
Verifying Compiler Transformations for
Concurrent Programs

March 11, 2009

Technical Report
MSR-TR-2008-171

Microsoft Research
Microsoft Corporation

One Microsoft Way
Redmond, WA 98052

This page intentionally left blank.

Verifying Compiler Transformations for Concurrent Programs

Sebastian Burckhardt Madanlal Musuvathi
Microsoft Research

{sburckha,madanm}@microsoft.com

Vasu Singh
EPFL, Switzerland
vasu.singh@epfl.ch

Abstract
Compilers transform programs, either to optimize performance or
to translate language-level constructs into hardware primitives. For
concurrent programs, ensuring that a transformation preserves the
semantics of the input program can be challenging. In particu-
lar, the emitted code must correctly emulate the semantics of the
language-level memory model when running on hardware with a
relaxed memory model.

In this paper, we present a novel proof methodology for prov-
ing the soundness of compiler transformations for concurrent pro-
grams. Our methodology is based on a new formalization of mem-
ory models as dynamic rewrite rules on event streams. We imple-
ment our proof methodology in a first-of-its-kind semi-automated
tool called Traver to verify or falsify compiler transformations. Us-
ing Traver, we prove or refute the soundness of several commonly
used compiler transformations for various memory models. In this
process, we find subtle bugs in the CLR JIT compiler and in the
JSR-133 Java JIT compiler recommendations.

Keywords Compiler correctness, concurrency, memory models

1. Introduction
The correctness of compilers is crucial for the reliability of modern
software systems. Compilers perform a series of transformations
that translate a high-level program into low-level machine instruc-
tions, while optimizing the code for performance. For correctness,
these transformations have to preserve the meaning for any input
program. Proving the correctness of these transformations has been
extensively studied for sequential programs [19, 13, 11, 14]. In this
paper, we focus on the correctness of compiler transformations for
multithreaded programs.

The presence of concurrency (not surprisingly) substantially
complicates the reasoning when trying to establish correctness of
transformations. First, the effects of a transformation are no longer
local. Two program snippets that are functionally equivalent with
respect to the input-output behavior can still exhibit different inter-
actions with other threads in the system. Thus, a seemingly correct
transformation can introduce subtle safety or liveness errors in an
otherwise correct program. Such errors are extremely difficult to
find after the fact, because they may require specific user programs,
thread interleavings, and hardware multiprocessor configurations to
manifest at runtime.

Second, the semantics of a concurrent program is defined by
a language memory model [15, 2]. In order to facilitate certain
optimizations, these memory models allow more behaviors than
sequential consistency, the most intuitive model for programmers.
Obviously, any proof methodology for the correctness of compiler
transformations should account for these relaxations. In particular,
the effect of each transformation should be in accordance with
the officially specified memory model. Manually doing so can be
extremely error-prone [18].

Finally, the correctness of transformations depends also on the
memory model of the underlying hardware. Machine code can be
further transformed dynamically in the hardware as it executes.
Compilers should ensure that the generated code retains the se-
mantics of the original program in the presence of such relaxations.
This is particularly important for backend compiler transformations
that map language constructs to hardware primitives and for those
that perform optimizations on the machine code. Again, any proof
methodology should account for these hardware memory models
as well. Section 2 contains examples that elucidate all of the chal-
lenges mentioned above.

To address these challenges, we present a proof methodology
and a tool for verifying program transformations for concurrent
programs. We first establish a formal definition (§3.3) for the
soundness of program transformations. Our definition is based on
a general notion of “observations” of an execution that hides in-
ternal program details but preserves all externally visible events,
including program termination.

We then introduce a new memory model formalization (§3.4)
that unifies the specification of both language and hardware mem-
ory models as rewrite rules on program events. This new formaliza-
tion allows mechanical reasoning of the effects of memory models
on program transformations. At the same time, our formalization
is powerful enough to concisely state realistic memory models. In
this paper, we provide a formal specification of the x86 memory
model [10] that is precise enough to capture the non-atomic be-
havior of hardware stores (§3.4.2). We also provide, to our knowl-
edge, the first formal specification of the working CLR memory
model [3, 8, 16] (§3.4.3).

Finally, we present a semi-automated tool called Traver (short
for transformation verifier) that implements a novel proof method-
ology for verifying or falsifying the soundness of program trans-
formations against memory models. Given a local program trans-
formation and a memory model, Traver uses an automated theorem
prover [7] to prove that the set of observations of the transformed
program is contained in the set of observations of the original pro-
gram, for all possible program contexts. Conversely, when provided
with an additional falsification context, Traver can automatically
show that the transformation produces an outcome that is observ-
able. This produces a certificate of unsoundness of the transforma-
tion.

Using Traver, we determine the soundness of several com-
monly used compiler transformations for different memory models
(§6). In this process, Traver discovered two subtle but important
bugs (§6) that refute accepted-wisdom among compiler experts.
The first bug is in the CLR JIT compiler for the x86 platform. Due
to the store-load forwarding in x86, we show that volatile reads in
C# are not guaranteed to have acquire semantics. The second bug
is in the recommendations of the popular cookbook [12] for JVMs.
We show that, despite strong ordering guarantees in x86, a fence
between two volatile loads cannot be eliminated.

bool B = false, X = false, Y = false;

Transformation Observer

bool r = B;
if(r) {

X = r; Y = !r;
} else {

Y = !r; X = r;
}

⇒
bool r = B;
X = r;
Y = !r;

X = true;
assert(X || Y);

Figure 1. An incorrect transformation that reorders writes to
shared variables X and Y.

int X;

int r1 = X;
int r2 = X;

⇒ int r1 = X;
int r2 = r1;

Figure 2. Redundant read elimination

Our experience with Traver has successfully demonstrated the
power of formalism and automation in discovering corner cases
where normal programmer intuition fails. However, we believe that
the proof methodology and the tool presented in the paper has many
more uses in the future. First, Traver can be integrated in an existing
compiler to automatically verify compiler transformations. Second,
current compiler optimizations for concurrent programs are fairly
conservative. A tool like Traver opens the possibility for new, ag-
gressive optimizations for concurrent programs that can then be
proven correct. Finally, we believe that Traver is also useful for
designing memory models for new concurrent programming lan-
guages, as it allows the language designer to explore various trade-
offs between performance and expressiveness of the language.

2. Motivating Examples
In this section, we provide examples to motivate our work and to in-
troduce the readers to the challenges involved in proving compiler
transformations for concurrent programs.

Figure 1 shows a program transformation that is correct only
for sequential programs. This program1 contains three shared vari-
ables (capitalized by convention) and a local variable r. The trans-
formation removes a branch whose outcomes have the same net
effect. However, the transformation requires a reordering of shared-
variable stores in the else-branch. This can be observed by the
thread on the right in Figure 1. To see this, the assert cannot fail in
the original program, as the only branch outcome (the else branch)
that sets X to false sets Y to true before the update to X. The trans-
formed program does not provide this guarantee, potentially caus-
ing an assertion violation.

Figure 2 shows a correct transformation that contains the elimi-
nation of a redundant read of the variable X. The correctness, how-
ever, is not entirely obvious. One has to show that this program does
not change the behavior of every conceivable “observer” thread.
Using the techniques described in this paper, one can indeed prove
that this is so.

Readers should note that this transformation reduces the set of
behaviors of the program. the local variables r1 and r2 can be dif-
ferent in the original program, if the computation is interleaved
with other threads that modify X, but not so in the modified pro-
gram. We deem it acceptable for program transformations to re-
duce the set of behaviors resulting from the nondeterminism of

1 Assume sequential consistency for now.

int X = 0;

Transformation Observer

int r1 = X;
while(X == 0);

⇒ int r1 = X;
while(r1 == 0);

X = 1;

Figure 3. Redundant read elimination causing nontermination.

int X = 0, A = 1, B = 1

Transformation Observer

int r = X;
r = r + A;
X = r;
r = X;
r = r + B;
X = r;

⇒

int r = X;
r = r + A;
r = r + B;
X = r;

B = 0;
mfence;
if(X == 0)

assert(X <= 1);

Figure 4. The transformation above is not correct for sequentially
consistency, but is correct for the x86 memory model.

volatile int X=0,Y=0;

Transformation Observer

// C# program
int r1,r2;

X = 2;
r1 = X;
r2 = Y;

⇒

// x86 program
register r1,r2;

mov X,2;
mov r1,X;
mov r2,Y;

int r3;

Y = 1;
X = 1;
r3 = X;

Figure 5. CLR-JIT bug: The store-load forwarding of X to r1 in
x86 breaks the acquire-semantics required by the CLR memory
model. The final state X=2,Y=1,r1=2,r2=0,r3=2 is not valid for
the C# program, but is possible in the translated x86 program.

the scheduler. Many useful transformations would not be possible
without this flexibility.

On the other hand, a transformation is not allowed to arbitrarily
reduce behaviors — it is still important to retain behaviors that
ensure the liveness of programs. Figure 3 shows a transformation
very similar to the one in Figure 2 but is not correct. With the
observer in the figure, the original program terminates but the
transformed program does not. Our proof methodology can identify
transformations that introduce such liveness violations.

Figure 4 shows a transformation that is correct only for certain
memory models. The original program performs two increments of
X, first by A and then by B, writing back the value of X after each
increment. The transformation optimizes the intermediate store of
X. The observer thread in Figure 4 shows that this transformation is
not correct for sequential consistency. With the original program,
the branch in the observer is taken when the program has not up-
dated X yet. But by this time, the observer has set B to zero, ensur-
ing that the assert never fails. This is not the case with the trans-
formed program. This transformation is (surprisingly) correct for
the x86 memory model. Under the x86 memory model, regular
stores can be delayed past subsequent loads due to the presence
of store-buffers in the hardware. Thus, the assertion in the observer
can fire both before and after the transformation. The proof method-
ology can be used to show that no observer can differentiate the two
programs in Figure 4 under the x86 memory model.

Figure 5 describes a bug in the CLR JIT that our tool found (§6).
This demonstrates the difficulting of retaining the language mem-

ory model in the presence of the hardware memory model. The
working CLR memory model [3, 8, 16], unlike its Java counter-
part [15], does not guarantee sequential consistency for volatile ac-
cesses. However, it provides acquire semantics to volatile reads and
release semantics to volatile writes. In particular, a volatile store
can be reordered with a subsequent volatile read, but volatile store-
store and volatile load-load reorderings are not allowed. As the
x86 provides similar ordering guarantees, the CLR-x86 JIT trans-
lates volatile accesses into regular x86 accesses. Contrary to expert-
intuition, this is wrong.

We informally describe the bug below. Section 6 contains a
formal description. With the observer in Figure 5, a final state of
X=2,Y=1,r1=2,r2=0,r3=2 is not reachable in the CLR memory
model. The final values of r1 and r3 restrict the store-load reorder-
ings allowed by the CLR memory model, requiring sequential con-
sistency for this code fragment. The reader should convince herself
that under this restriction r2=0 is not possible. The x86 memory
model however, allows “store-load-forwarding”. This means that
the store to X can be delayed past the load of Y while r1 still receiv-
ing the forwarded value from this store.

3. Formulation
In our experience, concurrency and relaxed memory models often
go beyond what our intuition can handle. We now establish a
formalism for programs, program transformations, and memory
models that lets us precisely state, prove, and refute the soundness
of transformations.

3.1 The calculus
We start with a simple imperative calculus for shared-memory
concurrent programs. We define the syntax of snippets (program
fragments) recursively, in Fig. 6.

Our calculus distinguishes between shared variables L (which
may be accessed concurrently) and local variables2 R. We let
V = L∪R be the set of all variables. We let X be the set of values
assumed by the variables. For simplicity, we only use integers here,
assuming X = Z.

The (load) and (store) statements move values between local
and shared variables; we use an access qualifier h ∈ H (defined in
Section 3.4) to distinguish different access types, such as normal
versus volatile. The (assign) statement performs computation, such
as addition, on local variables. The (compare-and-swap) statement3

compares the values of L and rc , stores rn to L if they are equal,
and assigns the original value of L to rr .

The statements (get) and (print) represent simple I/O in the form
of reading from or writing to an interactive console. The statements
(sequential composition), (conditional) and (loop) have their usual
meaning (we let 0 denote false, and all other numbers denote
true). The statement (parallel composition) executes its components
concurrently, and waits for all of them to finish before completing.
The statements (local) and (shared) declare mutable variables and
initialize them to the given value. 4

To enforce that local variables are not accessed concurrently, we
define the free variables as in (Fig. 7) and call a snippet ill-typed
if it contains a parallel composition s1 ‖ · · · ‖ sn such that for

2 Local variables are intended to represent non-shared entities like registers
or non-escaping local variables, while shared variables represent all mem-
ory locations for which the compiler can not prove that they are thread-local.
3 Compare-and-swap provides a simple, yet universal primitive from which
other synchronization operations can be derived [9].
4 Compared to let, as used in functional languages, they differ by (1) al-
lowing mutation of the variable, and (2) strictly restricting the scope and
lifetime to the nested snippet.

L ∈ L (shared variable)
r ∈ R (local variable)
x ∈ X (value)
h ∈ H (access qualifier)
f : Xn → X (local computation), n ≥ 0
s ::= skip (skip)

| r :=h L (load)
| L :=h r (store)
| r := f(r1, . . . , rn) (assign), n ≥ 0
| rr := cash(L, rc , rn) (compare and swap)
| get r (read from console)
| print r (write to console)
| s; s (sequential composition)
| s1 ‖ · · · ‖ sn (parallel composition), n ≥ 2
| if r then s else s (conditional)
| while r do s (loop)
| local r = x in s (local variable declaration)
| share L = x in s (shared variable declaration)

Figure 6. Syntax of program snippets s.

FV (skip) = ∅
FV (r :=h L) = {r, L}
FV (L :=h r) = {L, r}

FV (r0 := f(r1 . . . rn)) = {r0, r1, . . . rn}
FV (rr := cash(L, rc , rn)) = {L, rr , rc , rn}

FV (get r) = {r}
FV (print r) = {r}

FV (s; s′) = FV (s) ∪ FV (s′)
FV (s1 ‖ · · · ‖ sn) = FV (s1) ∪ · · · ∪ FV (sn)

FV (if r then s else s′) = {r} ∪ FV (s) ∪ FV (s′)
FV (while r do s) = {r} ∪ FV (s)

FV (local r = x in s) = FV (s) \ {r}
FV (share L = x in s) = FV (s) \ {L}

Figure 7. Definition of the set of free variables FV (s) of s.

some i, j, we have (FV (si) ∩ FV (sj) ∩ R) 6= ∅, and well-typed
otherwise. We let S be the set of all well-typed snippets.

Finally, we define a program to be a well-typed snippet s with
no free variables. We let P be the set of all programs.

3.2 Observations
In order to arrive at a comprehensive definition of soundness for
program transformations, we distinguish between externally ob-
servable effects and internal details. A sound transformation should
not change externally observable effects of a program. We let these
effects include (1) whether the program terminates or diverges, and
(2) the sequence of visible events the program produces when in-
teracting with its environment.

Formally, let Ext be the set of of externally visible events. In
real programs, there can be many such visible events due to the
wealth of interactions with the environment. In our calculus, these
include reading a number from an interactive console, and printing
a number to the console:

Ext = {〈get n〉 | n ∈ Z} ∪ {〈print n〉 | n ∈ Z}

Let Ext∞ = Ext∗ ∪ Extω be the set of finite or infinite
sequences of events, and let ε denote the empty sequence. Now
we define the set of observations as follows:

O = {u | u ∈ Ext∗} ∪ {∇u | u ∈ Ext∞}

p1 =

 local r = 1 in
local s = 2 in
(print r) ‖ (print s)

 p2 =

 local r = 1 in
local s = 2 in
print r;
print s

p3 =

 local r = 1 in
while r do

print r

 p4 =

local r = 0 in
get r;
while r do

skip;
print r

Figure 8. Four example programs. p1 and p2 always terminate, p3

never terminates, and p4 sometimes terminates. p1 can be soundly
transformed to p2, but not vice versa.

c ::= [] | c ; s | s ; c | while r do c
| if r then c else s | if r then s else c
| s1 ‖ · · · ‖ sk−1 ‖ c ‖ sk+1 ‖ · · · ‖ sn (1 ≤ k ≤ n)
| local r = x in c | share L = x in c

Figure 9. Definition of the syntax of program contexts.

An observation of the form u represents a terminating execu-
tion that produces the finite event sequence u; an observation of
the form ∇u represents a nonterminating execution that produces
the (finite or infinite) sequence u. For example, the program p1

in Fig. 8 has two possible observations, 〈print 1〉〈print 2〉 and
〈print 2〉〈print 1〉; the program p2 has one possible observation,
〈print 1〉〈print 2〉; the program p3 has one possible observation,
∇〈print 1〉ω; and the program p4 has the following set of possible
observations:

{〈get 0〉〈print 0〉} ∪ {∇〈get n〉 | n 6= 0}

3.3 Transformations
Having defined exactly what can be observed about program execu-
tions, we can define soundness of transformations based on the idea
that their effects should not be observable. For programs p, p′ ∈ P ,
we let p⇒ p′ represent the program transformation of p into p′.

DEFINITION 1. We call a program transformation p⇒ p′ sound if
obs(p′) ⊆ obs(p).

An important point is that we consider it acceptable if the trans-
formed program has fewer observations than the original one. For
example, we would consider it o.k. to transform program p1 to pro-
gram p2 in Fig. 8, which essentially reduces the nondeterministic
choices available to the scheduler in scheduling the two print state-
ments. An external entity interacting with the program cannot ob-
serve this reduction.

Of particular practical relevance are local transformations. We
let a program context be a “program with a hole []”, defined in
Fig. 9. For a context c and snippet s, we let c[s] be the snippet
obtained by replacing the hole in c with s. For two snippets s, s′ ∈
S, we let (s→ s′) be a transformation rule.

DEFINITION 2. We say a transformation rule (s → s′) induces a
program transformation p⇒ p′ if there exists a context c such that
p = c[s], p′ = c[s′]. We call a local transformation rule (s → s′)
sound if all induced program transformations p⇒ p′ are sound.

L ∈ L (shared variable)
x ∈ X (value)
h ::= R | L |W | S (access qualifier)
e ::= 〈ldh L, x〉 (load)

| 〈sth L, x〉 (store)
| 〈ldsth L, xl, xs〉 (atomic load-store)
| 〈mfence〉 (full memory fence)
| 〈get x〉 (get)
| 〈print x〉 (print)

Figure 10. Definition of events e.

Sequential Consistency (SC)

e ::= 〈ldS L, x〉 | 〈stS L, x〉 | 〈ldstS L, xl, xs〉
(no rewrite rules)

Intel 32/64 Model (X86)

e ::= 〈ldR L, x〉 | 〈stR L, x〉 | 〈mfence〉
| 〈ldL L, x〉 | 〈stL L, x〉 | 〈ldstL L, xl, xs〉

srsrl (swap regular store - regular load) =
〈stR L, x〉〈ldR L′, x′〉

L 6=L′→ 〈ldR L′, x′〉〈stR L, x〉
ersrlf (eliminate regular store - regular load - forward) =
〈stR L, x〉〈ldR L, x〉 → 〈stR L, x〉

Informal CLR 2.0 Model (CLRblog)

e ::= 〈ldW L, x〉 | 〈stW L, x〉
| 〈ldS L, x〉 | 〈stS L, x〉 | 〈ldstS L, xl, xs〉

ssl (swap store - load) =
〈sth L, x〉〈ldh′ L′, x′〉

L 6=L′→ 〈ldh′ L′, x′〉〈sth L, x〉
swll (swap weak load - load) =
〈ldW L, x〉〈ldh L′, x′〉 → 〈ldh L′, x′〉〈ldW L, x〉

eswlf (eliminate store - weak load - forward) =
〈sth L, x〉〈ldW L, x〉 → 〈sth L, x〉

Informal CLR Model with SC volatiles (CLRSC
blog)

e ::= 〈ldW L, x〉 | 〈stW L, x〉
| 〈ldS L, x〉 | 〈stS L, x〉 | 〈ldstS L, xl, xs〉

swswl (swap weak store - weak load) =
〈stW L, x〉〈ldW L′, x′〉 L 6=L

′
→ 〈ldW L′, x′〉〈stW L, x〉

swlwl (swap weak load - weak load) =
〈ldW L, x〉〈ldW L′, x′〉 → 〈ldW L′, x′〉〈ldW L, x〉

ewswlf (eliminate weak store - weak load - forward) =
〈stW L, x〉〈ldW L, x〉 → 〈stW L, x〉

Figure 11. Memory Model Definitions. For each model, we list
the memory accesses and a list of dynamic rewrite rules.

3.4 Memory Models
We now formally specify the effects of memory models on pro-
grams. Memory model effects are similar to program transforma-
tions insofar they locally transform the program. However, the
transformations are of a dynamic nature. Transformations may de-
pend on information not statically known such as what actual ad-
dress is accessed, or how many iterations a loop performs.5

To understand memory model effects, we visualize an executing
program as an event stream, and the memory model as a component
that tampers with the event stream by swapping or eliminating
events, in an attempt to improve performance under the covers (but
sometimes causing observable anomalies). Fig. 10 defines the set
of events. There are memory events (loads, stores, atomic load-
stores, and fences) as well as externally visible events (get, print).
Each event contains all the relevant info, such as which variable
was accessed, and what value(s) were loaded, stored, received,
or printed. Moreover, all memory events carry a qualifier h ∈
{R,L,W, S} to distinguish between different access types. On
the hardware (x86) level, we use R and L to represent regular
and locked accesses; on the language level, we use W and S to
distinguish between weak (normal) and strong (volatile) accesses.

Each concurrent component produces a separate event stream
which then gets merged (interleaved) with the others. Streams may
be modified by the memory model both before and after they
are merged. Only the final event stream is required to be value-
consistent (each load sees the latest value stored to the same ad-
dress). See Fig. 12 for an example.

Exactly what modifications are possible depends on the mem-
ory model; we define several useful models using rewrite rules in
Fig. 11, to be discussed in the following subsections.

3.4.1 The (SC) Model
Sequential consistency is the most conservative memory model. It
does not alter the event streams in any way, thus does not contain
any rewrite rules.

3.4.2 The (X86) Model
This model is our formalization of the memory model released by
Intel in 2007 [10]. It features snooping store buffers, reflected by
the rules srsrl6 and ersrlf.7 It provides full sequential consistency
for all locked operations,8 guarantees release semantics for stores,9

and does not reorder loads with other loads.10 Fences do not partic-
ipate in rewriting and thus enforce ordering between preceding and
succeeding events.

To the best of our knowledge, our specification is equivalent to
the (informally specified) official memory model. For further con-
firmation, we have ascertained that our model gives the correct re-
sults on all 10 litmus tests in the official whitepaper [10]. Moreover,

5 In fact, each individual loop iteration may be transformed differently, and
dynamic transformations may easily cross loop and procedure boundaries.
6 The rule srsrl expresses that the memory model may swap two consecu-
tive events in the stream if the first one is a regular store, the second one is
a regular load, and if they access different locations (expressed by the con-
dition L 6= L′). This reflects the behavior of a store buffer: while a store is
still in the buffer, the processor may execute a subsequent load to a different
address.
7 The rule ersrlf expresses that if a store is followed by a load from the
same address that loads the same value, then the load may be hidden. This
expresses snooping of the buffer: the load is satisfied directly from the
buffer and not globally visible.
8 None of the rewrite rules contain locked operations, which implies that
they are interleaved in a sequentially consistent way.
9 None of the rewrite rules move any events past a store.
10 There is no rewrite rule for swapping loads.

Initially, A = B = 0[
A :=R 1

r1 :=R A
r2 :=R B

] [
B :=R 1

r3 :=R B
r4 :=R A

]
Eventually, r1 = r3 = 1 and r2 = r4 = 0

〈stR A, 1〉
〈ldR A, 1〉
〈ldR B, 0〉︸ ︷︷ ︸ 〈stR B, 1〉

〈ldR B, 1〉
〈ldR A, 0〉︸ ︷︷ ︸

〈stR A, 1〉〈ldR A, 1〉〈ldR B, 0〉 〈stR B, 1〉〈ldR B, 1〉〈ldR A, 0〉

〈stR A, 1〉〈ldR B, 0〉 〈stR B, 1〉〈ldR A, 0〉

〈ldR B, 0〉〈stR A, 1〉 〈ldR A, 0〉〈stR B, 1〉︸ ︷︷ ︸
〈ldR B, 0〉〈ldR A, 0〉〈stR A, 1〉〈stR B, 1〉

Figure 12. The IRIW example (in the box) is not prohibited on the
X86 memory model (IRIW stands for independent reads of inde-
pendent writes). Note that the parallel composition is not flat but
hierarchical, reflecting a nested cache hierarchy where near proces-
sors can see updates before far processors. The diagram below the
box shows how to derive this execution using the rewriting rules
of the memory model X86 (defined in Fig. 11). At the top, each
processor emits an event sequence consistent with the program (the
loaded values are justified later). Next, adjacent processors’ instruc-
tion streams get interleaved. Then, we apply ersrlf on both sides to
hide the snooped load. Next, we apply srsrl on both sides to delay
the store past the load. Finally, we interleave the sequences and ob-
tain a value-consistent sequence, which justifies the loaded values.

we were pleased to discover that it can reproduce the mysterious
IRIW example (Fig. 12) in an elegant way (that is, without having
to split the store into components for each processor). Essentially,
we can explain the IRIW effect by applying store-load forwarding
(the ersrlf rule) on the level of intermediate shared caches. The
AMD architecture specification [1] explicitly allows processors to
exhibit IRIW.

3.4.3 The (CLRblog) Model
This model, to our knowledge, is the first formal specification of
the working CLR memory model [3, 8, 16]. Events in this model
consist of weak (regular) and strong (volatile) accesses. Both weak
and strong stores have release semantics as indicated by the ssl rule
that allows reordering of stores past loads. By the swll rule, loads
can be reordered, except that strong loads have acquire semantics.
Finally, eswlf allows weak loads to be eliminated with forwarded
values from preceding stores.

3.4.4 The (CLRSC
blog) Model

This model is a stronger variation of the (CLRblog) model that
ensures sequential consistency for strong accesses. This is reflected
by all rules applying to weak accesses only (strong accesses do not
participate in any rewriting).

4. Solution
In this section, we give a detailed account of our methodology to
prove the soundness of a local transformation (s→ s′).

Our strategy is as follows. First, we characterize the set B of
behaviors of a program snippet s (akin to observations of a program
p) such that B captures effects of s that are observable by the rest
of the program. We define a semantic bracket [[]]M to recursively

compute the behaviors of s from its syntax for a given memory
model M . Then we prove two key theorems.

The first theorem is based on the simple intuition that if s′

does not introduce any new behaviors over s, then the effect of the
transformation (s → s′) is not observable. Specifically, it states
that [[s′]]M ⊆ [[s]]M implies soundness. For example, suppose s′ is
obtained from s by reordering loads, and M reorders loads as well.
Then [[s]]M contains the reordered trace and thus [[s′]]M ⊆ [[s]]M
which implies soundness.

Sometimes, transformations do introduce new behaviors but are
still sound because the difference is not observable; for example,
they may introduce irrelevant reads (see Fig. 16 at the end for some
examples). We extend our methodology to handle this case by for-
malizing the notion of procrastinable transformations. Our gener-
alized soundness theorem shows that if D is a set of procrastinable
transformations for M , then [[s′]]M∪D ⊆ [[s]]M∪D implies sound-
ness. This allows us to prove the soundness of more transforma-
tions.

4.1 Behaviors
To capture the behaviors of snippets, we need to capture (1) the
effect on the local state, and (2) the sequence of events. Specifically,
we let Q be the set of local states, defined as functions R → X ,
and we let Evt be the set of events as defined in Fig. 10. Then we
define the set of behaviors

B = (Q×Q× Evt∗) ∪ (Q× Evt∞)

A triple (q, q′, w) represents a terminating behavior that starts in
local state q, ends in local state q′, and emits the event sequence
w. A pair (q, w) represents a nonterminating behavior that starts in
local state q and emits the (finite or infinite) event sequence w.

For a set B ⊆ B and states q, q′ ⊆ Q we define the projections
[B]qq′ = {w | (q, q′, w) ∈ B} and [B]q = {w | (q, w) ∈ B}.

4.2 Dynamic Rewrite Rules
To define dynamic transformations of event sequences (as per-
formed by the hardware), we use rewrite rules of the form p

ϕ→ q
where p and q are patterns and ϕ is an (optional) formula describ-
ing conditions under which the rule applies. We let T be the set of
all such rewrite rules.

For example, consider the rewrite rules in Fig. 11 and Fig. 14.
The rule ssl expresses that a store can be moved past a load that
immediately follows it and accesses a different variable. The rule
edlh means that if a sequence contains two identical loads (target-
ing the same variable and loading the same value), one of them can
be eliminated.

To use our generalized soundness theorem we need rules that
involve multiple behaviors at a time. For instance, the rules eil and
iil (Fig. 14) feature the wildcard character ∗. They do not rewrite
individual sequences, but sets of sequences. The rule eil allows us
to eliminate a load from a sequence if it appears for all possible
values. The rule iil introduces a load into a sequence, once for each
value. We call rules that feature wildcards aggregate rewrite rules,
and all others simple rewrite rules. We now define the effects of a
general rewrite rule more formally.

DEFINITION 3. For a rewrite rule t = p
ϕ→ q, let Gt ⊂

P(Evt∗) × P(Evt∗) be the set of set pairs (S1, S2) such that
there exists a valuation of the variables in p, q that satisfies ϕ and
such that S1 and S2 correspond to all values (under varying as-
signments to the wildcards) of p and q, respectively. Then, define

the operator t : P(Evt∗)→ P(Evt∗) by

t(A) =
⋃
{wS2w

′ | w,w′ ∈ Evt∗

(S1, S2) ∈ Gt and wS1w
′ ⊆ A}

For example, Geil contains all set pairs (S1, S2) such that there
exists a l ∈ L such that S1 = {〈ld l, x〉 | x ∈ X} and S2 = {ε}.
For simple rewrite rules t, all set pairs in Gt are of the form
({w1}, {w2}) for some w1, w2 ∈ Evt∗, and the definition above
reduces to “normal” rewriting.

For a set T ⊂ T , we define T (A) = A ∪
⋃
t∈T t(A). The

following definition is useful for parallel rewriting.

DEFINITION 4. Let f : P(Evt∗)→ P(Evt∗). Then we define the
operators Pf : P(Evt∗) → P(Evt∗) and P̂f : P(Evt∞) →
P(Evt∞) by

Pf (A) =
⋃
{ f(A1) · · · f(An) |

Ai ⊂ Evt∗ such that A1 · · ·An ⊆ A}

P̂f (Â) =
⋃
{ f(A1)f(A2)f(A3) · · · |

Ai ⊂ Evt∗ such that A1A2A3 · · · ⊆ Â}.

Note that P̂f (Â) may contain infinite sequences even if Â does
not.11 We now show how to construct fixpoints for the effect of
memory models M ⊆ T on behaviors.

DEFINITION 5. A memory model is a finite set M ⊂ T of simple
rewrite rules.

DEFINITION 6. Let M be a memory model. We define M∗ :
P(Evt∗)→ P(Evt∗) and M∞ : P(Evt∞)→ P(Evt∞) by

1. M∗(A) =
⋃
k≥0M

k(A)

2. M∞(Â) =
⋃
k≥0(P̂M∗)

k(Â)

Moreover, for a set B ⊆ B of behaviors, define the closure BM as

BM = {(q, q, w) | q, q′ ∈ Q and w ∈M∗([B]qq′)}
∪ {(q, w) | q ∈ Q and w ∈M∞([B]q)}.

This definition reflects the effects of the memory model on
behaviors. 12. We can show that (BM)M = BM (see the appendix
for a proof; the proof depends on M containing only simple rules).

4.3 Denotational Semantics
Fig. 13 defines the semantic bracket [[.]]M : S → P(B) which as-
signs to each snippet s the set of behaviors [[s]]M that smay exhibit
on memory model M . The bracket [[.]]M is defined recursively; it
computes behaviors of snippets from the inside out, applying the
memory model rewrite rules at each step. Sequential composition
appends the behaviors of its constituents, while parallel composi-
tion interleaves them. The behaviors of a load include all possible
values it could load (because the actual value depends on the con-
text which is not known at this point). Later, at the level of the
shared variable declaration, we filter out all behaviors that are not
value-consistent.

11 for example, consider Â = {ε} and M = {ε → 0}. Then P̂M (Â)
contains the infinite sequence 000 · · · .
12 Care is required to avoid undesired behaviors. For example, consider the
rule sslh in Fig. 14 which represents the effect of stores being delayed
in a buffer; while there is no bound on how long stores can be delayed,
they must be eventually performed. Our formalism reflects this properly,
as follows (using digits 0,1 instead of load and store events for illustration
purposes). Let A = {1010 . . . } and T = {10 → 01}. Then 0k1010 . . .
is in T∞(A), but 000 · · · is not.

Notations used. For q ∈ Q, r ∈ R and x ∈ X we let
q[r 7→ x] denote the function that maps r to x, but is otherwise
the same as the function q. For a shared variable L ∈ L, let
Evt(L) ⊆ Evt be the set of memory accesses to L. For two
sequences w ∈ Evt∗ and w′ ∈ Evt∞, we let ww′ ∈ Evt∞

be the concatenation as usual. For a sequence of finite sequences
w1, w2, · · · ∈ Evt∗, we letw1w2 · · · ∈ Evt∞ be the concatenation
(which may be finite or infinite). We lift concatenation to sets of
sequences as usual (elementwise): for example, for S ⊆ Evt∗ and
S′ ⊆ Evt∞ we let SS′ = {ss′ | s ∈ S, s ∈ S′}. For w ∈ Evt∞

and i ∈ N, let w[i] ∈ Evt be the event at position i (starting
with 1). Let dom w ⊆ N be the set of positions of w. For two
sequences w,w′ ∈ Evt∞ we define the set of fair interleavings
(w #w′) ⊆ Evt∞ to consist of all sequences u ∈ Evt∞ such that
there exist strictly monotonic functions f : dom w → dom u
and g : dom w′ → dom u satisfying rg f ∩ rg g = ∅ and
rg f ∪ rg g = dom w, and such that w[i] = u[f(i)] and w′[i] =
u[g(i)] for all valid positions i. Note that the interleaving operator
is commutative and associative. For a subset of events C ⊆ Evt ,
we define the projection function projC : Evt∞ → Evt∞ to map
a sequence to the largest subsequence containing only events in
C. We write proj−L short for the function projEvt\Evt(L) (which
removes all accesses to L). We call a sequence w ∈ Evt∞ value-
consistent with respect to a shared variable L ∈ L and an initial
value x ∈ X if for each load of L appearing in w, the value
loaded matches the value of the rightmost store to L that precedes
the load in w, or the initial value x if there is no such store.
We let Cons(L, x) ⊆ Evt∞ be the set of all sequences that
are value-consistent with respect to L and x. Similarly, we let
Cons(L, x, x′) ⊆ Evt∗ be the set of finite sequences that are
value-consistent with respect to initial and final values x and x′

of L, respectively.

4.4 Monotonicity of Observations
The following definition and theorem lay the foundation for our
soundness proofs. For the proof, see the appendix.

DEFINITION 7. Given a program p and a memory modelM , define
the set of observations as follows:

obsM (p) = {u | ∃(q, q′, w) ∈ [[p]]M : u = projExt(w)}
∪ {∇u | ∃(q, w) ∈ [[p]]M : u = projExt(w)}

THEOREM 8 (Monotonicity). Let M ⊆ T be a memory model,
and let s, s′ ∈ S be two snippets such that [[s′]]M ⊆ [[s]]M . Then,
for any context c, we have obsM (c[s′]) ⊆ obsM (c[s]).

4.5 Main Soundness Theorems
THEOREM 9 (Simple Soundness). Let (s → s′) be a local trans-
formation, and let M ⊆ T be a memory model. Then the following
condition is sufficient to guarantee soundness:

[[s′]]M ⊆ [[s]]M .

PROOF. Let c be a context such that p = c[s] and p′ = c[s′] have
no free variables. By Thm. 8, [[s′]]M ⊆ [[s]]M implies obsM (p′) ⊆
obsM (p). Thus, the transformation p⇒ p′ is sound. �

We now proceed to the more powerful generalized soundness
theorem which allows s′ to introduce new behaviors as long as
we can prove that they do not introduce additional observable
behaviors.

DEFINITION 10. Let M ⊆ T be a memory model, and let D ∈ T
be a set of rewrite rules. We call D procrastinable on M if it
satisfies the following conditions:

1. m(PD(A)) ⊆ PD(M∗(A)) for all m ∈M and A ⊆ Evt∗.

edlh (eliminate double load) =
〈ldh L, x〉〈ldh L, x〉 → 〈ldh L, x〉

edsh (eliminate double store) =
〈sth L, x〉〈sth L, x′〉 → 〈sth L, x′〉

ecsh (eliminate confirmed store) =
〈ldh L, x〉〈sth L, x〉 → 〈ldh L, x〉

eslfh (eliminate store-load forward) =
〈sth L, x〉〈ldh L, x〉 → 〈sth L, x〉

eilh (eliminate irrelevant load) = 〈ldh L, ∗〉 → ε
iilh (invent irrelevant load) = ε→ 〈ldh L, ∗〉

Figure 14. A list of procrastinable rewrite rules (Thm. 12).

2. if (S1, S2) ∈ Gd for some d ∈ D, then all sequences in S2 are
of length 0 or 1.

3. if (S1, S2) ∈ Gd for some d ∈ D, and w2 ∈ S2 ∩
Cons(L, x, x′), then there exists a w1 ∈ S1 ∩ Cons(L, x, x′)
such that proj−L({w2}) ∈ D(proj−L({w1})).

4. if (S1, S2) ∈ Gd for some d ∈ D, then projExt(S2) ⊆
projExt(S1).

We call a single transformation d ∈ T procrastinable if {d} is
procrastinable.

THEOREM 11 (Generalized Soundness). Let (s → s′) be a local
transformation, and let M ⊆ T be a memory model. Then the fol-
lowing condition is sufficient to guarantee soundness: there exists a
procrastinable set D ⊆ T and a k ≥ 0 such that for all q, q′ ∈ Q,
we have[
[[s′]]M

]
qq′
⊆ (PD)k [([[s]]M)]qq′ and

[
[[s′]]M

]
q
⊆ (P̂D)k [[[s]]M]q .

To use the generalized soundness theorem, we need to find
suitable procrastinable sets D. The following theorem does just
that.

THEOREM 12. Of the dynamic rewrite rules shown in Fig. 14, the
rules edlS , edsS , ecsS , eslfS , eilS , and iilS are procrastinable on
SC , the rules edlR, edsR, eilR, and iilR are procrastinable on
X86 , and the rules edlW , edsW , eilW , and iilW are procrastinable
on CLRblog and CLRSC

blog .

We give a rough description of the proof procedure here (we
include a detailed proof in the appendix). Checking the properties
1 through 4 is largely mechanical. To check property 1, we need to
examine the right-hand sides of parallel applications of elements in
D and see in what ways they may overlap with the left-hand side
of an individual rule in M . For each such overlap, we need to show
that we can delay the parallel application of D past the application
of M∗. Property 2 is immediate. Property 3 is straightforward.
Property 4 is trivial as none of the rewrite rules involves any
external events.

5. Tool
Our tool is written in F# and uses the automated theorem prover
Z3 [7]. It takes as input a local transformation (s → s′) and a
memory model M . The snippets s, s′ are specified using a sugared
syntax; we currently support loop-free snippets without parallel
composition only. The model M is specified by selecting a subset
of the rewrite rules in Fig. 11 and Fig. 14.

The user then chooses one of two modes (verification or falsi-
fication) which take some optional additional input and operate as
follows:

• In verification mode, the tool executes s and s′ symbolically
and attempts to prove ∀q : ∀q′ : [[[s′]]M]qq′ ⊆ D∗ [[[s]]M]qq′ ,

[[skip]]M = {(q, q, ε) | q ∈ Q}M

[[r :=h L]]M = {(q, q[r 7→ x], 〈ld L, x〉) | q ∈ Q, x ∈ X}M

[[L :=h r]]M = {(q, q, 〈st L, q(r)〉 | q ∈ Q}M

[[r0 := f(r1 . . . rn)]]M = {(q, q[r0 7→ f(q(r1) . . . q(rn)], ε) | q ∈ Q}M

[[rr := cash(L, rc , rn)]]M =

(
{(q, q[rr 7→ q(rc)], 〈ldst L, q(rc), q(rn)〉) | q ∈ Q}
∪ {(q, q[rr 7→ x], 〈ldst L, x, x〉) | q ∈ Q, x ∈ X , x 6= q(rc)}

)M
[[get r]]M = {(q, q[r 7→ x], 〈get x〉) | q ∈ Q, x ∈ X}M

[[print r]]M = {(q, q, 〈print q(r)〉 | q ∈ Q}M

[[s1; s2]]M =

 {(q, q′, w) | there exist (q, q′′, w1) ∈ [[s1]]M and (q′′, q′, w2) ∈ [[s2]]M such that w = w1w2}
∪ {(q, w) | (q, w) ∈ [[s1]]M}
∪ {(q, w) | there exist (q, q′, w1) ∈ [[s1]]M and (q′, w2) ∈ [[s2]]M such that w = w1w2}

M

[[s1 ‖ · · · ‖ sn]]M =

{(q, q′, w) | there exist (q, qi, wi) ∈ [[si]]M for all 1 ≤ i ≤ n such that
w ∈ w1 # . . . #wn and such that q′(r) = qi(r) for all r ∈ FV (si) and
q′(r) = q(r) for all r /∈ FV (s1) ∪ . . .FV (sn)}

∪ {(q, w) | there exist w1, . . . , wn ∈ Evt∞ and a nonempty subset D ⊆ {1, . . . , n}
such that for all j ∈ D, we have a behavior (q, wj) ∈ [[sj]]M ,
and for all j /∈ D, we have a behavior (q, qj , wj) ∈ [[sj]]M for some qj ,
and w ∈ w1 # . . . #wn}

M

[[if r then s1 else s2]]M =

(
{(q, q′, w) | (q(r) 6= 0 ∧ (q, q′, w) ∈ [[s1]]M) ∨ (q(r) = 0 ∧ (q, q′, w) ∈ [[s2]]M)}
∪ {(q, w) | (q(r) 6= 0 ∧ (q, w) ∈ [[s1]]M) ∨ (q(r) = 0 ∧ (q, w) ∈ [[s2]]M)}

)M

[[while r do s]]M =

{(q0, qn, w1 · · ·wn) | there exist n ≥ 0 and q0, . . . , qn such that (qi, qi+1, wi+1) ∈ [[s]]M

for 0 ≤ i < n, and q0(r) 6= 0, . . . , qn−1(r) 6= 0, and qn(r) = 0}
∪ {(q0, w1w2 · · ·) | ∃q1, q2, . . . : (qi, qi+1, wi+1) ∈ [[s]]M and qi(r) 6= 0}
∪ {(q0, w1 · · ·wn) | there exist n ≥ 1 and q0, . . . , qn−1 such that qi(r) 6= 0 for all i and

(qi, qi+1, wi+1) ∈ [[s]]M for 0 ≤ i < n− 1 and (qn−1, wn) ∈ [[s]]M}

M

[[local L = x in s]]M =

 {(q, q′, w) | there exists a behavior (q[r 7→ x], q′′, w) ∈ [[s]]M
such that q′ = q′′[r 7→ q(r)]}

∪ {(q, w) | there exists a behavior (q[r 7→ x], w) ∈ [[s]]M}

M

[[share L = x in s]]M =

 {(q, q
′, w) | there exists a behavior (q, q′, w′) ∈ [[s]]M

such that w′ ∈ Cons(L, x) and w = proj−L(w′)}
∪ {(q, w) | there exists a behavior (q, w′) ∈ [[s]]M

such that w′ ∈ Cons(L, x) and w = proj−L(w′)}

M

Figure 13. Denotational Semantics of our Calculus, parameterized by a set M of dynamic rewrite rules. An empty set M represents the
standard semantics (sequential consistency).

whereD is an optionally specified set of procrastinable rules, or
empty by default13. If successful, soundness is established (by
Thm. 11). Otherwise, the theorem prover will attempt to find a
behavior in the set difference and report it to the user.
• In falsification mode, the tool takes a context c (which may con-

tain several threads) as an additional input. It then computes the
closure of c[s′] and c[s] under interleavings and under M , and
solves for a behavior of c[s′] that is not observationally equiv-
alent (assuming that all initial and final values of all variables
are being observed) to any behavior in c[s]. If such a behavior
is found, soundness has been successfully refuted. Otherwise,
the result is inconclusive.

Both modes are semi-automatic in the following sense. If the
verification fails, it is up to the user to add more procrastinable rules
or to try falsification instead. If falsification fails, it is up to the user
to change the context or to try verification instead. Moreover, the

13 If irrelevant-load-introduction is one of the rules, we can not compute
D∗ and will use Dk instead, for a manually specified k. This does not
compromise the validity of a successful soundness proof, but it may mean
that we can not prove some rules sound if the bound is too low.

tool does not yet verify whether the procrastinable rulesD specified
by the user are truly procrastinable; we still use manual proofs for
this (see Thm. 12). Future work may further automate this process.

5.1 Symbolic computation
Internally, the tool represents sets of behaviors by functions ESeq →
F , where ESeq is the set of event sequences (event names only,
not containing values) and F is a set of formulas. The meaning
is that for each sequence of events the corresponding formula ex-
presses the conditions under which that sequence is in the set,
by constraining the variables Li and xi (representing the target
variable and the loaded/stored value of the i-th event in the se-
quence) as well as R and R′ (representing initial and final values
of local variables, respectively). For example, for shared variables
L = {A,B} and local variables R = {r, s} we represent the set
[[r :=h A; if r then r :=h B]] by the function which maps all
sequences to false except for

〈ldh〉 7→ (L1 = A) ∧ (x1 = 0) ∧ (r′ = x1) ∧ (s′ = s)

〈ldh〉〈ldh〉 7→ (L1 = A) ∧ (x1 6= 0) ∧ (L2 = B)
∧(r′ = x2) ∧ (s′ = s).

transformation name
(see Fig. 16) S

C

X
8
6

C
L
R

b
lo

g

C
L
R

S
C

b
lo

g

rules
(load reordering) × ×

√ √

(store reordering) × × × ×
(irrelevant read elim.)

√ √ √ √
eil

(irrelevant read intr.)
√ √ √ √

iil
(red. read-after-read elim.)

√ √ √ √
edl

(red. read-after-wr. elim.)
√ √ √ √

eslf on SC
(red. wr.-bef.-wr. elim.)

√ √ √ √
eds

(red. wr.-after-read elim.)
√

× × × ecs
(JIT example 1) n/a n/a × ×
(JIT example 2) n/a n/a × ×
(JIT example 3) n/a n/a × ×

Figure 17. Soundness results for the examples from Fig. 16. For
sound transformations (marked by

√
), we list any additional invis-

ible rules required for the proof on the right. For unsound transfor-
mations (marked by ×), we show example executions in Fig. 18.
All results were validated by our tool.

[
A :=S 1;
B :=S 1;

r :=S A;
s :=S C;

C :=S 1;
t :=S A;

]
⇓[

A :=R 1;
B :=L 1;

r :=R A;
s :=R C;

C :=L 1;
t :=R A;

]
final values r = 1, s = t = 0

〈stR A, 1〉
〈stL B, 1〉

〈ldR A, 1〉
〈ldR C, 0〉︸ ︷︷ ︸

〈stR A, 1〉〈ldR A, 1〉〈ldR C, 0〉〈stL B, 1〉

〈stR A, 1〉〈ldR C, 0〉〈stL B, 1〉

〈ldR C, 0〉〈stR A, 1〉〈stL B, 1〉
〈stR C, 1〉
〈ldR A, 0〉︸ ︷︷ ︸

〈ldR C, 0〉〈stR C, 1〉〈mfence〉
〈ldR A, 0〉〈stR A, 1〉〈stL B, 1〉

Figure 19. Derivation for the JIT example 3. We show the original
program, the transformed program, and an execution of the trans-
formed program that is not possible on the original program. All
shared variables and registers are initially zero.

For finite sets, all but finitely many sequences are mapped to
false. We can thus easily represent such sets in our tool implemen-
tation. Moreover, we can perform set union as elementwise dis-
junction, and we can apply rewrite rules symbolically, as shown in
Fig. 15. Using the automated theorem prover, we can prove/refute
inclusion of two symbolic sets Φ ⊆ Φ′ by proving/refuting∧
s(Φ(s) ⇒ Φ′(s)). This allows us to compute M∗(Φ) by re-

peatedly applying the rewrite rules until a fixpoint is reached.

6. Results
Using our tool, we successfully proved or refuted soundness of the
11 transformations in Fig. 16 for the four memory models defined

 B :=R 1;
r :=R A;

if(r == 0)
A :=R 0;

A :=L 1;
s :=L B;

⇓[

B :=R 1;
r :=R A;

A :=L 1;
s :=L B;

]
final values r = s = 0, A = B = 1

〈stR B, 1〉
〈ldR A, 0〉

〈ldR A, 0〉
〈stR B, 1〉

〈stL A, 1〉
〈ldL B, 0〉

〈ldL B, 0〉
〈stL A, 1〉︸ ︷︷ ︸

〈ldR A, 0〉〈ldL B, 0〉
〈stR B, 1〉〈stL A, 1〉

Figure 20. Refutation for the write-after-read elimination example
on X86 . We show the original program, the transformed program,
and an execution of the transformed program that is not possible on
the original program. All shared variables and registers are initially
zero.

in §3.4, with results indicated in Fig. 17. The tool performed ac-
ceptably, providing a good interactive experience. The total time
needed by the tool to prove/refute all examples is about 2 minutes,
with about 90% of the time spent on the last 4 examples.

The first eight are transformations that are commonly used by
optimizing compilers; it was recently found that some of them are
not sound for the Java memory model [18].

The first seven examples showed little surprise. The eighth
one (redundant-write-after-read elimination) exhibited a slightly
surprising behavior: while sound on SC , it is unsound on X86 ,
CLRblog and CLRSC

blog (Fig. 18 shows a falsification for CLRblog

and CLRSC
blog ; Fig. 20 shows a falsification for X86). This example

contradicts the (false) intuition that weaker memory models always
permit more transformations. In this case, the rule ecs (which we
use for the soundness proof) is procrastinable on SC , but not on
X86 , CLRblog and CLRSC

blog , where it may interact with store-load
and load-load reordering.

The JIT transformation examples proved particularly interest-
ing. Example 1 shows that regular X86 loads do not guarantee ac-
quire semantics even though the processors prohibit reordering of
loads with each other. The reason is store-load-forwarding: once
forwarded from a store, a load may effectively move past a follow-
ing load (Fig. 18). This discovery means that the current CLR JIT
compiler for the x86 platform is not correct; it will be fixed in the
future by strictly emitting locked instructions for all volatile stores,
thereby also satisfying the stronger CLRSC

blog model.
Example 2 shows that adding fences between volatiles is not al-

ways sufficient, because of store-load forwarding across processors
(Fig. 18). This example points out a bug in the JSR-133 recommen-
dations [12].

Example 3 shows that, when converting volatile loads to regular
loads, all volatile stores need to be converted to locked stores, even
if several volatile stores follow each other (compiler writers may be
tempted to emit only the last volatile write as a locked instruction).
The trace is shown in Fig. 19.

(ssl(Φ))(s) =
∨
{Φ(s′) ∧ (Lk+1 6= Lk+2) | ∃w,w′ : (s′ = w〈sth〉〈ldh′〉w′) and (s = w〈ldh′〉〈sth〉w′) and k = |w|}

(edlh(Φ))(s) =
∨{

Φ(s′) ↑−1
k+2 | ∃w,w′ : (s = w〈ldh〉w′) and (s′ = w〈ldh〉〈ldh〉w′) and k = |w|

}
(edsh(Φ))(s) =

∨{
∃x.
(
(Φ(s′)[x/xk+1]) ↑−1

k+2

)
| ∃w,w′ : (s = w〈sth〉w′) and (s′ = w〈sth〉〈sth〉w′) and k = |w|

}
(eilh(Φ))(s) =

∨{
∃L.∀x.

(
(Φ(s′)[x/xk+1][L/Lk+1]) ↑−1

k+2

)
| ∃w,w′ : (s = ww′) and (s′ = w〈ldh〉w′) and k = |w|

}
(iilh(Φ))(s) =

∨{
Φ(s′) ↑1k+1 | ∃w,w′ : (s = w〈ldh〉w′) and (s′ = ww′) and k = |w|

}
Figure 15. Symbolic application of some or our rewrite rules from Fig. 11 and Fig. 14 (the remaining ones are analogous). In each case, Φ
is a symbolic set, and s, s′, w, w′ are finite sequences. The notation ϕ[x/y] represents the formula ϕ with occurrences of y substituted by x.
The notation ϕ ↑dc represents the formula ϕ with all occurrences of xi, Li where i ≥ c substituted by xi+d, Li+d, respectively.

(load reordering) {if r then {s := A; t := B} else {t := B; s := A}} → {s := A; t := B}
(store reordering) {if r then {A := s; B := t} else {B := t; A := s}} → {A := s; B := t}

(irrelevant read elimination) {local r = 0 in {r := A; if r then {B := s} else {B := s}}} → {B := s}
(irrelevant read introduction) {if r then local s = 0 in {s := A; B := s}} → {local s = 0 in {s := A; if r then B := s}}}

(redundant read-after-read elim.) {r := A; b := A} → {r := A; b := r}
(redundant read-after-write elim.) {A := r; s := A} → {A := r; s := r}

(redundant write-before-write elim.) {A := r; A := s} → {A := s}
(redundant write-after-read elim.) {r := A; if r == 0 then A := 0} → {r := A}

(JIT example 1) replace all strong loads with X86 regular loads and all strong stores with X86 regular stores
(JIT example 2) like JIT example 1, but insert a fence between any two strong accesses except if they are both loads
(JIT example 3) {r :=S A; s :=S B} → {r :=R A; s :=L B}

Figure 16. Example transformations. The snippets follow the syntax defined in §3.1, with L = {A,B, . . . } and R = {r, s, t, . . . }, and
assuming default access types of S for SC , R for X86 , and W for CLRblog and CLRSC

blog .

redundant write-after-read elim JIT example 1 JIT example 2 s :=W B;
r :=W A;
if(r == 0)
A :=W 0;

A :=W 1;
B :=W 1;

⇓[

s :=W B;
r :=W A;

A :=W 1;
B :=W 1;

]
final values r = 0, A = s = 1

〈ldW B, 1〉
〈ldW A, 0〉

〈ldW A, 0〉
〈ldW B, 1〉

〈stW A, 1〉
〈stW B, 1〉

︸ ︷︷ ︸
〈ldW A, 0〉〈stW A, 1〉
〈stW B, 1〉〈ldW B, 1〉

[
A :=S 1;
r :=S A;
s :=S B;

B :=S 1;
t :=S B;
u :=S A;

]
⇓[

A :=R 1;
r :=R A;
s :=R B;

B :=R 1;
t :=R B;
u :=R A;

]
final values r = t = 1, s = u = 0

〈stR A, 1〉
〈ldR A, 1〉
〈ldR B, 0〉

〈stR A, 1〉〈ldR B, 0〉

〈ldR B, 0〉〈stR A, 1〉

〈stR B, 1〉
〈ldR B, 1〉
〈ldR A, 0〉

〈stR B, 1〉〈ldR A, 0〉

〈ldR A, 0〉〈stR B, 1〉︸ ︷︷ ︸
〈ldR B, 0〉〈ldR A, 0〉
〈stR A, 1〉〈stR B, 1〉

[
A :=S 1; r :=S A;

s :=S B;
B :=S 1;
t :=S A;

]
⇓[

A :=R 1; r :=R A;
s :=R B;

B :=R 1;
mfence;
t :=R A;

]
final values r = 1, s = t = 0

〈stR A, 1〉
〈ldR A, 1〉
〈ldR B, 0〉︸ ︷︷ ︸

〈stR A, 1〉〈ldR A, 1〉〈ldR B, 0〉

〈stR A, 1〉〈ldR B, 0〉

〈ldR B, 0〉〈stR A, 1〉

〈stR B, 1〉
〈mfence〉
〈ldR A, 0〉︸ ︷︷ ︸

〈ldR B, 0〉〈stR B, 1〉〈mfence〉
〈ldR A, 0〉〈stR A, 1〉

Figure 18. Derivations for the refuted examples. For each example, we show the original program, the transformed program, and an
execution of the transformed program that is not possible on the original program. All shared variables and registers are initially zero.

7. Related Work
Our work is closely related to previous efforts on mechanical ver-
ification compiler transformations [19, 13, 11, 14] for sequential
programs. Our work extends these efforts for concurrent programs.

Recent work has proposed language memory models [15, 2, 17]
that enable a class of compiler optimizations, while providing an in-
tuitive contract to the programmer. Our work is complementary and
automates the soundness proofs of these optimizations for proposed
memory models. In addition, our work also addresses the problem
of translating language constructs into hardware primitives so as
to retain the language memory model guarantees in the presence
of hardware relaxations. Finally, our work was partly motivated by

recent work [6, 18] that demonstrated the difficulty of manually
verifying compiler optimizations against memory models.

Our work is also related to the work in verifying program
behaviors against memory models [4, 5]. However, our focus on
compiler transformations requires methodologies that allow local
reasoning of program snippets.

Acknowledgments
We thank Jaroslav Sevcik, Peter Sewell, Doug Lea, Sarita Adve,
Vijay Saraswat and Herb Sutter for enlightening discussions and
comments on relaxed memory models.

References
[1] AMD. AMD64 Architecture Programmer’s Manual Volume 2: System

Programming, September 2007.

[2] H.-J. Boehm and S. V. Adve. Foundations of the C++ concurrency
memory model. In Programming Language Design and Implementa-
tion (PLDI), pages 68–78, 2008.

[3] C. Brumme. cbrumme’s weblog. http://blogs.gotdotnet.com/
cbrumme/archive/2003/05/17/51445.aspx.

[4] S. Burckhardt, R. Alur, and M. Martin. CheckFence: Checking
consistency of concurrent data types on relaxed memory models. In
Programming Language Design and Implementation (PLDI), pages
12–21, 2007.

[5] S. Burckhardt and M. Musuvathi. Effective program verification
for relaxed memory models. In Computer-Aided Verification (CAV),
pages 107–120, 2008.

[6] P. Cenciarelli and E. Sibilio. The java memory model: Operationally,
denotationally, axiomatically. In In 16th European Symposium on
Programming (ESOP), 2007.

[7] L. M. de Moura and N. Bjørner. Z3: An efficient smt solver. In Tools
and Algorithms for the Construction and Analysis of Systems, pages
337–340, 2008.

[8] J. Duffy. Joe Duffy’s Weblog. http://www.bluebytesoftware.
com/blog/2007/11/10/CLR20MemoryModel.aspx.

[9] M. Herlihy. Wait-free synchronization. ACM Trans. Program. Lang.
Syst., 13(1):124–149, 1991.

[10] Intel Corporation. Intel 64 Architecture Memory Ordering White
Paper, August 2007.

[11] G. Klein and T. Nipkow. A machine-checked model for a java-like
language, virtual machine, and compiler. ACM Transactions on
Programming Languages and Systems, 28(4):619–695, 2006.

[12] D. Lea. The jsr-133 cookbook for compiler writers. http:
//gee.cs.oswego.edu/dl/jmm/cookbook.html.

[13] S. Lerner, T. Millstein, and C. Chambers. Automatically proving the
correctness of compiler optimizations. In Programming Language
Design and Implementation (PLDI), pages 220–231, 2003.

[14] X. Leroy. Formal certification of a compiler back-end or: program-
ming a compiler with a proof assistant. In Principles of programming
languages (POPL), pages 42–54, 2006.

[15] J. Manson, W. Pugh, and S. Adve. The Java memory model. In
Principles of Programming Languages (POPL), 2005.

[16] V. Morrison. Understand the impact of low-lock techniques in
multithreaded apps. MSDN Magazine, 20(10), October 2005.

[17] V. A. Saraswat, R. Jagadeesan, M. Michael, and C. von Praun. A
theory of memory models. In PPoPP ’07: Principles and practice of
parallel programming, pages 161–172, 2007.

[18] J. Sevcik and D. Aspinall. On validity of program transformations in
the Java memory model. In European Conference on Object-Oriented
Programming (ECOOP), 2008.

[19] W. D. Young. A mechanically verified code generator. Journal of
Automated Reasoning, 5(4):493–518, 1989.

A. Proofs
A.1 Observations
DEFINITION 13. Define the function obs (similar to the previously
defined function obsM on programs, see Def. 7) as an overload of

the following mappings:

obs : P(Evt∗)→ P(O)
obs(A) = {w | w ∈ A}

obs : P(Evt∞)→ P(O)

obs(Â) = {∇w | w ∈ Â}
obs : P(B)→ P(O)

obs(B) = obs(
⋃
qq′ [B]qq′) ∪ obs(

⋃
q [B]q)

LEMMA 14. Let M be a memory model, and s a snippet. Then
obs([[s]]M) = obsM (s).

PROOF. directly from Def. 7 and Def. 13. �

A.2 Behavior Transformation Operators
To make the proofs more straightforward, we define behavior trans-
formation operators that capture how the semantic bracket com-
putes behavior sets, shown in Fig. 21. Each of them is a function
P(B)n → P(B) for some n ≥ 1.

LEMMA 15. For all n ≥ 1, for all s, s1, s2, . . . sn ∈ S, for all
F1, . . . , Fn ⊆ R, for all x ∈ X , for all r ∈ R and for all L ∈ L,
we have

[[s1; s2]]M = λseq([[s1]]M , [[s2]]M)M

[[s1 . . . sn]]M = λpar,FV (s1),...,FV (sn)([[s1]]M , . . . , [[sn]]M)M

[[if r then s1 else s2]]M = λcond,r([[s1]]M , [[s2]]M)M

[[while r do s]]M = λwhile,r([[s]]M)M

[[local r = x in s]]M = λlocal,r,x([[s]]M)M

[[share L = x in s]]M = λshare,L,x([[s]]M)M

PROOF. By straightforward comparison of the individual cases
in Fig. 13 and Fig. 21. Essentially, we are just rewriting the set
comprehensions of our earlier definition, using set union. Note that
our notation assumes that vacuous set union or set concatenation
operations (e.g. in λcond,r) produce the neutral elements ∅ and {ε},
respectively. �

A.3 Monotonicity
DEFINITION 16. Let S be some set, and n ≥ 0. A function f :
P(S)n → P(S) is called monotonous if n = 0 or if for all
k ∈ {1, . . . , n} and for all sets S1, S2, . . . , Sn ⊆ S and S′ ⊆ S
we have

Sk ⊆ S′ ⇒
f(S1, . . . , Sn) ⊆ f(S1, . . . , Sk−1, S

′, Sk+1, . . . , Sn)

A.4 Monotonicity Lemmas
LEMMA 17 (Union of Monotonic Functions). Let S be some set,
let f : P(S)n → P(S) be monotonous, and let Si ⊂ S be a
collection of sets where i ∈ I with I an arbitrary index set. Then⋃

i∈I

f(Si) ⊆ f

(⋃
i∈I

Si

)

PROOF. Because Si ⊆
⋃
j∈I Sj for all i, we know (by monotonic-

ity of f) that f(Si) ⊆ f
(⋃

j∈I Aj
)

for all i. This implies the
claim. �

LEMMA 18 (Monotonicity of Rewriting). For t ∈ T and T ⊂ T ,
the corresponding operatorsP(Evt∗)→ P(Evt∗) are monotonous.

PROOF. (Monotonicity of t). Let A ⊆ A′ ⊆ Evt∗, and let w ∈
t(A). By Def. 3, there exist (S1, S2) ∈ Gt and w1, w2 ∈ Evt∗

such thatw ∈ w1S2w2 andw1S1w2 ⊆ A. But thenw1S1w2 ⊆ A′
as well, therefore w1S2w2 ⊆ t(A′) and thus w ∈ t(A′).

For n ≥ 1, for F1, . . . , Fn ⊆ R, for x ∈ X , for r ∈ R and for L ∈ L, define

λseq : P(B)2 → P(B)
λpar,F1,...,Fn : P(B)n → P(B)

λcond,r : P(B)2 → P(B)
λwhile,r : P(B)→ P(B)
λlocal,r,x : P(B)→ P(B)
λshare,L,x : P(B)→ P(B)

as follows:

[λseq(B1, B2)]qq′ =
⋃
p∈Q

[B1]qp [B2]pq′

[λseq(B1, B2)]q = [B1]q ∪
⋃
p∈Q

[B1]qp [B2]p

[λpar,F1,...,Fn(B1, B2, . . . , Bn)]qq′ =

∅ if not

(
∀r ∈

⋃
k Fk : q′(r) = q(r)

)
#

1≤k≤n

⋃
p∈Pk

[Bk]qp otherwise, where Pk = {p ∈ Q | ∀r ∈ Fk : p(r) = q′(r)}

[λpar,F1,...,Fn(B1, B2, . . . , Bn)]q =
⋃

D⊆{1,...,n}

((
#

k∈{1,...,n}\D

⋃
p∈Q

[Bk]qp
)

#
(
#
k∈D

[Bk]q
))

[λcond,r(B1, B2)]qq′ =

{
[B1]qq′ if q(r) 6= 0
[B2]qq′ if q(r) = 0

[λcond,r(B1, B2)]q =

{
[B1]q if q(r) 6= 0
[B2]q if q(r) = 0

[λwhile,r(B)]qq′ =
⋃

q0,...qn∈Q
n≥0, q0=q, qn=q′,

qn(r)=0, ∀i<n: qi(r)6=0

[B]q0q1 · · · [B]qn−1qn

[λwhile,r(B)]q =

⋃

q0,q1,q2···∈Q
q0=q

∀i: qi(r)6=0

[B]q0q1 [B]q1q2 · · ·

 ∪

⋃
q0,...qn−1∈Q
n≥1,q0=q
∀i: qi(r)6=0

[B]q0q1 · · · [B]qn−2qn−1
[B]qn−1

[λlocal,r,x(B)]qq′ =

∅ if q′(r) 6= q(r)⋃
x′∈X

[B]q[r 7→x] q′[r 7→x′] otherwise

[λlocal,r,x(B)]q = [B]q[r 7→x]

[λshare,L,x(B)]qq′ = proj−L([B]qq′ ∩ Cons(L, x))

[λshare,L,x(B)]q = proj−L([B]q ∩ Cons(L, x))

Figure 21. Definition of the behavior transformation operators. These functions capture how the semantic bracket [[.]] computes behavior
sets “from the inside out”.

(Monotonicity of T). By definition, T (A) = A ∪
⋃
t∈T t(A).

Therefore, T is a union of monotonous functions and thus also
monotonous. �

LEMMA 19 (Monotonicity of Parallel Rewriting). The parallel op-
erators Pf and P̂f are always monotonous, for arbitrary f :
P(Evt∗)→ P(Evt∗).

PROOF. (Monotonicity of Pf). Let A ⊆ A′ ⊆ Evt∗, and let
w ∈ Pf (A). By Def. 4, there exist A1, . . . , An ⊂ Evt∗ such
that A1 · · ·An ⊆ A and w ∈ f(A1) · · · f(An). But then also
A1 · · ·An ⊆ A′ and therefore w ∈ Pf (A′).

(Monotonicity of P̂f). Let A ⊆ A′ ⊆ Evt∗, and let w ∈
P̂f (A). By Def. 4, there exist A1, A2, · · · ⊂ Evt∗ such that
A1A2 · · · ⊆ A andw ∈ f(A1)f(A2) · · · . But then alsoA1A2 · · · ⊆
A′ and therefore w ∈ P̂f (A′). �

DEFINITION 20. Let S be some set. A function f : P(S)→ P(S)
is called expanding if for all sets S′ ⊆ S we have S′ ⊆ f(S′).

LEMMA 21 (Parallel Rewriting Expands). For any D ⊆ T the
parallel operators PD and P̂D are expanding.

PROOF. By definition, for all setsA ⊆ Evt∗, we haveA ⊆ D(A).
This easily implies the claim for PD (choose n = 1 and A1 = A

in Def. 4). For P̂D , suppose w ∈ Â for Â ⊆ Evt∞. Then we
can decompose w into a concatenation of infinitely many singleton
sets {w} = {w1}{w2} . . . (we can choose the wi to become ε at
some point if w is not infinite). Then {wi} ⊆ D({wi}) and thus
{w} ⊆ P̂D(Â). �

LEMMA 22 (Monotonicity of Memory Models). For any memory
models M,M1,M2 ⊆ T and B,B1, B2 ⊆ B we have

1. B1 ⊆ B2 ⇒ BM1 ⊆ BM2

2. M1 ⊆M2 ⇒ BM1 ⊆ BM2

PROOF.
(Claim 22.1). By Lemma 18, the operator M is monotonous.

Because finite compositions and arbitrary unions of monotonous
operators are monotonous, by 6.1we knowM∗ is monotonous also.
Now, by Lemma 19, we know P̂M∗ is monotonous. Thus, by 6.2,
M∞ is monotonous (unions of finite compositions of monotonous
functions are monotonous). Finally, by Def. 6, we get the claim.

(Claim 22.2). Clearly, M1(B) ⊆ M2(B). Then M∗1 (B) ⊆
M∗2 (B), then P̂M∗1 (B) ⊆ P̂M∗2 (B), and finally the claim. �

LEMMA 23 (Monotonicity of Behavior Transformations). The be-
havioral transformation operators defined in Fig. 21 are monotonous.

PROOF. It is easy to see that any composition of monotonous op-
erators is monotonous. Because all the definitions in Fig. 21 are
compositions of monotonous operators (set union, set concatena-
tion, projections [.]qq′ and [.]q , constant functions, set interleaving,
proj and intersection), the claim follows. �

A.5 General Procrastination
DEFINITION 24. An operator on behaviors f : P(B) → P(B) is
called procrastinable for a memory model M if all of the following
are satisfied for all B,Bi ⊂ B:

1. f(B)M ⊆ f(BM)
2. λseq(f(B1), B2) ⊆ f(λseq(B1, B2))
3. λseq(B1, f(B2)) ⊆ f(λseq(B1, B2))
4. λpar,F1,...,Fn(B1, . . . , Bk−1, f(Bk), Bk+1, . . . , Bn)
⊆ f(λpar,F1,...,Fn(B1, . . . , Bn))

5. λcond,r(f(B1), B2) ⊆ f(λcond,r(B1, B2))
6. λcond,r(B1, f(B2)) ⊆ f(λcond,r(B1, B2))
7. λwhile,r(f(B)) ⊆ f(λwhile,r(B))
8. λlocal,r,x(f(B)) ⊆ f(λlocal,r,x(B))
9. λshare,L,x(f(B)) ⊆ f(λshare,L,x(B))

10. obs(f(B)) ⊆ obs(B)

THEOREM 25 (Generalized Soundness). Let (s → s′) be a lo-
cal transformation, and let M ⊆ T be a memory model. Then
the following condition is sufficient to guarantee soundness: there
exists a transformation f that is procrastinable on M such that
[[s′]]M ⊆ f([[s]]M).

PROOF. We show that under the conditions stated in the theorem,
[[c[s′]]]M ⊆ f([[c[s]]]M) for all contexts c; this then implies the
claim: obsM (c[s′]) = obs([[c[s′]]]M) ⊆ obs(f([[c[s]]]M)) ⊆
obs([[c[s]]]M) = obsM (c[s]).

To prove that [[c[s′]]]M ⊆ f([[c[s]]]M) for all c, we proceed by
induction over the structure of c.

• If c = [], then [[c[s′]]]M = [[s′]]M ⊆ f([[s]]M) = f([[c[s]]]M).
• If c = c′; s′′, then

[[c[s′]]]M
15
= λseq([[c

′[s′]]]M , [[s
′′]]M)M

ind.hyp.,23,22.1

⊆ λseq(f([[c′[s]]]M), [[s′′]]M)M

⊆ (f(λseq([[c
′[s]]]M , [[s

′′]]M)))M

⊆ f(λseq([[c
′[s]]]M , [[s

′′]]M)M)
15
= f([[c[s])]]M

• If c = s′′; c′, then proceed symmetrically.

• If c = if r then c′ else s′′, then

[[c[s′]]]M
15
= λcond,r([[c

′[s′]]]M , [[s
′′]]M)M

ind.hyp.,23,22.1

⊆ λwhile,r(f([[c′[s]]]M), [[s′′]]M)M

⊆ (f(λwhile,r([[c
′[s]]]M , [[s

′′]]M)))M

⊆ f(λwhile,r([[c
′[s]]]M , [[s

′′]]M)M)
15
= [[c[s]]]M

• If c = if r then s′′ else c′, then proceed symmetrically.
• If c = while r do c′, then

[[c[s′]]]M
15
= λwhile,r([[c

′[s′]]]M)M

ind.hyp.,23,22.1

⊆ λwhile,r([[c
′[s]]]M)M

⊆ λwhile,r(f([[c′[s]]]M))M

⊆ (f(λwhile,r([[c
′[s]]]M)))M

⊆ f(λwhile,r([[c
′[s]]]M)M)

15
= f([[c[s]]]M)

• If c = local r = x in c′ or c = share r = x in c′, then
proceed analogously to previous case.
• If c = s1 ‖ · · · ‖ c′ ‖ . . . sn, then [[c[s′]]]M =

15
= λpar,F1,...,Fn([[s1]]M , . . . , [[c

′[s′]]]M , . . . , [[sn]]M)M

⊆ λpar,F1,...,Fn([[s1]]M , . . . , f([[c′[s]]]M), . . . , [[sn]]M)M

⊆ (f(λpar,F1,...,Fn([[s1]]M , . . . , [[c
′[s]]]M , . . . , [[sn]]M)))M

⊆ f(λpar,F1,...,Fn([[s1]]M , . . . , [[c
′[s]]]M , . . . , [[sn]]M)M)

15
= f([[c[s]]]M)

�

A.6 Proof of Thm. 8
The following lemma captures the key property. Using this lemma,
we can easily prove Theorem 8, by Definition 7 and Lemma 14.

LEMMA 26 (Monotonocity of Contexts). Let M ⊆ T be a mem-
ory model, and let s, s′ ∈ S be two snippets such that [[s′]]M ⊆
[[s]]M . Then, for any context c, we have [[c[s′]]]M ⊆ [[c[s]]]M .

PROOF. Follows from Thm. 25, with f being the identity function
which is procrastinable, as it obviously satsifies all the conditions
in Def. 24. �

A.7 Auxiliary Lemmas
LEMMA 27. Let m ∈ T be a simple rewrite rule, let d ∈ T be an
arbitrary rewrite rule, and let Ai ⊂ Evt∗ for i ∈ I with I some
arbitrary index set. Then

1.
⋃
i∈I m(Ai) = m(

⋃
i∈I Ai)

2.
⋃
i∈I d(Ai) ⊆ d(

⋃
i∈I Ai)

PROOF. (Claim 27.2). Because d is monotonous, we can apply
Lemma 17.

(Claim 27.1). One direction follows by 27.2. For the other,
assume w ∈ m(

⋃
i∈I Ai). Because m is simple, there exist

u, v, w1, w2 ∈ Evt∗ such that ({u}, {v}) ∈ Gm and w = w1vw2

and w1uw2 ∈
⋃
i∈I Ai. But that means there exists an i such

that w1uw2 ∈ Ai which implies w ∈ m(Ai) and thus w ∈⋃
i∈I m(Ai). �

LEMMA 28 (Fixpoint for M). Let M ⊆ T be a memory model,
let A ⊆ Evt∗, let Â ⊆ Evt∞, and let B ⊆ B. Then

1. M∗(M∗(A)) ⊆M∗(A)

2. M∞(M∞(Â)) ⊆M∞(Â)

3. (BM)M ⊆ BM

PROOF.
(Claim 28.1). Let w ∈ M∗(M∗(A)). By definition, this means

w ∈
⋃
k≥0M

k(M∗(A)). Therefore, w ∈ Mk(M∗(A)) for some
k. We now show that this implies w ∈ M∗(A), by induction over
k. If k = 0, then w ∈ M0(M∗(A)) = M∗(A). If k > 0,
then w ∈ Mk(M∗(A)) = M(Mk−1(M∗(A)). By induction
hypothesis and monotonicity of M , this implies w ∈M(M∗(A)).
By definition of the operator M , this implies that either w ∈
M∗(A), or w ∈ m(M∗(A)) for some m ∈ M . In either case,
becauseM is a memory model and its rewrite rules are thus simple,
there must exist a u such that m ∈ M({u}) and u ∈ M∗(A).
The latter implies that u ∈ M i(A) for some i. Therefore, m ∈
M({u}) ⊆M(M i(A)) ⊆M∗(A).

(Claim 28.2). Let w ∈ M∞(M∞(Â)). By definition, this
means that w ∈

⋃
k≥0(P̂M∗)

k(M∞(Â)). Therefore, there exists
a k such that w ∈ (P̂M∗)

k(M∞(Â)). We now show that this im-
plies w ∈ M∞(Â), by induction over k. For k = 0, we have
w ∈ (P̂M∗)

0(M∞(Â)) = M∞(Â). For k > 0, we have w ∈
(P̂M∗)

k(M∞(Â)) = w ∈ P̂M∗((P̂M∗)k−1(M∞(Â))). By induc-
tion and monotonicity of P̂M∗ , this implies w ∈ P̂M∗(M

∞(Â)).
By definition of M∞, this means that there exists a decompo-
sition w = w1w2 · · · and sets A1, A2, · · · ⊆ Evt∗ such that
wi ∈ M∗(Ai) and A1A2 · · · ⊆ M∞(Â). Because M is a mem-
ory model (and its rewrite rules are simple), we further know that
there exist elements ai ∈ Ai such that wi ∈ M∗({ai}). Now, let
a = a1a2 · · · . Then a ∈M∞(Â), so there exists a i ≥ 0 such that
a ∈ (P̂M∗)

i(Â). But then

w = w1w2 · · ·
∈ M∗({a1})M∗({a2}) · · ·
⊆ P̂M∗({a1}{a2} · · ·)
= P̂M∗({a})
⊆ P̂M∗((P̂M∗)

i(Â))

= (P̂M∗)
i+1(Â)

⊆ M∞(Â)

(Claim 28.3). Directly from 28.1, 28.2 and Def. 6. �

A.8 Value Consistency
We now formally define value consistency. First, we define the set
CE(L, x, x′) to be the set of all events that are consistent with
location L having a pre-value of x and a post-value of x′. Then,
we derive sets for value-consistent sequences. Cons(L, x) is the
set of all finite or infinite value-consistent sequences for location L
and initial value x, and Cons(L, x, x′) is the set of all finite value-
consistent sequences for location L, initial value x, and final value
x′.

DEFINITION 29. For L ∈ L and x, x′ ∈ X we define the set
CE(L, x, x′) ⊆ Evt by the following inference axioms with
metavariables L,L′ ∈ L, x, x′, x′′, x′′′ ∈ V al:

〈ldh L, x〉 ∈ CE(L, x, x) (LOAD)

L 6= L′

〈ldh L, x〉 ∈ CE(L′, x′, x′)
(INDLOAD)

〈sth L, x〉 ∈ CE(L, x′, x) (STORE)

L 6= L′

〈sth L, x〉 ∈ CE(L′, x′, x′)
(INDSTORE)

〈ldsth L, x, x′〉 ∈ CE(L, x, x′) (LOADSTORE)

L 6= L′

〈ldsth L, x, x′〉 ∈ CE(L′, x′′, x′′)
(INDLOADSTORE)

〈mfence〉 ∈ CE(L, x, x) (FENCE)

〈get x〉 ∈ CE(L, x′, x′) (GET)

〈print x〉 ∈ CE(L, x′, x′) (PRINT)

DEFINITION 30. For L ∈ L and x, x′ ∈ X we define the sets
Cons(L, x, x′) ⊆ Evt∗, and ConsL, x ⊆ Evt∞ as follows:

Cons(L, x, x′) = {w | ∃x0, . . . x|w| ∈ X : x = x0, x
′ = xn

and ∀i ∈ {1, . . . , |w|} : w[i] ∈ CE(L, xi−1, xi)}

Cons(L, x) = {w ∈ Evt∗ | ∃x′ ∈ X : w ∈ Cons(L, x, x′)}
∪ {ŵ ∈ Evtω | ∃x0, x1, · · · ∈ X : x = x0

and ∀i ≥ 1 : w[i] ∈ CE(L, xi−1, xi)}

LEMMA 31. The following hold:

1. Let n ≥ 1, let a1, a2, . . . an ∈ Evt∗, and let a = a1 · · · an.
Then a ∈ Cons(L, x) if and only if there exist x0, x1, . . . , xn ∈
X such that x = x0 and such that ai ∈ Cons(L, xi−1, xi) for
1 ≤ i ≤ n.

2. Let a1, a2, · · · ∈ Evt∗, and let â = a1a2 · · · . Then â ∈
Cons(L, x) if and only if there exist x0, x1, · · · ∈ X such that
x = x0 and ai ∈ Cons(L, xi−1, xi) for i ≥ 1.

PROOF. (Claim 31.1). (⇒) Because a ∈ Cons(L, x) we know a ∈
Cons(L, x, x′) for some x′. That in turn means there exist values
xi, which we can use to prove ai ∈ Cons(L, xki , x

′
ki

) for suitable
k0 ≤ k1 ≤ kn ⊂ {0, 1, . . . , |a|}. (⇐) We can combine the value
sequences that must exist because of ai ∈ Cons(L, xi−1, xi)
into a single sequence that proves a ∈ Cons(L, x, x′), and thus
a ∈ Cons(L, x).

(Claim 31.2). Analogous to 31.1. �

A.9 Specialized Procrastination Lemmas
LEMMA 32. Let D ⊆ T . Then the following are true for all
A1, A2, · · · ⊆ Evt∗ and Â2 ⊆ Evt∞:

1. PD(A1)PD(A2) ⊆ PD(A1A2)

2. PD(A1)P̂D(Â2) ⊆ P̂D(A1Â2)

3. PD(A1)PD(A2) · · · ⊆ P̂D(A1A2 . . .)

PROOF. (Claim 32.1). Let w ∈ PD(A1)PD(A2). Then there exist
sets A1

1, A
2
1, . . . , A

n1
1 ⊆ Evt∗ and A1

2, A
2
2, . . . , A

n2
2 ⊆ Evt∗ such

that we have A1
1 · · ·An1

1 ⊆ A1 and A1
2 · · ·An2

2 ⊆ A2, and such
that w ∈ D(A1

1) · · ·D(An1
1)D(A1

2) · · ·D(An2
2). But this implies

w ∈ P̂D(A1A2) because A1
1 · · ·An1

1 A1
2 · · ·An2

2 ⊆ A1A2.
(Claim 32.2). (Claim 32.3). Analogously. �

LEMMA 33. LetD ⊆ T satsify properties 10.1 and 10.3. Then the
following are true for all A ⊆ Evt∗ and Â ⊆ Evt∞:

1. M∗(PD(A)) ⊆ PD(M∗(A))

2. M∞(P̂D(Â)) ⊆ P̂D(M∞(Â))

PROOF. (Claim 33.1). Let w ∈ M∗(PD(A)). By Def. 6.2, this
means w ∈

⋃
q≥0M

k(PD(A)). Therefore w ∈ Mk(PD(A))
for some k. We show that this implies w ∈ PD(M∗(A)), by in-
duction on k. If k = 0, then w ∈ PD(A) ⊆ PD(M∗(A)).
If k > 0, then w ∈ M(Mk−1(PD(A))), and by the induc-
tion hypothesis (and because M is monotonous) we get w ∈
M(PD(M∗(A))). By definition, this means w ∈ PD(M∗(A)) ∪⋃
m∈M m(PD(M∗(A))). If w ∈ PDf(M∗(A)), we are done.

Otherwise, w ∈ m(PD(M∗(A))) for some m ∈ M . Now, by
property 10.1 we know m(PD(M∗(A))) ⊆ PD(M∗(M∗(A))),
and by Lemma 28 we know M∗(M∗(A)) ⊆M∗(A). Thus (using
monotonicity of PD) we know m ∈ PD(M∗(A)).

(Claim 33.2). Let w ∈ M∞(P̂D(Â)). Then by definition,
w ∈

⋃
k≥0(P̂M∗)

k(P̂D(Â)). Therefore w ∈ (P̂M∗)
k(Â) for some

k. We show that this implies w ∈ P̂D(M∞(Â)), by induction on
k. If k = 0, then w ∈ P̂D(Â) ⊆ P̂D(M∞(Â)). If k > 0, then
w ∈ P̂M∗((P̂M∗)

k−1(P̂D(Â))). By induction and monotonocity,
we get w ∈ P̂M∗(P̂D(M∞(Â))). Because M consists of simple
transformations only, the effect of M∗ is elementwise, implying
that there exists a decomposition w = w1w2 · · · and a sequence
c1, c2, . . . (where wi, ci ∈ Evt∗) such that wi ∈ M∗({ci}) and
c1c2 · · · ∈ (P̂D(M∞(Â))). The latter implies that c1c2 · · · ∈
B1B2 · · · for some Ai, Bi ⊆ Evt∗ satisfying Bi = D(Ai) and
A1A2 · · · ⊆ M∞(Â). Specifically, c1c2 · · · = b1b2 · · · for some
bi such that bi ∈ Bi. Now, by property 10.3, we can assume
without loss of generality that all bi have length 0 or 1 (by choosing
the decomposition A1A2 · · · fine enough). Therefore, there exists
an index sequence 0 = k0 ≤ k1 ≤ k2 · · · such that ci =
bki−1bki−1+1 · · · bki . Now, let A′i = Aki−1Aki−1+1 · · ·Aki , and
let B′i = Bki−1Bki−1+1 · · ·Bki . Then

w ∈ M∗({c1})M∗({c2}) · · ·
⊆ M∗(B′1)M∗(B′2) · · ·
⊆ M∗(PD(A′1))M∗(PD(A′2)) · · ·

33.1

⊆ PD(M∗(A′1))PD(M∗(A′2)) · · ·
32.3

⊆ P̂D(M∗(A′1)M∗(A′2) · · ·)
⊆ P̂D(P̂M∗(A

′
1A
′
2 · · ·))

⊆ P̂D(M∞(A′1A
′
2 · · ·))

⊆ P̂D(M∞(M∞(Â)))
Lemma 28

⊆ P̂D(M∞(Â))

�

LEMMA 34. Let D ⊆ T satisfy property 10.2. Then the following
are true for all A1, A2 ⊆ Evt∗ and Â, Â1, Â2 ⊆ Evt∞:

1. PD(A1) #PD(A2) ⊆ PD(A1 #A2)

2. PD(A1) # P̂D(Â2) ⊆ P̂D(A1 # Â2)

3. P̂D(Â1) # P̂D(Â2) ⊆ P̂D(Â1 # Â2)

PROOF. (Claim 34.1). Let w ∈ PD(A1) #PD(A2). Then there
exist w1 ∈ PD(A1) and w2 ∈ PD(A2) such that w = w1w2.
Therefore, we can find decompositions A1 · · ·Ak ⊂ A1 and
Ak+1 · · ·An ⊂ A2 and w1 = w1 · · ·wk and w2 = wk+1 · · ·wn
such that wi ∈ D(Ai).Without loss of generality, we can assume
that |wi| ≤ 1 (because of 10.2, and using singleton single-event
sets to break down pieces where D does not modify the sequence).

But this implies that w = wπ(1) · · ·wπ(n) for some shuffle π of
{1, . . . , k} and {k + 1, . . . , n}. This implies

w ∈ D(Aπ(1)) · · ·D(Aπ(n)) ⊆ PD(Aπ(1) · · ·Aπ(n))

⊆ PD((A1 · · ·Ak) #(Ak+1 · · ·An)) ⊆ PD(A1 #A2)

.
(Claim 34.2). (Claim 34.3). Analogously. �

LEMMA 35. Let D ⊆ T satisfy property 10.3. Then the following
are true for all A ⊆ Evt∗, Â ⊆ Evt∞, L ∈ L and x ∈ X :

1. proj−L(PD(A)∩Cons(L, x)) ⊆ PD(proj−L(A∩Cons(L, x)))

2. proj−L(P̂D(Â)∩Cons(L, x)) ⊆ P̂D(proj−L(Â∩Cons(L, x)))

PROOF. (Claim 35.1). Letw ∈ proj−L(PD(A)∩Cons(L, x)). By
definition, this means that there exist sequences b1, . . . , bn ⊆ Evt∗

and sets A1, . . . , An ⊆ Evt∗ such that w = proj−L(b1 · · · bn)
and b1 · · · bn ∈ Cons(L, x) and bi ∈ D(Ai) and A1 · · ·An ⊆ A.
Now, by Lemma 31, this implies that there exist x0, . . . , xn ∈ X
such that x0 = x and bi ∈ Cons(L, xi−1, xi). By property
10.3, this implies that there exist ai ∈ Ai such that ai ∈
Cons(L, xi−1, xi) (and thus a1 · · · an ∈ Cons(L, x) by Lemma 31)
and such that proj−L({bi}) ⊆ D(proj−L({ai})). Now,

w = proj−L(b1 · · · bn)

∈ proj−L({b1}) · · · proj−L({bn})
⊆ D(proj−L({a1})) · · ·D(proj−L({an}))
⊆ PD(proj−L({a1}) · · · proj−L({an})))
= PD(proj−L({a1 · · · an}))
= PD(proj−L({a1 · · · an} ∩ Cons(L, x))

⊆ PD(proj−L(A ∩ Cons(L, x))

(Claim 35.2). Let w ∈ proj−L(P̂D(Â) ∩ Cons(L, x)). By def-
inition, this means that there exist sequences b1, b2, · · · ⊆ Evt∗

and sets A1, A2, · · · ⊆ Evt∗ such that w = proj−L(b1b2 · · ·) and
b1b2 · · · ∈ Cons(L, x) and bi ∈ D(Ai) and A1A2 · · · ⊆ Â. Now,
by Lemma 31, this implies that there exist x0, x1, · · · ∈ X such
that x0 = x and bi ∈ Cons(L, xi−1, xi)). By property 10.3, this
implies that there exist ai ∈ Ai such that ai ∈ Cons(L, xi−1, xi)
(and thus a1a2 · · · ∈ Cons(L, x) by Lemma 31) and such that
proj−L({bi}) ⊆ D(proj−L({ai})). Now,

w = proj−L(b1b2 · · ·)
∈ proj−L({b1})proj−L({b2}) · · ·
⊆ D(proj−L({a1}))D(proj−L({a2})) · · ·

⊆ P̂D(proj−L({a1})proj−L({a2})) · · ·)

= P̂D(proj−L({a1a2 · · · }))

= P̂D(proj−L({a1a2 · · · } ∩ Cons(L, x))

⊆ P̂D(proj−L(Â ∩ Cons(L, x))

�

LEMMA 36. Let D ⊆ T satisfy property 10.4. Then the following
are true for all A ⊆ Evt∗ and Â ⊆ Evt∞:

1. obs(PD(A)) ⊆ obs(A)

2. obs(P̂D(Â)) ⊆ obs(Â)

PROOF. (Claim 36.1). Let o ∈ obs(PD(A)). Then there ex-
ist A1, . . . , An and b1, . . . , bn such that A1 · · ·An ⊆ A and
bi ∈ D(Ai) and o = projExt(b1 · · · bn). By 10.4, we know

projExt(bi) ∈ projExt(Ai). Therefore,

o = projExt(b1 · · · bn)

= projExt(b1) · · · projExt(bn)

∈ projExt(A1) · · · projExt(An)

= projExt(A1 · · ·An)

⊆ projExt(A)

= obs(A).

(Claim 36.1). Let o ∈ obs(P̂D(A)). Then there existA1, A2, . . .

and b1, b2, . . . such that A1A2 · · · ⊆ Â and bi ∈ D(Ai) and
o = ∇projExt(b1b2 · · ·). By 10.4, we know projExt(bi) ∈
projExt(Ai). Therefore,

o = ∇projExt(b1b2 · · ·)
= ∇projExt(b1) · · · projExt(bn)

∈ ∇(projExt(A1)projExt(A2) · · ·)
= ∇projExt(A1 · · ·An)

⊆ ∇projExt(Â)

= obs(Â).

�

A.10 Parallel Rewriting of Behaviors
DEFINITION 37. Let B ⊆ B, and let D ⊂ T . Then we define
fD : P(B)→ P(B) by

[fD(B)]qq′ = PD([B]qq′)

[fD(B)]q = P̂D([B]q)

LEMMA 38. Let B ⊆ B, and let D ⊂ T . Then fD is monotonous
and expanding.

PROOF. Follows from Lemmas 19 and 21. �

A.11 Proof of Thm. 11
To prove Thm. 11, we use the following theorem which states
that fD is procrastinable if D is a procrastinable subset. With fD
procrastinable, it is easy to see that (fD)k is also procrastinable
for all k ≥ 0 (we can prove by induction to each individual
claim of Def. 24 that if f is procrastinable, so is fk). This means
that we can apply Thm. 25 to conclude the proof of Thm. 11,
because the conditions stated in the latter are equivalent to [[s′]]M ⊆
(fD)k([[s]]M) (by Def. 37).

THEOREM 39. If D is procrastinable of M (in the sense of
Def. 10), then fD is procrastinable on M (in the sense of Def. 24).

PROOF. We show that fD satisfies properties 1 through 10 of
Def. 24;

All proof cases are shown in Fig. 22 and Fig. 23. Cases 1
through 9 are split into finite behaviors []qq′ and infinite behaviors
[]q . Case 10 is split into two directions. For simplicity, we omit
index sets and collapse definitions where the details are not relevant
for the proof structure.

We annotate the important Lemmas or Definitions we use; how-
ever, we pervasively use the following fact without annotating
the monotonicity of all operators involved: if we enlarge subex-
pressions (that is, replace subexpression S by some S′ such that
S ⊆ S′), then the whole expression enlarges, under the condition
that it depends on the subexpression in a monotonous way. �

A.12 Proof of Thm. 12
Property 2 is immediate. Property 3 is straightforward. Property 4
is trivial as none of the rewrite rules involves any external events.
Property 1 is where we need to work.

The general procedure for a memory model M and set of rules
D is to examine the left-hand side of each rule m ∈ M , trying to
overlap it with the right-hand sides of non-trivial parallel applica-
tions of D. If no such overlap scenario is possible, commutation
(m(PD(A)) = PD(m(A))) holds, implying property 10.1. If it is
possible, we need to show for each overlap scenario that the image
ofm(PD(A)) is contained in PD(M∗(A)), that is, each element of
the image can be obtained by first applying M zero or more times,
and then (optionally) applying D parallely.

• M = SC = {}, and D arbitrary

Because SC = ∅, it is immediate that any D satisfies property
10.1.

• M = X86 = {srsrl, ersrlf}, and D = {edlR}

m = srsrl The only overlap scenario is of the form

〈stR L, x〉〈ldR L′, x′〉〈ldR L′, x′〉 ∈ A

〈stR L, x〉〈ldR L′, x′〉 ∈ PD(A)

〈ldR L′, x′〉〈stR L, x〉 ∈ srsrl(PD(A))

with image in PD(M∗(A)):

〈stR L, x〉〈ldR L′, x′〉〈ldR L′, x′〉 ∈ A

〈ldR L′, x′〉〈stR L, x〉〈ldR L′, x′〉 ∈ srsrl(A)

〈ldR L′, x′〉〈ldR L′, x′〉〈stR L, x〉 ∈ srsrl(srsrl(A))

〈ldR L′, x′〉〈stR L, x〉 ∈ PD(srsrl(srsrl(A)))

m = ersrlf The only overlap scenario is of the form

〈stR L, x〉〈ldR L, x〉〈ldR L, x〉 ∈ A

〈stR L, x〉〈ldR L, x〉 ∈ PD(A)

〈stR L, x〉 ∈ ersrlf(PD(A))

with image in M∗(A) (and thus in PD(M∗(A))):

〈stR L, x〉〈ldR L, x〉〈ldR L, x〉 ∈ A

〈stR L, x〉〈ldR L, x〉 ∈ ersrlf(A)

〈stR L, x〉 ∈ ersrlf(ersrlf(A))

• M = X86 = {srsrl, ersrlf}, and D = {edsR}

m = srsrl The only overlap scenario is of the form

〈stR L, x〉〈stR L, x〉〈ldR L′, x′〉 ∈ A

〈stR L, x〉〈ldR L′, x′〉 ∈ PD(A)

〈ldR L′, x′〉〈stR L, x〉 ∈ srsrl(PD(A))

1. [
fD(B)M

]
qq′

6, 37
=M∗(PD([B]qq′))
33.1

⊆PD(M∗([B]qq′))
37, 6
=
[
fD(BM)

]
qq′

[
fD(B)M

]
q

6, 37
=M∞(P̂D([B]q))
33.2

⊆ P̂D(M∞([B]q))
37, 6
=
[
fD(BM)

]
q

2.
[λseq(fD(B1), B2)]qq′

Fig. 21
=
⋃
p [fD(B1)]qp [B2]pq′

37
=
⋃
p PD([B1]qp) [B2]pq′

32.1, 21

⊆
⋃
p PD([B1]qp [B2]pq′)

19, 17

⊆ PD
(⋃

p [B1]qp [B2]pq′
)

Fig. 21
= PD

(
[λseq(B1, B2)]qq′

)
37
= [fD (λseq(B1, B2))]qq′

[λseq(fD(B1), B2)]q

Fig. 21
= [fD(B1)]q ∪

⋃
p [fD(B1)]qp [B2]p

37
= P̂D([B1]q) ∪

⋃
p PD([B1]qp) [B2]p

32.2, 21

⊆ P̂D([B1]q) ∪
⋃
p P̂D([B1]qp [B2]p)

19, 17

⊆ P̂D
(

[B1]q ∪
⋃
p [B1]qp [B2]p

)
Fig. 21
= P̂D

(
[λseq(B1, B2)]q

)
37
= [fD (λseq(B1, B2))]q

3.
[λseq(B1, fD(B2))]qq′

Fig. 21
=
⋃
p [B1]qp [fD(B2)]pq′

37
=
⋃
p [B1]qp PD([B2]pq′)

32.1, 21

⊆
⋃
p PD([B1]qp [B2]pq′)

19, 17

⊆ PD
(⋃

p [B1]qp [B2]pq′
)

Fig. 21
= PD

(
[λseq(B1, B2)]qq′

)
37
= [fD (λseq(B1, B2))]qq′

[λseq(B1, fD(B2))]q

Fig. 21
= [B1]q ∪

⋃
p [B1]qp [fD(B2)]p

37
= [B1]q ∪

⋃
p [B1]qp P̂D([B2]p)

32.2, 21

⊆ P̂D([B1]q) ∪
⋃
p P̂D([B1]qp [B2]p)

19, 17

⊆ P̂D
(

[B1]q ∪
⋃
p [B1]qp [B2]p

)
Fig. 21
= P̂D

(
[λseq(B1, B2)]q

)
37
= [fD (λseq(B1, B2))]q

4.
[λpar,F1,...,Fn(B1, . . . , fD(Bk), . . . , Bn)]qq′

where not
(
∀r ∈

⋃
k Fk : q′(r) = q(r)

)
Fig. 21
= ∅
= PD(∅)

Fig. 21
= PD([λpar,F1,...,Fn(B1, . . . , Bn)]qq′)
37
= [fD (λpar,F1,...,Fn(B1, . . . , Bn))]qq′

[λpar,F1,...,Fn(B1, . . . , fD(Bk), . . . , Bn)]qq′
where

(
∀r ∈

⋃
k Fk : q′(r) = q(r)

)
38, 23

⊆ [λpar,F1,...,Fn(fD(B1), . . . , fD(Bn))]qq′
Fig. 21, 37

= #k

⋃
p PD

(
[Bk]qp

)
19, 17
= #k

PD
(⋃

p [Bk]qp

)
34.1
= PD

(
#k

⋃
p [Bk]qp

)
Fig. 21
= PD([λpar,F1,...,Fn(B1, . . . , Bn)]qq′)
37
= [fD (λpar,F1,...,Fn(B1, . . . , Bn))]qq′

[λpar,F1,...,Fn(B1, . . . , fD(Bk), . . . , Bn)]q

38, 23

⊆ [λpar,F1,...,Fn(fD(B1), . . . , fD(Bn))]q
Fig. 21, 37

=
⋃
D

((
#k

⋃
p PD([Bk]qp)

)
#
(
#k

P̂D([Bk]q)
))

19, 17

⊆
⋃
D

((
#k

PD
(⋃

p [Bk]qp

))
#
(
#k

P̂D([Bk]q)
))

34.2, 34.3

⊆
⋃
D P̂D

((
#k

⋃
p [Bk]qp

)
#
(
#k

[Bk]q
))

19, 17

⊆ P̂D
(⋃

D

((
#k

⋃
p [Bk]qp

)
#
(
#k

[Bk]q
)))

Fig. 21
= P̂D ([λpar,F1,...,Fn(B1, . . . , Bn))]q
37
= [fD (λpar,F1,...,Fn(B1, . . . , Bn))]q

5.
[λcond,r(fD(B1), B2)]qq′

38, 23

⊆ [λcond,r(fD(B1), fD(B2))]qq′
Fig. 21
= [fD(Bi)]qq′
37
= PD

(
[Bi]qq′

)
Fig. 21
= PD

(
[λcond,r(B1, B2)]qq′

)
37
= [fD (λcond,r(B1, B2))]qq′

[λcond,r(fD(B1), B2)]q

38, 23

⊆ [λcond,r(fD(B1), fD(B2))]q
Fig. 21
= [fD(Bi)]q
37
= P̂D

(
[Bi]q

)
Fig. 21
= P̂D

(
[λcond,r(B1, B2)]q

)
37
= [fD (λcond,r(B1, B2))]q

6.
[λcond,r(B1, fD(B2))]qq′

38, 23

⊆ [λcond,r(fD(B1), fD(B2))]qq′
Fig. 21
= [fD(Bi)]qq′
37
= PD

(
[Bi]qq′

)
Fig. 21
= PD

(
[λcond,r(B1, B2)]qq′

)
37
= [fD (λcond,r(B1, B2))]qq′

[λcond,r(B1, fD(B2))]q

38, 23

⊆ [λcond,r(fD(B1), fD(B2))]q
Fig. 21
= [fD(Bi)]q
37
= P̂D

(
[Bi]q

)
Fig. 21
= P̂D

(
[λcond,r(B1, B2)]q

)
37
= [fD (λcond,r(B1, B2))]q

Figure 22. Cases for the proof of Thm. 39 (continued in Fig. 23).

7.
[λwhile,r(fD(B))]qq′

Fig. 21
=
⋃
q0,...qn

[fD(B)]q0q1 · · · [fD(B)]qn−1qn
37
=
⋃
q0,...qn

PD([B]q0q1) · · ·PD([B]qn−1qn
)

32.1

⊆
⋃
q0,...qn

PD
(

[B]q0q1 · · · [B]qn−1qn

)
19, 17

⊆ PD
(⋃

q0,...qn
[B]q0q1 · · · [B]qn−1qn

)
Fig. 21
= PD

(
[λwhile,r(B)]qq′

)
37
= [fD(λwhile,r(B))]qq′

[λwhile,r(fD(B))]q

Fig. 21
=
(⋃

q0,q1,...
[fD(B)]q0q1 [fD(B)]q1q2 · · ·

)
∪
(⋃

q0,...qn−1
[fD(B)]q0q1 · · · [fD(B)]qn−2qn−1

[fD(B)]qn−1

)
37
=
(⋃

q0,q1,...
PD([B]q0q1)PD([B]q1q2) · · ·

)
∪
(⋃

q0,...qn−1
PD([B]q0q1) · · ·PD([B]qn−2qn−1

)P̂D([B]qn−1
)
)

32.3, 32.2

⊆
(⋃

q0,q1,...
P̂D
(

[B]q0q1 [B]q1q2 · · ·
))
∪
(⋃

q0,...qn−1
P̂D
(

[B]q0q1 · · · [B]qn−2qn−1
[B]qn−1

))
19, 17

⊆ P̂D

((⋃
q0,q1,...

[B]q0q1 [B]q1q2 · · ·
)
∪
(⋃

q0,...qn−1
P̂D [B]q0q1 · · · [B]qn−2qn−1

[B]qn−1

))
Fig. 21
= P̂D([λwhile,r(B)]q)
37
= [fD(λwhile,r(B))]q

8.
[λlocal,r,x(fD(B))]qq′
where q′(r) 6= q(r)

Fig. 21
= ∅
= PD(∅)

Fig. 21
= PD([λlocal,r,x(B)]qq′)
37
= [fD(λlocal,r,x(B))]qq′

[λlocal,r,x(fD(B))]qq′
where q′(r) = q(r)

Fig. 21
=
⋃
x′ [fD(B)]pp′

37
=
⋃
x′ PD([B]pp′)

19, 17

⊆ PD
(⋃

x′ [B]pp′
)

Fig. 21
= PD

(
[λlocal,r,x(B)]qq′

)
37
= [fD(λlocal,r,x(B))]qq′

[λlocal,r,x(fD(B))]q

Fig. 21
= [fD(B)]p
37
= P̂D([B]p)

Fig. 21
= P̂D

(
[λlocal,r,x(B)]q

)
37
= [fD(λlocal,r,x(B))]q

9.
[λshare,L,x(fD(B))]qq′

Fig. 21
= proj−L([fD(B)]qq′ ∩ Cons(L, x))
37
= proj−L(PD([B]qq′) ∩ Cons(L, x))
35.1

⊆ PD
(
proj−L([B]qq′ ∩ Cons(L, x))

)
Fig. 21
= PD

(
[λshare,L,x(B)]qq′

)
37
= [fD(λshare,L,x(B))]qq′

[λshare,L,x(fD(B))]q

Fig. 21
= proj−L([fD(B)]q ∩ Cons(L, x))
37
= proj−L(P̂D([B]q) ∩ Cons(L, x))
35.2

⊆ P̂D
(
proj−L([B]q ∩ Cons(L, x))

)
Fig. 21
= P̂D

(
[λshare,L,x(B)]q

)
37
= [fD(λshare,L,x(B))]q

10.
obs(fD(B))

13
= obs(

⋃
qq′ [fD(B)]qq′) ∪ obs(

⋃
q [fD(B)]q)

37
= obs(

⋃
qq′ PD([B]qq′)) ∪ obs(

⋃
q P̂D([B]q))

19, 17

⊆ obs(PD(
⋃
qq′ [B]qq′)) ∪ obs(P̂D(

⋃
q [B]q))

36.1, 36.2

⊆ obs(
⋃
qq′ [B]qq′) ∪ obs(

⋃
q [B]q)

13
= obs(B)

obs(B)

13
=obs(

⋃
qq′ [B]qq′) ∪ obs(

⋃
q [B]q)

21

⊆obs(
⋃
qq′ PD([B]qq′)) ∪ obs(

⋃
q P̂D([B]q))

37
=obs(

⋃
qq′ [fD(B)]qq′)) ∪ obs(

⋃
q [fD(B)]q)

13
=obs(fD(B))

Figure 23. Cases for the proof of Thm. 39 (continued from Fig. 22).

with image in PD(M∗(A)):

〈stR L, x〉〈stR L, x〉〈ldR L′, x′〉 ∈ A

〈stR L, x〉〈ldR L′, x′〉〈stR L, x〉 ∈ srsrl(A)

〈ldR L′, x′〉〈stR L, x〉〈stR L, x〉 ∈ srsrl(srsrl(A))

〈ldR L′, x′〉〈stR L, x〉 ∈ PD(srsrl(srsrl(A)))

m = ersrlf The only overlap scenario is of the form

〈stR L, x〉〈stR L, x〉〈ldR L, x〉 ∈ A

〈stR L, x〉〈ldR L, x〉 ∈ PD(A)

〈stR L, x〉 ∈ ersrlf(PD(A))

with image in PD(M∗(A)):

〈stR L, x〉〈stR L, x〉〈ldR L, x〉 ∈ A

〈stR L, x〉〈stR L, x〉 ∈ ersrlf(A)

〈stR L, x〉 ∈ PD(ersrlf(A))

• M = X86 = {srsrl, ersrlf}, and D = {eilR}

m = srsrl The only overlap scenario is of the form

〈stR L, x〉{〈ldR L1, ∗〉} · · ·
{〈ldR Ln, ∗〉}〈ldR L′, x′〉 ⊆ A

〈stR L, x〉〈ldR L′, x′〉 ∈ PD(A)

〈ldR L′, x′〉〈stR L, x〉 ∈ srsrl(PD(A))

Now consider the following w ∈ A:

w = 〈stR L, x〉〈ldR L1, x1〉 · · · 〈ldR Ln, xn〉〈ldR L′, x′〉
where xi = x whenever L = Li, or arbitrary otherwise. Then,
by repeatedly applying srsrl or ersrlf, we can move the store
all the way to the right, which proves

〈ldR Li1 , xi1〉 · · · 〈ldR Lin , xin〉〈ldR L
′, x′〉〈stR L, x〉 ∈M∗(A)

where i1, . . . , in is the subsequence of 1, . . . , k consisting of
all indices i for which Li 6= L. Finally, because the xij were
arbitrary, this implies

{〈ldR Li1 , ∗〉 · · · 〈ldR Lin , ∗〉}〈ldR L
′, x′〉〈stR L, x〉 ⊆M∗(A)

and we can thus eliminate the loads, giving

〈ldR L′, x′〉〈stR L, x〉 ⊆ PD(M∗(A)).

m = ersrlf The only overlap scenario is of the form

〈stR L, x〉{〈ldR L1, ∗〉} · · ·
{〈ldR Ln, ∗〉}〈ldR L, x〉 ⊆ A

〈stR L, x〉〈ldR L, x〉 ∈ PD(A)

〈stR L, x〉 ∈ ersrlf(PD(A))

Now consider again the following w ∈ A:

w = 〈stR L, x〉〈ldR L1, x1〉 · · · 〈ldR Ln, xn〉〈ldR L, x〉
where xi = x whenever L = Li, or arbitrary otherwise. Then,
by repeatedly applying srsrl or ersrlf, we can move the store

all the way to the right and forward the load on the right, which
proves

〈ldR Li1 , xi1〉 · · · 〈ldR Lin , xin〉〈stR L, x〉 ∈M
∗(A)

where i1, . . . , in is the subsequence of 1, . . . , k consisting of
all indices i for which Li 6= L. Finally, because the xij were
arbitrary, this implies

{〈ldR Li1 , ∗〉 · · · 〈ldR Lin , ∗〉}〈stR L, x〉 ⊆M
∗(A)

and we can thus eliminate the loads, giving

〈stR L, x〉 ⊆ PD(M∗(A))

• M = X86 = {srsrl, ersrlf}, and D = {iilR}

m = srsrl The only overlap scenario is of the form

〈stR L, x〉 ∈ A

〈stR L, x〉〈ldR L′, x′〉 ∈ PD(A)

〈ldR L′, x′〉〈stR L, x〉 ∈ srsrl(PD(A))

with image in PD(M∗(A)):

〈stR L, x〉 ∈ A

〈stR L, x〉 ∈ M∗(A)

〈ldR L′, x′〉〈stR L, x〉 ∈ PD(M∗(A))

m = ersrlf The only overlap scenario is of the form

〈stR L, x〉 ∈ A

〈stR L, x〉〈ldR L, x〉 ∈ PD(A)

〈stR L, x〉 ∈ ersrlf(PD(A))

with image in M∗(A) and thus also in PD(M∗(A)):

〈stR L, x〉 ∈ A

〈stR L, x〉 ∈ M∗(A)

• M = CLRblog = {ssl, swll, eswlf}, and D = {edlW }

m = ssl The only overlap scenario is of the form

〈sth L, x〉〈ldW L′, x′〉〈ldW L′, x′〉 ∈ A

〈sth L, x〉〈ldW L′, x′〉 ∈ PD(A)

〈ldW L′, x′〉〈sth L, x〉 ∈ ssl(PD(A))

with image in PD(M∗(A)):

〈sth L, x〉〈ldW L′, x′〉〈ldW L′, x′〉 ∈ A

〈ldW L′, x′〉〈sth L, x〉〈ldW L′, x′〉 ∈ ssl(A)

〈ldW L′, x′〉〈ldW L′, x′〉〈sth L, x〉 ∈ ssl(ssl(A))

〈ldW L′, x′〉〈sth L, x〉 ∈ PD(ssl(ssl(A)))

m = eswlf The only overlap scenario is of the form

〈sth L, x〉〈ldW L, x〉〈ldW L, x〉 ∈ A

〈sth L, x〉〈ldW L, x〉 ∈ PD(A)

〈sth L, x〉 ∈ eswlf(PD(A))

with image in M∗(A) (and thus in PD(M∗(A))):

〈sth L, x〉〈ldW L, x〉〈ldW L, x〉 ∈ A

〈sth L, x〉〈ldW L, x〉 ∈ eswlf(A)

〈sth L, x〉 ∈ eswlf(eswlf(A))

m = swll There are three overlap scenarios (overlap left,
overlap right, and overlap both left and right). We only do the
third one; the first two are similar.

〈ldW L, x〉〈ldW L, x〉
〈ldW L′, x′〉〈ldW L′, x′〉 ∈ A

〈ldW L, x〉〈ldW L′, x′〉 ∈ PD(A)

〈ldW L′, x′〉〈ldW L, x〉 ∈ swll(PD(A))

with image in PD(M∗(A)):

〈ldW L, x〉〈ldW L, x〉
〈ldW L′, x′〉〈ldW L′, x′〉 ∈ A

〈ldW L, x〉〈ldW L′, x′〉
〈ldW L, x〉〈ldW L′, x′〉 ∈ swll(A)

〈ldW L′, x′〉〈ldW L′, x′〉
〈ldW L, x〉〈ldW L, x〉 ∈ M∗(A)

〈ldW L′, x′〉〈ldW L, x〉 ∈ PD(M∗(A))

• M = CLRblog = {ssl, swll, eswlf}, and D = {edsW }

m = ssl The only overlap scenario is of the form

〈stW L, x〉〈stW L, x〉〈ldW L′, x′〉 ∈ A

〈stW L, x〉〈ldW L′, x′〉 ∈ PD(A)

〈ldW L′, x′〉〈stW L, x〉 ∈ ssl(PD(A))

with image in PD(M∗(A)):

〈stW L, x〉〈stW L, x〉〈ldW L′, x′〉 ∈ A

〈stW L, x〉〈ldW L′, x′〉〈stW L, x〉 ∈ ssl(A)

〈ldW L′, x′〉〈stW L, x〉〈stW L, x〉 ∈ ssl(ssl(A))

〈ldW L′, x′〉〈stW L, x〉 ∈ PD(ssl(ssl(A)))

m = swll There is no overlap scenario.

m = eswlf The only overlap scenario is of the form

〈stW L, x〉〈stW L, x〉〈ldW L, x〉 ∈ A

〈stW L, x〉〈ldW L, x〉 ∈ PD(A)

〈stW L, x〉 ∈ eswlf(PD(A))

with image in PD(M∗(A)):

〈stW L, x〉〈stW L, x〉〈ldW L, x〉 ∈ A

〈stW L, x〉〈stW L, x〉 ∈ eswlf(A)

〈stW L, x〉 ∈ PD(eswlf(A))

• M = CLRblog = {ssl, swll, eswlf}, and D = {eilW }

m = ssl The only overlap scenario is of the form

〈sth L, x〉{〈ldW L1, ∗〉} · · ·
{〈ldW Ln, ∗〉}〈ldW L′, x′〉 ⊆ A

〈sth L, x〉〈ldW L′, x′〉 ∈ PD(A)

〈ldW L′, x′〉〈sth L, x〉 ∈ ssl(PD(A))

Now consider the following w ∈ A:

w = 〈sth L, x〉〈ldW L1, x1〉 · · · 〈ldW Ln, xn〉〈ldW L′, x′〉

where xi = x whenever L = Li, or arbitrary otherwise. Then,
by repeatedly applying ssl or eswlf, we can move the store all
the way to the right, which proves

〈ldW Li1 , xi1〉 · · · 〈ldW Lin , xin〉〈ldW L′, x′〉〈sth L, x〉 ∈M∗(A)

where i1, . . . , in is the subsequence of 1, . . . , k consisting of
all indices i for which Li 6= L. Finally, because the xij were
arbitrary, this implies

{〈ldW Li1 , ∗〉 · · · 〈ldW Lin , ∗〉}〈ldW L′, x′〉〈sth L, x〉 ⊆M∗(A)

and we can thus eliminate the loads, giving

〈ldW L′, x′〉〈sth L, x〉 ⊆ PD(M∗(A)).

m = swll The only overlap scenario is of the form

〈ldW L, x〉{〈ldW L1, ∗〉} · · ·
{〈ldW Ln, ∗〉}〈ldW L′, x′〉 ⊆ A

〈ldW L, x〉〈ldW L′, x′〉 ∈ PD(A)

〈ldW L′, x′〉〈ldW L, x〉 ∈ swll(PD(A))

Now consider the following w ∈ A:

w = 〈ldW L, x〉〈ldW L1, x1〉 · · · 〈ldW Ln, xn〉〈ldW L′, x′〉

where the xi are arbitrary. Then, by repeatedly applying swll,
we can move the loads in the middle all the way to the left. This
means

〈ldW L1, x1〉 · · · 〈ldW Ln, xn〉〈ldW L′, x′〉〈ldW L, x〉
∈M∗(A)

Because the xi were arbitrary, this implies

{〈ldW L1, ∗〉} · · · {〈ldW Ln, ∗〉}〈ldW L′, x′〉〈ldW L, x〉
⊆M∗(A)

and we can thus eliminate the loads, giving

〈ldW L′, x′〉〈ldW L, x〉 ⊆ PD(M∗(A)).

m = eswlf The only overlap scenario is of the form

〈sth L, x〉{〈ldW L1, ∗〉} · · ·
{〈ldW Ln, ∗〉}〈ldW L, x〉 ⊆ A

〈sth L, x〉〈ldW L, x〉 ∈ PD(A)

〈sth L, x〉 ∈ eswlf(PD(A))

Now consider the following w ∈ A:

w = 〈sth L, x〉〈ldW L1, x1〉 · · · 〈ldW Ln, xn〉〈ldW L, x〉

where xi = x whenever L = Li, or arbitrary otherwise. Then,
by repeatedly applying ssl or eswlf, we can move the store all
the way to the right and forward the load on the right, which
proves

〈ldW Li1 , xi1〉 · · · 〈ldW Lin , xin〉〈sth L, x〉 ∈M
∗(A)

where i1, . . . , in is the subsequence of 1, . . . , k consisting of
all indices i for which Li 6= L. Finally, because the xij were
arbitrary, this implies

{〈ldW Li1 , ∗〉 · · · 〈ldW Lin , ∗〉}〈sth L, x〉 ⊆M
∗(A)

and we can thus eliminate the loads, giving

〈sth L, x〉 ⊆ PD(M∗(A))

• M = CLRblog = {ssl, swll, eswlf}, and D = {iilW }

m = ssl The only overlap scenario is of the form

〈sth L, x〉 ∈ A

〈sth L, x〉〈ldW L′, x′〉 ∈ PD(A)

〈ldW L′, x′〉〈sth L, x〉 ∈ ssl(PD(A))

with image in PD(M∗(A)):

〈sth L, x〉 ∈ A

〈sth L, x〉 ∈ M∗(A)

〈ldW L′, x′〉〈sth L, x〉 ∈ PD(M∗(A))

m = swll There are three overlap scenarios (overlap right,
overlap left, and overlap both).
The first overlap scenario is of the form

〈ldW L, x〉 ∈ A

〈ldW L, x〉〈ldW L′, x′〉 ∈ PD(A)

〈ldW L′, x′〉〈ldW L, x〉 ∈ swll(PD(A))

with image in PD(A) and thus in PD(M∗(A)):

〈ldW L, x〉 ∈ A

〈ldW L′, x′〉〈ldW L, x〉 ∈ PD(A)

The second overlap scenario is of the form

〈ldW L′, x′〉 ∈ A

〈ldW L, x〉〈ldW L′, x′〉 ∈ PD(A)

〈ldW L′, x′〉〈ldW L, x〉 ∈ swll(PD(A))

with image in PD(A) and thus in PD(M∗(A)):

〈ldW L′, x′〉 ∈ A

〈ldW L′, x′〉〈ldW L, x〉 ∈ PD(A)

The third overlap scenario is of the form

ε ∈ A

〈ldW L, x〉〈ldW L′, x′〉 ∈ PD(A)

〈ldW L′, x′〉〈ldW L, x〉 ∈ swll(PD(A))

with image in PD(A) and thus in PD(M∗(A)):

ε ∈ A

〈ldW L′, x′〉〈ldW L, x〉 ∈ PD(A)

m = eswlf The only overlap scenario is of the form

〈sth L, x〉 ∈ A

〈sth L, x〉〈ldW L, x〉 ∈ PD(A)

〈sth L, x〉 ∈ eswlf(PD(A))

with image in M∗(A) and thus also in PD(M∗(A)):

〈sth L, x〉 ∈ A

〈sth L, x〉 ∈ M∗(A)

• M = CLRSC
blog = {swswl, swlwl, ewswlf}, and D = {edlW }

same as case M = CLRblog (after replacing rule names and
replacing 〈sth L, x〉 with 〈stW L, x〉).

• M = CLRSC
blog = {swswl, swlwl, ewswlf}, and D = {edsW }

same as case M = CLRblog (after replacing rule names).

• M = CLRSC
blog = {swswl, swlwl, ewswlf}, and D = {eilW }

same as case M = CLRblog (after replacing rule names and
replacing 〈sth L, x〉 with 〈stW L, x〉).

• M = CLRSC
blog = {swswl, swlwl, ewswlf}, and D = {iilW }

same as case M = CLRblog (after replacing rule names and
replacing 〈sth L, x〉 with 〈stW L, x〉).

