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Abstract. With the Distributed File System Replication component,
DFS-R, as the central theme, we present selected protocol problems and
validation methods encountered during design and development. DFS-R
is currently deployed in various contexts; in Windows Server 2003-R2,
Windows Live Messenger (Sharing Folders), and Windows Vista (Meet-
ing spaces). The journey from an initial design sketch to a shipped prod-
uct required mainly the dedicated effort of several testers, developers,
program managers, and several others; but in some places cute problems
related to distributed consensus and software model-checking emerged.
This paper presents a few of these, including a distributed garbage col-
lection problem, distributed consensus problems for reconciling tree-like
data structures, using model-based test case generation, and the use of
software model checking in design and development process.

1 Introduction

Designing and building distributed systems is challenging, especially if they need
to scale, perform, satisfy customer functionality requirements, and, oh well, work.
An example of a particularly challenging distributed system is multi-master, op-
timistic, file replication. One of the distinguished factors making distributed file
replication hard is that file replication comes with a very substantial data com-
ponent: the protocols need to be sufficiently aware of file system semantics, such
as detecting and resolving name conflicting file creates and concurrent updates.
Such races are just the tip of the iceberg. In comparison, cache coherence proto-
cols that are known to be challenging to design, have a trivial data component,
but to be fair have stronger consistency requirements.

Subtle protocol bugs can go (and have indeed gone) undetected for years due
to the large number of interactions that are possible. With a sufficient number
of deployments they will be encountered in the field, have costly consequences,
and be extremely challenging to analyze. Our experience in developing DFS-
R from the bottom up, is used to demonstrate several complementary uses of
model-based techniques for system design and exploration. This paper provides
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an experience report on these selected methods. Note that the material presented
here reflect only a very partial view of the design and test of DFS-R.

DFS-R was developed to address correctness, scale, and management chal-
lenges encountered with a predecessor file replication product. Thus, the original
impression was that we had the luxury of tackling a relatively well defined prob-
lem; to build a replication system specifically handling features of the file system
NTFS, for replicating files between globally dispersed branch offices of corpora-
tions. Later on, it would turn out that DFS-R could be embedded within other
scenarios, such as, in an instant messenger product. However, we consciously
avoided over-loading with features from the onset. It means that DFS-R, for in-
stance does not replicate files synchronously, only asynchronously (as it is meant
for wide area networks); does not replicate general directed acyclic graphs, only
tree-like structure; and does not maintain fine-grained tracking of operations,
only state. While several such problems are interesting in other contexts, they
did not fall into the scope of our original goals.

The organization of this paper follows the top-down design flow of DFS-R.
The DFS-R system was originally conceived as a strictly state-based file repli-
cation protocol. Section 2 elaborates on the differences between state-based and
operations-based replication systems. We developed a high-level state machine
specification of DFS-R by using a transition system presented as a collection of
guarded commands. The guarded commands were subsequently implemented as
an applicative program in OCaml. This paved the way for performing efficient
state space exploration on top of the design. Section 3 elaborates on the proto-
col, and Section 4 summarizes prototyping experiences. As the development took
place, several assumptions made in the abstract design turned out to be unreal-
istic, and we redid the high-level design using the AsmL tools that were built at
Microsoft for software modeling and test case generation. Section 5 elaborates
on the experiences from using AsmL. A number of well-separated distributed
protocol problems emerged during the development. Section 6 describes the dis-
tributed tree reconciliation problem, and how we used a model checker, Zing, to
expose bugs in both protocol proposals and legacy implementations. Section 7
describes the distributed tombstone garbage collection problem and a solution to
it. While one cannot expect to get anywhere without a high-level understanding
of the protocols involved in DFS-R, it is equally unrealistic to expect develop-
ing a production quality system without addressing systems problems. We were
thus faced with a potentially large gap between simplified protocol substrates
and the production code. Encouraged by the ability of the model-based state
space exploration to expose subtle interaction bugs we repeated the state space
exploration experiment on top of the production core. The resulting backtrack-
ing search tool may best be characterized as a hybrid software model checking,
run-time verification tool. It operates directly at the source code level. It uses
techniques, such as partial order reduction to prune search and custom allocation
routines to enable backtracking search. Section 8 describes the infrastructure we
developed and the experiments covering 1

2
trillion scenarios.



2 File Replication

The style of replication systems under which DFS-R falls into is surveyed ex-
tensively in [1]. We here summarize a few of the main concepts relevant for
DFS-R. The problem that DFS-R solves is to maintain mirror copies of selected
directories across large networks of servers. The directories that are selected for
replication are called replicated folders. Files and directories within these di-
rectories may be created, modified, deleted, moved, or renamed at any of the
mirror sites. It is the job of DFS-R to distribute changes, detect and reconcile
conflicts automatically when they arise. Distributed replication systems can be
categorized according to what problems they solve and how they solve them.
Figure 1 summarizes some of the main design choices one has when designing a
replication system.

Multi master

Single master

Optimistic

Pessimistic

State transfer

Operations transfer

Fig. 1. Replication system ontologies

Multi Master Replication DFS-R is a multi-master replication system. Any
machine may participate in changing resources, and their updates will have to be
reconciled with updates from any other machine. A (selective) single-master sys-
tem only replicates changes from a set of selected machines. All other machines
are expected to maintain a mirror copy of the masters. This would mean that
file system changes on non-masters would have to be reverted. If there is a des-
ignated master, one can even choose to maintain truth centrally. The challenge
there is managing fail-over and network disconnects.

Optimistic Replication To support wide area networks (spanning the globe)
DFS-R supports optimistic updates to files. This means that any machine may
submit updates to resources without checking first whether the update is in
conflict with other updates. Pessimistic replication schemes avoid concurrent
update conflicts by serializing read and write operations using locking schemes.

State and Operation transfer A file system state is the result of the file
operations (create, update, delete, move) that are performed on it. This suggests
two approaches to realize file replication: intercept and replay the file operations,
called operation transfer, or capture the file system state and replicate it as it



is, called state transfer. DFS-R implements a state transfer protocol. There are
several hard challenges with operations-transfer based systems. One is merging
operations into a consistent serialization. Another, is space, as operations are
not necessarily amenable to garbage collection.

Perspective There is no single choice of design parameters that handles all
customer scenarios. In some configurations, corporations wish to designate ma-
chines as read-only, and can manage the additional constraints this leaves on
network topologies. In other configurations there are reliable, but slow, wide-
area networks and there is a need for file locking. With state transfer only, it is
not possible to undo operations with arbitrary fine-grained control.

3 A State-based file replication system

In this Section we will outline the essence of a file replication system. While
highly simplified, it reflects some of the early protocol design maneuvers.

3.1 Components

Network Abstractly, the problem at hand is to replicate files in a network of
connected machines. Each machine maintains a file system view and a database.
The network topology is indicated by a set of in-bound connections per machine.
We assume a well-formed network, comprising of a digraph without self-loops,
where each node is labeled by a unique machine identifier. A connected network
is furthermore desirable for convergence.

nw ∈ Network = MachineId
m
7→ Machine

mch ∈ Machine = FileSystem × DataBase × inbound

m ∈ MachineId = Globally unique identifier for a machine
in ∈ inbound = MachineId-set

File System For our purposes, a file system is a collection of files each uniquely
identified by an identifier, which is unique per file system. In NTFS, such identi-
fiers are 64 bit numbers, called file reference numbers, on Unix-like file systems,
these are called inodes. Each file has a file name, a parent directory and file
data. One would typically expect a file system to be dictated as a tree-like struc-
ture comprising of files identified by file paths as strings, but this view turns
out to be unsuitable for several reasons. For example, such a view is open to
situations where files are moved around, such that the same path gets identified
with completely different files. Identifying a file with an identifier makes it eas-
ier to support efficient replication of renaming directories with a large number
of children, but makes it very hard to support merging contents from differ-
ent directories. A file system is well-formed when the ancestral relations form a
uniquely rooted connected tree (only the root has itself as a parent).



fs ∈ FileSystem = FileId
m
7→ FileRecord

file ∈ FileRecord = {name : Name, parent : FileId, data : Data}
fid ∈ FileId = Numeral

Database The file system only maintains information that is local to the ma-
chine where the files reside. In order to realize a file replication system, one
needs to maintain information reflecting the shared state between machines. In
DFS-R, this state is a database consisting of version vector and a set of records,
one per replicated file.

(vv, rs) ∈ DataBase = VersionVector × (UID
m
7→ IdRecord)

vv ∈ VersionVector = MachineId
m
7→ Numeral-set

r ∈ IdRecord = {fid : FileId, gvsn : GVSN, parent : UID,
clock : Numeral,name : Name, live : bool}

gvsn ∈GVSN = MachineId × Numeral Global version sequence number
uid ∈ UID = Globally unique identifier

Version vectors File replication systems typically use global version sequence
numbers, which are pairs (Unique Machine Identifier, Version Sequence Num-
ber), to identify a resource and its version globally. The version sequence num-
ber is a local time-stamp, which can be assumed monotonically increasing with
changes. A version vector is a map from machine identifiers to version sequence
numbers. They typically map a machine identifier to a single number, but in the
case of DFS-R we found that allowing the vectors to map to a set of numbers
(represented compactly as intervals of numerals) allowed handling, for instance,
synchronization disruptions. Version vectors are also known as vector clocks.
Version vectors are used to record a state of knowledge, as the vector indicates
a water-mark of versions that have been received from other machines.

We may think of a version vector as a set of GVSN pairs obtained by taking
{(m, v) | [m 7→ vs] ∈ vv ∧ v ∈ vs}. Similarly, one can form a version vector from
a set of GVSN pairs. In the future we will switch between the set and map view
of version vectors depending on the context. Thus, vv[m] is defined for each m.
It is the empty set if m 6∈ Dom(vv) as a map.

Database records A file (we will use file to also refer to a directory) is identified
globally through a unique identifier uid, while the per file system file identifier
is the fid. The set of database records may be indexed by a uid and a fid. Each
record stores a global version sequence number gvsn that tracks the version
of the file, a file name name, a reference to a parent directory parent, and an
indication whether the resource represents an existing file on the file system. If
live is false, we call the resulting record a tombstone. The clock field is a Lamport
clock [6], it gets incremented with every file update. Lamport clocks are used to
enforce causal ordering per record by assuming a total lexicographic ordering on
GVSN and define:

r < r′ iff r.clock < r′.clock ∨ (r.clock = r′.clock ∧ r.gvsn < r′.gvsn) (1)



We will later establish that property (5), which only uses version vectors, suffices
for detecting conflicts (absence of causality) among all replicated files. Neverthe-
less, this property is significant, as the number of replicated files in the context
of DFS-R is much larger than the number of replicating machines.

The records in DFS-R contain a number of additional fields, such as file
hashes, file creation time and file attributes.

Local and Global Consistency We are now in a position where we can state
the main soundness properties that DFS-R aims to achieve:

– Global consistency: Databases of machines connected in a network are equal
except for the contents of the fid fields.

– Local consistency: On each machine, the database records the content on
the file system.

A very substantial part of DFS-R consists in maintaining local consistency. DFS-
R uses the NTFS change journal, which for every file operation produces a record,
accessible from a special file. The change journal presents an incremental way to
obtain file changes. Since DFS-R only tracks files that are replicated, it further-
more needs to scan directories that are moved in and out of the replicated folders.
Also, the local consistency algorithms need to take into account that change jour-
nals wrap, that is, not all consecutive changes are available for DFS-R, and that
change journals are deleted, resized and/or re-created by administrators. We
will here concentrate only on global consistency as it illustrates the distributed
protocol problems later in this paper.

So for the rest of the discussion, we will use simplified definitions of machines
and database records. While this approach makes things look much simpler than
reality, it allows us to concentrate on the specific topics in this paper.

m ∈ Machine = VersionVector × (UID
m
7→ IdRecord) × inbound

r ∈ IdRecord = {gvsn : GVSN, parent : UID, clock : Numeral,
name : Name, live : bool}

3.2 Operations

The main operations relevant to file replication consist of local file system activity
and synchronization.

The file system operations called Create, Update, Rename and file Delete in
Fig. 2. cause the local version vector to be updated with a fresh version for the
machine that performs the change. The database records are also updated to
reflect the new file system state.

We assume an initial state consisting of an arbitrary network of machines all
sharing a single replicated root folder and no other files. We use tuples with mu-
table fields in the guarded commands, and we omit checks for whether elements
are in the domain of a map prior to accesses.

A direct way to synchronize two data-bases is by merging version vectors
and traversing all records on a sending machine m2; those records whose keys



Create(nw, m,uid, parent, name) :
let (vv, rs, in) = nw[m], v = 1 + max(vv[m])
assume ∀[ 7→ ( , rs′, )] ∈ nw . uid 6∈ rs′ (uid is fresh in nw)

rs[parent].live ∧ name is fresh under parent

vv[m] := vv[m] ∪ {v}
rs[uid] := {gvsn = (m,v), parent, name, clock = v, live = true}

Update(nw, m, uid) :
let (vv, rs, in) = nw[m], v = 1 + max(vv[m]), clock = max(v, rs[uid].clock + 1)
assume rs[uid].live

vv[m] := vv[m] ∪ {v}
rs[uid] := rs[uid] with {clock, gvsn = (m, v)}

Rename(nw, m, uid, parent′, name′) :
let (vv, rs, in) = nw[m], v = 1 + max(vv[m]), clock = max(v, rs[uid].clock + 1)
assume rs[uid].live ∧ rs[parent′].live ∧ name′ is fresh under parent′

Rename maintains tree-shape of directory hierarchy
vv[m] := vv[m] ∪ {v}
rs[uid] := rs[uid] with {gvsn = (m, v), parent = parent′, clock, name = name′}

Delete(nw, m, uid) :
let (vv, rs, in) = nw[m], v = 1 + max(vv[m]), clock = max(v, rs[uid].clock + 1)
assume rs[uid].live ∧ (∀uid′ ∈ rs . rs[uid′].parent 6= uid ∨ ¬rs[uid′].live)
vv[m] := vv[m] ∪ {v}
rs[uid] := rs[uid] with {gvsn = (m, v), clock, live = false}

Fig. 2. Basic file system operations

do not exist on the receiving machine m1 are inserted. Records, that dominate
existing records on m1 are also inserted. Fig. 3. illustrates the proposed scheme.
The scheme implements a last-writer wins strategy, as later updates prevail
over earlier updates. We will later realize that the check v 6∈ vv1[m] is in fact
redundant. Another property of this scheme is that each update is processed
independently. Notice that this is an implementation choice, which comes with
limitations. Conflict resolution that can only perform decisions based on a single
record cannot detect that a machine swapped the names of two files. Namely,
suppose machine m1 and m2 share two files named a and b. Then m2 renames a
to c, b to a, then c to b. The names of the two files are swapped, but each record
is name conflicting with the configuration on m1. So when m1 synchronizes with
m2, it will be resolving two name conflicts instead of performing the swap.

Our first observation is that the resulting system maintains a basic invariant:
the versions of all records are tracked in the version vectors.

∀[ 7→ (vv, rs, )] ∈ nw, [ 7→ {gvsn = (m, v)}] ∈ rs . v ∈ vv[m] (2)

Thus, a more network efficient version of BasicSyncJoin proceeds by

1. The receiving machine m1 gets version vector vv2 from the sender m2.



BasicSyncJoin(nw, m1, m2)
let (vv1, rs1, in1) = nw[m1]
let (vv2, rs2, in2) = nw[m2]
assume m2 ∈ in1

for each [uid 7→ r] ∈ rs2:
let (m, v) = r.gvsn

if v 6∈ vv1[m] ∧ (uid 6∈ rs1 ∨ rs1[uid] < r) then

rs1[uid] := r

vv1 := vv1 ∪ vv2

Fig. 3. Simplified synchronization

2. It then subtracts vv1 from vv2, forming vv∆ := vv2 \ vv1.

3. The sending machine is asked for records whose versions are in vv∆.
4. The database of m1 is updated as in BasicSyncJoin.

The more refined version of global consistency we seek can also be formulated in
terms of version vectors, namely, that databases coincide on all shared versions:

r1.gvsn 6∈ vv2 ∨ rs2[u] = r1 ∨ rs2[u].gvsn 6∈ vv1, (3)

for every m1, m2, such that (vv1, rs1, ) = nw[m1], (vv2, rs2, ) = nw[m2] and
[u 7→ r1] ∈ rs1.

So far our transitions ensure that all versions in the version vectors are con-
secutive,

∀[m 7→ vs] ∈ vv .vs = {1, . . . , max(vs)}. (4)

The second observation is a basic property of the system: concurrent updates
to the same resource may be detected by at least one machine during Basic-
SyncJoin. Suppose that m1 and m2, and uid are such that (vv1, rs1, ) = nw[m1],
(vv2, rs2, ) = nw[m2], and [uid 7→ r1] ∈ rs1, [uid 7→ r2] ∈ rs2. When m1 installs
r2 we would like to know whether r2 was derived from r1, or if r2 was obtained
concurrently with r1. The answer to whether r2 is concurrent with r1 turns out
to be simple; r2 is concurrent with r1 iff the version of r1 is not known to m2:

r1.gvsn 6∈ vv2 (5)

To prove this property, we can add a history variable rsall to each machine.
The history variable rsall is a set of all records ever maintained by the machine.
If one prefers, one may view this as specifying the cone of causality. Every update
to the main set of records rs gets reflected by adding the updated record to rsall.
In the operation BasicSyncJoin, take the union of rs1

all and rs2

all. Now observe
that invariant (2) also holds for rsall.

Detection of concurrent update conflicts is useful when one wants to per-
form conflict detection and resolution, either manually or automatically. DFS-R



performs the conflict resolution automatically, as replication is a continuous ser-
vice, but stores conflicting files in a designated folder. Conflict resolution is per-
formed on version vectors, so once a machine has performed conflict resolution
and merged version vectors, the conflict is no longer visible to other machines.
A different scheme that works for detecting conflicts is by associating a hash-
tree [7, 8] comprising of hashes of all the previous versions of a file. The size
of the unrolled hash-tree is then proportional to the number of changes to the
file, while version vectors grow proportionally to the number of machines. If ma-
chines are reasonably well synchronized, they do not need to unroll large hash
trees from remote peers.

3.3 The Real Deal with Join

The use of BasicSyncJoin is insufficient for file replication. There are two funda-
mental flaws and limitations: First, it allows installing updates that conflict with
file system semantics: it may introduce orphaned files without parent directories,
mark non-empty directories as tombstones, create multiple files in the same di-
rectory with the same name, and introduce cyclic directory structures. Second,
BasicSyncJoin processes all updates in one atomic step. This is unrealistic in the
presence of network outages and continuous file system activity. DFS-R realizes
non-atomic joins by committing only versions from the processed records on
disconnects (instead of all of vv2). It also pipe-lines multiple joins should the
sending machine create new updates while (large) files from previous updates
are still being downloaded. A consequence of this relaxation is that condition
(5) is only a necessary, but not sufficient condition for conflict detection. Invari-
ant (4) does not hold either, but this is insignificant, as we introduced sets in
the range of version vectors to deal with partial synchronization. Fig.4. illus-
trates the additional refinements one needs to add to BasicSyncJoin in order to
address file system semantics. We have limited the iteration of database records
to vv2\vv1 to reflect invariant (2), which still holds. We abstain from illustrating
the non-atomic, pipe-lined version.

The refined SyncJoin mentions auxiliary functions conflict-winner, purge-

losers, and revert-update. The definition and analysis of these is the subject
of Section 5, but here, we will summarize some of their requirements.

Non-interference It is trivial to realize a convergent, consistent file replication
system that just deletes all files. So, obviously, we would like to ensure that
DFS-R does not touch the file system on its own. Requiring that DFS-R not
delete or move around any files is too restrictive, because a system that must
automatically resolve conflicts will have to handle creation of name conflicting
files and directories.

Re-animation A basic (user) requirement for DFS-R was that directories can-
not be deleted if they contain files that have not been processed by the deleting
party. Thus, re-animation requires that files and even directories in a transitive



SyncJoin(nw, m1, m2)
let (vv1, rs1, in1) = nw[m1]
let (vv2, rs2, in2) = nw[m2]
assume m2 ∈ in1

for each [uid 7→ r] ∈ rs2 where r.gvsn ∈ vv2 \ vv1:
if uid 6∈ rs1 ∨ rs1[uid] < r then

if conflict-winner(m1, r) then

purge-losers(m1, r)
rs1[uid] := r

else revert-update(m1, r)
vv1 := vv1 ∪ vv2

Fig. 4. Synchronized join

way get re-created. They are re-created to preserve content that was created or
modified independently of the (remote) deletion.

Convergence A key property of replication is obviously that all replica mem-
bers should converge to the same mirror image when there are no independent
updates to the replica sets. In general one cannot check convergence as an invari-
ant. However, as our experience with Zing (Section 6) illustrates, it is possible
to find divergence bugs by checking invariants that imply convergence.

Feature interaction One of the hard problems with designing a distributed
application, like DFS-R, is taking feature interaction into account. Features that
are not directly related may interact in unpleasant ways when composed. An
illustrative example of two features that interact comprises of re-animation and
name-conflict resolution. Name conflict resolution has in DFS-R the side effect
of soft deletion. The name conflict loser gets moved to a conflict area, but from
the point of view of replication it is deleted. These two features do not compose:
a directory may lose a name conflict and be deleted, but a modification to a child
file may require the name conflicting directory to be re-animated. Consequently,
DFS-R has to take such conflicts into account.

4 Prototyping DFS-R with OCaml

Section 3 illustrated a simple file system model and replication protocol. As fea-
tures and requirements were added, the complexity of the problem rose, and we
could see that invariants were easily broken. We therefore found that an informal
design would be insufficient in convincing us and our peers to the soundness of
any protocol proposal, so we developed a prototype system in OCaml.

Of particular interest was that the OCaml prototype supported both a sim-

ulation and a realistic mode. In simulation mode, the replication system would
manipulate in-memory data structures for file systems, and data-bases. In real-
istic mode, the prototype accessed files on NTFS and updated a persistent store.



Neither mode was using a network, so all remote procedure calls would be per-
formed by local procedure calls, and multiple copies of DFS-R ran in the same
process. The simulation mode was furthermore applicative in all essential oper-
ations. This made implementing a backtracking search over the actions trivial.
Operations in simulation mode were several orders of magnitude faster. We also
added ad-hoc partial order reduction techniques, and performed massive simu-
lations on top of the synchronization core. Prior to starting the implementation
of DFS-R we thus covered some 120 billion scenarios each comprising of 16 file
and synchronization actions. Section 8 elaborates on similar methods used for
the production core.

5 Modeling DFS-R with AsmL

The OCaml prototype soon diverged from the implementation, as constraints,
such as database layout changed. It was also inadequate for documenting the
protocol at an abstract, yet sufficiently faithful level. We therefore turned to
AsmL [9], developed at MSR, for describing the DFS-R protocol. The very read-
able format of AsmL and the integration with Microsoft Word was particularly
useful in our context, as we aimed at a specification which could be read by
newcomers to the DFS-R project. Today the AsmL specification serves as the
main high-level, executable, overview of DFS-R. We will not repeat the detailed
AsmL specification here, as it takes around 100 pages. To give the flavor, Fig.5.
summarizes the data types available per replicating machine.

The AsmL description follows the componentization and protocol design in a
top-down fashion. At the top-level, the design describes the main modules that
comprise synchronizing machines. For the case of DFS-R, this is encapsulated
by a Machine class, which contains the main components.

class Machine
machineId as MachineId // Unique identifier to distinguish machine
var fs as FileSystem // File system interface
var db as Database // Persistent database that DFS-R maintains
var uc as UsnConsumer // Consuming USN records from the NTFS journal
var dw as DirWalker // Walking directories to update the database
var inbound as Map of MachineId to InConnection
var outbound as Map of MachineId to OutConnection

class InConnection // State relevant for an incoming connection
class OutConnection // State relevant for an outgoing connection

Fig. 5. Replicating machine in AsmL



5.1 Protocol description

The AsmL specification elaborates further on fleshing out the contents of the
machine components. The main reactive components that are modeled in de-
tail are the (1) consumption of file system events and their effect on the local
database, and (2) the main synchronization handshakes.

5.2 Test case generation

The resulting model is sufficiently detailed to describe the behavior of DFS-R
based on local file system events as well as distributed synchronization events.
This allows defining virtual networks of machines that can be composed and
simulated within AsmL. In particular, we hooked up the FSM generation tool of
AsmL and generated test sequences. Lacking tight .NET integration with DFS-
R, we resorted to using the FSM generation tool generate test cases in an XML
file and implement a reader that interprets the traces within DFS-R.

6 Reconciling Trees
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Fig. 6. Concurrent conflicting moves

In this Section we illustrate the
use of a model-checker Zing [10]
for checking conflict resolution
strategies for concurrent moves.
Recall that one of the require-
ments for DFS-R was that it
replicate and maintain directory
hierarchies as tree-like struc-
tures. When machines are al-
lowed to move files around on
a network, it may however be
possible arriving at configura-
tions that cannot be reconciled
into a directory tree. Fig.6. illus-
trates an instance of this prob-
lem: two machines share direc-
tories a, b, and c. One machine
creates the tree a → b → c, the
other c → b → a. What should
b’s parent be?

We used Zing to check for
convergence of a proposed res-
olution method for concurrent
moves. Zing demonstrated that the proposal was open to divergence by pro-
ducing a counter-example along the lines of Fig.6. The counter-example found
by Zing, was subsequently tested against another shipped replication product
which failed to converge. This bug had gone undetected for several years.



6.1 Zing

Zing is a model checker for multi-process programs. Zing’s input language is
perhaps easiest compared with Promela [11]. The notion of process and atomic
statements are similar, while Zing appeals to an object oriented programming
style.

6.2 A Zing encoding

Our Zing encoding of the tree reconciliation problem uses the absolute minimal
features necessary to emulate conflict resolution of concurrent moves. Thus, each
machine maintains n(= 3) resources, each resource is identified by a number
0, . . . , n − 1, and a designated root folder is identified by the number −1. A
resource has a parent, which is a number −1, 0, . . . , n − 1, and a clock used to
impose a total ordering on resources. Resources can be updated by changing the
parent and clock, but only if the update does not introduce a self-loop. Fig.7.
contains the minimal amount of Zing declarations to define two machines each
with three resources all residing under a common root.

A model checker is well suited at specifying a set of possible configurations
implicitly by using non-deterministic choices. Thus, we arrive at a non-flat con-
figuration by first moving files around randomly on each machine, with each
move incrementing globalClock and using its value as the clock on the moved
resources.

It remains to define synchronization in Zing. Our model for synchronization is
that machines send the state of a random node to a random machine. It requires
the recipient to determine the outcome based on the state of a single node. Thus,
traces can be identified as sequences of triples

〈node1, src1, dst1〉, 〈node2, src2, dst2〉, . . . ,

where node is the index of a node, the content of the node on the source machine
is given by src, and dst is a machine that should reconcile the node. The syn-
chronization protocol will need to implement a function, sync, which based on a
triple, updates the state of dst. The problem is furthermore narrowed down as
we prescribe sync should use the clock numbers to implement a last writer wins-
by-default strategy. Unfortunately, the last writer cannot win unconditionally if
the update introduces a cycle, and the remaining problem is to find a routine
resolve, which applies the update, but does not introduce a cycle. We can check
whether an implementation of sync converges by setting a bound on globalClock
and systematically examining each possible trace.

In the following we will examine a few proposals for resolve. We examined
several others, but the ones given here are sufficiently illustrative.

Priority inversion is a tempting solution. The clock on the destination ma-
chine is increased to dominate the clock of the source node.



class Node {
int parent;
int clock;

};
array Tree[3] Node;

class Machine {
Tree tree = new Tree{{-1,0},{-1,0},{-1,0}};

atomic bool cycle(int node, int parent) {
return (parent != -1) &&

(parent == node ‖ cycle(node, tree[parent].parent));
}

atomic void move(int node, int parent, int clock) {
assume(!cycle(node, parent));
tree[node].parent = parent;
tree[node].clock = clock;

}
};
array Machines[2] Machine;
static Machines machines;
static int globalClock = 0;

Fig. 7. Replicating machine in Zing

static atomic void resolve(int node, Node src, Machine dst) {
dst.tree[node].version = ++globalClock;

}

Not only is it not obvious whether this solution is correct, but it is also wrong.
Zing found a two-machine counter-example by searching 1.5 million states in 4-5
minutes (on a 2GHz, 512MB Dell Optiplex). The counter example essentially
consisted of the configuration from Fig.6. Divergence is exercised when the two
machines ping-pong the directory b to each other.

Intentional grounding moves conflicting nodes to the root.

static atomic void resolve(int node, Node src, Machine dst) {
dst.move(node, -1, ++globalClock);

}

This solution works (and works for Zing too), but it is overly pessimistic, as it
may move directories from deeply nested positions directly to the root. Within
the context of file systems, where directories have controlled access (using access
control lists, ACLs) this furthermore imposes security problems.



class Sync {
static atomic void sync(int node, Node src, Machine dst) {

if (src.clock > dst.tree[node].clock) {
if (dst.cycle(node, src.parent)) {

Sync.resolve(node, src, dst);
} else {

dst.move(node, src.parent, src.clock);
}

}
}

static void synchronize() {
while (!Sync.allInSync()) {

assert(globalClock <= maxClock);
int src, dst = choose(0..1);
int node = choose(0..2);
assume(src != dst);
Sync.sync(node, machines[src].tree[node], machines[dst]);

}
}

atomic bool allInSync(); // true if the trees of all machines are equal

Fig. 8. Synchronization core in Zing

Permutation does not move conflicting nodes directly to the root, but moves
them beneath the immediate parent.

static atomic void resolve(int node, Node src, Machine dst) {
if (dst.tree[node].parent != -1) {

dst.move(node, dst.tree[dst.tree[node].parent].parent, ++globalClock);
}
else {

dst.tree[node].version = ++globalClock;
}

}

While less pessimistic, it also suffers from security problems with access control:
the scheme allows moving directories to places they have never been moved by
any replicating machine.

Parental demotion Another appealing approach is to accept the instruction
as is, but if the instruction introduces a directory cycle, then move the new
parent under the previous parent of the node.

static atomic void resolve(int node, Node src, Machine dst) {
dst.move(src.parent, dst.tree[node].parent, ++globalClock);



dst.move(node, src.parent, src.clock);
}

Unfortunately, we were able to find a configuration where this scheme di-
verges. The smallest example we were able to find consists of 6 machines each
with 3 directories. It requires a careful coordination between the machines to
exercise divergence. This time we had to find the counter-example manually.
The state space in this case proved larger than what Zing could handle.

a

b

c

c

b

a

a → b
c

a

b

Fig. 9. Parental demotion.

Suppose initially:
m1 : a → b → c, clocks =
{a 7→ 0, b 7→ 1, c 7→ 2}. That
is, m1 has a under the repli-
cated folder root, b under a, and
c under b. The clock of b is set
to 1, and c’s clock is set to 2.
m2 : b → c → a, clocks =
{b 7→ 0, c 7→ 11, a 7→ 3}.
m3 : c → a → b, clocks =
{c 7→ 0, a 7→ 4, b 7→ 5}.
m4 : a → c → b, clocks =
{a 7→ 0, c 7→ 6, b 7→ 7}.
m5 : c → b → a, clocks = {c 7→ 0, b 7→ 12, a 7→ 8}.
m6 : b → a → c, clocks = {b 7→ 0, a 7→ 9, c 7→ 10}.

m5 sends b to m1, m′
1

: a → c → b, clocks = {a 7→ 0, b 7→ 12, c 7→ 13}
m2 sends c to m4: m′

4 : a → b → c, clocks = {a 7→ 0, b 7→ 14, c 7→ 11}
m′

1
sends c to m2: m′

2
: b → a → c, clocks = {b 7→ 0, c 7→ 13, a 7→ 15}

m′
4

sends b to m5: m′
5

: c → a → b, clocks = {c 7→ 0, a 7→ 16, b 7→ 14}
m′

2 sends a to m3: m′
3 : c → b → a, clocks = {c 7→ 0, b 7→ 17, a 7→ 15}

m′
5

sends a to m6: m′
6

: b → c → a, clocks = {b 7→ 0, c 7→ 18, a 7→ 16}

That state is isomorphic to the starting state using the correspondence:

{m1 7→ m4
′, m2 7→ m6

′, m3 7→ m5
′, m4 7→ m1

′, m5 7→ m3
′, m6 7→ m2

′} (6)

At this point, m′
6

can take the role of m2, and m′
3

can take the role of m5 to
kick off another round.

6.3 A mountain too high for Zing?

An attempt was made to extract a more realistic Zing model of DFS-R by using
the AsmL specification, and perform comprehensive model checking of the full
synchronization core. The resulting 3400 line model was then exercised by Zing,
which checked the model for consistency. Unfortunately, the resulting state space
was vastly larger than what Zing could reasonably handle. The most effective
way we know of performing state space exploration of DFS-R therefore remains
the depth-bounded search presented in Section 8.



6.4 The Zing Experience

This Section illustrated the concurrent directory move problem in the context
of using a state-space exploration tool, Zing, for checking design proposals. The
concurrent move problem is interesting in its own right, but the main take-
away here is that state space exploration tools, such as Zing, are valuable for
experimenting with design ideas on protocol substrates. Our take-away was to
remain using priority inversion as the conflict resolution mechanism in DFS-R.
To avoid divergence we imposed stronger restrictions on the order of processing
updates.

7 Distributed Garbage collection

Our presentation of DFS-R has so far no mechanism to garbage collect database
records for deleted files. We need the database records so that file deletion can
be replicated in a timely manner, but when all replicating machines agree that
a file has been deleted, it should in principle be possible to remove the tomb-
stone. Prior solutions to detecting when to delete dead resources involve two
way commit protocols [12–14] to either agree on the when to add machines to
a network, or when to safely collect resources marked for deletion. Solutions
in replication systems, such as, Clearinghouse [15], NTFRS and other replica-
tions systems use a timeout based collection of tombstones: If a record has been
marked as tombstone for 30 or 60 days, simply delete it from the database.
Fig. 10 contains the corresponding transition that performs the garbage collec-
tion non-deterministically.

GarbageCollect(nw, m,u) :
let (vv, rs, in) = nw[m], r = rs[u]
assume ¬r.live

rs := rs \ [u 7→ r]

Fig. 10. Tombstone garbage collection

This solution does not address deleting content on machines that have been
disconnected beyond the timeout value of the tombstones. While this situation
reflects lack of consensus it also widens the likelihood that this content may
reappear in other machines if the offline machine later makes changes to this
content or if the machine has to recover from database loss.

It turns out that with synchronous joins we have a necessary and sufficient
basis for detecting tombstones. The key is, as in (2), that version vectors maintain
a trace of previously observed changes.

Let m1, m2 be machines, such that (vv1, rs1, ) = nw[m1], (vv2, rs2, ) =
nw[m2] and [u 7→ r1] ∈ rs1. The resource r1 is subsumed by a tombstone if we



have:

r1.gvsn ∈ vv2 ∧

[

u 6∈ rs2 ∨

(

∧ rs2[u].gvsn ∈ vv1

rs2[u].gvsn 6= r1.gvsn

)]

(7)

The system with SyncJoin, GarbageCollect and the file system operations sat-
isfies the following invariant: Whenever (7) holds, then some time in the past,
there is a machine m3, with a tombstone for u that dominates the resource r1;
or with notation, if (7), then previously

∃m3, rs3 . ( , rs3, ) = nw[m3] ∧ ¬rs3[u].live ∧ rs3[u] ≥ r1 (8)

Conversely, if (7) is false, then for [u 7→ r1] either m2 does not know about r1, or
m2 has a resource that m1 does not know about. Regular synchronization takes
care of reconciling the state in these cases.

This property suggests a secondary protocol for asynchronous garbage col-
lection: periodically retrieve the version vector and all records from a partner
machine, then garbage collect live records whenever condition (7) holds. DFS-R
implements such a secondary protocol, but we observed that condition (7) in the
presence of non-atomic joins is no longer necessary and sufficient for detecting
missed tombstones. In general, condition (7) is only sufficient for detecting when
the standard join does not ensure convergence.

8 Implementation checking

A common theme in the previous sections has been that we could take advantage
of somewhat subtle properties of a simple transition system to achieve goals,
such as garbage collection, conflict resolution, and reconciling concurrent rename
conflicts; but small modifications could break everything, and innocent looking
solutions could be broken in complicated ways.

In view of the complexity of the problem and the encouraging results with the
OCaml prototype we therefore decided to simulate the production version of the
synchronization core of DFS-R using model-checking techniques. This Section
describes the components that comprise the simulator. In summary, the simula-
tor works by exercising different combinations of file system operations followed
by synchronization steps in alternation, then it backtracks to visit different com-
binations. Some traces get pruned by partial order reduction techniques. This
drastically reduces redundancies in the search tree. Backtracking search requires
replacing the memory layer such that old state can easily be retrieved. To relieve
the simulator from suspending threads at arbitrary points we ensure that the
core makes use of suitable thread abstraction allowing it to single step through
large non-blocking atomic units. Finally, certain components are abstracted to
gain speed and control.

Thus, the main ingredients in our software model-checking experiment were:

1. Identifying a suitable vocabulary of actions to exercise.



2. Providing a memory layer that supports efficient backtracking.
3. Providing a threading layer that supports context switching and control of

which threads run.
4. Virtualize components that change device state.
5. Prune search using partial order reduction techniques.

Ideally, one would like a general framework to be able to handle simulating
systems, such as DFS-R. At the time we developed the framework, nothing
suitable was available. Since then, efforts have been made to address problems
like ours [16] using general frameworks.

8.1 Vocabulary

The simulation layer executes tasks in all possible inter-leavings. We will describe
tasks in more detail below, as they are used as a thread layer. A task step
defines an atomic action. Simulating DFS-R requires providing a handle into
the atomic actions that a machine may perform, but of equal importance also
provide environment actions, such as file system operations. The actions that
are presented to the simulator are summarized as Laction. Finally, we can define
a simulation trace Strace as a sequence d of actions. In our experiments we set
d = 16, with the assumption that most bugs could be exercised with a few
number of operations.

Σfile = {a, b, c, d} vocabulary of files
Σdir = {p, q, r} directories
Σres = Σfile ∪ Σdir resources
Lfs = {share/,noshare/}(Σdir/)∗Σres file paths
Σm = {m1, m2, m3, m4} machines
Laction= rename(Σm,Lfs,Lfs) actions

∪ create(Σm,Lfs)
∪ update(Σm,Lfs)
∪ delete(Σm,Lfs)
∪ sync(Σm, Σm)
∪ read−journal(Σm, N ∪ {ω})

Strace = Ld
action simulation trace

The set of possible file system operations are generated using a finite alphabet
of file and directory names. They may take place on one of the machines listed
in Σm. The internal actions of DFS-R are split into two sets: (1) reading the
USN journal for 1, 2, 3, etc. steps or until reaching a fix-point (ω steps); (2)
synchronizing symmetrically between two machines. Paths starting with share

are replicated, paths starting with noshare are outside the replicated folder.

8.2 A custom memory layer

Key to supporting efficient backtracking is to be able to save and restore state.
Our simulation does not backtrack over suspensions within stack frames. This



limitation allowed us to concentrate on tracking heap allocated memory only.
In summary, the simulation environment saves aside a copy of the heap when
entering a new backtracking point for the first time. When re-entering the back-
tracking point, it can dispense all memory allocated within the branch and re-
store the previous state. Unfortunately, not all heap-allocated memory can be
reclaimed at backtracking points. In particular, memory that is associated with
device state cannot just be overwritten on backtracking points. For instance,
buffers that are allocated by procedures that print to files cannot be reclaimed
using a stack discipline. This led to a dual mode custom memory layer, one for
backtracking mode and one for non-backtracking mode.

8.3 Thread layering

It is challenging in itself to model check multi-threaded programs faithfully. A
real software model checker would have to allow context switches at arbitrary
control locations. The first problem requires infrastructure; the model checker
will have to save and restore the stack. This amounts to mirroring thread context
switches. A more fundamental problem is the significant increase in the state
space as every program counter is potentially a backtracking point.

We bypassed these issues by implementing a thread abstraction that wrapped
around thread pools and timer queues. Both facilities are supported by operating
system APIs, but require the caller to maintain different context depending on
whether a job is spawned directly in a thread pool or delayed in a timer queue.

Our thread layer combines these two concepts into a single task entity, which
can be set to run immediately, or with a non-zero delay. To support simulation,
tasks support dual modes: one for running in a multi-threaded environment, and
another for running in a single-threaded simulation environment.

8.4 Virtualization

The interfaces to the on-disk database, the file system, and the network layer
had to be abstracted and re-coded for speed and control. The abstractions were
indispensable in making simulation practical. Creation time of a fresh on-disk
JET-blue database takes for instance 2 seconds (it creates several larger files,
including logs). Backtracking over such disk operations would slow down simu-
lation to a crawl.

Using abstractions also came with several limitations. Foremost, bugs inside
the physical modules were not exposed by simulation, as they were simply not
exercised. It was also limited what we found worth to reflect in an abstraction.
The database abstraction did thus not implement the ACID properties. This was
reasonable as all transactions in DFS-R are short lived, but this prevented us
identifying code paths that would lead to conflicting updates. Such errors were
only later exposed during stress runs.



8.5 Partial Order Reduction

The set of simulation traces introduced in Section 8.1 contain a large number of
essentially symmetric traces. For example, the order of creating files share/p/a
and share/p/b on the same machine is insignificant.

More precisely, let π, π′ ∈ Lfs be file paths, then we define π⊥π′ (read as π
is orthogonal to π′) as a binary relation on paths if neither path is a prefix of the
other. Furthermore, let m, m′ be machines, op1, op2 ∈ {create, delete, update},
then we define the orthogonality relation ⊥ on actions by:

op1(m, π)⊥op2(m, π′) if π⊥π′

In general, actions are considered orthogonal if they reside on different machines,
thus:

op1(m, π)⊥op2(m
′, π′) if m 6= m′ ∧ op1, op2 ∈ {create, delete, update, rename}

We overload the use of ⊥ to also capture idem-potency of actions. Actions that
can be considered idempotent, such as two consecutive updates to the same file,
are added to the relation.

Partial order reduction, based on ⊥, is implemented by representing the vo-
cabulary of actions Laction = {a1, . . . , am} using an mapping por from {1, . . . , m}
into 2{1,...m} such that ai⊥aj , if and only if j ∈ por(i). The sets por(i) are imple-
mented as bit-vectors, as m is relatively small and of fixed size. Depth first search
then prunes action sequences containing the pair aiaj if ai⊥aj (that would be
j ∈ por(i)) and j ≤ i.

8.6 Experiments

We ran simulation relatively early in the development process. As the product
got more stable we ran a two week experiment, distributing the search over a
cluster of 200 machines each exploring a different portion of the search space.
This helped us covering slightly more than 1

2
trillion scenarios, for checking main

consistency properties.
Early on, simulation caught a large number of bugs that may have been

caught later in stress. On the other hand, simulation served as a pretty good
regression test as the implementation was evolving at a rapid pace. Some of the
bugs found during simulation had the traits of being extremely difficult for a
stress test to identify. For instance, the trace below exposed a corner case in
the interplay between the components that recycled unique identifiers and those
that walked directories.

create(m2,noshare/p)
rename(m2,noshare/p, share/p)
read−journal(m2, ω)
sync(m1, m2)
rename(m2, share/p,noshare/p)



rename(m2,noshare/p, share/p)
read−journal(m2, ω)
update(m1, share/p)
sync(m1, m2)

In comparison, the bugs found in stress were predominantly in the com-
ponents that are abstracted away during simulation. There were a couple of
exceptions, though. Stress exposed a divergence bug that simulation was blind
to, it also exposed a protocol error exposed by asynchronous message passing.

9 Conclusions

This paper provided an experience report on the design and modeling used for
the development of DFS-R. We put emphasis on the use of research tools Zing
and AsmL from MSR, taking advantage of applicative features in garbage col-
lected functional languages, and experiences with software model checking. None
of these approaches are mainstream in product development, neither can it be
said that DFS-R is a mainstream product; but we feel that pieces and variants of
the approaches taken for DFS-R are benefitial for developing other distributed
systems. The AsmL (now called SpecExplorer) and Zing tools are directly avail-
able as general purpose tools. Today, SpecExplorer is mainly directed towards
model-based testing, while its use as a design tool is under-emphasized. Our
software model checker was built exclusively for DFS-R. I doubt much of our
simulation implementation can or should be re-used, as a custom simulation
layer is easiest developed by the component owner. There is a ray of hope in fu-
ture availability of general purpose tools for software model checking concurrent
and/or distributed systems, though the task of building these is huge.

It should be noted that modeling, model exploration and software model
checking are resource-wise minor activities in the larger picture of developing a
product. Far more prolific was stress testing, where multiple instances of DFS-R
are run against random file system operations. During development, each devel-
oper and tester ran stress sessions with up to 1-2 million file system operations
every night. Besides stress runs, BVT regression tests, interoperability testing
and bug-bashes each contributed in driving quality.
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