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Abstract:  Data analysis applications typically aggregate 
data across many dimensions looking for unusual patterns.  
The SQL aggregate functions and the GROUP BY operator 
produce zero-dimensional or one-dimensional answers.   
Applications need the N-dimensional generalization of 
these operators.  This paper defines that operator, called 
the data cube  or simply cube.  The cube operator general-
izes the histogram, cross-tabulation, roll-up, drill-down, 
and sub-total constructs found in most report writers.  The 
cube treats each of the N aggregation attributes as a di-
mension of N-space.  The aggregate of a particular set of 
attribute values is a point in this space.  The set of points 
forms an N-dimensional cube.   Super-aggregates are com-
puted by aggregating the N-cube to lower dimensional 
spaces.  Aggregation points are represented by an "infinite 
value", ALL.   For example, the point 
(ALL,ALL,ALL,...,ALL, sum(*)) would represent the global 
sum of all items.  Each ALL value actually represents the 
set of values contributing to that aggregation. 
 

1. Introduction 
 
Data analysis applications look for unusual patterns in 
data.  They summarize data values, extract statistical in-
formation, and then contrast one category with another.  
There are two steps to such data analysis:  

extracting the aggregated data from the database into a 
file or table, and  

visualizing the results in a graphical way. 
Visualization tools use space, color, and time (motion) to 
display trends, clusters, and differences.   The most excit-
ing work in data analysis focuses on presenting new 
graphical metaphors that allow people to discover and 
quickly recognize data trends and anomalies.  Many  tools 
represent the dataset as an N-dimensional space.  Two and 
three-dimensional sub-slabs of this space are rendered as 
2D or 3D objects.   Color and time add two more dimen-
sions to the display giving the potential of a 5D display. 
 
How do traditional relational databases fit into this pic-
ture?  How can flat files (SQL tables) possibly model an N-
dimensional problem?  Relational systems model N-
dimensional data as N-attribute domains.  For example, 4-
dimensional earth-temperature data is typically represented 

by a Weather table shown below.  The first four columns 
represent the four dimensions: x, y, z, t.  Additional col-
umns represent measurements at the 4D points such as 
temperature, pressure, humidity, and wind velocity.   Of-
ten these measured values are aggregates over time (the 
hour) or space (a measurement area). 
 

 
The SQL standard provides five functions to aggregate the 
values in a table: COUNT(), SUM(), MIN(), MAX(), 
and AVG().  For example, the average of all measured 
temperatures is expressed as: 
 SELECT AVG(Temp) 
 FROM   Weather; 
  
In addition, SQL allows aggregation over distinct values.   
The following query counts the distinct number of report-
ing times in the Weather table: 
 SELECT COUNT(DISTINCT Time) 
 FROM  Weather; 
 
Many SQL systems add statistical functions (median, 
standard deviation, variance, etc.), physical functions 
(center of mass, angular momentum, etc.), financial 
analysis (volatility, Alpha, Beta, etc.),  and other domain-
specific functions.   
 
Some systems allow users to add new aggregation func-
tions.   The Illustra system, for example, allows users to 
add aggregate functions by adding a program with the 
following three callbacks to the database system [Illustra]: 
Init (&handle):  Allocates the handle and initializes 

the aggregate computation. 
Iter (&handle, value):  Aggregates the next value 

into the current aggregate. 
value = Final(&handle): Computes and returns the 

resulting aggregate by using data saved in the handle. 
This invocation deallocates the handle. 

 
Consider implementing the Average() function.  The 
handle stores the count and the sum initialized to zero.  

Table 1: Weather 
Time (UCT) Latitude Longitude Altitude 

(m) 
Temp 
(c) 

Pres 
(mb) 

27/11/94:150037:58:33N 122:45:28W 102 21 1009 
27/11/94:150034:16:18N  27:05:55W   10 23 1024 
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When passed a new non-null value, Iter()increments the 
count by one and the sum by the value.  The Final() 
call deallocates the handle and returns the sum divided by 
the count. 
           
Aggregate functions return a single value.  Using the 
GROUP BY construct, SQL can also create a table of many 
aggregate values indexed by a set of attributes.  For exam-
ple, The following query reports the average temperature 
for each reporting time and altitude: 

SELECT   Time, Altitude, AVG(Temp) 
FROM     Weather 
GROUP BY Time, Altitude; 

 
GROUP BY is an unusual relational operator: It partitions 
the relation into disjoint tuple sets and then aggregates 
over each set as illustrated in Figure 1. 
 

 
Red Brick systems added some interesting aggregate func-
tions that enhance the GROUP BY mechanism [Red Brick]: 
Rank(expression): returns the expression’s rank in the 

set of all values of this domain of the table. If there are 
N values in the column, and this is the highest value, 
the rank is N, if it is the lowest value the rank is 1.  

N_tile(expression, n): The range of the expression 
(over all the input values of the table) is computed and 
divided into n value ranges of approximately equal 
population.  The function returns the number of the 
range holding the value of the expression.  The if your 
bank account was among the largest 10% then  
rank(account.balance,10) would return the 
value 10. In fact, Red Brick provides just  
N_tile(expression,3). 

Ratio_To_Total(expression): Sums all the expres-
sions and then divides the expression by the total sum. 

 
To give an example: 

SELECT  Percentile,MIN(Temp),MAX(Temp) 
FROM     Weather 
GROUP BY N_tile(Temp,10) as Percentile 
HAVING   Percentile = 5; 
returns one row giving the minimum and maximum tem-
peratures of the middle 10% of all temperatures.  As men-
tioned later, allowing function values in the GROUP BY 
is not yet allowed by the SQL standard. 
 
Red Brick also offers three cumulative aggregates that  
operate on ordered tables.    
Cumulative(expression): Sums all values so far in 

an ordered list. 
Running_Sum(expression,n): Sums the most recent 

n values in an ordered list. The initial n-1 values are  
NULL. 

Running_Average(expression,n): Averages the 
most recent n values in an ordered list. The initial n-
1 values are  NULL. 

 
Syntax is provided to optionally reset these aggregate 
functions each time an a grouping value changes in an 
ordered selection.  

 
2. Problems With GROUP BY: 
 
SQL's aggregation functions are widely used.  In the spirit 
of aggregating data, the following table shows how fre-
quently the database and transaction processing bench-
marks use aggregation and GROUP BY.  Surprisingly, ag-
gregates also appear in the online-transaction processing 
TPC-C query set.  Paradoxically, the TPC-A and TPC-B 
benchmark transactions spend most of their energies 
maintaining aggregates dynamically: they maintain the 
summary bank account balance, teller cash-drawer bal-
ance, and branch balance.  All these can be computed as 
aggregates from the history table [TPC]. 
 
Table 2: SQL Aggregates in Standard Benchmarks 
Benchmark Queries Aggregates GROUP BYs 
TPC-A, B 1 0 0 

TPC-C 18 4 0 
TPC-D 16 27 15 

Wisconsin 18 3 2 
AS3AP 23 20 2 

SetQuery 7 5 1 
 
The TPC-D query set has one 6D GROUP BY and three 3D 
GROUP BYs.    1D and 2D GROUP BYs are the most com-
mon.   
 

 
Grouping Values

Partitioned Table

Sum()

Aggregate Values

 
 
Figure 1: The GROUP BY relational operator parti-
tions a table into groups. Each group is then ag-
gregated by a function. The aggregation function 
summarizes some column of groups returning a 
value for each group. 
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Certain forms of data analysis are difficult if not impossi-
ble with the SQL constructs.   As explained here, three 
common problems are: 
(1) Histograms 
(2) Roll-up Totals and Sub-Totals for drill-downs 
(3) Cross Tabulations 
The SQL standard GROUP BY operator does not allow a 
direct construction of histograms (aggregation over com-
puted categories.)  For example, for queries based on the 
Weather table, it would be nice to be able to group times 
into days, weeks, or  months, and to group locations into 
areas (e.g., US, Canada, Europe,...).  This would be easy if 
function values were allowed in the GROUP BY list.  If that 
were allowed, the following query would give the daily 
maximum reported temperature. 
SELECT    day, nation, MAX(Temp) 
FROM      Weather 
GROUP BY  Day(Time) AS day,  
          Country(Latitude,Longitude) 
                    AS nation; 
 
Some SQL systems support histograms but the standard 
does not.  Rather, one must construct a table-valued ex-
pression and then aggregate over the resulting table. The 
following statement demonstrates this SQL92 construct.   
SELECT day, nation, MAX(Temp) 
FROM (  
 SELECT Day(Time) AS day,      
Country(Latitude, Longitude)  
                   AS nation,  
   Temp  
  FROM  Weather  
     ) AS foo  
GROUP BY day, nation; 
 
A second problem relates to roll-ups using totals and sub-
totals for drill-down reports.   Reports commonly aggre-
gate data at a coarse level, and then at successively finer 
levels.   The following report of car sales shows the idea.  
Data is aggregated by Model, then by Year, then by Color.   
The report shows data aggregated at three levels.  Going 
up the levels is called rolling-up the data.  Going  down is 
called drilling-down into the data. 
 

 
Table 3 is not relational –null values in the primary key 
are not allowed.  It is also not convenient -- the number of 
columns grows as the power set of the number of aggre-
gated attributes.  Table 4 is a relational and more conven-
ient representation: 
 

Table 4: Sales Summary 
Model Year Color Units 
Chevy        1994 black 50 
Chevy        1994 white 40 
Chevy        1994 ALL 90 
Chevy        1995 black 85 
Chevy   1995 white 115 
Chevy        1995 ALL 200 
Chevy        ALL ALL 290 

where the dummy value "ALL" has been added to fill in 
the super-aggregation items.   
 
The SQL statement to build this SalesSummary table 
from the raw Sales data is: 
SELECT Model, ALL, ALL, SUM(Sales) 
 FROM  Sales 
 WHERE Model = 'Chevy' 
   GROUP BY Model 
UNION  
SELECT Model, Year, ALL, SUM(Sales) 
 FROM  Sales 
 WHERE Model = 'Chevy' 
 GROUP BY Model, Year 
UNION 
SELECT Model, Year, Color, SUM(Sales) 
 FROM  Sales 
 WHERE Model = 'Chevy' 
 GROUP BY Model, Year, Color; 
 
This is a simple 3-dimensional roll-up.  Aggregating over 
N dimensions requires  N such unions. 
 
Roll-up is asymmetric – notice that the table above does 
not aggregate the sales by year.  It lacks the rows aggre-
gating sales by color rather than by year.  These rows are: 

Table 3: Sales Roll Up by Model by Year by 
Color 

 
Model 

 
Yea
r 

 
Color 

Sales  
by Model 
by Year 
by Color  

Sales 
by Model 
by Year  

 

Sales 
by 
Model 
 

Chevy        1994 black 50                                                                     
   white 40     
      90  
 1995 black 85    
  white 115     
      200  
       290 



 

Data Cube  4 

Model Year Color Units 
Chevy        ALL black 135 
Chevy        ALL white 155 

 
These additional rows could be captured by adding the 
following clause to the SQL statement above: 
UNION  
SELECT Model, ALL, Color, SUM(Sales) 
 FROM  Sales 
 WHERE Model = 'Chevy' 
 GROUP BY Model, Color; 
 
The symmetric aggregation result is a table called the 
cross-tabulation, or cross tab for short2.  Cross tab data is 
routinely displayed in the more compact format of Table 5.  

Table 5: Chevy Sales Cross Tab 
Chevy  1994 1995  total (ALL) 
black  50 85 135 
white 40 115 155 

 total (ALL) 90 200 290 
This cross tab is a two-dimensional aggregation. If  other 
automobile models are added,  it becomes a 3D aggrega-
tion.  For example, data for Ford products adds an addi-
tional cross tab plane. 
 

Table 5a: Ford Sales Cross Tab 
Ford  1994 1995  total (ALL) 
black  50 85 135 
white 10 75 85 

 total (ALL) 60 160 220 
 
The cross tab array representation is equivalent to the rela-
tional representation using the ALL value.  Both generalize 
to an N-dimensional cross tab.   
 
The representation of Table 4 and the use of      unioned 
GROUP BYs "solves" the representation problem – it repre-
sents aggregate data in a relational data model.  The prob-
lem remains that expressing histogram, roll-up, drill-
down, and cross-tab queries with conventional SQL is 
daunting.  A 6D cross-tab requires a 64-way union of 64 
different GROUP BY operators to build the underlying rep-
resentation.    Incidentally, on most SQL systems this will 
result in 64 scans of the data, 64 sorts or hashes, and a 
long wait.   
 
Building a cross-tabulation with SQL is even more daunt-
ing since the result is not a really a relational object – the 
bottom row and the right column are “unusual”.  Most 
report writers build in a cross-tabs feature, building the 
report up from the underlying tabular data such as Table 4 

                                                        
2  Spreadsheets call these pivot-tables. 

and its extension.  See for example the TRANSFORM-
PIVOT operator of Microsoft Access [Access].  
  

3. The Data CUBE Operator 
 
The generalization of these ideas seems obvious: Figure 2 
shows the concept for aggregation up to 3-dimensions. 
The traditional GROUP  can generate the core of the N-
dimensional data cube.  The N-1 lower-dimensional ag-
gregates appear as points, lines, planes, cubes, or hyper-
cubes hanging off the core data cube. 
 
The data cube operator builds a table containing all these 
aggregate values.  The total aggregate is represented as 
the tuple: 
    ALL, ALL, ALL,..., ALL, f(*) 
Points in higher dimensional planes or cubes have fewer 
ALL values.  Figure 3 illustrates this idea with an exam-
ple.   
 
We extend SQL’s SELECT-GROUP-BY-HAVING syntax to 
support histograms, decorations, and the CUBE operator.   
 

 

CHEVY 

FORD 1990
1991

1992
1993

RED
WHITE
BLUE

By Color
By Make & Color

By Make & Year

By Color & Year

By Make
By Year

Sum

The Data Cube and  
The Sub-Space AggregatesSum

RED
WHITE
BLUE

Chevy Ford

By Make

By Color
Cross Tab

RED
WHITE
BLUE

By Color

Sum

Group By 
(with total)

Sum

Aggregate

 
 

Figure 2: The CUBE operator is the N-dimensional gener-
alization of simple aggregate functions.   The 0D data 
cube is a point.  The 1D data cube is a line with a point.   
The 2D data cube is a cross tabulation, a plane, two  lines, 
and a point.  The 3D data cube is a cube with three inter-
secting 2D cross tabs. 

 
 
Currently the GROUP BY syntax is 
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GROUP BY   
       {<column name> [collate clause]  ,...} 
 
To support histograms, extend the syntax to: 
GROUP BY   
       { ( <column name> | <expression>) 
             [   AS <correlation name> ]  
             [ <collate clause>        ] 
               ,...} 
 
The next step is to allow  decorations,  columns that do not 
appear in the GROUP BY but that are functionally depend-
ent on the grouping columns.  Consider the example: 
SELECT   department.name, sum(sales) 
FROM     sales JOIN department  
            USING (department_number) 
GROUP BY sales.department_number; 
 
The department.name column in the answer set is not 
allowed in current SQL, it is neither an aggregation col-
umn (appearing in the GROUP BY list) nor is it an aggre-
gate.   It is just there to decorate the answer set with the 
name of the department.  We recommend the rule that if a 
decoration column (or column value) is functionally de-
pendent on the aggregation columns, then it may be in-
cluded in the SELECT answer list. 
 
These extensions are independent of the CUBE operator.  
They remedy some pre-existing problems with GROUP BY.  
Some systems already allow these extensions, for example 
Microsoft Access allows function-valued GROUP BYs. 
 
Creating the CUBE requires generating the power set (set of 
all subsets) of the aggregation columns.  We propose the 
following syntax to extend SQL’s GROUP BY operator: 
 GROUP BY  CUBE ( 
   { ( <column name> | <expression>)  
      [ AS <correlation name> ]  
      [ <collate clause>      ] 
    ,...}  
      ) 
 
Figure 3 has an example of this syntax. To give another, 
here follows a statement to aggregate the set of tempera-
ture observations: 
SELECT    day, nation, MAX(Temp) 
FROM      Weather 
GROUP BY  CUBE ( Day(Time) AS day, 
    Country(Latitude, Longitude) 
                           AS nation 
                ); 

The semantics of the CUBE() operator are that it first ag-
gregates over all the <select list> attributes as in a 
standard GROUP BY.    Then, it UNIONs in each super-
aggregate of the global cube -- substituting ALL for the 
aggregation columns.  If there are N  attributes in the se-
lect list, there will be 2N-1 super-aggregate values.  If the 
cardinality of the N attributes are C1, C2,..., CN  then the 
cardinality of the resulting cube relation is ?  (Ci + 1).  
The extra value in each domain is ALL.  For example, the 
SALES table has 2x3x3 = 18 rows, while the derived data 
cube has 3x4x4 = 48 rows. 
 
Each ALL value really represents a set – the set over 
which the aggregate was computed.   In the SalesSum-
mary table the respective sets are: 
  
Model.ALL = ALL(Model) = {Chevy, Ford } 
Year.ALL  = ALL(Year)  = {1990,1991,1992} 
Color.ALL = ALL(Color) = {red,white,blue} 
 
Thinking of the ALL value as a token representing these 
sets defines the semantics of the relational operators (e.g., 
equals and IN).  The ALL string is for display.   A new 
ALL() function generates the set associated with this 
value as in the examples above. ALL() applied to any 
other value returns NULL.  This design is eased by 
SQL3’s support for set-valued variables and domains. 
 

SELECT Model, Year, Color, SUM(sales) AS Sales
FROM Sales
WHERE Model in {'Ford', 'Chevy'}
  AND Year BETWEEN 1990 AND 1992
GROUP BY CUBE(Model, Year, Color);

             SALES
Model Year Color Sales
Chevy 1990 red 5
Chevy 1990 white 87
Chevy 1990 blue 62
Chevy 1991 red 54
Chevy 1991 white 95
Chevy 1991 blue 49
Chevy 1992 red 31
Chevy 1992 white 54
Chevy 1992 blue 71
Ford 1990 red 64
Ford 1990 white 62
Ford 1990 blue 63
Ford 1991 red 52
Ford 1991 white 9
Ford 1991 blue 55
Ford 1992 red 27
Ford 1992 white 62
Ford 1992 blue 39

       DATA CUBE
Model Year Color Sales

CUBE

Chevy   1990    blue     62
Chevy   1990     red      5
Chevy   1990   white     95
Chevy   1990     ALL    154
Chevy   1991    blue     49
Chevy   1991     red     54
Chevy   1991   white     95
Chevy   1991     ALL    198
Chevy   1992    blue     71
Chevy   1992     red     31
Chevy   1992   white     54
Chevy   1992     ALL    156
Chevy    ALL    blue    182
Chevy    ALL     red     90
Chevy    ALL   white    236
Chevy    ALL     ALL    508
Ford    1990    blue     63
Ford    1990     red     64
Ford    1990   white     62
Ford    1990     ALL    189
Ford    1991    blue     55
Ford    1991     red     52
Ford    1991   white      9
Ford    1991     ALL    116
Ford    1992    blue     39
Ford    1992     red     27
Ford    1992   white     62
Ford    1992     ALL    128
Ford     ALL    blue    157
Ford     ALL     red    143
Ford     ALL   white    133
Ford     ALL     ALL    433
ALL     1990    blue    125
ALL     1990     red     69
ALL     1990   white    149
ALL     1990     ALL    343
ALL     1991    blue    106
ALL     1991     red    104
ALL     1991   white    110
ALL     1991     ALL    314
ALL     1992    blue    110
ALL     1992     red     58
ALL     1992   white    116
ALL     1992     ALL    284
ALL      ALL    blue    339
ALL      ALL     red    233
ALL      ALL   white    369
ALL      ALL     ALL    941   

Figure 3: A 3D data cube (right) built from the table at 
the left by the CUBE statement at the top of the figure. 
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The ALL value appears to be essential, but creates substan-
tial complexity.  It is a non-value, like NULL.  We do not 
add it lightly – adding it touches many aspects of the SQL 
language. To name a few: 
• Treating each ALL value as the set of aggregates guides 

the  meaning of the ALL  value.  
• ALL becomes a new keyword denoting the set value. 
• ALL [NOT] ALLOWED is added to the column definition 

syntax and to the column attributes in the system cata-
logs. 

• ALL, like NULL,  does not participate in any aggregate 
except COUNT(). 

• The set interpretation guides the  meaning of the rela-
tional operators {=, <, <=, =, >=, >, IN}. 

There are more such rules, but this gives a hint  of the 
added complexity.   As an aside, to be consistent, if the 
ALL value is a set then the other values of that domain 
must be treated as singleton sets in order to have uniform 
operators on the domain. 
 
Decoration’s interact with aggregate values.  If the aggre-
gate tuple functionally defines the decoration column 
value, then the value appears in the resulting tuple.  Oth-
erwise the decoration field is NULL.   For example: 
SELECT  day,nation,MAX(Temp), 
                   continent(nation) 
FROM    Weather 
GROUP BY  CUBE ( Day(Time) AS day, 
        Country(Latitude, Longitude) 
                           AS nation 
                   ); 
would produce the sample tuples: 

Table 6: Demonstrating decorations and ALL 
day nation max(Temp) continent 

25/1/1995 USA 28 North America 
ALL        USA    37 North America 

25/1/1995 ALL        41 NULL 
ALL        ALL        48 NULL 

Unless nation is present, the continent is not function-
ally specified and so is NULL. 
 
If the application wants only a roll-up or drill-down report, 
the full cube is overkill.  It is reasonable to offer the addi-
tional function ROLLUP() in addition to CUBE(). 
ROLLUP() produces just the super-aggregates: 

(f1 ,f2 ,...,ALL), 
... 

(f1 ,ALL,...,ALL), 
(ALL,ALL,...,ALL). 

 
Cumulative aggregates , like running sum or running av-
erage, work especially well with ROLLUP() since the an-
swer set is naturally sequential (linear) while the CUBE() 
is naturally  non-linear (multi-dimensional).  Both the 
ROLLUP() and CUBE() must be ordered for the cumula-
tive operators to apply.   

 
We investigated letting the programmer specify the exact 
list of super-aggregates but encountered complexities re-
lated to collation, correlation, and expressions.   We be-
lieve ROLLUP() and CUBE() will serve the needs of most 
applications. 
 
It is  convenient to know when a column value is an ag-
gregate.  One way to test this is to apply the ALL() func-
tion to the value and test for a non-NULL value.  This is 
so useful that we propose a Boolean function 
GROUPING() that, given a select list element, returns 
TRUE if the element is an ALL value, and FALSE other-
wise. 
 
Veteran SQL implementers will be terrified of the ALL 
value -- like NULL, it will create many special cases.  If 
the goal is to help report writer and GUI visualization 
software, then it may be simpler to adopt the following 
approach.  
? ? Use the NULL value in place of the ALL value. 
? ? Do not implement the ALL() function. 
? ? Implement the GROUPING()function to discriminate 

between NULL and ALL . 
 
In this minimalist design, tools and users can simulate the 
ALL value as by for example: 
SELECT  Model,Year,Color,SUM(sales),  
               GROUPING(Model),   
                    GROUPING(Year),  
                    GROUPING(Color)  
FROM Sales 
GROUP BY CUBE(Model, Year, Color);  
Wherever the ALL value appeared before, now the corre-
sponding value will be NULL in the data field and TRUE in 
the corresponding grouping field.   For example, the 
global sum of Table 2 will be the tuple:  
(NULL,NULL,NULL,941,TRUE,TRUE,TRUE)  
rather than  the tuple one would get with the “real” cube 
operator: 
 ( ALL,  ALL,  ALL,  941 ). 

4.  Addressing The Data Cube 
 
Section 5 discusses how to compute the cube and how 
users can add new aggregate operators.  This section 
considers extensions to SQL syntax to easily access the 
elements of the data cube -- making it recursive and 
allowing aggregates to reference sub-aggregates. 
 
It is not clear where to draw the line between the report-
ing/visualization tool and the query tool.   Ideally, 
application designers should be able to decide how to split 
the function between the query system and the 
visualization tool.   Given that perspective, the SQL 
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tool.   Given that perspective, the SQL system  must be a 
Turing-complete programming environment. 
 
SQL3 defines a Turing-complete procedural programming 
language.  So, anything is possible.  But, many things are 
not easy.  Our task is to make simple and common things 
easy. 
 
The most common request is for percent-of-total as an ag-
gregate function.   In SQL this is computed as two SQL 
statements. 
 
SELECT Model,Year,Color,SUM(Sales),   
       SUM(Sales)/  (SELECT SUM(Sales) 
                       FROM Sales 
        WHERE Model IN { ‘Ford’ , ‘Chevy’ } 
           AND Year Between 1990 AND 1992 
                  ) 
FROM   Sales 
WHERE  Model IN { ‘Ford’ , ‘Chevy’ } 
  AND  Year Between 1990 AND 1992 
GROUP BY CUBE (Model, Year, Color); 
 
It  seems natural to allow the shorthand syntax to name the 
global aggregate: 
SELECT Model, Year, Color  
                SUM(Sales) AS total,                                
     SUM(Sales) / total(ALL,ALL,ALL) 
FROM Sales 
WHERE Model IN { ‘Ford’ , ‘Chevy’ } 
  AND Year Between 1990 AND 1992 
GROUP BY CUBE(Model, Year, Color); 
 
This leads into deeper water.  The next  step is a desire to 
compute the index of a value -- an indication of how far 
the value is from the expected value.  In a set of N values, 
one expects each item to contribute one Nth to the sum.  So 
the 1D index of a set of values is: 
   index(vi) = vi / (? j vj)    
 
If the value set is two dimensional,  this commonly used 
financial function is a nightmare of indices.  It is best de-
scribed in a programming language.    The current ap-
proach to selecting an field value from a 2D cube with 
fields row and column would read as: 
  SELECT v  
 FROM cube 
 WHERE row    = :i  
      AND column = :j  
We recommend the simpler syntax: 
 cube.v(:i, :j)  
as a shorthand for the above selection expression.   With 
this notation added to the SQL programming language, it 
should be fairly easy to compute super-super-aggregates 
from the base cube.    
 

5.  Computing the Data Cube  
 
CUBE generalizes aggregates and GROUP BY,  so all the 
technology for computing those results also applies to 
computing the core of the cube.   The main techniques 
are: 
• To minimize data movement and consequent processing 

cost, compute aggregates at the lowest possible system 
level.  

• If possible, use arrays or hashing to organize the aggre-
gation columns in memory, storing one aggregate value 
for each array or hash entry.  

• If the aggregation values are large strings, it may be wise 
to keep a hashed symbol table that maps each string to 
an integer so that the aggregate values are small.  When 
a new value appears, it is assigned a new integer.  With 
this organization, the values become dense and the ag-
gregates can be stored as an N-dimensional array. 

• If the number of aggregates is too large to fit in memory, 
use sorting or hybrid hashing to organize the data by 
value and then aggregate with a sequential scan of the 
sorted data. 

• If the source data spans many disks or nodes, use paral-
lelism to aggregate each partition and then coalesce 
these aggregates. 

 
Some innovation is needed to compute the "ALL" tuples of 
the cube from the GROUP BY core.  The ALL value adds 
one extra value to each dimension in the CUBE.  So, an N-
dimensional cube of N attributes each with cardinality Ci, 
will have  ? (Ci+1).    If each  Ci =4 then a 4D CUBE is 
2.4 times larger than the base GROUP BY.  We expect the 
Ci to be large (tens or hundreds) so that the CUBE will be 
only a little larger than the GROUP BY. 
 
The cube operator allows many aggregate functions in the 
aggregation list of the GROUP BY clause.  Assume in 
this discussion that there is a single aggregate function F() 
being computed on an N-dimensional cube.  The exten-
sion to a computing a list of functions is a simple gener-
alization.   
 
The simplest algorithm to compute the cube is to allocate 
a handle for each  cube cell.  When a new tuple:  (x1, 
x2,...., xN, v) arrives, the Iter(handle, v) function is 

called 2N times -- once for each handle of each cell of the 
cube matching this value.  The 2N comes from the fact 
that each coordinate can either be xi or ALL.   When all 
the input tuples have been computed, the system invokes  
the final(&handle)  function for each of the ? (Ci+1)  

nodes in the cube.  Call this the 2N-algorithm. 
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If the base table has cardinality T, the 2N-algorithm in-
vokes the Iter() function T x 2N times.  It is often faster 
to compute the super-aggregates from the core GROUP BY, 
reducing the number of calls by approximately  a factor of 
T .  It is often possible to compute the cube from the core 
or from intermediate results only M times larger than the 
core.  The following trichotomy characterizes the options 
in computing super-aggregates. 
 
Consider aggregating a two dimensional set of values {Xij 
| i = 1,...,I;  j=1,...,J}.  Aggregate functions can be classi-
fied into three categories: 
Distributive:  Aggregate function F() is distributive if 

there is a function G() such that  F({Xi,j}) = G({F({Xi,j 
|i=1,...,I}) | j=1,...J}).   COUNT(), MIN(), MAX(), 
SUM() are all distributive. In fact, F = G for all but 
COUNT().  G= SUM() for the COUNT() function.  Once 
order is imposed, the cumulative aggregate functions 
also fit in the distributive class. 

Algebraic: Aggregate function F() is algebraic if there is 
an M-tuple valued function G() and a function H() such 
that   
F({Xi,j}) = H({G({Xi,j |i=1,.., I}) | j=1,..., J }).  Aver-
age(), standard deviation, MaxN(), MinN(), cen-
ter_of_mass() are all algebraic.  For Average, the func-
tion G() records the sum and count of the subset.   The 
H() function adds these two components and then di-
vides to produce the global average.  Similar techniques 
apply to finding the N largest values, the center of mass 
of group of objects, and other algebraic functions.   The 
key to algebraic functions is that a fixed size result (an 
M-tuple) can summarize the sub-aggregation. 

Holistic: Aggregate function F() is holistic if there is no 
constant bound on the size of the storage needed to  de-
scribe a sub-aggregate.  That is,  there is no constant M, 
such that an M-tuple characterizes the computation  
F({Xi,j |i=1,...,I}).   Median(), MostFrequent() (also 
called the Mode()), and Rank() are common examples of 
holistic functions. 

 
We know of no more efficient way of computing super-
aggregates of holistic functions than the 2N-algorithm us-
ing the standard GROUP BY techniques. We will not say 
more about cubes of holistic functions. 
 
Cubes of distributive functions are relatively easy to com-
pute.   Given that the core is represented as an N-
dimensional array in memory, each dimension having size 
Ci+1, the N-1 dimensional slabs can be computed by pro-
jecting (aggregating) one dimension of the core.  For ex-

ample the following computation aggregates the first 
dimension. 
CUBE(ALL, x2,...,xN) = F({CUBE(i, x2,...,xN) |  i = 
1,...C1}). 
N such computations compute the N-1 dimensional super-
aggregates.  The distributive nature of the function F() 
allows aggregates to be aggregated.   The next step is to 
compute the next lower dimension -- an (...ALL,..., ALL...) 
case.  Thinking in terms of the cross tab, one has a choice 
of computing the result by aggregating the lower row, or 
aggregating the right column (aggregate (ALL, *) or (*, 
ALL)).  Either approach will give the same answer.   The 
algorithm will be most efficient if it aggregates the 
smaller of the two (pick the * with the smallest Ci.)  In 
this way, the super-aggregates can be computed dropping 
one dimension at a time. 

Algebraic aggregates are more difficult to compute than 
distributive aggregates.  Recall that an algebraic aggregate 
saves its computation in a handle and produces a result in 
the end - at the Final() call.   Average() for example 
maintains the count and sum values in its handle.    The 
super-aggregate needs these intermediate results rather 
than just the raw sub-aggregate.   An algebraic aggregate 
must maintain a handle (M-tuple) for each element of the 
cube (this is a standard part of the group-by operation).  
When the core GROUP BY operation completes, the CUBE  
algorithm passes the set of handles to each N-1 dimen-
sional super-aggregate.   When this is done the handles of 
these super-aggregates are passed  to the super-super ag-
gregates, and so on until the (ALL, ALL, ..., ALL) aggre-
gate has been computed.  This approach requires a new 
call for distributive aggregates: 
  Iter_super(&handle, &handle) 
which folds the sub-aggregate on the right into the super 
aggregate on the left.  The same ordering ideas (aggregate 
on the smallest list) applies. 
 
If the data cube does not fit into memory, array techniques 
do not work.    Rather one must either partition the cube 
with a hash function or sort it.  These are standard tech-
niques for computing the GROUP BY.   The super-
aggregates are likely to be orders of magnitude smaller 
than the core, so they are very likely to fit in memory. 
 
It is possible that the core of the cube is sparse.  In that 
case, only the non-null elements of the core and of the 
super-aggregates should be represented.  This suggests a 
hashing or a B-tree be used as the indexing scheme for 
aggregation values [Essbase].  
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6. Summary: 
 
The cube operator generalizes and unifies several common 
and popular concepts: 
 aggregates, 
 group by, 
 histograms, 
 roll-ups and drill-downs and,  
 cross tabs.   
 
The cube is based on a relational representation of aggre-
gate data using the ALL value to denote the set over which 
each aggregation is computed.   In certain cases it makes 
sense to restrict the cube to just a roll-up aggregation for 
drill-down reports.   
 
The cube is easy to compute for a wide class of functions 
(distributive and algebraic functions).  SQL’s basic set of 
five aggregate functions needs careful extension to include 
functions such as rank, N_tile, cumulative, and percent of 
total to ease typical data mining operations.    
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