide to
sleep or wake up based on their local information, the whole net-
work must be globally connected.

We address these challenges by using randomized node ranks.
Each node maintains a few local invariants based on its rank, ad-
dressing the first and third challenges above. The ranks are assigned
randomly on each epoch, addressing the second challenge.

ALGORITHM 1. CONNECTED K-NEIGHBORHOOD (CKN)
(* Run the following at each node u *)

1. Pick a random rank ranku.
2. Broadcast ranku and receive the ranks of its currently

awake neighbors Nu. Let Ru be the set of these ranks.
3. Broadcast Ru and receive Rv from each v ∈ Nu.
4. If |Nu| < k or |Nv| < k for any v ∈ Nu, remain awake.

Return.
5. Compute Cu = {v|v ∈ Nu and rankv < ranku}
6. Go to sleep if both the following conditions hold. Remain

awake otherwise.
• Any two nodes in Cu are connected either directly

themselves or indirectly through nodes within u’s 2-
hop neighborhood that have rank less than ranku.

• Any node in Nu has at least k neighbors from Cu.

7. Return.

The pseudo-code above depicts Algorithm CKN, our sleep schedul-
ing algorithm. The algorithm takes an input parameter k, the re-
quired minimum number of awake neighbors per node. The pa-
rameter can be chosen depending on the target routing performance
(see Section 5). The algorithm is repeated at each scheduling epoch,
which may or may not be the same as the epoch used for routing.

In the algorithm, a node u first picks a random rank ranku (e.g.,
from a random number generator, in Step 1 of the algorithm) and
computes a subset Cu of neighbors having rank < ranku (Step
5). Before node u can go to sleep it needs to make sure that all
nodes in Cu are connected by nodes with rank < ranku and each
of its neighbors has at least k neighbors from Cu (Step 6). These
invariants ensure that if a node has less than k neighbors, none of its
neighbors goes to sleep and if it has more than k neighbors, at least
k of them decide to remain awake. Note that these invariants are
easy to compute locally with 2-hop neighborhood information. The
needed ranks are exchanged in Steps 2 and 3. Moreover, because
the ranks are computed randomly on each scheduling epoch, the set
of awake nodes changes from epoch to epoch.

4.3 Analysis of Algorithm CKN
The next three theorems show the correctness and the perfor-

mance of our algorithm.

THEOREM 1. Suppose a node u has du neighbors in the orig-

inal network. After running Algorithm CKN, u will have at least

min(k, du) awake neighbors.

Proof: If du < k, none of u’s neighbors can go to sleep (Step 4 of
the algorithm) and it will have du awake neighbors.



If du ≥ k, then we will show by contradiction that the k lowest
ranked neighbors of u all remain awake after running the algorithm,
and hence, u has at least k awake neighbors. Accordingly, suppose
that the i’th lowest ranked neighbor v of u, i ≤ k, decides to sleep.
Then Cv will have at most i − 1 nodes that are neighbors of u.
Since i − 1 < k, v can not go to sleep according to the algorithm,
a contradiction. 2

THEOREM 2. Running Algorithm CKN on a connected net-

work produces a connected network.

Proof: (By contradiction) Suppose that the output network is dis-
connected. Put the deleted nodes back in the graph in ascending
order of their ranks, and let u be the first node that makes the net-
work connected. Note that by the time we put u back, all the mem-
bers of Cu are already present. Moreover, nodes in Cu are already
connected since they are connected by nodes with rank < ranku.
Let v be a node that was disconnected from Cu but gets connected
to Cu by u. But this contradicts the fact that u can sleep only if all
its neighbors (including v) are connected to ≥ k nodes in Cu. 2

Thus, Algorithm CKN outputs a connected k-neighborhood. Let
CKNk be the set of awake nodes output by the algorithm for a
given k and let OPTk be the set of awake nodes output by an op-
timal algorithm that finds a minimum connected k-neighborhood.
Our final theorem shows that with high probability, the number of
nodes in CKNk is within a logarithmic factor of the number of
nodes in OPTk, for sufficiently dense random deployments. This
theorem assumes the disk-r communication model, in which a node
can communicate precisely with the nodes within distance r, for a
suitable choice of r.2

THEOREM 3. For any k ≥ 1, suppose n nodes are placed uni-

formly at random within a deployment area such that the aver-

age number of neighbors per node (assuming the disk-r commu-

nication model) is ≥ 4(k + ln n). Then, with high probability,

|CKNk| = O(ln n) · |OPTk|.

Proof: The challenge in this proof is to find an upper bound on
|CKNk| and a lower bound on |OPTk| that are within a small fac-
tor of one another with high probability (w.h.p.). We will make no
assumptions on the criteria used to select nodes for OPTk. More-
over, it is not clear how the local properties used in Algorithm CKN
translate into a global bound on |CKNk|.

Let G be the graph of all the nodes and let d be the average
node degree in G. By Chernoff bounds, w.h.p., all nodes in G
have degree between d/4 (≥ k + ln n) and 4d. Because we are
only aiming for a w.h.p. result, we can safely ignore the scenarios
where some node has fewer than d/4 neighbors or more than 4d
neighbors.

We begin by lower bounding |OPTk|. Consider running the
optimal algorithm on G, and let G′ be the graph induced from
G by removing all the edges between sleeping nodes. Because
each node in G′ is required to have at least k neighbors, the to-
tal number of edges in G′ is ≥ nk/2. Moreover, because each
node in G′ has at most 4d neighbors, the total number of edges
in G′ is ≤ 4d · |OPTk|. Hence, 4d · |OPTk| ≥ nk/2, i.e.,
|OPTk| ≥ nk/(8d).

Next, we upper bound |CKNk|. Let t = (ckn ln n)/d, for a
constant c > 96 determined by the analysis. (We have not at-
tempted to minimize this constant.) Consider running Algorithm
CKN on G and let rank∗ be the rank of the t’th smallest rank se-
lected by a node in G. We claim that, w.h.p., all nodes with ranks

2To simplify the proof, we ignore the “boundary effects” of nodes
whose communication disk extends outside the deployment area.

> rank∗ go to sleep. (Some nodes with smaller ranks will also go
to sleep, but this claim suffices to show our desired upper bound.)
Because there are at most t nodes with rank at most rank∗, we
have that |CKNk| ≤ t w.h.p.

Note that this claim will enable us to prove the theorem. We have
that |CKNk| ≤ (ckn ln n)/d = (8c ln n) · nk/(8d) ≤ (8c ln n) ·
|OPTk|. Thus, |CKNk| = O(ln n) · |OPTk| w.h.p.

We finish by proving the claim. We can view the process as
one of first selecting the node ranks and then randomly placing the
nodes. Consider a node u not ranked in the top t and let Bu be
the ball of radius r around u. Because the average degree is d, we
have that each node is placed in Bu with probability d/n. Let Cu

be as defined in Algorithm CKN and let C′
u be the nodes in Cu

whose ranks are in the top t. Then, |C′
u| is distributed according to

a Binomial(t, d/n) distribution. By Chernoff bounds, w.h.p., there
are at least x = td/(4n) = (ck ln n)/4 randomly placed nodes in
Bu that are ranked in the top t (and hence ranked less than ranku).

Now consider any two nodes v and w in Cu, and let Bv and Bw

be the ball of radius r around v and w, respectively. Also, let Bu/2

be the ball of radius r/2 around u; note that any two nodes in Bu/2

are neighbors. We observe that because v and w are in Bu, the area
of Bv ∩ Bu/2 and of Bw ∩ Bu/2 are each at least 1/12 of the area
of Bu. Given that |C′

u| ≥ x is logarithmic, one can readily show
that, w.h.p., at least one node v′ (w′) from C′

u falls in Bv ∩ Bu/2

(in Bw ∩Bu/2, respectively). Moreover, v and w are connected by
the 3-hop path through v′ and w′. Similarly, the expected number
of nodes in C′

u that fall in Bv ∩ Bu is at least x/3. Hence, by
Chernoff bounds, w.h.p. any node v in Nu has at least k neighbors
from C′

u. Thus, all the conditions for node u to put itself to sleep
are satisfied w.h.p., and the claim follows. 2

Note that we used the density and disk-r communication model
assumptions only in the optimality proof; the correctness proofs are
independent of the density and the communication model.

5. ANALYSIS OF GEOGRAPHIC ROUTING

ON A TVC NETWORK
In this section, we formally analyze the latency of geographic

routing as a function of the number of awake neighbors, k, per
node. Intuitively, routing latency decreases as k increases (because
each node has more choices when selecting the awake neighbor
closest to the destination), but by how much? Answering this ques-
tion will enable us to tailor a sleep scheduling algorithm to achieve
a target latency.

For simplicity, we analyze only the greedy forwarding compo-
nent of a geographic routing algorithm. Evaluation of geographic
routing shows that on average more than 90% of its routing hops
use greedy forwarding [14]. Moreover, our analysis considers the
idealized setting of uniformly random node placement and the disk-
r communication model. These simplifications are needed only for
our analysis; our simulation study will show that our techniques
are effective even when considering all the aspects described in
Section 3 and even in non-uniform settings with obstacles, more
realistic radio models, etc.

5.1 An Underlying Markov Process
We begin by defining and analyzing a Markov process that un-

derlies our analysis of geographic routing latency. This process is
defined by specifying transition probabilities for making various
discrete amounts of progress toward the destination at each step.
Later, in Section 5.2, we will analyze how the number of awake
neighbors k relates to these transition probabilities.



THEOREM 4. Consider a randomized routing algorithm that at

each round, moves one hop closer to the destination with probabil-

ity p and moves one hop farther from the destination with probabil-

ity q, where p > q. Then the expected number of rounds to reach

the destination is n/(p − q), where n is the minimum distance in

hops to the destination.

Proof: Consider a random walk starting from a node at hop dis-
tance n from the destination. By the definition of hop distance, the
neighbors of a node at distance i > 0 are either at distance i + 1,
i, or i − 1. Let E(n) be the expected number of rounds to reach
the destination from hop distance n ≥ 0. Then, E[0] = 0 and, for
n > 0,

E(n) = 1 + pE(n−1) + qE(n+1) + (1−p−q)E(n) (1)

Solving this equation yields E(n) = n/(p − q) (which can be
readily verified by plugging this solution into Equation 1). 2

We will now generalize the process defined in Theorem 4 to en-
able analyzing progress in Euclidean distance, not hop count. Ac-
cordingly, in the following theorems, we use a discretized measure
of progress that divides the range of possible forward progress for
one hop into t ≥ 2 equally-spaced segments. (The larger the pa-
rameter t, the tighter the analysis.) The general recurrence defined
will be, after some manipulation of terms, a natural generalization
of Equation 1 and will be solved similarly.

For intuition, we start by showing a bound for the case where t =
2, as it is more readily mapped to the hop count case of Theorem 4.
Later, we will prove a bound for the case of general t.

THEOREM 5. Consider a randomized routing algorithm that at

each round, with probability q moves farther from the destination

and with probability p moves at least r/2 closer to the destination

(or reaches the destination, if it is less than r/2 away), where p >
2q. Then the expected number of rounds to reach the destination

is at most D
r
· 1

(p/2)−q
, where D is the Euclidean distance to the

destination.

Proof: Consider a random walk starting from a node at distance D
from the destination. At each round, with probability p it moves at
least r/2 closer to the destination and with probability q it moves
at most r farther from the destination. Let E(d) be the expected
number of rounds to reach the destination from Euclidean distance
d ≥ 0. Then, E[0] = 0 and, for d > 0,

E(d) ≤ 1 + pE(max(0, d − r/2)) + qE(d + r)

+ (1 − p − q)E(d) (2)

Let n = d/r. Then for d ≥ r/2, Equation 2 becomes rE(n) ≤
1 + prE(n − 1/2) + qrE(n + 1) + (1 − p − q)rE(n). Di-
viding through by r, and solving similar to the previous theorem
yields E(n) ≤ n

r((p/2)−q)
. Thus, letting N = D/r, we have that

E(D) = rE(N) ≤ N · 1
(p/2)−q

, and the theorem follows. 2

While discretizing in this way enables us to get a nice upper
bound, it turns out that this bound is too crude to be useful in
our later analysis of geographic routing over duty-cycled nodes.
Specifically, it gives the routing algorithm credit for only r/2 for-
ward progress whenever the true forward progress is in [r/2, r),
no credit for any forward progress in [0, r/2), and charges a full
r backward progress on any true backward progress. To obtain a
tighter analysis, we can use a larger t and we could also discretize
the negative progress (e.g., charge r/t when the backward progress
is in [0, r/t), etc.). It turns out that while using a larger t is a key
enabler of our results, discretizing negative progress would only
complicate the analysis without changing the main results. (As we

will see in Section 5.2, this is because geographic routing, except
in the rare cases when it is hull routing, forwards to the neighbor
making the most progress. Thus, the only time greedy forwarding
makes negative progress is if none of its forward progress neighbors
happen to be awake. The probability that this happens decreases
exponentially with the number of neighbors.)

We now state and prove the upper bound for general t.

THEOREM 6. (upper bound) Consider a randomized routing

algorithm that at each round,

• with probability q moves farther from the destination,

• with probability pi, i = 0, . . . , t − 2, moves at least r i
t

but

less than r i+1
t

closer to the destination, and

• with probability pt−1 moves at least r t−1
t

closer to the des-

tination,

where t ≥ 2 and
Pt−1

i=1 i · pi > q · t. Then the expected num-

ber of rounds to reach within distance r from the destination is at

most D
r
· 1

( 1
t

Pt−1

i=1
ipi)−q

, where D is the Euclidean distance to the

destination.

We assume that once the algorithm is within r of the destination,
it simply waits until the destination wakes up and then hops directly
to the destination.

In the proof of this theorem, we will give the routing algorithm
credit for only r i

t
forward progress whenever the true forward progress

is in [r i
t
, r i+1

t
), and charge a full r backward progress on any true

backward progress. Thus, a tighter analysis is obtained by using a
larger t. In addition, we could also discretize the negative progress
(e.g., charge r/t when the backward progress is in [0, r/t), etc.).
However, while using a larger t is a key enabler of our results,
discretizing negative progress would only complicate the analysis
without changing the main results. (As we will see in Section 5.2,
this is because geographic routing, except in the rare cases when it
is hull routing, forwards to the neighbor making the most progress.
Thus, the only time greedy forwarding makes negative progress is
if none of its forward progress neighbors happen to be awake. The
probability that this happens decreases exponentially with the num-
ber of neighbors.)

The condition from the theorem that

t−1
X

i=1

i · pi > q · t (3)

is sufficient to ensure a finite expectation on the number of rounds.
Much weaker conditions also suffice, e.g., by discretizing the mea-
sure of negative progress. However, our analysis will show that
condition 3 is readily satisfied with only a modest number of ran-
domly awake neighbors. Moreover, as argued above, discretizing
negative progress only complicates the analysis without changing
the main results.

Proof of Theorem 6: Consider a random walk starting from a
node at distance D from the destination. For our upper bound,
we credit the algorithm with only the minimal progress in each
progress range. Let E(d) be the expected number of rounds to
reach within r of the destination starting at a Euclidean distance
d ≥ 0. Then, for d ≤ r, E[d] = 0, and for d > r,

E(d) ≤ 1 +

t−1
X

i=0

piE(d − i

t
· r) + qE(d + r) (4)

Let n = d/r > 1. Then by dividing all terms by r, Equation 4
becomes E(n) ≤ 1/r+

Pt−1
i=0 piE(n− i

t
)+qE(n+1). As in the



previous proofs, E(n) will be of the form n/x for some x. To solve
for x, we plug into the previous equation and multiply through by
x to get n ≤ x/r +

Pt−1
i=0 pi(n − i

t
) + q(n + 1). Moving all the

terms involving n to the left side, we get (1 −Pt−1
i=0 pi + q)n ≤

x/r −Pt−1
i=0 pi

i
t
+ q. Because we have accounted for all possible

outcomes at a round in defining q and the pi’s, they sum to 1. Thus
the left side equals 0. Solving for x, we get x ≥ r(

Pt−1
i=0 pi

i
t
− q).

Hence, E(n) ≤ n

r(
Pt−1

i=0
pi·

i

t
−q)

. Letting N = D/r, we have that

E(D) = rE(N) ≤ N · 1

( 1
t

Pt−1

i=0
ipi)−q

, and the theorem follows.

2

Note that D
r

is the best case number of rounds, occurring in an
idealized deployment scenario with infinite density such that there
is a straight line of nodes from the source to the destination, spaced
apart at precisely the maximum communication radius r. A more
accurate lower bound than the D

r
infinite density bound can be ob-

tained by giving the algorithm r i+1
t

forward progress credit when-

ever the true forward progress is in [r i
t
, r i+1

t
) and charging zero

backward progress on any true backward progress. This leads to
the following theorem:

THEOREM 7. (lower bound) For the set-up in Theorem 6, the

expected number of rounds to reach within distance r from the des-

tination is at least D
r
· 1

( 1
t

Pt−1

i=1
ipi)+

1
t
(1−q)

, where D > r is the

Euclidean distance to the destination. This can also be written as
D
r
· 1

1
t

Pt−1

i=0
(i+1)pi

.

Proof: Consider a random walk starting from a node at distance
D > r from the destination. For our lower bound, we credit the
algorithm with the maximal progress in each progress range, as
discussed above. Let E(d) be the expected number of rounds to
reach within r of the destination starting at a Euclidean distance
d ≥ 0. Then, for d ≤ r, E[d] = 0, and for d > r,

E(d) ≥ 1 +

t−1
X

i=0

piE(d − i + 1

t
· r) + qE(d) (5)

Let n = d/r > 1. Then by dividing all terms by r, Equation 5
becomes E(n) ≥ 1/r +

Pt−1
i=0 piE(n − i+1

t
) + qE(n). As in

the previous proofs, E(n) will be of the form n/x for some x.
To solve for x, we plug into the previous equation and multiply
through by x to get n ≤ x/r +

Pt−1
i=0 pi(n − i+1

t
) + qn. As in

the previous proof, all terms involving n cancel out. Solving for
x, we get x ≤ r

Pt−1
i=0 pi

i+1
t

. Hence, E(n) ≥ n

r(
Pt−1

i=0
pi·

i+1

t
)
.

Letting N = D/r, we have that E(D) ≥ D
r

· 1
1
t

Pt−1

i=0
(i+1)pi

.

Finally, note that 1
t

Pt−1
i=0(i+1)pi = 1

t

Pt−1
i=0 ipi + 1

t

Pt−1
i=0 pi =

1
t

Pt−1
i=1 ipi + 1

t
(1 − q). 2

5.2 Impact of Duty-Cycling on Latency
We now analyze the latency of greedy geographic routing as a

function of the number of awake neighbors. We consider the rela-

tive stretch of the routes, namely the ratio between Ek(D), the ex-
pected number of epochs needed to reach the destination when only
k neighbors are awake per node and EK(D), the expected number
of epochs needed to reach the destination when some larger num-
ber K neighbors are awake. As in our analysis in Section 5.1, we
assume uniformly random node locations and the disk-r communi-
cation model. To the best of our knowledge, this is the first such
analysis, and provides important insights into how many neighbors
are “good enough”.

Figure 2 shows the two limiting scenarios, in which the destina-
tion X is as close as possible (any closer means we have reached

S
X

X

zz

S

Figure 2: Limiting scenarios for analyzing stretch. The circle

around the source S indicates its communication radius. On

the left, the destination X is just outside the neighborhood of S.

On the right, the arrow next to X indicates that the destination

is far from the source, off the end of the figure. In each case,

the solid (dotted) line/arc cutting through S’s circle indicates

the set of points at distance D (D − z, respectively) from X ,

where D is the distance from S to X .

a node S that has X as a neighbor, and we can simply wait for X
to wake up) and is as far away as possible. Each awake neighbor
can be viewed as a random point in S’s disk. Let D be the distance
from S to X .

Far-away Scenario. We first analyze the far-away scenario (right).
In this scenario, the set of points at distance D from X splits the
neighborhood in half—thus each neighbor is equally likely to be
closer or farther from X . With k neighbors, the probability that the
neighbor closest to X is farther than S is thus 2−k. Thus in the
terminology of the previous section, q = 2−k.

Let fi be the probability that a random neighbor of S is at least
i
t
r closer to the destination X (i.e., falls to the right of the dashed

line when z = i
t
r). By standard formulas for the area of a segment

of a circle, we have

fi =
1

π

„

cos−1(i/t) − i

t

p

1 − (i/t)2
«

, (6)

(where arcosine returns radians).

Let p
(k)
i be the probability that, among the k random neighbors

of S, the neighbor closest to the destination X is at least i
t
r closer

but less than i+1
t

r closer. (This is the pi we need to apply the
theorems of Section 5.1.) This probability can be calculated as
the probability that “no neighbor is at least i+1

t
r closer” times the

conditional probability that “some neighbor is at least i
t
r closer

given that no neighbor is at least i+1
t

r closer.”

p
(k)
i = (1 − fi+1)

k ·
 

1 −
„

1 − fi

1 − fi+1

«k
!

(7)

The term 1−fi

1−fi+1
is the probability that a random neighbor that is

not at least i+1
t

r closer is also not at least i
t
r closer.

Close Scenario. We now analyze the close scenario (left). By
standard formulas for the intersection area of two circles with the
same radii r that are centered distance r apart, the probability that
a random neighbor of S is closer to X than S (i.e., to the right of

the solid arc through S) can be calculated as 2
3
−

√
3

2π
. Thus with k

random neighbors, the probability that the neighbor closest to X is
farther than S is:

q =

„

1

3
+

√
3

2π

«k

≈ .609k
(8)

As above, let fi be the probability that a random neighbor of S
is at least i

t
r closer to the destination X (i.e., falls to the right of

the dashed arc when z = i
t
r). Applying standard formulas for the



intersection area of two circles to this particular scenario yields,
after simplifying terms,

fi =
1

π

„

wi cos−1
“wi

2

”

+ cos−1
“

1 − wi

2

”

− 1

2

p

wi(4 − wi)

«

,

(9)

where wi =
`

1 − i
t

´2
and arcosine returns radians.

The probability p
(k)
i that, among the k random neighbors of S,

the neighbor closest to the destination X is at least i
t
r closer but

less than i+1
t

r closer can be computed by plugging Equation 9 into
Equation 7.

Relative Stretch. We are now able to calculate an upper bound on
the relative stretch incurred, as a function of the number of awake
neighbors k compared to a larger number of neighbors K, for arbi-
trary values of our discretization parameter t. We use the equations
of this section with the theorems of the previous section. To up-
per bound the stretch, we analyze Ek(D), the expected number of
epochs with k neighbors, using (the pessimistic) Theorem 6 and
we analyze EK(D) using (the optimistic) Theorem 7. Section 7.5
will present some example bounds calculated in this manner, and
compare them to results obtained via simulation.

6. OPTIMIZATIONS
In this section we present two decentralized optimizations to

make Algorithm CKN more efficient. The first optimization re-
moves the communication required for a node to learn the ranks
of its 2-hop neighbors in each epoch, at the expense of some lo-
cal computation. The second optimization reduces the amount of
computation.

6.1 Shared Random Number Generator
The basic idea is to use the same deterministic pseudo-random

number generator G(nodeid, time) in all nodes in the network.
Then we modify Algorithm CKN for node u as follows.

1. Node u discovers N2, the nodes within two hops in the orig-
inal network. It can discover N2 once in the beginning and
can update it infrequently in case nodes join or leave the net-
work.

2. Node u generates its rank as ranku = G(u, epoch), where
epoch is the current scheduling epoch number. (Step 1 of
Algorithm CKN.)

3. For each node v in N2, u generates rank rankv = G(v, epoch).
(This eliminates Steps 2 and 3 of Algorithm CKN).

The rest of Algorithm CKN remains the same.
In this modified algorithm, there is no communication between

nodes (beyond the background maintenance of N2 and epoch clocks).
This advantage comes at a cost—each node needs to maintain states
for all its 2-hop neighbors and to generate random numbers for
them. We will quantify this cost in Section 7.

6.2 Spatial Sampling
Our second optimization is relevant only for deployments that

densely cover their deployment area. The basic idea is first to select
a random subset of the nodes and then to run Algorithm CKN only
on that subset. Suppose n nodes with transmission radius r are uni-
formly randomly placed within an area A. Assume that A is at least
2r wide at its narrowest point and that the sensors cover every point
of the deployment area. Then after running Algorithm 2 (SPATIAL-
SAMPLE), every point still remains covered by at least one awake
sensor node with high probability. Moreover, every sampled node
maintains a sufficiently large number of neighbors so that Algo-
rithm CKN can be run on the sampled nodes only.

ALGORITHM 2. SPATIALSAMPLE

(* Run the following on each node at the start of every epoch *)

1. Let N = 2|A|/r2 and p = min{(N ln(N) + cN)/n, 1},
c is a constant.

2. With probability p remain awake, otherwise go to sleep.

LEMMA 1. Suppose n sensors are deployed uniformly at ran-

dom in an area A such that A is at least 2r wide at its narrowest

point and every point in A is covered by at least one sensor. Then,

after running SPATIALSAMPLE, any point in A will remain covered

by at least one awake node with probability 1− e−c. Moreover, ev-

ery node will have ln(N) + c awake neighbors on expectation.

Proof: Consider a partitioning of the area A according to a hexag-
onal packing, where each hexagon has side length r/2. Call each
hexagon a zone. Because the area of each hexagon is a = (3

√
3/2)(r/2)2,

there will be approximately N = |A|/a = 1.539|A|/r2 zones...
2

If SPATIALSAMPLE is used in conjunction with the first opti-
mization, all nodes should use the same generator G in Step 2, and
remain awake if its output is at most p.

After running SPATIALSAMPLE, the still awake nodes proceed
to run Algorithm CKN. The benefits of running Algorithm CKN
on only a sampled set of nodes, however, comes at a potential cost:
If the sampled nodes are disconnected or have few neighbors, the
network produced by Algorithm CKN will have bad routing per-
formance. So the sampling parameter should be chosen carefully.

7. EVALUATION
In this section, we evaluate the performance of our sleep schedul-

ing algorithm and geographic routing on top of it. We use a custom
event-driven simulator for the evaluation.

7.1 Methodology

Evaluation Scenarios. Nodes are randomly placed in a 175m ×
175m square. Each message is routed between two random points
in the deployment.

Communication Model. We model communication between two
nodes according to the measurement results from a dense wire-
less sensor network deployment in a state park [26]. We primarily
model packet loss rates and link asymmetry in our simulation. As
reported in [26], the packet loss model has two distinct regimes:
up to a distance 12m from the sender, packet loss rates are con-
sistently small. Beyond this, however, there exists a gray area in
which loss rate varies dramatically—some nodes see near 90% suc-
cessful reception, while neighboring nodes sometimes see less than
50% reception rate.

Scheduling Algorithms. We compare the following five sleep
scheduling algorithms. (1) CKN: on every epoch, nodes run Al-
gorithm CKN to decide whether to be awake. (2) POINTCOVER:
on every epoch, nodes run an existing point-coverage scheduling
algorithm [1] to decide whether to be awake. (3) NODECOVER:
on every epoch, nodes run an existing node-coverage scheduling
algorithm [4] to decide whether to be awake. Note that compar-
ing POINTCOVER and NODECOVER with CKN is not an apples-
to-apples comparison because POINTCOVER and NODECOVER do
not aim to optimize routing performance. Moreover, these existing
algorithms do not allow tuning the number of awake nodes in the
network, something that we intend to vary with CKN. Therefore,
we compare CKN with two additional algorithms. (4) RANDOM:
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Figure 3: Normalized hop- and epoch-counts and load distribution of different algorithms running over a network of 600 nodes.

on every epoch, nodes independently decide whether to be awake
with equal probability. We can vary the number of awake nodes by
varying the probability (i.e., with SPATIALSAMPLE). RANDOM is
a representative scheduling algorithm used in almost all real sensor
systems [7], and in many proposals [8]. (5) ALWAYSON: nodes
always remain awake. We can vary the total number of nodes and
thus the total amount of energy consumed.

Routing Algorithm. We use the routing algorithm described in
Section 3: Nodes use greedy forwarding whenever possible, and
hull routing when messages end up in local minima. A message
can make 10 hops in an epoch. Nodes use a reliable communication
protocol to deliver messages to their next hops.

Evaluation Metrics. We use the following metrics to evaluate
the performance of different algorithms. (1) Normalized Hop (or

Epoch) Count: The normalized hop count (epoch count) of a schedul-
ing algorithm is the ratio between the average hop count (epoch
count, resp.) for the algorithm to route a message between two ran-
dom nodes to that for ALWAYSON. A small value of this metric
implies good routing performance. Note that the normalized hop
count may be different from the normalized epoch count, as a re-
sult of the buffering of messages during the hull routing phase. (2)
Load: The load of a node is the fraction of random messages routed
through the node. Ideally, we prefer the load to be uniform across
nodes. To report the above metrics under a configuration, we gen-
erate 100 different random networks and route messages between
5000 pairs of random locations.

Unless otherwise specified, our simulated networks are connected
when all nodes are awake. However, because a scheduling algo-
rithm may choose only a subset of the nodes to be awake in any
given epoch, a network may sometimes become disconnected. A
scheduling algorithm may cause too many suboptimal routing de-
cisions or may buffer a message too long time during hull rout-
ing phase, resulting in unreasonably large routing latency. To deal
with such incidents, we consider a message routing to fail if the
sender does not receive the delivery acknowledgement from the
destination node within a specified number of epochs (we use 10 as
the threshold), in which case we resend the message. We include
the overheads of failed routing in our computation of hop count,
epoch count, and load. For example, if a message fails to reach
the destination in 10 epochs, we resend the message. If this time
the sender receives acknowledgement in 5 epochs, we consider the
total epochs taken by the routing to be 15.

7.2 Routing Performance Comparison
To understand the performance of geographic routing over duty-

cycled nodes, we route messages over 600-node networks with dif-
ferent node scheduling algorithms. Figure 3(a) and (b) show nor-
malized hop- and epoch-count of different algorithms, as a function
of the average number of awake nodes per epoch. NODECOVER

and POINTCOVER both have one point each, representing the min-
imum number of nodes required to ensure node and point coverage
respectively. The CKN curve has 6 points representing the results
of running CKN(k) with the minimum number of awake neighbors
k = 1, . . . , 6. NODECOVER, POINTCOVER, CKN, and RANDOM

are run on 600-node networks, while the total number of (awake)
nodes in ALWAYSON is same as the number of awake nodes re-
ported for these other algorithms.3 The x-axis of Figure 3 repre-
sents the average number of awake nodes per epoch. The smaller
the number, the less energy consumed per epoch.

These results demonstrate several important points. First, an ef-
ficient randomized sleep scheduling algorithm can improve routing
performance without additional energy overhead, especially at low
node densities, as indicated by the points where normalized hop
and epoch counts are less than 1. Intuitively, because the connec-
tivity of a TVC network changes over epochs, local minima in one
epoch often disappear in next epoch, thus helping greedy routing to
succeed most of the time.

Second, selectively removing nodes from the network to make
the degree distribution more uniform (as is done by CKN) outper-
forms algorithms that randomly removes nodes (e.g., RANDOM).
With the same number of awake nodes, CKN(6) performs ≈ 20%
better than RANDOM. This is because CKN avoids nodes hav-
ing too few neighbors, keeping the network connected in every
epoch and providing each node with at least k potential next hops.
In RANDOM, the network becomes disconnected in some epochs
which results in message buffering and timeouts. In fact, with
< 300 awake nodes, messages had to be buffered > 5% of the
time with RANDOM, while CKN(6) required no buffering. The
graphs also show that, to achieve the same routing performance,
CKN requires > 40% fewer awake nodes per epoch compared to
RANDOM and ALWAYSON. This implies that CKN can improve
network lifetime over RANDOM and ALWAYSON. This happens
because CKN avoids having too many awake neighbors, which
gives more nodes the opportunity to sleep in a given epoch.

Finally, CKN is comparable to NODECOVER under a small num-
ber of awake nodes. As expected, POINTCOVER is not as good as
CKN because POINTCOVER chooses awake nodes to ensure point
coverage, not to optimize routing performance.

7.3 Routing Load
In this experiment, we investigate the routing load distribution of

two different sleep scheduling algorithms. We route messages with
CKN(6) and RANDOM in a 1000-node network. The parameters of
RANDOM are chosen so that the expected number of awake nodes

3Because ALWAYSON uses the same number of awake nodes as
the other scheduling algorithms, normalized hop (or epoch) counts
can be less than 1. For example, CKN on a 600-node network
where 300 random nodes remain awake in each epoch can perform
better than ALWAYSON on a fixed 300-node network.
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Figure 4: Normalized hop and epoch count with varying number of obstacles.

Around 400 nodes remain awake in every epoch in all the algorithms.
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Figure 6: Optimized performance of CKN.
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remains the same as CKN(6). The x-axis of Figure 3(c) shows
all the 1000 nodes in ascending order of their routing load (i.e.,
fraction of times a node forwards messages), and the y-axis shows
their corresponding load. As shown, RANDOM has a more skewed
distribution than CKN. This can cause some nodes to run out of
energy faster and the network to become disconnected. The differ-
ences in load distribution of CKN and RANDOM can be explained
by observing the number of awake neighbors per node, because the
amount of routing load through a node is roughly proportional to
the number of awake neighbors. With RANDOM, some nodes have
too many awake neighbors while other nodes have too few (experi-
mental validation in Section 7.6). This causes more messages to be
routed through the high-degree nodes. In contrast, the output net-
work of CKN has a more uniform degree distribution, which helps
the routing load to be more evenly distributed among the nodes.

Like CKN, NODECOVER also demonstrates a roughly uniform
load distribution. POINTCOVER, however, has a slightly skewed
(more than CKN but less than RANDOM) load distribution. This
is because some points in the deployment area are covered by only
a few nodes. To ensure point coverage, these nodes remain awake
more often, and hence get more routing traffic, than other nodes.

7.4 Effect of Obstacles
To evaluate the effect of obstacles, we randomly place 4m×4m

square obstacles within a 1000-node network. In addition to the
communication model mentioned before, two nodes fail to com-
municate if their line of sight intersects with any obstacle. This
procedure sometimes generates networks that are not connected.
We discard such networks and consider only the networks that are
connected when all the nodes are awake. To compare different
algorithms under the same energy cost, we select the number of
nodes in the networks such that on each epoch ≈ 400 nodes re-
main awake. I.e., for ALWAYSON, we consider networks of 400
sensors, for CKN, we consider networks of 900 sensors with the
target degree of 6, and for RANDOM, we consider networks of 900
sensors with the wake up probability of 0.44.

Figure 4 shows normalized hop and epoch counts of different al-
gorithms, while varying the number of obstacles. As before, CKN
outperforms RANDOM, and in fact, the presence of obstacles in-

creases CKN’s advantage over RANDOM. This happens because,
with obstacles, the network tends to become (temporarily) discon-
nected more often with RANDOM. This results in frequent message
buffering at the nodes and timeouts/retransmissions of messages.
All these degrade hop- and epoch-counts with RANDOM.

7.5 Validation of Analytical Results
To validate the analytical upper bounds on relative stretch given

in Section 5, we start with a dense network of 5000 nodes. In
this network, every node has at least 140 neighbors. We then use
CKN(k), k = 3, . . . , 20, and compute the relative stretches of
these resultant networks with respect to the original 5000-node net-
work. Our simulation considers more realistic events (e.g., hull
routing, retransmission, etc.) than our analysis. However, because
these events are rare and make relative stretches only worse, we
hope to factor them out in our validation by ignoring the top 10%
of the simulation stretches. So, we compare the analytical upper
bounds with the 90th percentile of the relative stretches obtained
from simulations.

In Figure 5, the plots for “k vs. 140” show the analytical upper
bounds and 90th percentile of relative stretches, with respect to the
5000-node network, from simulation. The graphs for “k vs. 20”
considers the network given by CKN(20), instead of the original
5000-node network. As shown, our analytical results are very close
(within 10%) of the simulation results. The gap between analysis
and simulation is bigger at smaller values of k, because even though
CKN ensures every node has at least k neighbors, some nodes have
more than k neighbors, resulting in better relative stretches than the
analytical bounds that assume exactly k neighbors.

7.6 CKN Characteristics Evaluation
Having shown CKN’s routing performance, we now investigate

a few of its properties.

Effect of Optimizations. Figure 6 shows the communication, com-
putation, and memory cost per node per epoch for running CKN
over a 5000-node network with and without the two optimizations
from Section 6. The communication cost is given in terms of the



number of broadcasts required by the algorithm. The computa-
tion cost reflects only the number of random numbers generated
(the other computations of CKN are not affected by the optimiza-
tions). The memory cost reflects the number of states a node needs
to maintain for its 2-hop neighboring nodes. Using a shared ran-
dom number generator (shown as Opt 1 in Figure 6) avoids expen-
sive communication but introduces a lot of additional computation
and memory overhead. Spatial sampling (Opt 2) can reduce this
computational overhead. To keep its effect on CKN’s routing per-
formance negligible (< 2% increase in the normalized hop count),
we set parameters so that around half the nodes run CKN. This
reduces communication at the cost of a slight increase in computa-
tion. Finally, using both optimizations removes the communication
overhead at the cost of a small computational overhead. Because
generating a pseudo-random number is cheap (requires multiplica-
tion and addition), these optimizations provide a good tradeoff.

Degree Distribution. As mentioned before, a uniform degree dis-
tribution improves routing performance. To compare the degree
distribution of CKN with that of RANDOM, we run them on a 5000-
node network. We use CKN(6) and tune the parameter of RAN-
DOM to produce approximately the same number of awake nodes
(≈ 500). Figure 7 shows that the distribution of RANDOM has a
wider range than that of CKN. Note that running CKN(6) ensures
that every node with degree ≥ 6 has at least 6 awake neighbors.
Therefore, the average degree of a node is typically higher than 6.
E.g., the outputs of CKN(6) on a 500- and a 5000-node network
have average degrees of 7.2 and 7.9, respectively.

Effect of Node Density. To understand how CKN scales, we run
CKN(6) with varying node density. Figure 8 shows that increasing
the number of nodes increases the number of awake nodes, which
effectively reduces routing latency. However, the increase of awake
nodes diminishes with node density, and even with 5000 nodes,
CKN uses less than 650 awake nodes. This gives around 13%
duty cycling. Although our optimality proof for CKN uses the
uniform disc communication model, the results in Figure 8 show
that even with the more realistic communication model used in our
simulation study, CKN uses a small number of awake nodes.

8. CONCLUSION
In this paper, we have formally analyzed the performance of geo-

graphic routing over duty-cycled nodes. We have presented a sleep
scheduling algorithm that can be tuned to achieve a target routing
latency. We have provided analytical guarantees on the correctness
and the performance of our algorithm. Through extensive simula-
tion, we have shown that routing over our scheduling algorithm
improves routing performance by > 20% compared to existing
scheduling algorithms, without additional energy overhead. More-
over, it can significantly improve network lifetime without sacrific-
ing routing performance. Future work includes studying the per-
formance of our scheduling algorithm in real deployments.
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