
Bounded reachability of model programs∗

Microsoft Research Technical Report MSR-TR-2008-81

Margus Veanes
Microsoft Research, Redmond

margus@microsoft.com

Ando Saabas†

Institute of Cybernetics, TUT, Tallinn, Estonia
ando@cs.ioc.ee

Nikolaj Bjørner
Microsoft Research, Redmond
nbjorner@microsoft.com

May 2008

Abstract

Model programs represent labeled transition systems and are used to

specify expected behavior of systems at a high level of abstraction. Such

programs are common as high-level executable specifications of complex

protocols. Model programs typically use abstract data types such as sets

and maps, and comprehensions to express complex state updates. Such

models are mainly used in model-based testing as inputs for test case

generation and as oracles during conformance testing. Correctness as-

sumptions about the model itself are usually expressed through state in-

variants. An important problem is to validate the model prior to its use

in the above-mentioned contexts. We introduce a technique of using Sat-

isfiability Modulo Theories or SMT to perform bounded reachability of a

fragment of model programs. We analyze the bounded reachability prob-

lem and prove decidability and undecidability results of restricted cases

of this problem. We use the Z3 solver for our implementation and bench-

marks, and we use AsmL as the modeling language. The translation from

a model program into a verification condition of Z3 is incremental and

involves selective quantifier instantiation of quantifiers that result from

set comprehensions and bag axioms.

∗This report subsumes part of the material in [41].
†Part of this work was done during an internship at Microsoft Research, Redmond.

1

Contents

1 Introduction 3

2 Model programs 4
2.1 Background theory . 4

2.1.1 Maps . 4
2.1.2 Sets . 5
2.1.3 Range expressions . 5
2.1.4 Arrays . 6

2.2 Variables and values . 7
2.3 Actions . 7
2.4 Model program definition . 7
2.5 Composition of model programs 9

3 Bounded reachability of model programs 9
3.1 Reachability formula . 10
3.2 Array model programs . 10

4 One step reachability of model programs is undecidable 11
4.1 Theory TS(B) . 12
4.2 Undecidable cases . 12
4.3 Basic model programs . 14
4.4 Undecidable extensions of basic model programs 15

5 Bounded reachability of basic model programs is decidable 16
5.1 Stratified fragment of TS(B) . 16
5.2 Reduction from basic model programs over TS(B) 16
5.3 Encoding general array operations in TS(P) 18

6 Implementation using Z3 18

7 Experiments 24

8 Related work 26

2

1 Introduction

Programs that use high-level data types are commonly used to describe exe-
cutable specifications [26] in form of so called model programs. An important and
growing application area in the software industry is the use of model programs
for specifying and documenting expected behavior of application-level network
protocols [17]. Model programs typically use abstract data types such as sets
and maps, and comprehensions to express complex state updates. Correctness
assumptions about the model are usually expressed through state invariants.
An important problem is to validate a model prior to its use as an oracle or
final specification. One approach is to use Satisfiability Modulo Theories or
SMT to perform bounded reachability analysis or bounded model-checking of
model programs. The use of SMT solvers for automatic software analysis has
recently been introduced [1] as an extension of SAT-based bounded model check-
ing [6]. The SMT based approach makes it possible to deal with more complex
background theories. Instead of encoding the verification task of a sequential
program as a propositional formula the task is encoded as a quantifier free for-
mula. The decision procedure for checking the satisfiability of the formula may
use combinations of background theories [33].

Unlike traditional sequential programs, model programs typically operate on
a more abstract level and in particular make use of (set and bag) comprehensions
as expressions that are computed in a single step, rather than computed, one
element at a time, in a loop. In this report we consider an extension of the SMT
approach to reachability analysis of model programs where set comprehensions
are supported at the given level of abstraction and not unwound as loops. We
identify a fragment of model programs using the array property fragment [10]
that remains decidable for bounded reachability analysis.

The construction of the formula for bounded reachability of sequential pro-
grams is based on the semantics of the behavior of the program as a transition
system. The resulting formula encodes reachability of some condition within
a given bound in that transition system. If the formula is satisfiable, a model
of the formula typically is a witness of some bad behavior. The semantics of a
model program on the other hand, is given by a labeled transition system, where
the labels record the actions that caused the transitions. Using the action la-
bel is conceptually important for separating the (external) trace semantics of
the model program from its (internal) state variables. The trace semantics of
model programs is used for example for conformance testing. When composing
model programs, shared actions are used to synchronize steps. We illustrate
how composition of model programs [43] can be used for scenario oriented or
user directed analysis.

This report also provides a complete characterization of the decidable and
undecidable cases of the bounded reachability problem of model programs in
terms of the complexity of action parameter types. We show in Section 4 that
already the single step reachability problem is undecidable if a single set-valued
parameter is allowed. In Section 5 we show that the bounded reachability prob-
lem remains decidable provided that all parameters have basic (non-set valued)

3

types. This result is orthogonal to the decidable fragment of bounded reacha-
bility of model programs that use the array property fragment [10]. We use the
SMT solver Z3 [12] for our experiments and we use AsmL [19] as the modeling
language. Related work is discussed in Section 8.

2 Model programs

The semantics of model programs in their full generality builds on the abstract
state machine (ASM) theory [18]. Model programs are primarily used in model-
based testing tools like Spec Explorer [39, 42] where one of the supported input
languages is the abstract state machine language AsmL [3, 19]. The NModel
tool [34, 26] and Spec Explorer 2007 [17] use plain C# for describing model
programs. Spec Explorer 2007 uses, in addition, a coordination language Cord
for scenario control [16] and model composition. Typically, a model program
makes use of a rich background theory [7] T , that contains integer arithmetic,
finite collections (sets, maps, sequences, bags), and tuples, as well as user defined
data types.

2.1 Background theory

Let the signature of T be Σ. For each sort S (representing a type) the theory
for S and its signature are denoted by TS and ΣS , respectively. All function
symbols and constants in Σ, and all variables are typed, and when referring to
terms over Σ we assume that the terms are well-typed. For a term t, the set
of symbols that occur in it is called the signature of t and is denoted by Σ(t).
Boolean sort B is explicit, and formulas are represented by Boolean terms. We
use the notation t[x] to indicate that the free logical variable x may occur in t.
Given term s we also use the notation t[s] to indicate the substitution of s for
x in t. The integer sort is Z. Given sorts D and R, {D 7→ R} is the map sort
with domain sort D and range sort R. The map sort {D 7→ B} is also denoted
by {D} and called a set sort with domain sort D. For each sort S there is a
designated constant defaultS denoting a special value in (the type represented
by) S. For Booleans, that value is false. The use of defaultS is to represent
partial maps, with range sort S, as total maps that map all but finitely many
elements to defaultS . In particular, sets are represented by their characteristic
functions as maps.

2.1.1 Maps

For each map sort S = {D 7→ R}, the signature ΣS contains the binary function
symbol readS , the ternary function symbol writeS and the constant emptyS . The
function readS : S×D −→ R retrieves the element for the given key of the map.
The function writeS : S ×D × R −→ S creates a new map where the key has
been updated to the new value. The constant emptyS denotes the empty map.
The theory TS contains the classical map axioms (see e.g. [10]), which we repeat

4

here for clarity and to introduce some notation:

∀mxv y(read(write(m,x, v), y) = Ite(x = y, v, read(m, y))), (1)

∀m1m2(∀x(read(m1, x) = read(m2, x))→ m1 = m2). (2)

All symbols are typed, i.e. have the expected sort, but we often omit the sort
annotations as they are clear from the context. The value of an if-then-else term
Ite(ϕ, t1, t2) (in a given structure) is: the value of t1, if ϕ holds; the value of
t2, otherwise. The second axiom above is extensionality. TS also contains the
axiom for the empty map:

∀x(read(empty, x) = defaultR). (3)

2.1.2 Sets

For each set sort S = {D}, the signature ΣS contains additionally the binary
set operations for union ∪S , intersection ∩S , set difference \S , and subset ⊆S .
The theory TS contains the appropriate axiomatization for the set operations.
We write x ∈ s and x /∈ s as abbreviations for read(s, x) and ¬read(s, x), respec-
tively. A set comprehension term s of sort S has the form Compr(t[x], x, r, ϕ[x])
or

{t[x] : x ∈ r, ϕ[x]}, (4)

where t[x] is a term of sort D called the element term of s, x is a logical variable
of some sort E called the variable of s, r is a term of sort {E} called the range
of x, and ϕ[x] is a formula called the restriction condition of s. When the
restriction condition is true, we write the set comprehension as {t[x] : x ∈ r}.
Given a closed set comprehension term s as (4), the constant s′ defines s by (5).

∀y(y ∈ s′ ↔ ∃x(y = t[x] ∧ x ∈ r ∧ ϕ[x])). (5)

The element term t[x] of s is invertible for x, if 1) the function f = λx.t[x]
is injective, 2) there exists a formula ψt[y] that is true iff y is in the range of
f , and 3) there exists a term t−1[y] such that t−1[y] = f−1(y) for all y such
that ψt[y] holds. If t[x] is invertible, then the existential quantifier in (5) can
be eliminated and (5) can be simplified to (6). (Just extend the body of the
existential formula with the conjunct t−1[y] = x ∧ ψt[y] and substitute t−1[y]
for x.)

∀y(y ∈ s′ ↔ t−1[y] ∈ r ∧ ϕ[t−1[y]] ∧ ψt[y]) (6)

We say that a set comprehension term s is normalizable if the element term
of s is invertible for the variable of s. The form (6) is called the normal form
definition for s.

2.1.3 Range expressions

For the sort S = {Z} of integer sets, ΣS contains the binary function symbol
Range : Z × Z −→ S. A term Range(l, u) is called a range expression with l

5

as its lower bound and u as its upper bound. We also use the notation {l..u}
for Range(l, u). The interpretation of a range expression is the set of integers
from its lower bound to its upper bound. TS contains the axiom (7) for range
expressions, where it is assumed that TZ includes Pressburger arithmetic.

∀x l u(x ∈ {l..u} ↔ l ≤ x ∧ x ≤ u) (7)

Note that a formula t ∈ {l..u} simplifies to l ≤ t ∧ t ≤ u, and a formula
t /∈ {l..u} simplifies to l > t ∨ t > u. More generally, any formula that is a
Boolean combination of range expressions and set operations can be simplified
to linear equations. Similarly, range expressions that are used as sets and that do
not depend on bound variables (inside nested comprehesion terms) can also be
eliminated by introducing fresh constants and adding constraints corresponding
to (7).

The theories for sets are assumed to contain definitions for all closed set
comprehension terms. When considering particular model programs below, the
signature Σ is expanded with new application specific constants. However, for
technical reasons it is convenient to assume that all those constants are available
in Σ a priori, so that the extension with set comprehension definitions is already
built into the theories.

Example 1 Let s be {m+x : x ∈ {1..c}} wherem and c are application specific
integer constants. The term m+ x is invertible for x; let ψm+x be true and let
(m+ x)−1 be y −m. The normal form definition for s is ∀y(y ∈ s′ ↔ y −m ∈
{1..c}), which reduces to ∀y(y ∈ s′ ↔ 1 ≤ y −m ∧ y −m ≤ c).

Example 2 Let s be {x + x : x ∈ {1..c}} where c is an application specific
constant. The term x+ x is invertible provided that TZ supports divisibility by
a constant; let (x+x)−1 be y/2 and let ψx+x be Divisible(y, 2). The normal form
definition for s is ∀y(y ∈ s′ ↔ y/2 ∈ {1..c} ∧ Divisible(y, 2)), or equivalently
∀y(y ∈ s′ ↔ 2 ≤ y ∧ y ≤ 2 · c ∧Divisible(y, 2)).

2.1.4 Arrays

A class of model programs, e.g. those used typically in protocol specifications,
do not depend on the full background theory but only on a fragment of it. The
particular fragment of interest is when all map sorts have domain sort Z and TZ

is Pressburger arithmetic, with ΣZ including {+,−, <,=} and integer numerals.
In particular, multiplication is omitted. Multiplication by a numeral is used as a
convenient shorthand for repeated addition. In this case, the set comprehension
term in Example 1 is normalizable. This fragment is called array theory [10]
and has useful properties that are exploited below.

Note that it is possible to express divisibility constraints by for example in-
troducing auxiliary variables and eliminating positive occurrences of Divisible(t, k)
by k · z = t, and negative occurrences by k · z+u = t∧1 ≤ u < k for fresh z and
u. One can even consider extending the array fragment to Büchi arithmetic [22].

6

2.2 Variables and values

We refer to the part of the global signature Σ that only includes symbols
whose interpretation is fixed by the background theory T as Σstatic; includ-
ing for example arithmetic operations and numerals and set operations. We
let Σvar = Σ \ Σstatic denote the uninterpreted symbols. We let Σvar

S and Σstatic

S

indicate the corresponding signatures restricted to the sort S. Note that Σvar

includes an unlimited supply of variables for all sorts, treated as uninterpreted
constants. A ground term over Σstatic is called a value term.

2.3 Actions

There is an action sort A. The theory TA axiomatizes a collection ΣA of action
symbols as free constructors. For each action symbol f of arity n, the sort of f is
A if n = 0 and the sort of f is S1× · · ·×Sn −→ A otherwise, where each Si is a
sort distinct from A. In other words, actions cannot take actions as parameters.
An action is value term f(t1, . . . , tn) where f is an action symbol.

2.4 Model program definition

For all action symbols f with arity n ≥ 0, and all i, 1 ≤ i ≤ n, there is a unique
parameter variable (not in Σvar) denoted by fi. We write Σf for {fi}1≤i≤n.
Note that if n = 0 then Σf = ∅.

Definition 1 A model program P is a tuple (VP , AP , IP , RP), where

• VP is a finite set of state variables, let ΣP denote Σstatic ∪ VP ;

• AP is a finite set of action symbols ;

• IP is a formula over ΣP , called the initial state condition;

• RP is a family {RfP }f∈AP of action rules RfP = (GfP , U
f
P), where

– GfP is a formula over ΣP ∪ Σf called the guard of RfP ;

– UfP , called the update rule of RfP , is a block {v := tfv}v∈V f
P

of assign-

ments where tfv is a term over ΣP ∪ Σf and V fP ⊆ VP .

This definition is a variation of model programs that syntactically restricts the
update rules to be block assignments. Note that this does not restrict expressiv-
ity because we can always replace conditional update rules with corresponding
if-then-else terms. One can therefore treat this definition as a guarded assign-
ment normal form for model programs.

We often say action to also mean an action rule or an action symbol, if the
intent is clear from the context.

7

Example 3 (Credits) The following model program is written in AsmL. It
specifies how a client and a server need to use message ids, based on a sliding
window protocol. It models part of the credits-algorithm in the SMB2 [38]
protocol.

var window as Set of Integer = {0}
var maxId as Integer = 0
var requests as Map of Integer to Integer = {->}

[Action]

Req(m as Integer, c as Integer)
require m ∈ window and c > 0
requests := requests.Add(m, c)
window := window − {m}

[Action]

Res(m as Integer, c as Integer)
require m ∈ requests and requests(m) ≥ c and c ≥ 0
//require requests.Size > 1 or window <> {} or c > 0 <-- bug

window := window + {maxId + i | i ∈ {1..c}}
requests := requests.RemoveAt(m)
maxId := maxId + c

[Invariant]

ClientHasEnoughCredits()
require requests = {->} implies window <> {}

The Credits model program illustrates a typical use of model programs as
protocol-specifications. Actions use parameters, maps and sets are used as state
variables and a comprehension expression is used to compute a set. Each action
has a guard and an update rule given by a basic ASM. For example, the guard
of the Req action requires that the id of the message is in the current window
of available ids and that the number of credits that the client requests from the
server is positive. The state invariant associated with the model program is that
the client must not starve, i.e. there should always be a message id available at
some point, so that the client can issue new requests.

Let P be a fixed model program. A P -state is a mapping of VP to values.1

Given an action a = f(a1, . . . , an), let θa denote the parameter assignment
{fi 7→ ai}1≤i≤n. Given a P -state S, an extension of S with the parameter
assignment θ is denoted by (S; θ).

Let S be a P -state, an f -action a is enabled in S if (S; θa) |= GfP . The action
a causes a transition from S to S′, where

S′ = {v 7→ tfv
(S;θa)

}
v∈V f

P

∪ {v 7→ vS}
v∈VP \V f

P

.

1More precisely, this is the foreground part of the state, the background part is the canonical
model of the background theory T .

8

A labeled transition system or LTS is a tuple (S,S0, L, T), where S is a set
of states, S0 ⊆ S is a set of initial states, L is a set of labels and T ⊆ S ×L×S
is a transition relation.

Definition 2 Let P be a model program. The LTS of P , denoted by [[P]] is
the LTS (S,S0, L, T), where S0, is the set of all P -states s such that s |= IP ; L
is the set of all actions over AP ; T and S are the least sets such that, S0 ⊆ S,
and if s ∈ S and there is an action a that causes a transition from s to s′ then
s′ ∈ S and (s, a, s′) ∈ T .

A run of P is a sequence of transitions (si, ai, si+1)i<κ in [[P]], for some
κ ≤ ω, where s0 is an initial state of [[P]]. The sequence (ai)i<κ is called an
(action) trace of P . The run or the trace is finite if κ < ω.

2.5 Composition of model programs

Under composition, model programs synchronize their steps for the same action
symbols. The guards of the actions in the composition are the conjunctions
of the guards of the component model programs. The formal definition is a
simplification of the parallel composition of model programs from [43].

Definition 3 Let P and Q be model programs such that A = AP = AQ and

V fP ∩ V
f
Q = ∅ for all f ∈ A. Let

P ⊕Q
def

= (VP ∪ VQ, A, IP ∧ IQ, (G
f
P ∧G

f
Q, U

f
P ∪ U

f
Q)f∈A).

The disjointness of the variables updated by the same action may be relaxed
by using a more general form of update rules and a mechanism for combining
updates. Composition can be used to do scenario oriented modeling [43]. In
Section 7 we illustrate how composition can also be used to do scenario oriented
analysis, or assist the theorem prover with lemmas.

3 Bounded reachability of model programs

Let P be a model program and let ϕ be a ΣP -formula. The main problem we
are addressing is whether ϕ is reachable in P within a given bound.

Definition 4 Given ϕ and k ≥ 0, ϕ is reachable in P within k steps, if there
exists an initial state s0 and a (possibly empty) run (si, ai, si+1)i<l in P , for
some l ≤ k, such that sl |= ϕ. If so, the action sequence α = (ai)i<l is called a
reachability trace for ϕ and s0 is called an initial state for α.

Note that, given a trace α and an initial state s0 for it, the state where the
condition is reached is reproducible by simply executing α starting from s0. This
provides a cheap mechanism to check if a trace produced by a solver is indeed
a witness. In a typical model program, the initial state is uniquely determined

9

by an initial assignment to state variables, so the initial state witness is not
relevant.

Note also that an important use of action parameters is to make all non-
determinism explicit, by providing a parameter and making a choice based on
that parameter using a conditional update rule. Therefore update rules consid-
ered here do not have the nondeterministic choose construct of nondeterministic
ASMs [18].

3.1 Reachability formula

The basic idea of generating a reachability formula for bounded model checking
and to use SAT to check this formula was introduced in [6]. Here we use a similar
translation scheme and apply it to model programs. Given a state variable or
action parameter x we use x[i] to denote a new variable or parameter for step
number i. For step 0, we assume that x[0] is x, i.e. the original variable is used.
For a term t, t[i] produces a term by induction over the structure of terms where
all state variables and action parameters are given step number i.

The bounded reachability formula for a given model program P , step bound
k and reachability condition ϕ is:

Reach(P, ϕ, k)
def

= IP ∧ (
∧

0≤i<k

P [i]) ∧ (
∨

0≤i≤k

ϕ[i]) (8)

P [i]
def

=
∨

f∈AP

(action[i] = f(f1[i], . . . , fn[i]) ∧G
f
P [i] (9)

∧

v∈V f
P

v[i+ 1] = tfv [i]
∧

v∈VP \V f
P

v[i+ 1] = v[i])

A skip action has the action rule (true, ∅). We have the following theorem.

Theorem 1 Let P be a model program that includes a skip action, let k ≥ 0
be a step bound and let ϕ be a reachability condition. Then Reach(P, ϕ, k) is
satisfiable if and only if ϕ is reachable in P within k steps. Moreover, if M
satisfies Reach(P, ϕ, k), let M0 = {v 7→ vM}v∈VP , let ai = action[i]M for 0 ≤
i < k, and let α be the sequence (ai)i<k. Then α is a reachability trace for ϕ
and M0 is an initial state for α.

Proof Follows easily from the definition of the bounded reachability formula
and the definition of bounded reachability. �

3.2 Array model programs

We consider here the fragment of T when TZ is Pressburger arithmetic and all
map sorts have domain sort Z. We call model programs that only depend on
this fragment of T , array model programs. In the following lemma we refer to
the array property fragment introduced in [10]. An example of a model program
in this fragment is the Credits model program in Example 3 that models the

10

credit negotiation algorithm in the SMB2 protocol [38]. The purpose of this
model program is explained in detail in [44].

Lemma 1 Let P be an array model program and assume that all set compre-
hension definitions of P are normalizable, have a variable range that is a range
expression, and that P [i] is quantifier free. Assume also that IP and ϕ are in
the array property fragment. Let k ≥ 0. Then Reach(P, ϕ, k) is in the array
property fragment.

The following is a corollary of Lemma 1 and [10, Theorem 1], using the fact
that the only range sort theory besides TZ is TB and thus this fragment of T is
decidable. We also refer to SATA in [10, Definition 9].

Corollary 1 Let P and ϕ be as in Lemma 1. Then SATA is a decision proce-
dure for Reach(P, ϕ, k).

The decision procedure SATA eliminates universal quantifiers by restricting
the universal quantification to a finite index set generated from the formula.
In our case the formula under consideration is ψ = Reach(P, ϕ, k). We assume
here that the set (comprehension) definitions are conjuncts of the respective
step formula.

Typically, a set comprehension uses a range expression, see e.g. the Credits
example in Example 3, and the index set for this formula yields at least four
indices (the boundary cases for the range and its negation). The size of the index
set grows at least proportionally to k, because each step formula introduces new
indices, and thus the elimination process increases the size of the final quantifier
free formula at least quadratically.

In our elimination scheme, the index set used to eliminate quantifiers of
a given step formula, only originates from that step formula. For the set of
model programs we have encountered so far, this restricted elimination preserves
completeness of SATA for satisfiability of ψ. While we do not yet have identified
a general class of model programs where this restriction remains complete, we
can use Z3 to lazily augment the constraints we generate by model-checking the
model returned by Z3. Section 6 explains the way we use Z3 lazily.

4 One step reachability of model programs is

undecidable

The bounded reachability problem of model programs is undecidable in the gen-
eral case. In this section we pin down various minimal cases of the undecidability
with respect to various restrictions on the background. In all cases it is enough
to restrict the reachability bound and the number of action symbols to 1, i.e.
the undecidability arises already using a single step and a single action symbol.
We call it the one step reachability problem. In Section 5 we argue that these
undecidable cases are minimal in some sense.

11

4.1 Theory TS(B)

Here we assume that we have a small base theory B (for example Presburger
arithmetic) and that we define a theory TS(B) that extends B with tuples and
sets.

It is assumed that the language of B does not include the new symbols. It
is convenient to restrict the set of all possible expressions of TS(B) to a set of
well-formed expressions that are shown in Figure 1. When considering a formula
of TS(B) as defined in Figure 1, it is assumed that by default all set variables
are existentially quantified, i.e. have an outermost existential quantifier. We
write TS(B) both for the class of expressions as defined in Figure 1, as well as
the axioms of TS(B).

The axioms of TS(B) include the axioms of B, the axioms for tuples stat-
ing that for each arity k the k-tuple constructor is a free constructor, axioms
for set union, set intersection, element-of relation, subset relation, and the ex-
tensionality axiom for sets. Given a model A of TS(B), i.e., a structure A in
the language of TS(B) that is a model of the axioms of TS(B), the comprehen-
sion term s = {t(x) |x ϕ(x)}, where t and ϕ may include parameters, has the
interpretation sA in A such that

A |= ∀y(y ∈ sA ↔ ∃x(t(x) = y ∧ ϕ(x)))

which is well-defined due to the extensionality axiom:

∀v w(∀y(y ∈ v ↔ y ∈ w)→ v = w).

Example 4 Let P be Presburger arithmetic. The following is a range expres-
sion, in TS(P):

{z | x ≤ z ∧ z ≤ y}

where we omit the z from |z. We often use the abbreviation {x..y} for a range
from x to y. The following is a direct product v ×w between two sets v and w:

{〈x, y〉 | x ∈ v ∧ y ∈ w}.

Note that, not all well-formed TS(P) expressions can be used in a model
program, in a model program all expressions are quantifier free and each set
comprehension variable has a finite range.

4.2 Undecidable cases

Theorem 2 One can effectively associate a deterministic 2-register machine M
with a formula haltsM (m,n) in TS(P) with integer parameters m and n, such
that M halts on (m,n) if and only if haltsM (m,n) holds.

Proof Let STEPM (〈i,m, n〉, 〈i′,m′, n′〉) be the program formula for M as de-
fined in [8, Theorem 2.1.15]. In our context, the formula is a quantifier free Pres-
burger formula with the given parameters that uses only increment (by one) and

12

Basic elements : E ::= TB | 〈E, . . . , E〉 | πi(E) | x | ite(F,E,E)

Sets : S ::= {E |x F} | ∅ | S ∪ S | S ∩ S | S \ S | v | ite(F, S, S)

Formulas : F ::= FB | ¬F | F ∧ F | F ∨ F | ∀xF | ∃xF |
E = E | S ⊆ S | S = S | E ∈ S

Figure 1: Well-formed expressions in TS(B). The theory B has terms TB and
Formulas FB. It is assumed that all terms in TB have sort β. Set variables
are denoted by v and basic variables (tuple variables or variables of sort β)
are denoted by x. The grammar omits sorts (type annotations) for ease of
readability. For example in a set operation term s1 � s2, it is assumed that both
s1 and s2 have the same sort, in an element-of atom t ∈ s it is assumed that if
the sort of t is σ then the sort of s is {σ}, a tuple (t1, t2) has the sort σ1 × σ2

provided that ti has sort σi, etc.

decrement (by one) operations and equality. The formula holds exactly when
x = (i,m, n) `M (i′,m′, n′) = x′, i.e. when x′ is the successor configuration of
x in M . There is a finite number k of instructions, i.e. 1 ≤ i, i′ ≤ k. We can
assume, without loss of generality, that M is such that the initial instruction is
1 and the final instruction is k > 1 and when the final instruction is reached
then both registers are zero. Let haltsM be the following formula where s has
the sort {Z× (Z× Z× Z)× (Z× Z× Z)}:

haltsM (m,n)
def

= ∃s∃l(validM (m,n, s, l))

validM (m,n, s, l)
def

=

s = {〈j, x, y〉 | 〈j, x, y〉 ∈ s ∧ STEPM (x, y) ∧ 1 ≤ j ∧ j ≤ l} ∧

{〈π0(z), π1(z)〉 | z ∈ s} ∪ {〈l, 〈k, 0, 0〉〉} =

{〈1, 〈1,m, n〉〉} ∪ {〈π0(z) + 1, π2(z)〉 | z ∈ s}

First we prove the direction “⇒”. Assume that M halts on (m,n). So there is
a finite sequence of configurations (xj)1≤j≤l where x1 = 〈1,m, n〉, xl = 〈k, 0, 0〉
and xj `M xj+1 for 1 ≤ j < l. Let s = {〈j, xj , xj+1〉|1 ≤ j < l}. It is easy to
check that validM (m,n, s, l) holds.
Next we prove the direction “⇐”. Assume that validM (m,n, s, l) holds for
some s and l. From the first equality it follows that all elements of s are of
the form 〈j, x, y〉 where 1 ≤ j < l and x `M y. From the second equality it
follows that s must be a sequence in j, i.e., for all j, 1 ≤ j < l, there is a
unique element 〈j, xj , yj〉 in s. Moreover, it follows that x1 = 〈1,m, n〉, for all
j, 1 < j < l, xj = yj−1, and yl = 〈k, 0, 0〉. Hence, there exists a computation
〈1,m, n〉 `∗M 〈k, 0, 0〉 and therefore M halts on (m,n). �

The following is an immediate consequence of the proof of Theorem 2.

Corollary 2 TS(P) is undecidable. Undecidability arises already for formulas
of the form ∃v∃xϕ, where ϕ is quantifier free and uses at most three unnested
comprehensions.

13

type Config = (Integer, Integer, Integer)

steps as Set of (Integer,Config,Config)
length as Integer

[Action] haltsM(m as Integer, n as Integer)
require validM(m, n, steps, length)

Figure 2: Model program PM .

The construction of haltsM in Theorem 2 shows that comprehensions to-
gether with pairing (or tuples) leads to undecidability of the one step reachabil-
ity problem, because validM can be used as an enabling condition of an action
as illustrated in Figure 2, and the halting problem of 2-register machines is
undecidable.

Only a small fragment of Presburger arithmetic is needed. In particular,
divisibility by a constant is not needed. The proof of the theorem does not
change if M is assumed to be a Turing machine (assume M has two input
symbols and the configuration (i,m, n) represents a snapshot of M where i is
the finite state of M , m represents the tape content to the left of the tape
head and n represents the tape content to the right of the tape head), only the
construction of STEP is different. However, in that case one needs to express
divisibility by 2 to determine the input symbol represented by the lowest bit of
the binary representation of m or n, which can be encoded using an additional
existential quantifier.

Another consequence of the construction in Theorem 2 is that decidability
of the bounded reachability problem cannot in general be obtained by fixing
the model program or by limiting the the number of set variables (without
disallowing them).

Corollary 3 There is a fixed model program Pu over TS(P) with one set-valued
state variable, one integer-valued state variable, and an action symbol with two
integer-valued parameters, such that the following problem is undecidable: given
an action a, decide if a is enabled in Pu.

Proof Let Mu be a 2-register machine that is universal in the following sense,
given a Turing machine M and an input v (over a fixed alphabet), let pM, vq
be an effective encoding of M and v as an input for Mu, so that Mu accepts
pM, vq if and only if M accepts v. Such a 2-register machine exists and can
be constructed effectively [25, Theorem 7.9]. Let Pu be like PMu

in Figure 2.
Let M be a Turing machine and v an input for M . Then haltsMu

(pM, vq) is
enabled in Pu iff (by Theorem 2) Mu halts on pM, vq iff M accepts v. �

4.3 Basic model programs

A basic value or sort is a non-set value or sort. A parameter or state variable
is basic if its sort is basic. We say that a model program is basic if all action
parameters are basic, each state variable is either basic or a set of basic elements,

14

and the initial values of set valued state variables are either fixed or defined by
basic state variables.

Example 5 The model program Pu in Corollary 3 is not basic because the
initial value of steps is undefined. The following model program on the other
hand is basic, where STEP and k are the same as above.

[Action] halts(maxCounter as Integer, l as Integer)
let steps = {(j,(i,m,n),(i’,m’,n’)) | i,i’ in {1..k}, j in {1..l},

m,n,m’,n’ in {1..maxCounter}, STEP((i,m,n),(i’,m’,n’))}
require {(j,x) | (j,x,y) in steps} union {(l,(k,0,0))} =

{(1,(1,m,n))} union {(j+1,y) | (j,x,y) in steps}

It seems as if it is possible to express the halting problem just using bounded
reachability of basic model programs. This is not the case as is shown in Sec-
tion 5. Intuitively, a comprehension adds “too many” elements.

4.4 Undecidable extensions of basic model programs

If we add a chooseSubset construct to basic model programs that chooses
nondeterministically a subset from a given set, we are again able to encode the
halting problem as follows.

[Action]

halts(maxCounter as Integer, l as Integer)

let steps = {(j,(i,m,n),(i’,m’,n’)) | i,i’ in {1..k}, j in {1..l},

m,n,m’,n’ in {1..maxCounter}, STEP((i,m,n),(i’,m’,n’))}

require {(j,x) | (j,x,y) in chooseSubset(steps)} union {(l,(k,0,0))} =

{(1,(1,m,n))} union {(j+1,y) | (j,x,y) in chooseSubset(steps)}

This is easy to see, since a formula A[chooseSubset(s)] is equivalent to the for-
mula v ⊆ s∧A[v] where v is a fresh existentially quantified variable, for example
a parameter (assuming s does not include universally quantified variables) This
allows us to construct the undecidable formula shown in the proof of Theorem
2.

An extension of basic model programs that leads to undecidability of the
one step reachability problem is if we allow set cardinality. We can then express
integer multiplication as follows, given two (non-negative) integers m and n:

m · n
def

= |{1..m} × {1..n}|. Also, if we allow bag comprehensions we can define

the cardinality of a set s as |s|
def

= {{0|x ∈ s}}[0]. Either of these extensions
allows us to effectively encode diophantine equations (e.g. 5x2y + 6z3 − 7 = 0
is a diophantine equation). Let p(x) be a diophantine equation and let P(x)
be an action whose enabling condition is the encoding of p(x). Then P(n) is
enabled iff n is an integer solution for p(x). The problem of deciding whether a
diophantine equation has an integer solution is known as Hilbert’s 10th problem
and is undecidable [32].

15

5 Bounded reachability of basic model programs

is decidable

We show that the bounded reachability problem of basic model programs over a
background TS(B) is decidable provided that Th(B) is decidable, where Th(B) is
the closure of B under entailment, i.e., for an arbitrary closed first-order formula
ϕ in the language of B it is decidable if ϕ ∈ Th(B).

5.1 Stratified fragment of TS(B)

The proof has two steps. First, we show that there is a fragment of TS(B),
denoted by TS(B)≺ that reduces effectively to B. Second, we show that the
bounded reachability problem of basic model programs over TS(P) reduces to
TS(P)≺. Let B be fixed. Let V (ϕ) denote the collection of all set variables that
occur in a formula ϕ over TS(B).

Definition 5 (TS(B)≺) A TS(B) formula ϕ is stratified if

• ϕ has the form ψ ∧
∧
v∈V (ϕ) v = Sv, and

• the relation ≺
def

= {(w, v)|v ∈ V (ϕ), w ∈ V (Sv)} is well-founded.

The equation v = Sv is called the definition of v in ϕ.

5.2 Reduction from basic model programs over TS(B)

Theorem 3 TS(B)≺ reduces effectively to B.

Proof Let ϕ be a stratified TS(B) formula. We provide a series of transfor-
mations of ϕ, each of which preserves equivalence to the original formula, such
that the final formula is a formula over the language of B. Apply the following
transformations to ϕ in the given order.

1. Eliminate set variables. Let (vi)i<k be a fixed sequence of V (ϕ) such that
vj 6≺ vi if j > i, i.e. the definition of vi does not mention vj for any j > i.
This sequence exists because ≺ is well-founded.

Let ϕ0 be ϕ. Given ϕj , and the definition vj = Sj in ϕj , construct ϕj+1

from ϕj by replacing each occurrence of vj (other than in its definition) by
Sj . Clearly ϕj+1 is logically equivalent to ϕj . So ϕk is logically equivalent
to ϕ and has the form ψ ∧

∧
i<k vi = Si where ψ and all the Si are

set-variable free. Since all set variables are existentially quantified, the
formula ψ ∧

∧
i<k vi = Si is true if an only if ψ is true. Remove the set

variables.

2. Eliminate if-then-else terms. Apply the following transformation repeat-
edly to atomic formulas α that contain ite subterms:

α[ite(ϕ, s1, s2)] (ϕ ∧ α[s1]) ∨ (¬ϕ ∧ α[s2])

16

3. Normalize set comprehensions. The variables yi below are assumed to be
fresh. After this step all element terms of comprehensions are tuples of
variables.

{〈t1(x), . . . , tn(x)〉 | ϕ(x)}

{〈y1, . . . , yn〉 | ∃x(y1 = t1(x) ∧ · · · ∧ yn = tn(x)) ∧ ϕ(x)}

4. Translate set operations. Since all set variables v have been eliminated the
only atomic set terms are comprehensions. Because of step 2, all element
terms only include tuples of variables. It suffices to show the translation
of the set operations on comprehensions. Recall also that terms are well
typed so both sides have the same sort.

{〈y〉 | ψ1(y)} ∪ {〈y〉 | ψ2(y)} {〈y〉 | ψ1(y) ∨ ψ2(y)}

{〈y〉 | ψ1(y)} ∩ {〈y〉 | ψ2(y)} {〈y〉 | ψ1(y) ∧ ψ2(y)}

{〈y〉 | ψ1(y)} \ {〈y〉 | ψ2(y)} {〈y〉 | ψ1(y) ∧ ¬ψ2(y)}

5. Translate ∈ and ⊆. When set operations have been eliminated, all sets
are in the form of comprehensions. So element-of and subset atoms can
thus be eliminated in the following way.

t ∈ {u(x) | ψ(x)} ∃x (ψ(x) ∧ t = u(x))

{〈x〉 | ψ1(x)} ⊆ {〈x〉 | ψ2(x)} ∀x (ψ1(x)→ ψ2(x))

6. Expand tuple variables. For each variable x of the sort σ1 × · · · × σk for
k > 1. Apply the following transformation repeatedly until all variables
have the base sort β. This process clearly terminates.

Qxϕ(x) Qx1 . . . Qxn ϕ(〈x1, · · · , xn〉)

7. Unwind tuples. Apply the following transformations until there are no
more tuple operations. Note that at this point a tuple term can only
appear in an equality or as an argument of a projection. This process
clearly terminates.

〈t1, . . . , tk〉 = 〈u1, . . . , uk〉 t1 = u1 ∧ · · · ∧ tk = uk

πi(〈t0, . . . , ti, . . . , tk〉) ti

After the above transformations we get a formula over the language of B that
is logically equivalent to the original formula. �

The following corollary is immediate using the decidability of Presburger
arithmetic P .

Corollary 4 TS(P)≺ is decidable.

17

We also get the following corollary that is the main result of this section.

Corollary 5 Bounded reachability of basic model program over TS(P) is decid-
able.

Proof Let P be a basic model program over TS(P) let ϕ be a reachability
condition, and let k be a step bound. It is easy to see that ψ = Reach(P, ϕ, k)
can be written as a stratified TS(P) formula: First, we can assume that there
is only one action symbol (with a specific parameter that identifies a particular
action). Since P is basic, the initial value of each state variable v(0) must be
defined. In each step formula for step i, the value v(i+1) is given a definition
that uses only variables or parameters from state i and parameters are basic.
The definition can be written on a form that uses ite and is a top level equation
of the generated formula. The only variables that are not given definitions are
parameters, but all parameters are basic. Satisfiability of ψ in the language that
includes the state variables reduces to entailment of the existential closure of ψ
from TS(P), which by Theorem 3, reduces to P and is thus decidable. �

5.3 Encoding general array operations in TS(P)

General integer arrays and array read and write operations are, strictly speak-
ing, not in the TS(P) fragment but can easily be encoded using tuples and
comprehensions. For example, given an array variable v from integers to in-
tegers with the default value 0, encode it as the graph ṽ of v. The relation
Read(ṽ, l, x) that holds when v[l] = x, can be defined through

Read(ṽ, l, x)
def

= ite({x} = {π1(y) | y ∈ ṽ ∧ π0(y) = l}, true, x = 0)

and the corresponding write operation Write(ṽ, l, x) can be defined through

Write(ṽ, l, x)
def

= {y | y ∈ ṽ ∧ π0(y) 6= l} ∪ {(l, x)}.

Using this encoding one can for example transform the Credits model program
in Example 3 into an equivalent model program over TS(P).

6 Implementation using Z3

Z3 [12, 45] is a state of the art SMT solver. SMT generalizes Boolean satis-
fiability (SAT) by adding equality reasoning, arithmetic, fixed-size bit-vectors,
arrays, quantifiers, and other useful first-order theories. Of particular relevance
to model-programs, Z3 exposes a theory of extensional arrays, which has a built-
in decision procedure. Thus, terms built up using the array constructs read and
write are automatically subjected to the axioms (1) and (2). Constant arrays
are also supported natively, such that axiom (3) can be obtained as a side-effect
of declaring a constant array const(default).

Boolean algebras, also known as sets, are implemented natively in Z3 as
a layer on top of the extensional array theory. Thus, adding and removing

18

elements from a set is obtained by using write, set membership uses read, and
the empty sets are the constant sets:

s′ = s ∪ {x} ↔ s′ = write(s, x, true)

s′ = s \ {x} ↔ s′ = write(s, x, false)

x ∈ s ↔ read(s, x)

∅ ↔ const(false)

The set operations ∪,∩, \ are encoded using a generalized write, which we will
call write-set. It has the semantics:

∀mm′m′′ x (read(write-set(m,m′,m′′), x) =

Ite(read(m,x) = read(m′, x), read(m′′, x), read(m′, x)),

such that the set operations can be encoded using:

s ∪ s′ ↔ write-set(const(false), s, s′)

s ∩ s′ ↔ write-set(const(true), s, s′)

s \ s′ ↔ write-set(s′, const(false), s)

Z3 hides these encodings, such that expressions involving sets can be formulated
directly using the usual set operations.

Support for constructs which are not included in Z3’s API natively can be
added via external axiomatization. Such axiomatizations typically require the
use of quantifiers in Z3, which potentially makes the solver incomplete and can
cause spurious models to be returned.

Fortunately, since model programs are executable, the feasibility of traces
provided by the solver can easily be checked by simply executing them. While,
in principle, the traces could be executed directly on the model program via
the AsmL compiler, we use the approach to translate them to C# and execute
the traces on C# code. This provides several benefits: we can conveniently
use .Net API’s for reflection, we can add auxiliary methods for evaluating and
saving intermediate results for pinpointing error locations (in case an erroneous
trace is provided by the solver) etc. Additionally, this eases the adoption of
other languages for describing model programs. For example, NModel [34] uses
C# as the modelling language. In this case, we would only need to provide a
parser from C# to the internal abstract syntax to be able to use the framework.

In the following sections, we explain how the axiomatization of bags (multi-
sets) and set comprehensions makes use of trace checking and model refinement.

Bags in Z3 AsmL makes use of abstract datatypes suitable for high-level
reasoning, such as sets, bags etc. Since the bag type is not supported directly
by Z3, they need to be axiomatized for Z3, which requires the use of quantifiers.
As such, the axiomatization of bags makes an interesting case study about
iterative refinement of Z3 models.

19

Since Z3 supports maps, bags can be axiomatized using maps: a bag is a
map from some type T to a natural number. The axioms for bag operations are
the following (we will use the notation s[x] for reading the value of the map s
at position x):

∀x, s1, s2.((s1] s2)[x] ≡ s1[x] + s2[x])

∀x, s1, s2.((s1 ∩ s2)[x] ≡ ite(s1[x] < s2[x], s1[x], s2[x]))

∀x, s1, s2.((s1 \ s2)[x] ≡ ite(s1[x] < s2[x], 0, s1[x]− s2[x]))

The empty bag is defined in Z3 as ∅ = const(0) i.e. the default value
of the map is 0. Following the bag axioms, adding an element to a bag is
s ∪ {x} = write(s, x, s[x] + 1) and removing an element is s \ {x} = ite(s[x] =
0, s,write(s, x, s[x] − 1)).

Since Z3 supports quantifiers, adding axioms such as ∀x, s1, s2.((s1]s2)[x] ≡
s1[x]+s2[x]) is straightforward. Quantifiers are implemented via pattern match-
ing, for example (s1] s2)[x] would be a pattern in the given forall formula.
However, relying on such axioms is incomplete as they are only expanded if
search explicitly builds a subterm that matches the pattern. If the subterm is
not encountered, the axiom is ignored.

There are essentially two ways how a returned model can be incorrect in the
context of bag operations. The first one is the case where the interpretation of a
bag operation does not follow the particular axiom. Let us look at the following
simple example:

var bag as Bag of Integer = Bag {i}

Action AddToBag(param as Bag of Integer)

bag := bag union param

...//actions not adding to bag

Invariant()

bag <> Bag {}

The invariant states that the bag bag should never empty. Since the bag is
initially non-empty, and it is only possible to add elements to the bag, the
invariant clearly. However, by not instantiating the bag union axiom, the wrong
interpretation to the union operator can be given (so the resulting interpretation
is bag] param = ∅) and an incorrect model returned.

The second way the model can fail is when Z3 applies the axioms correctly
when building the bag terms, but then adds extra skolem constants to the map
representing the bag for checking array inequalities. That is, the model would be
correct if the extra skolem constants would be ignored, but is incorrect together
with them. The following example explains this.

20

var bagA as Bag of Integer = Bag{i}

var bagB as Bag of Integer = Bag{k}

Action AddToBagA(param as Bag of Integer)

bagA := bagA union param

Action AddToBagB(param as Bag of Integer)

bagB := bagB union param

Invariant()

bagA <> bagB

The invariant here is that bagA is never equal to bagB. Assuming i 6= k, a
state breaking the invariant can be reached in 2 steps, by adding i to bagB
(param0 = Bag{i}) and k to bagA (param1 = Bag{k}). Z3 might give a model
where the parameters include i and k respectively (as they should), but also
include some irrelevant values. This means that the axiom interpretations are
correct on the values that actually matter, but are not correct on the auxiliary
skolem constants. The trace checker would of course reject such a trace.

Array property fragment We now describe the general approach we use
in dealing with these kinds of errors. In [10], Bradley et al describe a decision
procedure for a fragment of first other logic with the theory of arrays. The
so called array property is a formula of the form (∀i)(φI(i) → φV (i)), where
i is a vector of variables, and φI(i) and φV (i) are the index guard and the
value constraint, following their respective restrictions. The restriction on the
value constraint is that the quantified variables i ∈ i only appear as array reads
(which in turn must not be nested). A formula with an array property formula
ψ[(∀i)(φI(i) → φV (i))] is equisatisfiable with the formula ψ[

∧
i∈Iψ

(φI(i) →

φV (i))], where Iψ is the index set of the formula ψ. The index set of a formula
consists of the terms used to read from an array, and certain subterms of the
index guards.

We do not follow the reduction of Bradley literally, for example we do not
explicitly remove array writes. Instead we lazily repair the model using the
index terms when needed. Thus the index set generation differs slightly from
that of Bradley. The index set IMP of a model program MP consists of two
sets, the read set IR and the write set IW . The read set is the set of terms used
in accessing the arrays in the model program directly, i.e. IR = {i | a[i] ∈MP},
where a[i] is an array access. The write set consists of terms used to refer to
array positions which are written to, together with its 2 closest neighbors, so
each array write generates 3 terms: IW = {j | i−1 ≤ j ≤ i+1, a[i← x] ∈MP}.
The reason why i− 1 and i+ i are included in the set is that an array write in
some context C[a[i ← x]] should be rewritten as C[b] ∧ b[i] = e ∧ ∀j.(j 6= i →
a[j] = b[j]). To meet the syntactic requirement of the array property fragment,
the third conjunct has to be rewritten as ∀j.(j ≤ i−1∨ i+1 ≤ j → a[j] = b[j]).

21

The terms i− 1 and i+ 1 meet the syntactic requirement to be included in the
index set.

Looking back at the first example, if trace evaluation shows that the interpre-
tation of the union operator is wrong, we can fix the interpretation on the index
set, which includes i. The instantiation (bag] param)[i] = bag[i] + param[i] is
added to the original formula, which makes the original interpretation explicitly
invalid. Feeding the new formula to the solver, it correctly finds that there can
be no model for this formula.

The same approach does not solve the problem explained in the second
example, since even if we fix the interpretation on the extra skolem constants,
the solver will pick new ones. This is where we can again make use of the
generated index set. Any value in the bag that is not equal to some value of an
index term is ignored, i.e. it is removed from the bag. This approach gives us
the correct trace.

This approach is complete in case bags of integer bags. The bag axioms
can be expressed in the array property fragment, considering the bag axioms
to be axiom schemes, i.e., they can be instantiated to specific cases where bag
operation are used in a formula. Doing that, quantification over bag variables
can be eliminated. For example in a formula ψ where we have a bag union, the
following rewrite steps can be taken:

ψ[s1] s2]
ψ[s] ∧ s = s1] s2

ψ[s] ∧ ∀x.(s[x] = s1[x] + s2[x])

The formula ∀x.(s[x] = s1[x] + s2[x]) falls in the array property fragment
fragment (assuming the index guard to be true). The same is true for intersec-
tion and difference axioms.

Encoding type restrictions While integer bag axioms fall into the decidable
fragment of array theory, the implementation in Z3 is not completely straight-
forward. One reasons is that there is no built in type for natural numbers, but
bags are maps from some type T to N. A naive encoding of bags in Z3 would
use integers instead of natural numbers, but this can quickly lead to spurious
counterexamples, since then bags could contain a negative number of elements.

Similar problems arise when encoding other datatypes, for example enumer-
ated types (enums). With the naive translation of enums as integers, Z3 can give
a model that is valid for the formula, but not for the original model program,
since the enum is outside of the expected range.

Thus we need to add axioms which restrict the general integer and map
types to more specific ones. For bags the predicate specifying that a map s is
a bag would be IsBag(s) ≡ ∀x.(s[x] >= 0). For every implicitly existentially
quantified bag variable b in the formula, we could add the application of the
predicate on b to the formula, i.e. IsBag(b). This guarantees that when Z3
assigns a value to b, its range can only be N. For an enum variable x where the
enum range is from 0..n, the restriction is simply 0 ≤ x ∧ x ≤ n.

22

This approach however does not work in the general case, because datatypes
can be nested, for example there can be a set of bags. In this case there would be
no explicit bag variables to put the restriction on. Thus we need to recursively
generate axioms for nested datatypes. In the case of a set of bags, one axiom
would define a predicate stating that the set can only contain elements which
are bags and the second axiom for the predicate stating the range of bags must
be non-negative.

This checking can be extended to other map based datatypes. The general
form of a map axiom is

∀s.(IsSomeMap(s) ≡

∀x.(RangeRestriction(s[x]) ∧

(s[x] 6= DefaultV alue⇒ DomainRestriction(x)))).

For example the axioms for the type set of bag of 4-element enum are:

∀x, s.(IsSetofBagOfEnum(s) ≡

∀x.(s[x] 6= false⇒ IsBagOfEnum(x)))

and

∀x, s.(IsBagOfEnum(s) ≡

∀x.(s[x] ≥ 0 ∧ (s[x] 6= 0⇒ 0 ≤ x ∧ x ≤ 3))).

If we now have a parameter x of type set of bag of enum, the restriction on
it would be IsSetOfBagOfEnum(x).

Set comprehensions One of the biggest advantages of using a language like
AsmL together with bounded model checking is the availability of comprehen-
sions in the language. When checking programs in a C or a Java-like language,
loops need to be unrolled, making the approach unfeasible for programs which
have longer loop runs. With comprehensions support, many loops (especially
for-next and foreach loops) can be expressed via comprehensions. These can
then be described as a single step in a bounded reachability formula, instead of
unrolling them. Unfortunately, this also means that the bounded reachability
formula becomes undecidable in the general case (as opposed to the case where
all loops are unrolled). However, it is possible to isolate fragments in the set
comprehension formula which are decidable (as shown in the previous sections)
or have good heuristics for solving them.

A comprehension definition ∀y(y ∈ s′ ↔ ∃x(y = t[x] ∧ x ∈ r ∧ ϕ[x])) does
not immediately admit existential quantifier elimination, since the quantifier
appears in a negative context. One way to eliminate the quantifier was explained
in Section 2. This method applies when the element term is invertible and there
is only one comprehension variable. If r is a range term in the form {m..n}, the
formula is in the array property fragment.

23

Another way to remove the existential quantifiers even if the element term
is not invertible, or there are more than one variable in the comprehension is
by rewriting the comprehension definition into two definitions

∀y(y ∈ r ∧ ϕ[x]→ t[x] ∈ s′)

and

∀y(y ∈ s′ → ∃x(y = t[x] ∧ x ∈ r ∧ ϕ[x])).

The latter can then be skolemized and admits the form

∀y(y ∈ s′ ↔ y = t[sk(y)] ∧ sk(y) ∈ r ∧ ϕ[sk(y)]).

While these equations are not in array property fragment, using the index
set for formula refinement is a very good heuristic.

Incremental refinement and axiom repair We use the iterative refinement
and index set based method for axiom repair for both bag and set comprehen-
sion axiomatizations. The general refinement loop works as follows. A trace
provided by the Z3 solver is executed step by step on the generated program
via reflection, and after each step it is checked whether the state given in the
model matches the actual state. If it does not match, we know at which action
the mismatching state was reached. By examining the statements in the action
we can check which of the axioms was not instantiated correctly and on which
variables, consequently pinpointing the exact error source. The interpretation
on this operation can then be fixed, by adding new formulas to the original
model formula, giving explicit instantiations of the “misinterpreted” axiom on
each index term. The new formula can be sent back to Z3 and a new trace
obtained, which might again be erroneous (on some other axiom application),
in which case it is again fixed and the refinement loop continues. This approach
is similar to CEGAR [11] (counter example guided abstraction refinement), the
main difference being that we do not refine the level of abstraction, but instead
lazily instantiate axioms in case their use has not been triggered during proof
search.

7 Experiments

As the concrete input language of model programs we use a subset of AsmL [3].
Model programs have the same meaning as in the Spec Explorer tool [42] or
in NModel [34]. The difference is that here the analysis is done symbolically
using a theorem prover, rather than using explicit state exploration through
execution. An action rule is given by a method definition annotated with the
[Action] attribute, with the method name being the action symbol and the
method signature providing the signature term for the action. The conjunction
of all the require-statements defines the precondition. The main body of the
method defines the update rule, where parallel update is the default in AsmL.

24

var counter as Map of Integer to Integer = {0->n, 1->n}
[Action]

Execute(bar as Integer)
require bar ∈ counter
if counter(bar) = 1

counter := RemoveAt(counter, bar)
else

counter(bar) := counter(bar)− 1

Figure 3: Count(n) model program.

var current as Integer
[Action]

Execute(bar as Integer)
require current ≤ bar
current := bar

Figure 4: Model program Order. It imposes a linear order on the execution
of bars where execution of bar i has to precede execution of bar j if i < j.
For example, if the bars are a, b and c, where a < b < c, this model program
essentially defines the regular expression Execute(a)∗Execute(b)∗Execute(c)∗.

The Credits model program in Example 3 illustrates a typical usage of model-
programs as protocol-specifications. The actions use parameters, maps and sets
are used as state variables and a comprehension expression is used to compute
a set. Here the reachability condition is the negated invariant. One of the
preconditions is missing (indicated by bug). There is a two-action trace leading
to a state where the invariant is violated due to this. Asking Z3 with a bound of 2
or more steps (in an incremental mode) produces that trace Req(0,1),Res(0,0)
in 21ms.

We are also investigating this analysis technique in the context of some
embedded real time scheduling problems [23]. In some cases, in particular if the
formula is not satisfiable, the solver may stall while trying to exhaust the search
space. In this case it may be useful to apply composition to constrain the search
space. This is reminiscent to adding user defined lemmas to the theorem prover.
A typical example would be the use of a model program that fixes the order
of some actions relative to some other actions, tantamount to user controlled
partial order reduction. The Count example in Figure 3 is a distilled version
of the counting aspect of the partiture model from [23]. There are a number
of indexed counters that can be decremented. Each index corresponds to an
atomic part of a schedule (called a bar) and the count for that bar specifies the
total number of times that this bar can be executed.

Suppose that there are two bars, 0 and 1, the initial count for both bars is
some value n, and that we are interested in finding a sequence of actions that

25

Table 1: Running times of the bounded reachability checking of the Count
example in Z3 for different values of the counting limit n and step bound k.

Model program Step bound Verdict Time (in seconds)

Count(5) 10 Sat 0.14
Count(5)⊕Order 10 Sat 0.14
Count(5) 9 Unsat 1.5
Count(5)⊕Order 9 Unsat 0.16
Count(8) 16 Sat 2.2
Count(8)⊕Order 16 Sat 1.4
Count(8) 15 Unsat 152
Count(8)⊕Order 15 Unsat 1

exhausts all the counters, i.e. the reachability condition ϕ is ‘counter is the
empty map’.

If the step bound k is smaller than 2n then Reach(Count(n), ϕ, k) is clearly
unsatisfiable. The size of the search space of the theorem prover grows expo-
nentially in k in this case (see Table 1). In this simplified example we can use
the knowledge that the order of decrementing the different counters is irrelevant
and fix such an order using another model program Order shown in Figure 4.

8 Related work

The unbounded reachability problem for model programs without comprehen-
sions and with parameterless actions is shown to be undecidable in [15], where
it is called the hyperstate reachability problem.

General reachability problems for transition systems are discussed in [37]
where the main results are related to guarded assignment systems. A guarded
assignment system is a union of guarded assignments or update rules. In the
proof of Theorem 2, s is a shifted pairing [20] of a valid computation. The
case when B = P in Theorem 3 is related to decidable extensions of P that are
discussed in [5].

The definition of TS(B)≺ in the proof of Theorem [?] is equivalent to the
following construction in the case when all tuples are required to be flat. Let
L0 be the language of B and let B0 = B. Given Li and Bi, create Li+1 and
Bi+1 as follows: expand Li with a relation symbol Rϕ of arity n for each Li-
formula ϕ(x1, . . . , xn) and add the definition ∀x(Rϕ(x) ↔ ϕ(x)) to Bi. Now
TS(B)≺ corresponds to

⋃
i Bi as follows. Due to the well-founded ordering, each

set variable v with the definition v = {〈x〉 |x ϕ(x)} corresponds to a relation
symbol Rϕ. Given a formula ϕ in TS(B)≺, it corresponds thus to a formula ϕk
in Bk for some k. The statement follows by using the theorem of the existence
of definitional expansions [24, Theorem 2.6.4] to reduce ϕi+1 in Li+1 to an
equivalent ϕi in Li.

26

The full fragment TS(P) is also part of the data structures that are allowed
in the Jahob verification system [9]. The translation scheme described in [9,
Appendix B] can be used to perform the transformations described in steps
3–7 of the proof of Theorem 3. In Jahob, the translation leads to a first-order
formula that can be proven by a resolution theorem prover. Here the purpose
of the translation was to show the reduction from TS(B)≺ to B; the verification
problem is more specific here, it addresses only bounded reachability by using
SMT.

The decidable fragment BAPA [30] is an extension of Boolean algebra with
P . The sets in BAPA are finite and bounded by a maximum size and the cardi-
nality operator is allowed, which unlike for TS(P)≺, does not enable encoding
of multiplication. Comprehensions are not possible and the element-of relation
is not allowed, i.e. integers and sets can only be related through the cardinality
operator. A decidable fragment of bag (multiset) constraints combined with
summation constraints are considered in [35] where summation constraints can
be used to express set cardinality (without using bag cardinality that is also
included in the fragment). A related fragment of integer linear arithmetic with
a star operator is considered in [36].

In [10] a decision procedure for an array fragment is introduced and in [41] it
is shown that this decision procedure can be applied to the bounded reachability
problem of a subclass of model programs. However, the fragment in [10] does not
allow expressions that include universally quantified variables, other than the
variable itself, to occur in array read operations. Consequently, comprehensions
where the comprehension expression is not invertible are not covered in [41].
In [22] another fragment of arrays is considered that allows universal variables
in array read expressions that relate consecutive elements or talk about periodic
properties.

A technique for translating common comprehension expressions (such as sum
and count) into verification conditions is presented in [31] within the Spec#
verification system that uses Boogie to generate verification conditions for SMT
solvers [4]. The system does not support arbitrary set comprehension expres-
sions as terms but allows axioms that enable explicit definitions of sets.

The reduction of the theories of arrays, sets and multisets to the theory of
equality with uninterpreted function symbols and linear arithmetic is used in
[28] for constructing interpolants for these theories. This work is based on the
results of [29], where it is shown that the quantifier-free theories of arrays, sets
and multisets can be reduced to quantifier-free theories of uninterpreted symbols
with equality, constructors and Presburger arithmetic.

Using SAT for bounded reachability of transition systems was introduced
in in [6] and the extension to SMT was introduced in [1]. Besides Z3 [12],
other SMT solvers that support arrays are described in [2, 40]. The formula
encoding we use [41] into SMT follows the same scheme but does not unwind
comprehensions and makes the action label explicit. The explicit use of the
action label is needed to compose model programs [43], that can be used for
scenario oriented verification [41]. This composition is somewhat related to
composition of modules in SAL 2 [13].

27

Our quantifier elimination scheme is inspired by [10], and refines it by using
model-checking to implement an efficient incremental saturation procedure on
top of the SMT solver. The work here extends the work in [41] through support
for set comprehensions with multiple comprehension variables and non-invertible
comprehension expressions, as well as bag (multi-set) axioms. A recent applica-
tion of the quantifier elimination scheme has been pursued by [27] in the context
of railway control systems.

The following problems have not been addressed yet. Bounded reachability
of model programs that use nested comprehensions, including for example sets
and bags, is interesting for analysis of general purpose algorithms, see e.g. [21].
Given the (computational) complexity of B, what is the complexity of TS(B)≺?
It seems that a TS(B)≺ formula can be exponentially more succinct than the

corresponding B formula. So, the complexity of TS(P)≺ could thus be 222
cn

,
since the complexity of P is 22cn [14]. The proper instantiation of array indices
and avoidance of false models generated by an SMT solver, due to the inherent
incompleteness of the triggering mechanism of universally quantified axioms, is
an important open problem in the general case.

References

[1] A. Armando, J. Mantovani, and L. Platania. Bounded model checking of
software using SMT solvers instead of SAT solvers. In A. Valmari, editor,
SPIN, volume 3925 of LNCS, pages 146–162. Springer, 2006.

[2] A. Armando, S. Ranise, and M. Rusinowitch. A rewriting approach to
satisfiability procedures. Inf. Comput., 183(2):140–164, 2003.

[3] AsmL. http://research.microsoft.com/fse/AsmL/.

[4] M. Barnett, B.-Y. E. Chang, R. DeLine, B. Jacobs, and K. R. M. Leino.
Boogie: A modular reusable verifier for object-oriented programs. In F. S.
de Boer, M. M. Bonsangue, S. Graf, and W.-P. de Roever, editors, For-
mal Methods for Components and Objects: 4th International Symposium,
FMCO 2005, volume 4111 of LNCS, pages 364–387. Springer, 2006.

[5] A. Bès. A survey of arithmetical definability, A tribute to Maurice Boffa,
Special Issue of Belg. Math. Soc., pages 1–54, 2002.

[6] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic model checking
without BDDs. In Tools and Algorithms for the Construction and Analysis
of Systems, (TACAS’99), volume 1579 of LNCS, pages 193–207. Springer,
1999.

[7] A. Blass and Y. Gurevich. Background, reserve, and Gandy machines. In
Proceedings of the 14th Annual Conference of the EACSL on Computer
Science Logic, pages 1–17. Springer, 2000.

28

[8] E. Börger, E. Grädel, and Y. Gurevich. The Classical Decision Problem.
Springer, 1997.

[9] C. Bouillaguet, V. Kuncak, T. Wies, K. Zee, and M. Rinard. On using
first-order theorem provers in the Jahob data structure verification sys-
tem. Computer Science and Artificial Intelligence Laboratory Technical
Report MIT-CSAIL-TR-2006-072, Massachusetts Institute of Technology,
November 2006.

[10] A. R. Bradley, Z. Manna, and H. B. Sipma. What’s decidable about arrays?
In Verification, Model Checking, and Abstract Interpretation: 7th Interna-
tional Conference, (VMCAI’06), volume 3855 of LNCS, pages 427–442.
Springer, 2006.

[11] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-
guided abstraction refinement. In E. A. Emerson and A. P. Sistla, editors,
CAV, volume 1855 of Lecture Notes in Computer Science, pages 154–169.
Springer, 2000.

[12] L. de Moura and N. Bjørner. Z3: An efficient SMT solver. In Tools and
Algorithms for the Construction and Analysis of Systems, (TACAS’08),
LNCS. Springer, 2008.

[13] L. de Moura, S. Owre, H. Rueß, J. M. Rushby, N. Shankar, M. Sorea,
and A. Tiwari. Sal 2. In R. Alur and D. Peled, editors, Computer Aided
Verification, 16th Int. Conf., (CAV 2004), volume 3114 of LNCS, pages
496–500. Springer, 2004.

[14] M. J. Fischer and M. O. Rabin. Super-exponential complexity of Presburger
arithmetic. In SIAMAMS: Complexity of Computation: Proceedings of a
Symposium in Applied Mathematics of the American Mathematical Society
and the Society for Industrial and Applied Mathematics, pages 27–41, 1974.

[15] W. Grieskamp, Y. Gurevich, W. Schulte, and M. Veanes. Generating finite
state machines from abstract state machines. SIGSOFT Softw. Eng. Notes,
27(4):112–122, 2002.

[16] W. Grieskamp and N. Kicillof. A schema language for coordinating con-
struction and composition of partial behavior descriptions. In 5th Inter-
national Workshop on Scenarios and State Machines: Models, Algorithms
and Tools (SCESM), 2006.

[17] W. Grieskamp, D. MacDonald, N. Kicillof, A. Nandan, K. Stobie, and
F. Wurden. Model-based quality assurance of Windows protocol documen-
tation. In First International Conference on Software Testing, Verification
and Validation, ICST, Lillehammer, Norway, April 2008.

[18] Y. Gurevich. Specification and Validation Methods, chapter Evolving Al-
gebras 1993: Lipari Guide, pages 9–36. Oxford University Press, 1995.

29

[19] Y. Gurevich, B. Rossman, and W. Schulte. Semantic essence of AsmL.
Theor. Comput. Sci., 343(3):370–412, 2005.

[20] Y. Gurevich and M. Veanes. Logic with equality: partisan corroboration
and shifted pairing. Inf. Comput., 152(2):205–235, 1999.

[21] Y. Gurevich, M. Veanes, and C. Wallace. Can abstract state machines be
useful in language theory? Theor. Comput. Sci., 376(1):17–29, 2007.

[22] P. Habermehl, R. Iosif, and T. Vojnar. What else is decidable about arrays?
In R. Amadio, editor, Proc. of the 11th Int. Conf. on Foundations of Soft-
ware Science and Computation Structures (FoSSaCS’08), LNCS. Springer,
2008.

[23] J. Helander, R. Serg, M. Veanes, and P. Roy. Adapting futures: Scalability
for real-world computing. In Proceedings Real-Time Systems Symposium
(RTSS 2007), pages 105–116. IEEE, 2007.

[24] W. Hodges. Model theory. Cambridge Univ. Press, 1995.

[25] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Lan-
guages, and Computation. Addison Wesley, 1979.

[26] J. Jacky, M. Veanes, C. Campbell, and W. Schulte. Model-based Software
Testing and Analysis with C#. Cambridge University Press, 2008.

[27] S. Jacobs and V. Sofronie-Stokkermans. Applications of hierarchical rea-
soning in the verification of complex systems. ENTCS, 174(8):39–54, 2007.

[28] D. Kapur, R. Majumdar, and C. G. Zarba. Interpolation for data struc-
tures. In 14th ACM SIGSOFT International Symposium on Foundations of
Software Engineering (SIGSOFT FSE 2006), pages 105–116. ACM, 2006.

[29] D. Kapur and C. G. Zarba. A reduction approach to decision procedures,
2006.

[30] V. Kuncak, H. H. Nguyen, and M. Rinard. An algorithm for deciding
BAPA: Boolean algebra with Presburger arithmetic. In R. Nieuwenhuis,
editor, CADE 2005, volume 3632 of LNAI, pages 260–277. Springer, 2005.

[31] R. Leino and R. Monahan. Automatic verification of textbook programs
that use comprehensions. In 9th Workshop on Formal Techniques for Java-
like Programs, FTfJP 2007, Berlin, Germany, July 2007.

[32] Y. V. Matiyasevich. Hilbert’s tenth problem. MIT Press, 1993.

[33] G. Nelson and D. C. Oppen. Simplification by cooperating decision proce-
dures. ACM Trans. Program. Lang. Syst., 1(2):245–257, 1979.

[34] NModel. http://www.codeplex.com/NModel, public version released May
2008.

30

[35] R. Piskac and V. Kuncak. Decision procedures for multisets with cardinality
constraints. In F. Logozzo, D. Peled, and L. D. Zuck, editors, VMCAI,
volume 4905 of LNCS, pages 218–232. Springer, 2008.

[36] R. Piskac and V. Kuncak. On Linear Arithmetic with Stars. Technical
Report LARA-REPORT-2008-005, EPFL, 2008.

[37] T. Rybina and A. Voronkov. A logical reconstruction of reachability. In
M. Broy and A. Zamulin, editors, PSI 2003, volume 2890 of LNCS, pages
222–237. Springer, 2003.

[38] SMB2. http://msdn2.microsoft.com/en-us/library/cc246482.aspx, 2008.

[39] Spec Explorer. http://research.microsoft.com/specexplorer.

[40] A. Stump, C. W. Barrett, D. L. Dill, and J. R. Levitt. A decision procedure
for an extensional theory of arrays. In LICS’01, pages 29–37. IEEE, 2001.

[41] M. Veanes, N. Bjørner, and A. Raschke. An SMT approach to bounded
reachability analysis of model programs. In FORTE’08, volume 5048 of
LNCS, pages 53–68. Springer, 2008.

[42] M. Veanes, C. Campbell, W. Grieskamp, W. Schulte, N. Tillmann, and
L. Nachmanson. Model-based testing of object-oriented reactive systems
with Spec Explorer. In R. Hierons, J. Bowen, and M. Harman, editors,
Formal Methods and Testing, volume 4949 of LNCS, pages 39–76. Springer,
2008.

[43] M. Veanes, C. Campbell, and W. Schulte. Composition of model programs.
In J. Derrick and J. Vain, editors, FORTE’07, volume 4574 of LNCS, pages
128–142. Springer, 2007.

[44] M. Veanes and W. Schulte. Protocol modeling with model program com-
position. In FORTE’08, volume 5048 of LNCS, pages 324–339. Springer,
2008.

[45] Z3. http://research.microsoft.com/projects/z3, released September 2007.

31

