
HomeMaestro: Order from Chaos in Home Networks

Thomas Karagiannis,1 Elias Athanasopoulos,2 Christos Gkantsidis,1 Peter Key1

Microsoft Research, Cambridge, UK
1 {thomkar, chrisgk, peter.key}@microsoft.com, 2 elathan@ics.forth.gr

May 2008

Technical Report
MSR-TR-2008-84

Microsoft Research
Microsoft Corporation

One Microsoft Way
Redmond, WA 98052

http://www.research.microsoft.com



Abstract
We present HomeMaestro, a distributed system for monitor-
ing and instrumentation of home networks. HomeMaestro
performs extensive measurements at the host level to infer
application network requirements, and identifies network-
related problems through time-series analysis. By sharing
and correlating information across hosts in the home net-
work, our system automatically detects and resolves con-
tention over network resources among applications based
on predefined policies. Finally, HomeMaestro implements
a distributed virtual queue to enforce those policies by prior-
itizing applications without additional assistance from net-
work equipment such as routers or access points. We out-
line the challenges in managing home networks, describe
the design choices and architecture of our system, and high-
light the performance of HomeMaestro components in typi-
cal home scenarios.

1. INTRODUCTION
The number and complexity of home networks continues
to grow, tracking the deployment and penetration of broad-
band [20] and driving customer premise equipment (CPE)
spending [11]. According to Gartner, the number of world-
wide consumer broadband connections is expected to reach
364 million by 2010[1], while Park Associates estimates that
there will be some 72 million residential gateways by 2012.
Indeed, as this trend persists, home networks may resemble
small replicas of complex enterprise networks, with mul-
tiple interconnected heterogeneous devices in the near fu-
ture. Typical examples include desktops, laptops, IP phones,
game consoles, home servers, and media centers, running
email, web, peer-to-peer, social networking, voice-over-IP,
video streaming, on-line gaming, media sharing, and tele-
working applications. Despite their wide-spread use and in-
creasing practical significance, the study of managing and
organizing home networks has been largely ignored by the
research community, in contrast to other types of networks,
such as enterprise networks where numerous solutions have
been proposed (e.g., [7, 23]). Commercially, the only pro-
cess currently that relates to network administration in a home
ecosystem is the configuration of the home router through a
web-based interface.

Home networks have idiosyncrasies and specific require-
ments that make them unique. Firstly, in contrast to enter-
prise networks, where policies and objectives are well de-
fined and proscribed by a single authority, home networks
connect users who not only have different requirements and
performance expectations but also conflicting priorities. Even
if a nominal network administrator is elected among the home
users to resolve conflicts, it is unclear whether this adminis-
trator will have the most knowledge about the network and
will be able to prevent other home users from bypassing
her administrative rules (e.g., contrast parents with tech-savy
children). Secondly, home networks have typically one cen-
tral open channel, namely the gateway, that interconnects all

home network devices to the rest of the world. This im-
plies that all home devices and their applications will share
and most likely compete for the available network capacity.
Competition for resources also exists between subscribers,
since broadband providers frequently oversubscribe their ac-
cess network. Within the home, the rising number of de-
vices, coupled with the growing trends in inter-connecting
these devices (e.g., home servers) and the proliferation of
bandwidth-intensive applications introduces in-home bottle-
necks.

Thirdly, most home users are unaware of how different
network configurations will affect their perceived network
performance (and they should be!). In practice, however,
minimal changes can lead to high performance differences [17].
Finally, the home network is also the place where a large
number of diverse technologies meet and interact, from broad-
band technologies such as cable and DSL, to local access
technologies such as Wireless, Wired or Powerline, some
of which with various undesirable side-effects such as large
queues and delays [8].

Our work strives to put an order in the chaos of Home net-
working, by introducing HomeMaestro, a distributed system
for the instrumentation and monitoring of home networks.
HomeMaestro tackles the challenges of home networks by
automatically identifying competition and allowing for con-
nection and application coordination in a collaborative man-
ner across hosts. Besides their challenges, home network of-
fer opportunities that HomeMaestro exploits, as typical net-
working problems (e.g., network management, bottleneck
sharing detection, resource allocation) are strictly simpler
than in the general case (e.g., in an ISP backbone). Home
networks comprise a relative small number of devices with
the sufficient context and extensive information about net-
work usage, allowing advanced algorithms to be developed
that infer network properties and enforce desired performance.
Additionally, certain levels of trust do exist between home
devices.

HomeMaestro monitors the performance of all network
applications at every participating host, and employs time-
series analysis to infer performance problems. Performance
may be defined depending on the application through a va-
riety of metrics such as rate or latency. Tracking such prop-
erties, HomeMaestro further detects whether these network
problems are related to competing traffic flows across hosts
or applications, and through priority-based mechanisms and
traffic shaping assigns the available bandwidth to applica-
tions.

Overall, our contributions can be summarized as follows:

•We describe the architecture of HomeMaestro, a distributed
system for the monitoring and organization of home net-
works (§ 3). We implement HomeMaestro and test its per-
formance in realistic home scenarios.
•We present techniques to identify performance issues and
detect whether these problems are caused by competing traf-
fic flows through time-series and statistical analysis (§ 4).

1



Figure 1: Aggregate traffic results from two households. The labels highlight the times that problems were reported across users (subscripts) and
applications (W:WEB, S:Streaming, G:Games, M:Media applications, e.g., image upload/searching, E:email).

• We apply algorithms to enforce traffic priorities through
virtual queue [14] and priority-based mechanisms. We dis-
tribute information amongst cooperating hosts, and create a
distributed proportionally fair allocation, using stable algo-
rithms based on congestion control ideas previously applied
to the wide-area [22](§ 5).

•We report evidence from a small-scale user-study of typi-
cal households. Our study involved monitoring of home traf-
fic for roughly 3 weeks, while at the same time home-users
reported on their perceived user experience (§ 2).

Our vision is to provide a seamless users experience to the
home user in the evolving home ecosystem. HomeMaestro is
a first step towards this direction, sheding at the same time
light on the requirements, challenges, open research prob-
lems, but also opportunities of current and future home net-
works.

2. USERS AND THE HOME NETWORK
While we did not expect an ideal world in current home net-
works, before undertaking this work, we had limited intu-
ition of how users perceive the performance of their home
networks. It was also unclear how the various application
and traffic properties manifest themselves in the home net-
work. Projects such as Neti@home[21] have presented some
data regarding traffic characteristics within the home; how-
ever, we needed a more detailed characterization.

Specifically, we wanted to know, What does home net-
work traffic look like? Does the competition over network
resources affect user experience? If so, how do users per-
ceive network-related problems? To answer these questions,
we appealed to sociology researchers of a large European
institution. With their help, we identified a small set of typ-
ical households and designed the following study. First, we
instrumented their home networks without affecting any of

their devices or their location within the home to capture
all traffic in the network, wireless or wireline. Second, at
the same time, users would keep detailed diaries of specific
application usage throughout the study period, where they
would also comment on their experience, on possible prob-
lems they faced, and their assumed cause of the problem.
Our goal was to correlate user perception of the network
and potential problems with actual measurable networking
events. Each study lasted 7 days. Even though we cannot
claim that the results are representative, we do believe that
they highlight interesting trends and motivate the need for
better understanding of home networks.

Sample aggregate results for two of households are pre-
sented in Fig. 1. Each household had four users who con-
nected using their personal laptops or desktops to the home
access point (AP). Other devices such as gaming consoles
and/or media centers also existed. The two figures show
the aggregate wired and wireless traffic, as well as the “in-
home” traffic, i.e., traffic where both the source and des-
tination IPs were part of the home network. We further
annotated the figure with labels to denote the times were
users reported problems, and the type of problem (W:WEB,
S:Streaming, G:Games, M:Media applications, e.g., image
upload or searching, E:email). A number of interesting ob-
servations can be drawn from Fig. 1.

Problems were reported almost daily! While we expected
that users do face network-related problems, their number
highlights significantly poor user experience. Users reported
problems at times when the network was moderately loaded.
In their descriptions of the assumed cause of the problems,
most users do recognize that “problems might be caused by
other home users” competing for local resources. However,
in many cases the assumed cause was “No idea.”

Streaming applications, both video and audio, were par-
ticularly popular, and also faced numerous problems. Such

2



latency sensitive applications suffer even with moderate load,
since packet spacing affects their performance. A range of
streaming-related applications existed in all homes.

The majority of the problems occurred during the week-
ends when most users were present. Interestingly, a typical
comment in users’ diaries was that “Internet in general slow
at weekends.” Traffic also follows diurnal patterns that are
out-of-phase with normal working hours.

In some cases, users reported problems while the network
was lightly loaded (e.g., W4 in the second household, around
1pm in the second day, in-between the large spikes). In some
of those cases, the users were running a large number of ap-
plications concurrently, which may have affected the respon-
siveness of their computer.1 It appears that users “blame” the
network for any underperforming network application. This
suggests that simply informing the user of where the perfor-
mance problem lies (e.g., host vs. the network) is valuable.

The vast majority of the traffic within the examined home
networks was wireless, and downstream, coming in the home
network. We observed low volume of upstream traffic prob-
ably due to the absence of observable peer-to-peer (p2p) file-
sharing applications in the households during our study. We
expect that users would report more problems in the pres-
ence of p2p traffic.

In-home network traffic is limited but when present cre-
ates significant spikes. In both homes in Fig. 1, spikes were
created by large-volume transfers between a wireless and a
wired host in the home network. We believe that such spikes
are important, and network effects will become more pro-
nounced in the future, as communication between home de-
vices increases (e.g., with the use of home servers, media
centers, etc.).

Overall, this user-study highlighted numerous problems
with current home networks. As home devices increase in
number and advance in functionality, we believe that man-
agement and troubleshooting of home networks will be even
more problematic.

3. HOMEMAESTRO ARCHITECTURE
We now describe the basic architecture of HomeMaestro, to-
gether with our assumptions and specific design choices.

Our overarching goal is to automatically allocate network
resource across hosts and applications in order to meet user’s
expectations. HomeMaestro does not assume assistance from
any network equipment, or from the applications and the
transport protocol. HomeMaestro is targeted at small net-
works in the order of tens of hosts. Overall, HomeMae-
stro attempts to infer competing flows or applications, and
then configure network resources accordingly by applying
priorities.

The design of HomeMaestro is depicted in Fig. 2. We fa-
vored a modular design that decomposes the problem into
various modules that could be developed independently of

1Another reason may be due to problem over-reporting.

Figure 2: Architecture of HomeMaestro

one another, and could potentially be modified without af-
fecting the whole solution (e.g., HomeMaestro could allow
for various inference techniques besides the ones described
in the following sections). Application and connection mon-
itoring uses extensive measurements at the end hosts to col-
lect raw data, and summary statistics are occasionally and
selectively broadcasted to participating hosts. A detection
module then uses time-series analysis to detect applications
that compete for the same resource, such as the broadband
link, or the wireless network. The detection module also
estimates the capacity of the constrained resource. The re-
source allocation module devises a nominal allocation amongst
competing applications using a feedback control loop with
real measurements, and enforces these allocations through
rate control.

Our approach is reactive. Congestion may temporarily
build up and users will suffer some performance degrada-
tion for a few seconds; however, we do control the extent of
such congestion events, and eventually the system converges
to the desired configuration. This design choice was dictated
by the lack of explicit signaling from the applications regard-
ing their network requirements, that would enable proactive
solutions. Additionally, usage demands and behavior can
be quite unpredictable favoring reactive designs. In the fol-
lowing section, we provide a detailed description for each
module of our design.

3.1 Modules
Application monitoring. Application and connection mon-
itoring is the first important module of HomeMaestro. Mea-
suring at the hosts is attractive for several reasons: It pro-
vides simplicity compared to measuring within the network
and enables collection of certain data types only accessible at
the host. Note that while monitoring statistics in the middle
of the network might provide other advantages such as the
aggregate view of the home network, we believe that host

3



participation is essential for the management of the home
network. This is because hosts have the necessary context
(e.g., application and user specific information), which is
difficult to have available in the network. In the ideal sce-
nario, HomeMaestro would coordinate with home network-
ing equipment such as routers to exert control. These possi-
bilities are further discussed in Section 6.

Specifically, we first monitor all read and write operations
at the socket level to infer network-related activity. Second,
we monitor the internal TCP state of all connections2 and
collect extensive measurements, including TCP’s estimation
of the RTT, the total number of bytes/packets in and out,
the number of congestion events, and others. This infor-
mation is collected at fixed time intervals3. Third, we col-
lect other application-specific information such as its process
name and the libraries it is using; in principle we could even
detect when an application is using devices like the micro-
phone (which may indicate a VoIP application), or displays
video (which would hint that the application is streaming
video). At its current implementation, HomeMaestro matches
the process name to a database of well-known applications
and determines priorities based on static rules; such rules
may be modified by the users.

Detecting Competition for Resources. The detection
module uses the collected measurements to identify connec-
tions that compete for the same network resource. We first
use time-series analysis to detect connections that experi-
ence significant changes in their network performance (e.g.,
throughput drop, or RTT increase). The detection module
specifies what we refer to as the change points, which reflect
the time and type of such changes. This detection process
is described in detail in Section 4.1. Change points and a
snapshot of the time series shortly after the change are com-
municated to all HomeMaestro participating hosts.

Hosts correlate change points across local or remote con-
nections in order to detect applications that compete for net-
work resources. Section 4.2 describes this inference pro-
cess in detail. The correlation module assumes some type of
weak synchronization (as we operate at second timescales)
since cross-host correlations are estimated through time-series
analysis. For example, in our current implementation, it is
sufficient that HomeMaestro hosts are synchronized through
NTP (Network Time Protocol) every 10-15 minutes. The
output of the correlation module also allows us to estimate
the capacity of the constrained resource, for example the rate
of the access link. In summary, the correlation module pro-
duces sets of competing connections and provide estimates
for the capacities of the constrained resources. The detec-
tion mechanism is flexible enough to be applied either at the
flow or at the application level when deemed appropriate by

2We shall use connection and flow interchangeably through the pa-
per. In both cases, we will refer to the commonly-used 5-tuple of
source and destination IPs and Ports and transport protocol.
3In our current configuration collection occurs once per second; the
time interval is user-specified.

aggregating all flows for the specific application (e.g., for
peer-to-peer file-sharing applications that maintain a large
set of connections active). While the question of applying
per-application or per-flow control in home networks is in-
teresting, it is outside the scope of this work.

Resource Allocation and Control. The resource alloca-
tion module divides the capacity of the resources among the
competing connections, according to some predefined prior-
ities, and enforces the allocation by rate limiting the connec-
tions. The allocations need to utilize the network resources
efficiently and at the same time provide a good experience to
the end-users. Moreover, the mechanism should also work
well with existing transport protocols, and the congestion
control algorithm of TCP. The resource allocation and en-
forcement details are described in Section 5, where the com-
ponents form a feedback controller.

Communication channel. The algorithms for detecting
change points, correlating connections and deciding the rate
allocations executes at each node separately, using summary
knowledge about selected connections from all local ma-
chines. This design choice is attractive due to its simplic-
ity since no complicated coordination schemes are required;
rather, each host reaches the same decision locally, by exe-
cuting the same algorithms. Such a scheme results in weak
coordination, where some hosts may apply policies a few
time intervals before others. However, for our purposes this
is perfectly acceptable since such time differences are in the
order of a few seconds (typically less than 10).

Each host broadcasts information about selected connec-
tions, such as their rates, change points, and priorities, to all
other nodes in the network. This broadcast communication
requires an efficient and reliable communication channel,
with modest capacity for control traffic, for timely delivery
of the information. Those constraints are generally satisfied
in a home environment. We also assume a certain amount
of trust between the hosts, since we exchange detailed infor-
mation about the network connections of each host; more-
over, the hosts should trust the information received from
the broadcast channel. Such a degree of trust typically exists
in small local networks.

3.2 Implementation
We have implemented HomeMaestro in the Windows Vista
operating system. Our design is generic, and can in princi-
ple, be ported to other modern operating systems.

We have used the Extended TCP statistics interface [16],
to probe for all TCP connection statistics. Additionally, we
use Event Tracing for Windows (ETW4) to collect detailed
information with regards to the send and receive operations
to and from a socket buffer.

The traffic controller of the Windows OS5 is used to en-

4http://msdn2.microsoft.com/en-us/library/
aa468736.aspx
5http://msdn2.microsoft.com/en-us/library/
aa374468(VS.85).aspx

4

http://msdn2.microsoft.com/en-us/library/aa468736.aspx
http://msdn2.microsoft.com/en-us/library/aa468736.aspx
http://msdn2.microsoft.com/en-us/library/aa374468(VS.85).aspx
http://msdn2.microsoft.com/en-us/library/aa374468(VS.85).aspx


force rate limits on the connections. The controller imple-
ments a token bucket algorithm for traffic limiting and shap-
ing. The token rate is set to the desired traffic rate, and the
token bucket size to five to ten times the token rate. (The
depth of the token bucket was chosen heuristically, and ex-
periments suggest the exact value was not very important;
however, we avoided large values to control queuing delay
and bound RTTs.)

We used the Windows Communication Foundation (WCF6)
to implement the local broadcast channel. This channel is
established over a message queuing middleware (MSMQ7)
that uses reliable multicast (PGM8). We have not used any
custom transport encodings, and as a result, the size of the
broadcast packets is much larger than necessary. Yet, the to-
tal overhead traffic observed was less than 40kbps. The use
of WCF was chosen to allow flexibility in the design.

A straightforward implementation (in C#) turned out to be
reasonably efficient, despite the large amount of collected in-
formation and the time-series analysis used to detect change
points and correlations. The total memory consumption (both
code and data) is typically less than 50MB, and the CPU uti-
lization (of our application) was usually less than 5% on our
low-end 2GHz/1.5GB RAM laptop. Memory and CPU re-
quirements are restricted by not monitoring connections that
are idle or have very low data rates.

In the following sections due to space limitations, we will
focus on the detection and resource allocation modules which
present the most interesting challenges of the design, al-
though we also faced intriguing problems during the design
and implementation of the other modules. The description
and evaluation of both modules will be described simultane-
ously to facilitate discussion.

4. DETECTING COMPETING FLOWS
This section describes how HomeMaestro identifies traffic
flows competing for the same resources. First, we focus on
detecting candidate flows by identifying performance prob-
lems. Then, by sharing and correlating information among
the hosts, we identify competing flows and applications across
hosts.

Throughout this and the following sections, we present re-
sults obtained by analyzing data collected from experiments
in realistic home settings. Specifically, Fig. 3 describes the
setup that was used for experimentation in one of the au-
thors’ home network. While running our experiments, other
home network traffic was transmitted over the network at
the same time (e.g., browsing, emailing, etc.) to ensure that
the collected traces would reflect realistic scenarios. The
home was connected to the Internet through a consumer In-
ternet Gateway Device (IGD) (with 3Mbps downstream and

6http://msdn2.microsoft.com/en-us/netframework/
aa663324.aspx
7http://www.microsoft.com/technet/archive/winntas/
deploy/confeat/msmqapin.mspx?mfr=true
8http://www.faqs.org/rfcs/rfc3208.html

Figure 3: Experimental setup within a real home network. Two
HomeMaestro instances were running on two laptops that are con-
nected by wireless to the home access point.

800Kbps upstream nominal capacity) comprising a DSL mo-
dem, a wireless Access Point (AP), and a router, having
common features and configuration such as NAT services,
a firewall, etc. We used two laptop computers for our ex-
periments; they connected to the local network over wire-
less interface. The experiments in this work mostly feature
connections to two other hosts in the Internet one in a local
institution, the other in another home network (sample RTTs
were in the order of 25-30ms). HomeMaestro was running in
both laptops and messages were transmitted between the two
HomeMaestro instances over the wireless medium. Overall,
our goal was to create an experimental setup as representa-
tive as possible when compared to existing configurations in
home networks.

4.1 Distinguishing candidate flows
To detect competing traffic flows, HomeMaestro first attempts
to detect flows that are likely to either experience or cause
performance problems.

Candidate flows are identified by detecting Change Points
(CPs), that reflect significant performance change according
to some metric. We define three CP types: DOWN, UP, and
NEW, to signal the direction in performance change or the
arrival of a new significant flow.9 CPs are identified using
time-series analysis applied to various monitored connec-
tion metrics. We used metrics that relate to application spe-
cific network requirements, such as latency and bandwidth.
In Section 4.2, we show that the instantaneous rate metric,
where the incoming or outgoing observed rate is measured
for a predefined time interval, is particularly attractive. Un-
less otherwise stated, the default measurement interval is set
to one second.

Fig. 4 describes in detail how CPs are identified. The main
idea is to identify base performance using early measure-
ments of the metric of interest, and then detect changes when
the instantaneous performance diverges significantly from
the base one. Because instantaneous measurements can be
quite noisy, both the current and the base performance (cur-
rentPerf and basePerf respectively in Fig. 4) are smoothed
9A new flow can be defined either as a new flow that is in the top-N
flows in terms of bandwidth or through a threshold, e.g., a new flow
with at least 5KBps rate.

5

http://msdn2.microsoft.com/en-us/netframework/aa663324.aspx
http://msdn2.microsoft.com/en-us/netframework/aa663324.aspx
http://approjects.co.za/?big=technet/archive/winntas/deploy/confeat/msmqapin.mspx?mfr=tr ue
http://approjects.co.za/?big=technet/archive/winntas/deploy/confeat/msmqapin.mspx?mfr=tr ue
http://www.faqs.org/rfcs/rfc3208.html


Change Point Detector (currentvalue)
begin

window = 5 /∗ in seconds ∗/
α fast = 0.2; /∗ fast moving average∗/
α slow = 0.005; /∗ slow moving average∗/
timeseries.add(currentvalue);
check = window;
n = timeseries.Count; /∗ number intervals so far∗/
if n==1 then

basePerf = currentvalue;return false;

if n < window then
basePerf = α slow * currentvalue +(1- α slow )*basePerf;
currentPerf = basePerf; return false;

else
currentPerf = α fast*currentvalue+(1- α fast)*currentPerf;
if Abs(currentPer - basePerf) > Threshold then

check = check - 1;
if check==0 then

check = window;
return true;

else
basePerf = α slow*currentvalue+(1- α slow)*basePerf;
check=window; return false;

return false;
end

Figure 4: Detection of Change Points.

using exponential moving averages, the former tracking the
latest trends of the time-series, while the latter long-term
fluctuations. Once the absolute difference between the two
moving averages is above a threshold (which could be de-
fined relative to the base performance, e.g., 0.1 ·basedPerf),
we trigger a CP to signal change in performance. To avoid
considering short-term performance drops or peaks as CPs,
we apply a sliding window (enforced by the check variable in
Fig. 4) before signaling a CP event. Thus, only one CP ex-
ists per window, which also minimizes the communication
overhead since CPs are communicated to other hosts.

Note that the base performance variable offers context for
the flows’ long-term performance and does not act as a pre-
dictor for the flow’s real requirements. Therefore, underes-
timating or overestimating the base performance is not criti-
cal, as we reset this long-term average depending on how the
CP is handled (Section 4.3).

Fig.5 demonstrates the operation of our detector in one
of our experiments. The time-series of interest here is the
incoming rate in KBytes per second. Fig.5 shows how the
detector doesn’t signal events caused by short-term peaks in
the first few seconds, and how CPs are fired once every win-
dow (here equal to 5 seconds), while the rate is significantly
different from the base performance.

The detector algorithm in Fig.5 signals changes that are
deemed significant. Flows with associated CPs are marked
as candidate competing flows. However, the detector offers
no clues at the cause of the change in performance, which
could be the result of changing network conditions some-
where or even just reflect application behavior. The follow-
ing section describes how HomeMaestro identifies changes

Figure 5: CP detection in a real experiment where the detector is
applied to the incoming rate. CPs are signaled for as long the rate is
far from the base performance. The lines highlighting the CPs are only
shown for visualization purposes.

Figure 6: The downstream rate of two TCP connections competing
over the access capacity.

caused by competition for network resources.

4.2 Identifying correlated flows
HomeMaestro detects competition for resources by correlat-
ing performance metrics across flows and across hosts. Intu-
itively, all flows competing for a local resource, such as the
access link or wireless, should observe performance prob-
lems during high contention periods. On the contrary, prob-
lems that only affect individual flows likely reflect applica-
tion behavior or changing WAN conditions.

By way of example, Fig. 6 highlights a sample of two
TCP flows competing for the access capacity during one of
our experiments. Fig. 6 depicts the incoming rate of two
web transfers, one starting a few seconds before the other,
and finishing roughly 20 seconds earlier, at which point the
second flow manages to get all the spare capacity. As ex-
pected, not only does the rate of one flow directly affect the
other, but also their behavior appears to exhibit strong nega-
tive correlation.

To confirm the findings of this example, we performed
the following experiment: Once every hour for two days,
the laptops in our home setup would initiate web downloads
from two different locations simultaneously, resulting in 48
different sessions. We also experimented with upstream flows
by configuring web servers on both laptops and repeating the
same experiment as above. In the latter case, clients outside

6



Figure 7: CDFs of the Spearman’s coefficient across four metrics for all experiments of the upstream scenario.

the home network would initiate web downloads for files
served by the two hosts within our home network. Finally,
we artificially limited the server capacity and repeated both
experiments; our intention was to emulate scenarios where
the two flows would not compete for the same resources, as
each TCP flow would be restricted by the server traffic cap.

During these experiments, we configured HomeMaestro to
log four different metrics in the upstream case (rate, RTT,
current congestion window, and congestion avoidance counter,10

in order to capture different properties of the connection).
We also monitored the packet interarrival times and rate for
the downstream scenarios. We then used several well-known
correlation algorithms to examine the correlation between
the various time-series. Specifically, we tested the Pear-
son’s cross-correlation, Spearman’s rank correlation coeffi-
cient, Kendall’s tau coefficient, and Wilcoxon’s signed rank
test [10]. Overall, we observed that Spearman’s rho coeffi-
cient produced the most robust set of results. The coefficient
is defined as follows:

ρ = 1− 6
∑

d2
i

n(n2 − 1)

where n is the number of values, di is the difference between
each corresponding rank, and ρ ranges from −1 to 1.

Fig. 7 presents the Cumulative Distribution Function (CDF)
for Spearman’s coefficient across the four metrics, with re-
spect to the 48 experiments of the two upstream scenarios.
The plot on the right presents the case where TCP flows are
rate limited, and thus not competing for the local resources.
Since the TCP flows lasted for several minutes, we applied a
sliding window of 30 seconds, for which the correlation was
estimated using only data within the window (effectively 30
values), and then averaged the results for each time-series.
That is, if an experiment lasted for 300 seconds (5-minutes),
we would estimate 270 different coefficients by sliding the
30-second window over the time-series, and finally the end
correlation result would be the mean of these 270 values.
Thus, the input distributions for the CDFs in Fig. 7, corre-
spond to 48 coefficients, each of which reflects the mean that

10defined in [16] as the number of times the congestion window has
been increased by the Congestion Avoidance algorithm.

resulted from the previous process.
We applied this procedure for two reasons: Firstly, we

want to detect correlations as soon as possible by collecting
a small number of measurements. Secondly, we wanted to
evaluate whether the two flows correlate at any point in time,
and not only at particular instances of the experiment.

Fig. 7 clearly highlights the differences between the cases
where i) flows compete for the same resources, and ii)flows
do not compete for the resources but still share part of the
same path. In the former case, two of the metrics, the rate
and the congestion avoidance counter11, display significant
negative correlations, with the correlation for rate in all ex-
periments being less than -0.4. In the latter case, most met-
rics are concentrated around zero as expected, showing no
significant correlations. RTT in both figures exhibits both
positive and negative correlation for certain experiments. We
believe that this is caused by flows sharing part of the path,
where trends would affect both flows. Similar results hold
for the downstream scenarios.

Motivated by these observations, we selected the rate as
a distinguishing feature to identify flows competing for the
same resource in the home network. An advantage of apply-
ing such techniques in home networks is that hosts are typ-
ically only a few hops (less than three) away from potential
local bottlenecks, and therefore bottleneck effects will not
be smoothed out before we have a chance to observe them.

For the receiving scenarios, we also examined techniques
that focus on the distribution of packet interarrival times both
in the time or the frequency domain (e.g.,[6]). The intuition
behind such methodologies is that similar peaks in the his-
tograms of the packet intearrival times would reflect com-
mon bottlenecks. We observed that these techniques do in-
deed produce good results when using a large number of
packet arrivals, but constraining the histogram for packet
arrivals to small time windows introduces noise and bias.
Hence, we selected the rate to be the distinguishing feature
for the receiving case as well.

Finally, we examined correlations when three flows were
active at the same time. We observed that overall the nega-

11This metric is monotonically increasing and thus correlation is
applied to the differenced series.

7



Figure 8: Competing flows detection flowchart

tive correlation identification still held when examining flows
per pair. However, occasionally flow-pairs could also exhibit
strong positive correlations (effectively two flows correlated
positively with each other and negatively with the third).

Note that our correlation algorithm might also identify
correlated flows that compete for a non-local resource, i.e.,
correlations in the WAN, should these correlations survive
smoothing effects along the path. In HomeMaestro (and pos-
sibly from the actual users’s point of view), these flows are
still competing and HomeMaestro will assign priorities to
such flows.

4.3 Determining competing flows
Fig. 8 outlines our algorithm for identifying competing flows,
which combines the ideas presented in the two previous sec-
tions. The detection algorithm monitors all flows and identi-
fies the candidate flows through CPs. Then, correlation de-
termines whether the candidate flows are really competing
for a resource.

Once a CP for a flow is detected, HomeMaestro collects
statistics for a predetermined interval K.12 Note that we can-
not use previously collected statistics for the flow, since we
are interested in the interval after the problem is detected. If
the CP is still active after K seconds, we examine whether
other CPs exist either locally or remotely from other hosts,
and the type of these CPs.

If no “DOWN” CP exists, then we simply reset the de-
tector, so that its base performance is set to the currently
observed one. Since “DOWN” CPs are the ones that really
signal network problems, we ignore cases where only other
types of CPs exist. Finally, if such a CP does exist, we cor-
relate all current CPs, and if the correlation score is less than
a threshold (Fig. 7 suggests −0.4), we regard these flows as
competing.

This procedure (Fig. 8) effectively produces sets of com-
peting flows, e.g., flows {A,B,C} are correlated and thus
competing, while C is also competing with D in another
set of correlated flows {C,D}. This is attractive since we
can identify competition at different points in the network.

12We use thirty seconds in our experiments.

Hence, HomeMaestro can distinguish between two flows com-
peting for the wireless medium from others that compete for
the access capacity.

An example highlighting the functionality of the detec-
tion and correlation module in HomeMaestro is presented in
Fig. 9. The figure shows results from a real experiment in a
home network, where three upstream flows competed for the
access capacity. Two of the flows (the first and third rows in
Fig. 9) were initiated at host A, while the third at host B. The
dashed lines reflect times where CPs were first detected for
a flow, while solid lines show correlation events. The letters
in each line represent the chronological order of the events
as seen in the two hosts.

The arrival of the flow in Host B resulted in two CPs.
First, a NEW-type (point A) CP, and then a DOWN-type
one (point B) from host A. Notice that the DOWN event
is fired a few seconds later than the noticeable drop in the
flow performance, caused by the effect of the smoothing and
the window used in the detector. From this point, the two
hosts exchange messages with statistics for the correspond-
ing CPs, and once enough values have been collected, each
host separately evaluates the correlation score, since there
exists an active DOWN CP. The time difference in the cor-
relation evaluation reflects the distributed nature of Home-
Maestro, where each host locally evaluates correlations. At
point E, the flow at Host B, experiences further performance
drops, and another CP is fired which however is not han-
dled since no other CPs exist in that time interval. Once
the third flow is initiated, CPs are fired at points F (NEW),G
(DOWN) and I (DOWN) and correlation occurs once the suf-
ficient number of statistics is collected.

In summary, the simplicity and local execution of the de-
tection and correlation algorithms allow us to correlate events
and identify competing flows across applications and across
hosts with a minimal network overhead (see Section 3.2).

5. RESOURCE ALLOCATIONS
When resources are constrained and limit performance, we
are faced with an archetypal resource allocation problem.
This section discusses how we allocate resources to con-
nections (and effectively applications). We propose a shar-
ing mechanism that is based on weighted proportional fair-
ness [12]. The proposed mechanism respects TCP’s conges-
tion control loop, and is provably stable.

For simplicity, we concentrate on a single constrained re-
source (e.g., the upstream of the Internet access link) which
has an (estimated) capacity of Ĉ and “real” capacity C. Home-
Maestro estimates the capacity of the constrained resource
as a side-effect of the correlation mechanism described in
Section 4.2. Intuitively, the sum of the rates of all competing
connections provides information on the capacity of the con-
strained resource. For example, using Fig. 9 we estimate the
congestion of the upstream link by adding the instantaneous
rates. In practice, instead of using the sum of the current in-
stantaneous rates, a noisy measurement, HomeMaestro uses

8



Figure 9: Detection and correlation events in a real experiment where three flows compete for the upstream access capacity across two hosts.

the 95th percentile of the observed distribution as the capac-
ity measure. We deliberately use a small underestimation of
the total capacity (Ĉ = 0.95C in expectation) and, thus pay
a small utilization penalty to ensure stability of the control
algorithm and to minimize queuing delay.

Additionally, we assume that all hosts have information
for all connections i that use the resource and their associ-
ated rates ri. The ri is collected and broadcasted periodi-
cally, so the ri is a delayed estimate. Our goal is to adapt the
rates of the connections (through rate limiting) in order to
achieve a target resource utilization of individual allocations
that satisfies weighted proportional fairness.

5.1 Utilization of the constraint resource
If we knew the rate requirements and the relative impor-
tance of different connections, the capacity allocation prob-
lem would have been “straightforward.” However, predict-
ing bandwidth demand for each connection is difficult with-
out explicit signaling from the applications. As a result, we
do the following. Assume that at time t, we have rate limited
each connection i to a value xi(t), and then observe conges-
tion. Notice that a connection may actually use rate ri(t) <

xi(t). Then, the ratio ρ =
∑

i ri(t)/ ˆC(t) = R(t)/ ˆC(t), is
the estimated utilization, where R is the sum of rates. If ρ is
below (above) a target objective, then we increase (decrease)
the xi(t + 1) (and hence induce changes in the ri(t + 1)).
The particular mechanism for increasing the xi, which guar-
antees weighted proportional fairness, is described in Sec-
tion 5.2. For now, assume that the change in R, results in a
new utilization ρ′. By changing the xi, we can achieve the
target utilization (assuming sufficient demand).

Rate control mechanism. Changing the rate cap xi(t) in
direct proportion to the observed changes in ρ has practical
disadvantages, including high oscillations in the assignments
and instability, which result in bad performance. Instead, we
use a probability of congestion, the so-called marking prob-
ability p = ρB to control the rate limits. B here is a small
constant, typically B = 5 in our experiments. If we model
the constraint resource as an M/G/1 queue with arrival rate ρ

and service rate Ĉ, then the marking probability expresses
the probability that an arriving packet finds more than B
other packets in the queue. Since E[Ĉ] = 0.95, this is an
example of a so-called Virtual Queue strategy [9, 14], and is
used to signal early warnings of congestion for resource with
capacity C. Every HomeMaestro node simulates the opera-
tion of a virtual queue for every constraint resource.13 We
simulate the virtual queue by using the rates of the compet-
ing flows to determine the utilization ρ of the resource, and
the marking probability p that a queue with the same average
ρ would observe.

Our goal is to adapt the xi to achieve utilization ρ that
satisfies the following objective:

ρ = α
1− p

p
= α

1− ρB

ρB
(1)

where α is a small scaling parameter that gives us flexibility
in determining the desired rate (we use α = 1 in our experi-
ments). If we view our rate controller as a feedback control
system, then the fixed point solution of Eq. 1 expresses the
desired stable point for the system. Observe that it is possi-
ble that (1 − p)/p > 1, during periods of underutilization;
the response of our rate controller would be to increase the
rate caps and in doing so allows more traffic.

The objective expressed in Eq. 1 can be motivated as fol-
lows. Assume that the total utility of achieving a rate R from
the constrained resource is U(R) = α′ log(α′ + R). We
assume that the cost of operating the constraint resource at
rate R is proportional to the rate of packets that suffer exces-
sive queuing delay, i.e., finding more than B packets in the
queue, which we can model as R · pB . Then, the net bene-
fit of using the resource is U(R) − RpB . The net benefit is
maximized when R = α′(1 − p)/p, or ρ = α(1 − p)/p, by
setting α′ = αĈ, where Ĉ is the estimated capacity.

From a practical point of view, Eq. 1 expresses a quan-
tifiable operational target as a function of configuration pa-
rameters B and α. For example, when α = 1 and B = 5,

13The flows that compete for the resource and the capacity of the
resource are determined by the algorithms of Section 4.1.

9



Figure 10: Measured (ping) RTT between two home networks while
performing three long web transfers.

the target utilization is ρ ≈ 0.88, which is a good compro-
mise between efficiency and network responsiveness (i.e.,
small queuing delay). We can always use an Adaptive Vir-
tual Queue [14] which adapts Ĉ to increase utilization.

The Virtual Queue affect on RTT. To evaluate the per-
formance of the rate controller with respect to utilization and
queue sizes, we performed the following experiment. We
initiated three upstream web connections in our home setup,
where the estimated uplink capacity was around 800kbps.
For each connection, we measured the goodput, i.e. number
of bytes sent, and throughput, i.e., total number of bytes sent
including retransmissions. We also used ping measurements
of RTT delay between the two endpoints, which was in the
order of 25msec-30msec before initiating the connections.
The same experiment was repeated several times, first with-
out rate-control and then for a number of configurations of
the rate controller for various values of B and α.

Fig. 10 presents the measured RTT for a representative run
(we observed similar behaviors in multiple runs of the exper-
iment). Without rate control, the accumulated load resulted
in large queuing delays (RTTs ≈ 1sec), in agreement with
previous observations for broadband networks [8]. Enabling
rate control resulted in RTT values dropping significantly to
around 40 − 50msec. Since our rate controller is reactive,
we also observed high RTT values for a few seconds before
our system detects the congestion and enforces the rate caps.
After that initial period, the RTT values remained small.

Virtual queue and utilization. The price for control-
ling the queuing delay at the access link is a small reduc-
tion in the utilization of the constrained resource. As Ta-
ble 1 indicates, this penalty is negligible. Moreover, rate
control brings advantages with respect to fairness and ef-
ficient use of resources. Table 1 shows that the effective
rate (i.e., Total, measured in application kBytes/sec) reduced
from 76.83kB/s (uncontrolled) to 66.65kB/s − 75.46kB/s,
depending on the controller. Examining the ratio of bytes
sent over the total bytes (G/T ), we observe that rate control
reduces the overhead by ≈ 10% (goodput increases from
0.78 to 0.84, see ratio T/C). In other words, rate control re-
duced the amount of capacity spent in retransmissions. Ob-
serve in Table 1 that in the uncontrolled case, connection A
received a higher rate than the other two connections. This

Table 1: Performance of three web transfers (of equal priority) [in
kBytes/sec] and network utilization

Connection
Controller A B C Total G/T T/C
Uncontrolled 43.62 15.75 17.46 76.83 0.78 0.97
B = 3 α = 1 26.69 22.35 21.61 66.65 0.84 0.79
B = 3 α = 2 24.03 23.17 22.83 70.02 0.84 0.83
B = 5 α = 1 25.12 23.70 26.64 75.46 0.84 0.87
B = 5 α = 2 25.66 24.14 24.21 74.01 0.84 0.88
B = 10 α = 1 25.82 24.86 24.40 75.08 0.83 0.90
B = 10 α = 2 26.27 24.45 24.92 75.64 0.83 0.91

G/T is the ratio of unique bytes transferred (goodput) over total transfers
(including retransmissions). T/C is the ratio of total transfers over (our
estimate of) the capacity of the uplink (100kBytes/sec).

unfairness was common in this particular scenario (though
not universal, i.e., in some cases TCP allocated the capacity
fairly). We never observed such unfairness with rate control.

The ratio T/C of Table 1 is the network utilization ρ of
our virtual queue. It is interesting to observe that the mea-
sured ρ is close to the theoretical values predicted by Eq. 1.
For example, optimal ρ = 0.881 for B = 5 and α = 1; the
observed utilization was 0.867.

A larger B increases utilization at the cost of responsive-
ness. Overall, the particular configuration choices of the vir-
tual queue size B were not very important (with the excep-
tion of B = 3 that is a bad choice even theoretically). Such
robustness is attractive from an engineering point of view,
since it negates the need for fine-tuning.

5.2 Allocating resources to connections
Hard priority mechanisms, such as strict priorities or pre-
emptive priorities have several disadvantages, such as possi-
ble starvation or unbounded performance for lower priority
traffic, and potential priority inversion when there are several
resources. Instead, we use relative priorities, that enforce a
form of weighted proportional fairness [12]; informally, we
associate a weight wi with each application, and if there is
a single resource, then the amount of resource allocated to
each application is proportional to wi. Specifically we want
to relate xi to wi via

xi = wi
1− p

p
. (2)

(Eq. 2 is the per-connection equivalent to Eq. 1.)
To achieve the objective utilization of Eq. 1 and rate as-

signments proportional to wi, we adapt the rate cap xi of
connection i as follows:

xi(t + 1)← xi(t) + κxi(t)
[
(1− p(t))− p(t)

xi(t)
wi

]
(3)

where κ is a gain parameter that determines the rate of con-
vergence, and typically κ ≤ 1/(B + 1), and the time t to
t + 1 is the control interval M . Observe that the wi should
be scaled to satisfy

∑
i wi = αC. We guarantee that xi

is always positive by enforcing a minimum value rate of
xmin = 2KB/s,

xi(t + 1)← max {xmin, xi(t + 1)} . (4)

10



Observe that when the system converges, i.e., x′i = xi, then
xi = wi

1−p
p . If all connections use their allocated capacity,

then indeed Eq. 1 is satisfied.
From a utility maximization point of view, we can express

the per-connection utility function as ([12]):

Ui(xi) = wi log(wi + xi) . (5)

Again, the objective is to maximize user utility minus net-
work cost, which can be modeled as pxi. The marking prob-
ability p = ρB can be regarded as the price for the resource
with capacity Ĉ and offered load ρ. If there are several re-
sources ` with associated marginal “prices” pl, then p is the
aggregate price, given by p =

∑
` pl.14 Modeling compe-

tition for multiple resources, e.g., the wireless medium and
the access link, is an interesting problem, which we defer to
future work.

For a fixed population of users and demands, Lyapunov
techniques (see e.g., [22]) show that each xi converges to its
target rate. However, we not know the instantaneous load
at the resource; instead, the nodes determine the utilization
of the resources every M seconds (typically M=4 seconds
which includes measuring the rates of the local connections
and broadcasting them). It is straightforward to show (e.g.,
using control theory techniques, [22]) that the delayed feed-
back algorithm (Eq. 3) is stable provided that κ is sufficiently
small, i.e., provided that

κ ≤ min
(

1
B + 1

,
M

RTT

)
.

Given our large observation window (M ), we just need to
pick κ < 1/(B + 1).

Evaluation of connection prioritization. To evaluate the
performance of the system under Eq. 3, we repeated the
same experiment as in Section 5.1, but we configured one
of the connections to have three-times the priority relative to
the other two (i.e., w1 = 3 · w, w2 = w3 = w). As before,
we used ping to get an estimate of the queuing delay in the
access link; again, the queuing delay was small. The main
objective of this experiment was to determine whether the
rate controller would give a higher rate to the high priority
flow, whether the rate caps and effective rates approximated
the configured wi, as well as to examine the utilization and
performance of the network.

Fig. 11(A) depicts the rates allocated by the rate controller
to the three flows. As expected, the rate caps (xi) for the high
priority flow is roughly three times higher than the rate caps
of the other two. The low priority flows received similar
rates. Observe that the rate controller spent roughly 20 to 30
seconds converging to the desired rate, and after that initial
period the rate remained relatively stable.

The lower three plots in Fig. 11 depict the actual rates
(goodputs) received by each of the three flows. In this par-
ticular experiment, the low priority Flow B started first and

14Note that we sum prices across resources, where prices are deriva-
tives of costs. See [22] for a discussion of aggregating probabilistic
signals of prices.

Figure 11: Rate caps and actual rates (goodputs) of a mix of one
high (w1 = 3w) and two low (w2 = w3 = w) priority flows

(A) Rate of media encoder without competing traffic (kB/s)

(b) Rates of three web transfers and a high priority media streaming

Figure 12: Rate caps and actual rates (goodputs) of a mix of one
high (w1 = 3w) and two low (w2 = w3 = w) priority flows

11



initially used the entire upload capacity. During the obser-
vation period, Flow A indeed experienced a better rate than
Flows B and C; the actual ratios of rates were 3.8 and 3.6.
While the ratios were not equal to the target ratio of 3, they
were a close approximation. Observe that this difference
was not due to the rate controller, which estimated the cor-
rect values for the rate caps. From a practical point of view,
the system indeed favored the high-priority connection at the
expense of the rest. The fluctuations observed in the figure
relate to TCP behavior and not to the limits set by the rate
control mechanism. For example, at around t = 225sec,
we observed a congestion event for the low priority flows in
this experiment. Since both of them reduced their rates, ca-
pacity was freed for the high priority rate and our controller
smoothly adapted the limits accordingly, avoiding further in-
stabilities. When congestion ended, flows returned to their
intended rates.

In this particular experiment, we used a virtual queue with
B = 5 and α = 1. Overall, goodput and total rate observed
were G/T = 0.81 and T/C = 0.82. These numbers are
somewhat smaller than those of Table 1, which may indicate
a small decrease in performance when introducing priorities.
We observed a similar trend in other experiments.

We have performed similar experiments, where high pri-
ority flows were rate limited to values below their fair share.
In such cases, the low priority flows achieved rates higher
than their fair-share as it would be desirable in a realistic
scenario. Due to space limitations, we omit this set of re-
sults and instead describe a more challenging scenario.

Finally, to stress-test our control mechanisms, we tested
the performance with highly-variable rate connections, such
as the media streaming sessions. Similar to the previous ex-
periment, we have initiated three upstream connections and
after a short period we initiated a media streaming session,
which produced an average rate of 377kbps. The media
server (a Windows Media Encoder) produced a stream of
variable bit rate (Fig. 12(A)). The media stream connection
was configured with wmedia = 6, while the web transfers
with w1 = w2 = w3 = 1. Indeed, during the experiment
the video played out at the full rate without any performance
problems.15 During the contention period, the low priority
flows received an aggregate rate of ≈ 33kB/s. The video re-
ceived on the average ≈ 40kB/s. The overall performance
was sufficient to support the video streaming without block-
ing the web downloads; however, the utilization was smaller
than in the case of only web transfers due to the high vari-
ability of the media stream. An open problem is to design a
rate controller that performs well even with highly variable
high-priority connections.

5.3 Setting weights wi

Setting the weights wi is a challenging problem that should
take into account user priorities and intentions that are very

15Notice also that in addition to our rate protection, the media player
buffers for 5sec.

difficult to infer even at the host-level. As an example, in
our user study (Section 2), a family member insisted that
his work related file transfers were more important than his
daughter’s YouTube video downloads. Our system allows
users to adapt the wi to express intentions. This however
presents a complicated user interaction problem that we de-
fer to future work. Instead, we describe how to set connec-
tion weights wi as functions of the desired connection rates.

The weights wi can be interpreted as the “willingness-to-
pay” [4] of an application. If xs is in bytes, then w represents
the per-byte willingness to pay. It follows from (1) that

wi = xi
p

1− p
(6)

which implies that wi should be of the same order as the
rate we want to achieve for xi. To allow the system to be
run at full rate, we need to allow

∑
xi = αĈ, as described

above. One way to set initial weights is to set wi = Mxi,
where xtarget

i is a nominal target rate for the connection, and
M = E[p/(1−p)], related to the target utilization via Eq. 1.
For example, with B = 5, α = 1 this implies ρ = 0.88 and
M = 7.4. In our experiments, we used arbitrary weights.
Target rates could be set using history, or application char-
acteristics, and with relative weights adjusted by the user.

6. DISCUSSION
Throughout this paper, we have stressed the problems of
home network management and configuration. HomeMae-
stro is a first step towards simplifying these processes by
monitoring the performance of applications across hosts and
automatically assigning relative priorities in order to improve
user experience. However, HomeMaestro by no means ad-
dresses all the problems of the home network. This study
suggests a number of challenging issues; here we discuss a
few of them.

Non-compliant devices. The diversity of home devices
is one of the most important hurdles to overcome when de-
ploying home solutions. Can we control hosts or devices
that are part of the home network, but do not participate in
the HomeMaestro virtual network? While priorities cannot
be enforced for non-compliant devices, our detection algo-
rithm will still identify performance problems and could po-
tentially report these back to the user.

Control could be imposed, if future home networking de-
vices such as home routers or APs, expose APIs for hosts
to query for network statistics, and set parameters on a per-
flow basis. Then, HomeMaestro-enabled hosts could infer
the devices causing the problem using techniques similar to
the ones presented in the paper, and possibly exert control by
using the home-networking device to shape traffic sourced at
or destined for non-compliant devices.

Multiple subnets. The number of home networks with
multiple subnets grows. Our experience with this study and
discussion with vendors suggest that this is already occur-
ring, with most users being unaware that multiple NAT de-
vices introduce multiple subnets in their home network. Home-

12



Maestro requires an efficient mechanism for machines to
discover and communicate with each other, which is cur-
rently implemented using multicasting. However, multicast
will not cross over multiple subnets without further sophis-
ticated configuration.

UDP traffic. We have not explicitly referred to UDP traf-
fic. While some applications such as gaming do use UDP,
the vast majority of home network traffic is still TCP. This
was also confirmed by our household study. However, there
may still be cases where control of UDP flows is required.
Since receiver-side control of UDP is not possible due to the
absence of a feedback loop, we will restrict our attention to
the sender. If a new UDP flow significantly affects existing
traffic, CPs will detect the performance degradation and the
new UDP flow. The two flows will be correlated, however,
our detection may fail to spot the correlation (since UDP
does not “fairly” compete for the bandwidth16). We can use
specific rules to address such issues, and enforce priorities.
On the other hand, if UDP flows are already taking a signif-
icant amount of the total bandwidth, new TCP flows might
not trigger any CPs and thus applying the correct priorities
may not be possible.

Delay sensitive applications. By rate controlling the high
rate flows, we limit the amount of queuing in the access
routers. As a result, most interactive and low-rate applica-
tions do not experience long delays and perform as desired.
The same is true for media streaming applications, as we
demonstrated in Section 5.2. However, we have not explored
how medium rate, interactive applications (such as online
gaming) would perform. Such applications are becoming in-
creasingly common in home networks and pose their own set
of constraints. The goal here is to provide good performance
to those applications, without significantly underutilizing the
home network.

Soft guarantees or reservation. The current implemen-
tation of HomeMaestro employs a differentiated services type
mechanism to provide soft relative priority guarantees. Fu-
ture applications may explicitly inform lower transport lay-
ers of their networking requirements, thus facilitating reser-
vations or an Integrated Services type solution. The modular
design of HomeMaestro can incorporate either scheme.

The effect of broadband technologies. Local network-
ing technologies for home networks, such as Wireless and
Powerline, as well as access technologies such as Cable or
DSL, exhibit diverse network properties and can be very un-
predictable [8]. While our experiments covered only DSL
technologies, we believe that HomeMaestro should be largely
unaffected by low-level variability, and that sufficient smooth-
ing of the various metrics should account for such effects.
Further testing is needed to confirm this hypothesis.

Prioritization support in lower-layers. There is a recent
move for supporting prioritization in local networks espe-

16Note however that most high-performance applications that run
over UDP, such as gaming, do implement some form of congestion
control over UDP. Thus, correlations may still exist.

cially for wireless (e.g., 802.11e). Certain operating systems
and devices already support such services, through 802.11e
priority assignments. While such solutions could be of use,
it is unclear as to how effective they would be in cases where
the bottleneck is in the access link. Moreover, strict priori-
ties bring their own problems, alluded to above. Integrating
such mechanisms in HomeMaestro is perfectly feasible.

7. RELATED WORK
To the best of our knowledge, studies of home networks have
been extremely limited. Papagiannaki et. al [17] describe the
complications that arise in wireless home networking envi-
ronments. The authors explain in detail how small changes
in configurations can have dramatic impact on the perfor-
mance of the network. Dischinger et al. [8] examine the
networking characteristics of various broadband technolo-
gies, describing how these technologies can exhibit high de-
lay variation (jitter), with large queues significantly affecting
expected performance. HomeMaestro takes such problems
into account by using smoothing in evaluation of the various
metrics, while its virtual queue control mechanism mitigates
the unwanted effects created by queuing, and reduces queu-
ing delays, thereby improving the performance.

The work that is closest to our in spirit is the Congestion
Manager (CM) module proposed by Balakrishnan et al. [3],
however not in the context of home networks. The authors
propose CM, a novel framework, for the control of the net-
work congestion from an end-to-end perspective to account
for network properties of applications. The CM module re-
quires communication between the application and the CM
module using a predefined API to enforce traffic shaping for
congestion avoidance. In contrast, HomeMaestro does not
require any modification of protocols or applications, and is
targeted at application monitoring and control in home en-
vironments, not end-to-end congestion avoidance. Further-
more, HomeMaestro infers competing connections passively
without introducing any probing. Congestion control from
the end host has also been proposed by Bhandarkar et al. [5],
while Anderson et al. [2] propose a novel approach for end-
point congestion control. Again, the scope and goal of such
schemes are quite different than ours. Copperative conges-
tion avoidance and “willingness-to-pay” mechanisms have
also been explored to reduce queuing delays and provide pri-
orities in [4].

Inferring shared bottlenecks through correlation analysis [19,
13], or available capacity in broadband networks [15] has
mostly been based on analysis of delay, loss or idle times
involving active probing. Instead, HomeMaestro evaluates
shared congestion passively by exploiting its close proxim-
ity and small hop-count to the bottleneck most of the times.
Finally, distributed rate control has been applied in a differ-
ent context by Raghavan et al. [18] to provision the demands
in resources of cloud-based services with a aim of enforcing
a global rate limit across multiple sites.

13



8. CONCLUDING REMARKS
Home networks are increasing in number and complexity;
yet, there is a surprising lack of tools for automating their
management, and providing an acceptable user experience.
We have proposed HomeMaestro, a distributed system for
the instrumentation and monitoring of home networks. By
collecting extensive information and correlating data across
hosts, we detect performance problems, and identify their
origin. HomeMaestro ensures that high-priority connections
and effectively applications perform well through prioriti-
zation and traffic shaping, without sacrificing resource uti-
lization. We believe that our most important contribution
in this work is that we demonstrate the feasibility of auto-
mated management mechanisms in the home network. This
is achieved by exploiting the rich context available at hosts
which allows for sophisticated inference and resource allo-
cation schemes. Our study is only a first step towards under-
standing and managing the rapidly evolving, modern home
network ecosystem; indeed, various challenging questions
still remain unanswered in this direction.

Acknowledgements
The authors are thankful to Richard Harper, Abigail Sellen,
Tim Regan and the Socio-Digital Systems group at Microsoft
Research, Cambridge for their valuable directions and help
in organizing the household user study.

9. REFERENCES
[1] Worldwide Consumer Broadband Penetration Sees

Rapid Growth but Current Price Strategy Alone is Not
Sustainable for Telecom Carriers Says Gartner.
http://www.gartner.com/it/page.jsp?id=501276.

[2] T. Anderson, A. Collins, A. Krishnamurthy, and
J. Zahorjan. PCP: efficient endpoint congestion
control. In NSDI, 2006.

[3] H. Balakrishnan, H. S. Rahul, and S. Seshan. An
integrated congestion management architecture for
internet hosts. In SIGCOMM, 1999.

[4] P. Barham. Explicit Congestion Avoidance:
Cooperative Mechanisms for Reducing Latency and
Proportionally Sharing Bandwidth. Technical Report
MSR-TR-2001-100, 2001.

[5] S. Bhandarkar, A. L. N. Reddy, Y. Zhang, and
D. Loguinov. Emulating AQM from end hosts. In
SIGCOMM, 2007.

[6] A. Broido, R. King, E. Nemeth, and k. claffy. Radon
spectroscopy of inter-packet delay. In High Speed
Networking (HSN) 2003 Workshop, 2003.

[7] M. Casado, M. J. Freedman, J. Pettit, J. Luo,
N. McKeown, and S. Shenker. Ethane: taking control
of the enterprise. In ACM SIGCOMM, 2007.

[8] M. Dischinger, A. Haeberlen, K. P. Gummadi, and
S. Saroiu. Characterizing Residential Broadband
Networks. In IMC, AM SIGCOMM Internet
Measurement Conference, 2007.

[9] R. J. Gibbens and F. P. Kelly. Resource pricing and the
evolution of congestion control. Automatica,
35:1969–1985, 1999.

[10] R. Hogg and A. Craig. Introduction to Mathematical
Statistics. Prentice Hall, 1995.

[11] In-Stat. Global home networking & broadband CPE
outlooks. In-Stat #IN0703433RC, July 2007.

[12] F. P. Kelly, A. K. Maulloo, and D. K. H. Tan. Rate
control in communication networks: shadow prices,
proportional fairness and stability. Journal of the
Operational Research Society, 1998.

[13] M. Kim, T. Kim, Y. Shin, S. Lam, and E. Powers. A
wavelet based approach to detect shared congestion. In
ACM SIGCOMM, 2004.

[14] S. Kunniyur and R. Srikant. Analysis and design of an
adaptive virtual queue (AVQ) algorithm for active
queue management. In ACM SIGCOMM, 2001.

[15] K. Lakshminarayanan, V. Padmanabhan, and
J. Padhye. Bandwidth estimation in broadband access
networks. In IMC, ACM/USENIX Internet
Measurement Conference, 2004.

[16] M. Mathis, J. Heffner, and R. Raghunarayan. RFC
4898 - TCP Extended Statistics MIB.
http://www.ietf.org/rfc/rfc4898.txt.

[17] K. Papagiannaki, M. Yarvisand, and W. S. Conner.
Experimental Characterization of Home Wireless
Networks and Design Implications. In Infocom, 2006.

[18] B. Raghavan, K. Vishwanath, S. Ramabhadran,
K. Yocum, and A. C. Snoeren. Cloud control with
distributed rate limiting. In ACM SIGCOMM, 2007.

[19] D. Rubenstein, J. F. Kurose, and D. F. Towsley.
Detecting shared congestion of flows via end-to-end
measurement. In Measurement and Modeling of
Computer Systems, 2000.

[20] K. Scherf. Networks in the home: The global service
provider play. Park Associates report, January 2008.

[21] J. Simpson, C. Robert, and G. F. Riley. NETI@home:
A Distributed Approach to Collecting End-to-End
Network Performance Measurements. In Passive and
Active Measurements Workshop, 2004.

[22] R. Srikant. The Mathematics of Internet Congestion
Control. Birkausser, 2004.

[23] H. Yan, D. A. Maltz, T. E. Ng, H. Gogineni, H. Zhang,
and Z. Cai. Tesseract: A 4D network control plane. In
NSDI, Cambridge, MA, May 2007.

14

http://www.ietf.org/rfc/rfc4898.txt

	Introduction
	Users and the home network
	HomeMaestro architecture
	Modules
	Implementation

	Detecting competing flows
	Distinguishing candidate flows
	Identifying correlated flows
	Determining competing flows

	Resource allocations
	Utilization of the constraint resource
	Allocating resources to connections
	Setting weights wi

	Discussion
	Related Work
	Concluding remarks
	References

