

Data Cube: A Relational Aggregation Operator
Generalizing Group-By, Cross-Tab, and Sub-Totals

Jim Gray
Adam Bosworth
Andrew Layman
Hamid Pirahesh1

5 February 1995, Revised 18 October 1995

Technical Report
MSR-TR-95-22

Microsoft Research
Advanced Technology Division

Microsoft Corporation
One Microsoft Way

Redmond, WA 98052

1 IBM Research, 500 Harry Road, San Jose, CA. 95120

Data Cube 1

Data Cube: A Relational Aggregation Operator
Generalizing Group-By, Cross-Tab, and Sub-Totals

 Jim Gray Microsoft Gray@Microsoft.com
 Adam Bosworth Microsoft AdamB@Microsoft.com
 Andrew Layman Microsoft AndrewL@Microsoft.com
 Hamid Pirahesh IBM Pirahesh@Almaden.IBM.com

Microsoft Technical report MSR-TR-95-22
5 February 1995, Revised 18 November 1995

Abstract: Data analysis applications typically aggregate
data across many dimensions looking for unusual patterns.
The SQL aggregate functions and the GROUP BY operator
produce zero-dimensional or one-dimensional answers.
Applications need the N-dimensional generalization of
these operators. This paper defines that operator, called
the data cube or simply cube. The cube operator general-
izes the histogram, cross-tabulation, roll-up, drill-down,
and sub-total constructs found in most report writers. The
cube treats each of the N aggregation attributes as a di-
mension of N-space. The aggregate of a particular set of
attribute values is a point in this space. The set of points
forms an N-dimensional cube. Super-aggregates are com-
puted by aggregating the N-cube to lower dimensional
spaces. Aggregation points are represented by an "infinite
value", ALL. For example, the point
(ALL,ALL,ALL,...,ALL, sum(*)) would represent the global
sum of all items. Each ALL value actually represents the
set of values contributing to that aggregation.

1. Introduction

Data analysis applications look for unusual patterns in
data. They summarize data values, extract statistical in-
formation, and then contrast one category with another.
There are two steps to such data analysis:

extracting the aggregated data from the database into a
file or table, and

visualizing the results in a graphical way.
Visualization tools use space, color, and time (motion) to
display trends, clusters, and differences. The most excit-
ing work in data analysis focuses on presenting new
graphical metaphors that allow people to discover and
quickly recognize data trends and anomalies. Many tools
represent the dataset as an N-dimensional space. Two and
three-dimensional sub-slabs of this space are rendered as
2D or 3D objects. Color and time add two more dimen-
sions to the display giving the potential of a 5D display.

How do traditional relational databases fit into this pic-
ture? How can flat files (SQL tables) possibly model an N-
dimensional problem? Relational systems model N-
dimensional data as N-attribute domains. For example, 4-
dimensional earth-temperature data is typically represented

by a Weather table shown below. The first four columns
represent the four dimensions: x, y, z, t. Additional col-
umns represent measurements at the 4D points such as
temperature, pressure, humidity, and wind velocity. Of-
ten these measured values are aggregates over time (the
hour) or space (a measurement area).

The SQL standard provides five functions to aggregate the
values in a table: COUNT(), SUM(), MIN(), MAX(),
and AVG(). For example, the average of all measured
temperatures is expressed as:
 SELECT AVG(Temp)
 FROM Weather;

In addition, SQL allows aggregation over distinct values.
The following query counts the distinct number of report-
ing times in the Weather table:
 SELECT COUNT(DISTINCT Time)
 FROM Weather;

Many SQL systems add statistical functions (median,
standard deviation, variance, etc.), physical functions
(center of mass, angular momentum, etc.), financial
analysis (volatility, Alpha, Beta, etc.), and other domain-
specific functions.

Some systems allow users to add new aggregation func-
tions. The Illustra system, for example, allows users to
add aggregate functions by adding a program with the
following three callbacks to the database system [Illustra]:
Init (&handle): Allocates the handle and initializes

the aggregate computation.
Iter (&handle, value): Aggregates the next value

into the current aggregate.
value = Final(&handle): Computes and returns the

resulting aggregate by using data saved in the handle.
This invocation deallocates the handle.

Consider implementing the Average() function. The
handle stores the count and the sum initialized to zero.

Table 1: Weather
Time (UCT) Latitude Longitude Altitude

(m)
Temp
(c)

Pres
(mb)

27/11/94:150037:58:33N 122:45:28W 102 21 1009
27/11/94:150034:16:18N 27:05:55W 10 23 1024

Data Cube 2

When passed a new non-null value, Iter()increments the
count by one and the sum by the value. The Final()
call deallocates the handle and returns the sum divided by
the count.

Aggregate functions return a single value. Using the
GROUP BY construct, SQL can also create a table of many
aggregate values indexed by a set of attributes. For exam-
ple, The following query reports the average temperature
for each reporting time and altitude:

SELECT Time, Altitude, AVG(Temp)
FROM Weather
GROUP BY Time, Altitude;

GROUP BY is an unusual relational operator: It partitions
the relation into disjoint tuple sets and then aggregates
over each set as illustrated in Figure 1.

Red Brick systems added some interesting aggregate func-
tions that enhance the GROUP BY mechanism [Red Brick]:
Rank(expression): returns the expression’s rank in the

set of all values of this domain of the table. If there are
N values in the column, and this is the highest value,
the rank is N, if it is the lowest value the rank is 1.

N_tile(expression, n): The range of the expression
(over all the input values of the table) is computed and
divided into n value ranges of approximately equal
population. The function returns the number of the
range holding the value of the expression. The if your
bank account was among the largest 10% then
rank(account.balance,10) would return the
value 10. In fact, Red Brick provides just
N_tile(expression,3).

Ratio_To_Total(expression): Sums all the expres-
sions and then divides the expression by the total sum.

To give an example:

SELECT Percentile,MIN(Temp),MAX(Temp)
FROM Weather
GROUP BY N_tile(Temp,10) as Percentile
HAVING Percentile = 5;
returns one row giving the minimum and maximum tem-
peratures of the middle 10% of all temperatures. As men-
tioned later, allowing function values in the GROUP BY
is not yet allowed by the SQL standard.

Red Brick also offers three cumulative aggregates that
operate on ordered tables.
Cumulative(expression): Sums all values so far in

an ordered list.
Running_Sum(expression,n): Sums the most recent

n values in an ordered list. The initial n-1 values are
NULL.

Running_Average(expression,n): Averages the
most recent n values in an ordered list. The initial n-
1 values are NULL.

Syntax is provided to optionally reset these aggregate
functions each time an a grouping value changes in an
ordered selection.

2. Problems With GROUP BY:

SQL's aggregation functions are widely used. In the spirit
of aggregating data, the following table shows how fre-
quently the database and transaction processing bench-
marks use aggregation and GROUP BY. Surprisingly, ag-
gregates also appear in the online-transaction processing
TPC-C query set. Paradoxically, the TPC-A and TPC-B
benchmark transactions spend most of their energies
maintaining aggregates dynamically: they maintain the
summary bank account balance, teller cash-drawer bal-
ance, and branch balance. All these can be computed as
aggregates from the history table [TPC].

Table 2: SQL Aggregates in Standard Benchmarks
Benchmark Queries Aggregates GROUP BYs
TPC-A, B 1 0 0

TPC-C 18 4 0
TPC-D 16 27 15

Wisconsin 18 3 2
AS3AP 23 20 2

SetQuery 7 5 1

The TPC-D query set has one 6D GROUP BY and three 3D
GROUP BYs. 1D and 2D GROUP BYs are the most com-
mon.

Grouping Values

Partitioned Table

Sum()

Aggregate Values

Figure 1: The GROUP BY relational operator parti-
tions a table into groups. Each group is then ag-
gregated by a function. The aggregation function
summarizes some column of groups returning a
value for each group.

Data Cube 3

Certain forms of data analysis are difficult if not impossi-
ble with the SQL constructs. As explained here, three
common problems are:
(1) Histograms
(2) Roll-up Totals and Sub-Totals for drill-downs
(3) Cross Tabulations
The SQL standard GROUP BY operator does not allow a
direct construction of histograms (aggregation over com-
puted categories.) For example, for queries based on the
Weather table, it would be nice to be able to group times
into days, weeks, or months, and to group locations into
areas (e.g., US, Canada, Europe,...). This would be easy if
function values were allowed in the GROUP BY list. If that
were allowed, the following query would give the daily
maximum reported temperature.
SELECT day, nation, MAX(Temp)
FROM Weather
GROUP BY Day(Time) AS day,
 Country(Latitude,Longitude)
 AS nation;

Some SQL systems support histograms but the standard
does not. Rather, one must construct a table-valued ex-
pression and then aggregate over the resulting table. The
following statement demonstrates this SQL92 construct.
SELECT day, nation, MAX(Temp)
FROM (
 SELECT Day(Time) AS day,
Country(Latitude, Longitude)
 AS nation,
 Temp
 FROM Weather
) AS foo
GROUP BY day, nation;

A second problem relates to roll-ups using totals and sub-
totals for drill-down reports. Reports commonly aggre-
gate data at a coarse level, and then at successively finer
levels. The following report of car sales shows the idea.
Data is aggregated by Model, then by Year, then by Color.
The report shows data aggregated at three levels. Going
up the levels is called rolling-up the data. Going down is
called drilling-down into the data.

Table 3 is not relational –null values in the primary key
are not allowed. It is also not convenient -- the number of
columns grows as the power set of the number of aggre-
gated attributes. Table 4 is a relational and more conven-
ient representation:

Table 4: Sales Summary
Model Year Color Units
Chevy 1994 black 50
Chevy 1994 white 40
Chevy 1994 ALL 90
Chevy 1995 black 85
Chevy 1995 white 115
Chevy 1995 ALL 200
Chevy ALL ALL 290

where the dummy value "ALL" has been added to fill in
the super-aggregation items.

The SQL statement to build this SalesSummary table
from the raw Sales data is:
SELECT Model, ALL, ALL, SUM(Sales)
 FROM Sales
 WHERE Model = 'Chevy'
 GROUP BY Model
UNION
SELECT Model, Year, ALL, SUM(Sales)
 FROM Sales
 WHERE Model = 'Chevy'
 GROUP BY Model, Year
UNION
SELECT Model, Year, Color, SUM(Sales)
 FROM Sales
 WHERE Model = 'Chevy'
 GROUP BY Model, Year, Color;

This is a simple 3-dimensional roll-up. Aggregating over
N dimensions requires N such unions.

Roll-up is asymmetric – notice that the table above does
not aggregate the sales by year. It lacks the rows aggre-
gating sales by color rather than by year. These rows are:

Table 3: Sales Roll Up by Model by Year by
Color

Model

Yea
r

Color

Sales
by Model
by Year
by Color

Sales
by Model
by Year

Sales
by
Model

Chevy 1994 black 50
 white 40
 90
 1995 black 85
 white 115
 200
 290

Data Cube 4

Model Year Color Units
Chevy ALL black 135
Chevy ALL white 155

These additional rows could be captured by adding the
following clause to the SQL statement above:
UNION
SELECT Model, ALL, Color, SUM(Sales)
 FROM Sales
 WHERE Model = 'Chevy'
 GROUP BY Model, Color;

The symmetric aggregation result is a table called the
cross-tabulation, or cross tab for short2. Cross tab data is
routinely displayed in the more compact format of Table 5.

Table 5: Chevy Sales Cross Tab
Chevy 1994 1995 total (ALL)
black 50 85 135
white 40 115 155

 total (ALL) 90 200 290
This cross tab is a two-dimensional aggregation. If other
automobile models are added, it becomes a 3D aggrega-
tion. For example, data for Ford products adds an addi-
tional cross tab plane.

Table 5a: Ford Sales Cross Tab
Ford 1994 1995 total (ALL)
black 50 85 135
white 10 75 85

 total (ALL) 60 160 220

The cross tab array representation is equivalent to the rela-
tional representation using the ALL value. Both generalize
to an N-dimensional cross tab.

The representation of Table 4 and the use of unioned
GROUP BYs "solves" the representation problem – it repre-
sents aggregate data in a relational data model. The prob-
lem remains that expressing histogram, roll-up, drill-
down, and cross-tab queries with conventional SQL is
daunting. A 6D cross-tab requires a 64-way union of 64
different GROUP BY operators to build the underlying rep-
resentation. Incidentally, on most SQL systems this will
result in 64 scans of the data, 64 sorts or hashes, and a
long wait.

Building a cross-tabulation with SQL is even more daunt-
ing since the result is not a really a relational object – the
bottom row and the right column are “unusual”. Most
report writers build in a cross-tabs feature, building the
report up from the underlying tabular data such as Table 4

2 Spreadsheets call these pivot-tables.

and its extension. See for example the TRANSFORM-
PIVOT operator of Microsoft Access [Access].

3. The Data CUBE Operator

The generalization of these ideas seems obvious: Figure 2
shows the concept for aggregation up to 3-dimensions.
The traditional GROUP can generate the core of the N-
dimensional data cube. The N-1 lower-dimensional ag-
gregates appear as points, lines, planes, cubes, or hyper-
cubes hanging off the core data cube.

The data cube operator builds a table containing all these
aggregate values. The total aggregate is represented as
the tuple:
 ALL, ALL, ALL,..., ALL, f(*)
Points in higher dimensional planes or cubes have fewer
ALL values. Figure 3 illustrates this idea with an exam-
ple.

We extend SQL’s SELECT-GROUP-BY-HAVING syntax to
support histograms, decorations, and the CUBE operator.

CHEVY

FORD 1990
1991

1992
1993

RED
WHITE
BLUE

By Color
By Make & Color

By Make & Year

By Color & Year

By Make
By Year

Sum

The Data Cube and
The Sub-Space AggregatesSum

RED
WHITE
BLUE

Chevy Ford

By Make

By Color
Cross Tab

RED
WHITE
BLUE

By Color

Sum

Group By
(with total)

Sum

Aggregate

Figure 2: The CUBE operator is the N-dimensional gener-
alization of simple aggregate functions. The 0D data
cube is a point. The 1D data cube is a line with a point.
The 2D data cube is a cross tabulation, a plane, two lines,
and a point. The 3D data cube is a cube with three inter-
secting 2D cross tabs.

Currently the GROUP BY syntax is

Data Cube 5

GROUP BY
 {<column name> [collate clause] ,...}

To support histograms, extend the syntax to:
GROUP BY
 { (<column name> | <expression>)
 [AS <correlation name>]
 [<collate clause>]
 ,...}

The next step is to allow decorations, columns that do not
appear in the GROUP BY but that are functionally depend-
ent on the grouping columns. Consider the example:
SELECT department.name, sum(sales)
FROM sales JOIN department
 USING (department_number)
GROUP BY sales.department_number;

The department.name column in the answer set is not
allowed in current SQL, it is neither an aggregation col-
umn (appearing in the GROUP BY list) nor is it an aggre-
gate. It is just there to decorate the answer set with the
name of the department. We recommend the rule that if a
decoration column (or column value) is functionally de-
pendent on the aggregation columns, then it may be in-
cluded in the SELECT answer list.

These extensions are independent of the CUBE operator.
They remedy some pre-existing problems with GROUP BY.
Some systems already allow these extensions, for example
Microsoft Access allows function-valued GROUP BYs.

Creating the CUBE requires generating the power set (set of
all subsets) of the aggregation columns. We propose the
following syntax to extend SQL’s GROUP BY operator:
 GROUP BY CUBE (
 { (<column name> | <expression>)
 [AS <correlation name>]
 [<collate clause>]
 ,...}
)

Figure 3 has an example of this syntax. To give another,
here follows a statement to aggregate the set of tempera-
ture observations:
SELECT day, nation, MAX(Temp)
FROM Weather
GROUP BY CUBE (Day(Time) AS day,
 Country(Latitude, Longitude)
 AS nation
);

The semantics of the CUBE() operator are that it first ag-
gregates over all the <select list> attributes as in a
standard GROUP BY. Then, it UNIONs in each super-
aggregate of the global cube -- substituting ALL for the
aggregation columns. If there are N attributes in the se-
lect list, there will be 2N-1 super-aggregate values. If the
cardinality of the N attributes are C1, C2,..., CN then the
cardinality of the resulting cube relation is ? (Ci + 1).
The extra value in each domain is ALL. For example, the
SALES table has 2x3x3 = 18 rows, while the derived data
cube has 3x4x4 = 48 rows.

Each ALL value really represents a set – the set over
which the aggregate was computed. In the SalesSum-
mary table the respective sets are:

Model.ALL = ALL(Model) = {Chevy, Ford }
Year.ALL = ALL(Year) = {1990,1991,1992}
Color.ALL = ALL(Color) = {red,white,blue}

Thinking of the ALL value as a token representing these
sets defines the semantics of the relational operators (e.g.,
equals and IN). The ALL string is for display. A new
ALL() function generates the set associated with this
value as in the examples above. ALL() applied to any
other value returns NULL. This design is eased by
SQL3’s support for set-valued variables and domains.

SELECT Model, Year, Color, SUM(sales) AS Sales
FROM Sales
WHERE Model in {'Ford', 'Chevy'}
 AND Year BETWEEN 1990 AND 1992
GROUP BY CUBE(Model, Year, Color);

 SALES
Model Year Color Sales
Chevy 1990 red 5
Chevy 1990 white 87
Chevy 1990 blue 62
Chevy 1991 red 54
Chevy 1991 white 95
Chevy 1991 blue 49
Chevy 1992 red 31
Chevy 1992 white 54
Chevy 1992 blue 71
Ford 1990 red 64
Ford 1990 white 62
Ford 1990 blue 63
Ford 1991 red 52
Ford 1991 white 9
Ford 1991 blue 55
Ford 1992 red 27
Ford 1992 white 62
Ford 1992 blue 39

 DATA CUBE
Model Year Color Sales

CUBE

Chevy 1990 blue 62
Chevy 1990 red 5
Chevy 1990 white 95
Chevy 1990 ALL 154
Chevy 1991 blue 49
Chevy 1991 red 54
Chevy 1991 white 95
Chevy 1991 ALL 198
Chevy 1992 blue 71
Chevy 1992 red 31
Chevy 1992 white 54
Chevy 1992 ALL 156
Chevy ALL blue 182
Chevy ALL red 90
Chevy ALL white 236
Chevy ALL ALL 508
Ford 1990 blue 63
Ford 1990 red 64
Ford 1990 white 62
Ford 1990 ALL 189
Ford 1991 blue 55
Ford 1991 red 52
Ford 1991 white 9
Ford 1991 ALL 116
Ford 1992 blue 39
Ford 1992 red 27
Ford 1992 white 62
Ford 1992 ALL 128
Ford ALL blue 157
Ford ALL red 143
Ford ALL white 133
Ford ALL ALL 433
ALL 1990 blue 125
ALL 1990 red 69
ALL 1990 white 149
ALL 1990 ALL 343
ALL 1991 blue 106
ALL 1991 red 104
ALL 1991 white 110
ALL 1991 ALL 314
ALL 1992 blue 110
ALL 1992 red 58
ALL 1992 white 116
ALL 1992 ALL 284
ALL ALL blue 339
ALL ALL red 233
ALL ALL white 369
ALL ALL ALL 941

Figure 3: A 3D data cube (right) built from the table at
the left by the CUBE statement at the top of the figure.

Data Cube 6

The ALL value appears to be essential, but creates substan-
tial complexity. It is a non-value, like NULL. We do not
add it lightly – adding it touches many aspects of the SQL
language. To name a few:
• Treating each ALL value as the set of aggregates guides

the meaning of the ALL value.
• ALL becomes a new keyword denoting the set value.
• ALL [NOT] ALLOWED is added to the column definition

syntax and to the column attributes in the system cata-
logs.

• ALL, like NULL, does not participate in any aggregate
except COUNT().

• The set interpretation guides the meaning of the rela-
tional operators {=, <, <=, =, >=, >, IN}.

There are more such rules, but this gives a hint of the
added complexity. As an aside, to be consistent, if the
ALL value is a set then the other values of that domain
must be treated as singleton sets in order to have uniform
operators on the domain.

Decoration’s interact with aggregate values. If the aggre-
gate tuple functionally defines the decoration column
value, then the value appears in the resulting tuple. Oth-
erwise the decoration field is NULL. For example:
SELECT day,nation,MAX(Temp),
 continent(nation)
FROM Weather
GROUP BY CUBE (Day(Time) AS day,
 Country(Latitude, Longitude)
 AS nation
);
would produce the sample tuples:

Table 6: Demonstrating decorations and ALL
day nation max(Temp) continent

25/1/1995 USA 28 North America
ALL USA 37 North America

25/1/1995 ALL 41 NULL
ALL ALL 48 NULL

Unless nation is present, the continent is not function-
ally specified and so is NULL.

If the application wants only a roll-up or drill-down report,
the full cube is overkill. It is reasonable to offer the addi-
tional function ROLLUP() in addition to CUBE().
ROLLUP() produces just the super-aggregates:

(f1 ,f2 ,...,ALL),
...

(f1 ,ALL,...,ALL),
(ALL,ALL,...,ALL).

Cumulative aggregates , like running sum or running av-
erage, work especially well with ROLLUP() since the an-
swer set is naturally sequential (linear) while the CUBE()
is naturally non-linear (multi-dimensional). Both the
ROLLUP() and CUBE() must be ordered for the cumula-
tive operators to apply.

We investigated letting the programmer specify the exact
list of super-aggregates but encountered complexities re-
lated to collation, correlation, and expressions. We be-
lieve ROLLUP() and CUBE() will serve the needs of most
applications.

It is convenient to know when a column value is an ag-
gregate. One way to test this is to apply the ALL() func-
tion to the value and test for a non-NULL value. This is
so useful that we propose a Boolean function
GROUPING() that, given a select list element, returns
TRUE if the element is an ALL value, and FALSE other-
wise.

Veteran SQL implementers will be terrified of the ALL
value -- like NULL, it will create many special cases. If
the goal is to help report writer and GUI visualization
software, then it may be simpler to adopt the following
approach.
? ? Use the NULL value in place of the ALL value.
? ? Do not implement the ALL() function.
? ? Implement the GROUPING()function to discriminate

between NULL and ALL .

In this minimalist design, tools and users can simulate the
ALL value as by for example:
SELECT Model,Year,Color,SUM(sales),
 GROUPING(Model),
 GROUPING(Year),
 GROUPING(Color)
FROM Sales
GROUP BY CUBE(Model, Year, Color);
Wherever the ALL value appeared before, now the corre-
sponding value will be NULL in the data field and TRUE in
the corresponding grouping field. For example, the
global sum of Table 2 will be the tuple:
(NULL,NULL,NULL,941,TRUE,TRUE,TRUE)
rather than the tuple one would get with the “real” cube
operator:
 (ALL, ALL, ALL, 941).

4. Addressing The Data Cube

Section 5 discusses how to compute the cube and how
users can add new aggregate operators. This section
considers extensions to SQL syntax to easily access the
elements of the data cube -- making it recursive and
allowing aggregates to reference sub-aggregates.

It is not clear where to draw the line between the report-
ing/visualization tool and the query tool. Ideally,
application designers should be able to decide how to split
the function between the query system and the
visualization tool. Given that perspective, the SQL

Data Cube 7

tool. Given that perspective, the SQL system must be a
Turing-complete programming environment.

SQL3 defines a Turing-complete procedural programming
language. So, anything is possible. But, many things are
not easy. Our task is to make simple and common things
easy.

The most common request is for percent-of-total as an ag-
gregate function. In SQL this is computed as two SQL
statements.

SELECT Model,Year,Color,SUM(Sales),
 SUM(Sales)/ (SELECT SUM(Sales)
 FROM Sales
 WHERE Model IN { ‘Ford’ , ‘Chevy’ }
 AND Year Between 1990 AND 1992
)
FROM Sales
WHERE Model IN { ‘Ford’ , ‘Chevy’ }
 AND Year Between 1990 AND 1992
GROUP BY CUBE (Model, Year, Color);

It seems natural to allow the shorthand syntax to name the
global aggregate:
SELECT Model, Year, Color
 SUM(Sales) AS total,
 SUM(Sales) / total(ALL,ALL,ALL)
FROM Sales
WHERE Model IN { ‘Ford’ , ‘Chevy’ }
 AND Year Between 1990 AND 1992
GROUP BY CUBE(Model, Year, Color);

This leads into deeper water. The next step is a desire to
compute the index of a value -- an indication of how far
the value is from the expected value. In a set of N values,
one expects each item to contribute one Nth to the sum. So
the 1D index of a set of values is:
 index(vi) = vi / (? j vj)

If the value set is two dimensional, this commonly used
financial function is a nightmare of indices. It is best de-
scribed in a programming language. The current ap-
proach to selecting an field value from a 2D cube with
fields row and column would read as:
 SELECT v
 FROM cube
 WHERE row = :i
 AND column = :j
We recommend the simpler syntax:
 cube.v(:i, :j)
as a shorthand for the above selection expression. With
this notation added to the SQL programming language, it
should be fairly easy to compute super-super-aggregates
from the base cube.

5. Computing the Data Cube

CUBE generalizes aggregates and GROUP BY, so all the
technology for computing those results also applies to
computing the core of the cube. The main techniques
are:
• To minimize data movement and consequent processing

cost, compute aggregates at the lowest possible system
level.

• If possible, use arrays or hashing to organize the aggre-
gation columns in memory, storing one aggregate value
for each array or hash entry.

• If the aggregation values are large strings, it may be wise
to keep a hashed symbol table that maps each string to
an integer so that the aggregate values are small. When
a new value appears, it is assigned a new integer. With
this organization, the values become dense and the ag-
gregates can be stored as an N-dimensional array.

• If the number of aggregates is too large to fit in memory,
use sorting or hybrid hashing to organize the data by
value and then aggregate with a sequential scan of the
sorted data.

• If the source data spans many disks or nodes, use paral-
lelism to aggregate each partition and then coalesce
these aggregates.

Some innovation is needed to compute the "ALL" tuples of
the cube from the GROUP BY core. The ALL value adds
one extra value to each dimension in the CUBE. So, an N-
dimensional cube of N attributes each with cardinality Ci,
will have ? (Ci+1). If each Ci =4 then a 4D CUBE is
2.4 times larger than the base GROUP BY. We expect the
Ci to be large (tens or hundreds) so that the CUBE will be
only a little larger than the GROUP BY.

The cube operator allows many aggregate functions in the
aggregation list of the GROUP BY clause. Assume in
this discussion that there is a single aggregate function F()
being computed on an N-dimensional cube. The exten-
sion to a computing a list of functions is a simple gener-
alization.

The simplest algorithm to compute the cube is to allocate
a handle for each cube cell. When a new tuple: (x1,
x2,...., xN, v) arrives, the Iter(handle, v) function is

called 2N times -- once for each handle of each cell of the
cube matching this value. The 2N comes from the fact
that each coordinate can either be xi or ALL. When all
the input tuples have been computed, the system invokes
the final(&handle) function for each of the ? (Ci+1)

nodes in the cube. Call this the 2N-algorithm.

Data Cube 8

If the base table has cardinality T, the 2N-algorithm in-
vokes the Iter() function T x 2N times. It is often faster
to compute the super-aggregates from the core GROUP BY,
reducing the number of calls by approximately a factor of
T . It is often possible to compute the cube from the core
or from intermediate results only M times larger than the
core. The following trichotomy characterizes the options
in computing super-aggregates.

Consider aggregating a two dimensional set of values {Xij
| i = 1,...,I; j=1,...,J}. Aggregate functions can be classi-
fied into three categories:
Distributive: Aggregate function F() is distributive if

there is a function G() such that F({Xi,j}) = G({F({Xi,j
|i=1,...,I}) | j=1,...J}). COUNT(), MIN(), MAX(),
SUM() are all distributive. In fact, F = G for all but
COUNT(). G= SUM() for the COUNT() function. Once
order is imposed, the cumulative aggregate functions
also fit in the distributive class.

Algebraic: Aggregate function F() is algebraic if there is
an M-tuple valued function G() and a function H() such
that
F({Xi,j}) = H({G({Xi,j |i=1,.., I}) | j=1,..., J }). Aver-
age(), standard deviation, MaxN(), MinN(), cen-
ter_of_mass() are all algebraic. For Average, the func-
tion G() records the sum and count of the subset. The
H() function adds these two components and then di-
vides to produce the global average. Similar techniques
apply to finding the N largest values, the center of mass
of group of objects, and other algebraic functions. The
key to algebraic functions is that a fixed size result (an
M-tuple) can summarize the sub-aggregation.

Holistic: Aggregate function F() is holistic if there is no
constant bound on the size of the storage needed to de-
scribe a sub-aggregate. That is, there is no constant M,
such that an M-tuple characterizes the computation
F({Xi,j |i=1,...,I}). Median(), MostFrequent() (also
called the Mode()), and Rank() are common examples of
holistic functions.

We know of no more efficient way of computing super-
aggregates of holistic functions than the 2N-algorithm us-
ing the standard GROUP BY techniques. We will not say
more about cubes of holistic functions.

Cubes of distributive functions are relatively easy to com-
pute. Given that the core is represented as an N-
dimensional array in memory, each dimension having size
Ci+1, the N-1 dimensional slabs can be computed by pro-
jecting (aggregating) one dimension of the core. For ex-

ample the following computation aggregates the first
dimension.
CUBE(ALL, x2,...,xN) = F({CUBE(i, x2,...,xN) | i =
1,...C1}).
N such computations compute the N-1 dimensional super-
aggregates. The distributive nature of the function F()
allows aggregates to be aggregated. The next step is to
compute the next lower dimension -- an (...ALL,..., ALL...)
case. Thinking in terms of the cross tab, one has a choice
of computing the result by aggregating the lower row, or
aggregating the right column (aggregate (ALL, *) or (*,
ALL)). Either approach will give the same answer. The
algorithm will be most efficient if it aggregates the
smaller of the two (pick the * with the smallest Ci.) In
this way, the super-aggregates can be computed dropping
one dimension at a time.

Algebraic aggregates are more difficult to compute than
distributive aggregates. Recall that an algebraic aggregate
saves its computation in a handle and produces a result in
the end - at the Final() call. Average() for example
maintains the count and sum values in its handle. The
super-aggregate needs these intermediate results rather
than just the raw sub-aggregate. An algebraic aggregate
must maintain a handle (M-tuple) for each element of the
cube (this is a standard part of the group-by operation).
When the core GROUP BY operation completes, the CUBE
algorithm passes the set of handles to each N-1 dimen-
sional super-aggregate. When this is done the handles of
these super-aggregates are passed to the super-super ag-
gregates, and so on until the (ALL, ALL, ..., ALL) aggre-
gate has been computed. This approach requires a new
call for distributive aggregates:
 Iter_super(&handle, &handle)
which folds the sub-aggregate on the right into the super
aggregate on the left. The same ordering ideas (aggregate
on the smallest list) applies.

If the data cube does not fit into memory, array techniques
do not work. Rather one must either partition the cube
with a hash function or sort it. These are standard tech-
niques for computing the GROUP BY. The super-
aggregates are likely to be orders of magnitude smaller
than the core, so they are very likely to fit in memory.

It is possible that the core of the cube is sparse. In that
case, only the non-null elements of the core and of the
super-aggregates should be represented. This suggests a
hashing or a B-tree be used as the indexing scheme for
aggregation values [Essbase].

Data Cube 9

6. Summary:

The cube operator generalizes and unifies several common
and popular concepts:
 aggregates,
 group by,
 histograms,
 roll-ups and drill-downs and,
 cross tabs.

The cube is based on a relational representation of aggre-
gate data using the ALL value to denote the set over which
each aggregation is computed. In certain cases it makes
sense to restrict the cube to just a roll-up aggregation for
drill-down reports.

The cube is easy to compute for a wide class of functions
(distributive and algebraic functions). SQL’s basic set of
five aggregate functions needs careful extension to include
functions such as rank, N_tile, cumulative, and percent of
total to ease typical data mining operations.

7. Acknowledgments

Joe Hellerstein suggested interpreting the ALL value as a
set. Tanj Bennett, David Maier and Pat O’Neil made
many helpful suggestions that improved the presentation.

8. References

 [Access] Microsoft Access Relational Database Management

System for Windows, Language Reference -- Functions,
Statements, Methods, Properties, and Actions, DB26142,
Microsoft, Redmond, WA, 1994.

[Essbase] Method and apparatus for storing and retrieving
multi-dimensional data in computer memory, Inventor:
Earle; Robert J., Assignee: Arbor Software Corporation, US
Patent 05359724, October 1994,

[Illustra] Illustra DataBlade Developer's Kit 1.1., Illustra Infor-
mation Technologies, Oakland, CA, 1994.

[Melton & Simon] Jim Melton and Alan Simon, Understanding
the New SQL: A Complete Guide, Morgan Kaufmann, San
Francisco, CA, 1993.

[Red Brick] RISQL Reference Guide, Red Brick Warehouse VPT
Version 3, Part no: 401530, Red Brick Systems, Los Gatos,
CA, 1994

[TPC] The Benchmark Handbook for Database and Transaction
Processing Systems - 2nd edition, J. Gray (ed.), Morgan
Kaufmann, San Francisco, CA, 1993.

