
Component-based Operating System 
APIs: A Versioning and Distributed 

Resource Solution 
 

Robert J. Stets† 
Galen C. Hunt 

Michael L. Scott† 
 

July 1999 
 

Technical Report 
MSR-TR-99-24 

 
 

Microsoft Research 
Microsoft Corporation 

One Microsoft Way 
Redmond, WA  98052 

 
 

†Department of Computer Science 
University of Rochester 
Rochester, NY 14627  



 1

Component-based Operating System APIs: A Versioning and 
Distributed Resource Solution 

 
Robert J. Stets†, Galen C. Hunt, and Michael L. Scott† 

 
Microsoft Research     †Department of Computer Science  
One Microsoft Way     University of Rochester   
Redmond, WA 98052    Rochester, NY 14627    
galenh@microsoft.com     {stets, scott}@cs.rochester.edu 

Abstract 
 
Component software techniques have been developed to facilitate software reuse. State 
and functionality are encapsulated inside components with the goal of limiting program 
errors due to implicit interactions between components. Late binding of components 
allows implementations to be chosen at run-time, thereby increasing opportunities for 
reuse. Current component infrastructures also provide version management capabilities 
to control the evolutionary development of components. In addition to the general goal of 
reuse, component software has also focused on enabling distributed computing. Current 
component infrastructures have strong support for distributed applications. 
 
By leveraging these strengths of component software, a component-based operating system (OS) 
application programmer interface (API) can remedy two weaknesses of current monolithic, 
procedural APIs. Current APIs are typically very rigid; they can not be modified without 
jeopardizing legacy applications. This rigidity results in bloat in both API complexity and support 
code. Also current APIs focus primarily on the single host machine. They lack the ability to name 
and manipulate OS resources on remote machines. An API constructed entirely of components 
can leverage version management and distributed computing facilities. Version management can 
be used to identify legacy APIs, which can then be dynamically loaded. OS resources modeled as 
components can be instantiated on remote machines and then manipulated with the natural access 
semantics. 
 
We have developed the COP system as prototype component-based API for Windows NT. The 
system provides an API with version management capabilities and with a method for naming and 
manipulating remote OS resources. The advantages are gained with a minimum of overhead and 
without sacrificing legacy compatibility. 
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1. Introduction 
 
Component software methodology has primary been motivated by the desire for software re-use. 
As described by Szyperski [1998], software components are “binary units of independent 
production, acquisition, and deployment that interact to form a functioning system.” The 
methodology itself focuses on independence by establishing a strict encapsulation of state and 
functionality inside each component. This encapsulation helps facilitate reuse. A significant 
obstacle to effective reuse is the natural evolution of software. Evolution creates multiple versions 
of the component, a number of which may be actively used by clients. The ability to manage 
multiple versions of code is generally called versioning and is addressed by most current 
component infrastructures. Also, as component software designers have always considered the 
distributed application domain important, infrastructures have extensive support for the operation 
of distributed components. 
 
These advantages of software components can be leveraged to eliminate shortcomings present in 
current operating system (OS) application programmer interface (API) designs. OS APIs are 
typically monolithic procedural interfaces addressing single-machine requirements. Their design 
limits options for evolutionary development and also complicates application development for 
distributed systems.  
 
During an operating system's lifetime, its functionality will change, and these changes must be 
reflected in the API. A set of API calls may become obsolete or their semantics may change. In 
an ideal world, obsolete calls would be deleted and calls with modified semantics (but 
unmodified parameters and return values) would remain the same. Unfortunately, calls can 
neither be deleted nor can their semantics change. Such API modifications would jeopardize the 
operation of legacy applications. 
 
Legacy applications are an important concern for today's operating systems. Installation of a new 
operating system version is already expensive (in time and money). If new application versions 
are also required, the expense is only compounded. (In some cases, new versions may not even be 
feasible.) Operating system evolution must be designed to support legacy applications. Since any 
changes to the API can break legacy applications, API calls typically become fixed once 
published. Obsolete calls can never be deleted, and new call semantics must always be introduced 
through new calls. Backward compatibility thus leads to bloat in both the API and the supporting 
code. 
 
For example, the UNIX 98 specification (endorsed by IBM, Sun, and NCR) lists 21 calls reserved 
for legacy support.  Many of these calls have been superceded by new, more powerful calls (e.g. 
the signal management function, signal(), has been replaced with the more powerful 
sigaction()).  Apple’s Carbon implementation of the Macintosh OS API deprecates over 
2100 functions for the earlier MacOS 8.5 implementation.  Win32, the primary API for 
Microsoft's family of 32-bit operating systems, contains over 1700 legacy API calls, including 
146 calls providing support for its predecessor, Windows 3.1.   
 
Also the distributed computing paradigm is not well supported by typical operating systems APIs. 
Virtually all APIs do of course have support for inter-machine communication, but high-level 
support for accessing remote OS resources is lacking. The primary omission is a uniform method 
of naming remote resources, for example windows, files, and synchronization objects. This 
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omission prevents an application from easily using resources scattered throughout a distributed 
system. 
 
A multi-user game serves as a good example. This class of applications needs to open windows, 
sound channels, and input devices (e.g. joysticks) on numerous machines throughout a distributed 
system. With typical OS APIs, these applications must rely almost entirely on ad-hoc 
mechanisms to access the necessary remote resources. 
 
The above two weaknesses in modern OS APIs can be eliminated by the application of 
component software methodology. A component-based API is constructed entirely of software 
components, with each component modeling an OS resource. As components encapsulate their 
state and functionality, all access and manipulation functions for a particular resource type are 
contained in its component. The factoring inherent in a component-based API allows for efficient 
versioning, and the state and access encapsulation allow OS resources to be instantiated on 
remote machines. 
 
To clarify, we only propose to componentize the API. The underlying OS can be monolithic, 
micro-kernel, or component-based. By componentizing the API, we are controlling the access to 
the OS. Control at this point is sufficient to provide API versioning and also to expose OS 
resources outside of the host machine. The process of making resources available remotely is 
called remoting. 
 
In this paper, we describe COP (Component-based Operating system Proxy), a prototype of a 
componentized API.  The COP system acts a “traffic cop” that directs OS requests to the 
appropriate version or resource location. The system currently targets the Win32 API and is 
implemented on top of Windows NT 4.0. Our implementation currently covers approximately 
350 Win32 calls, enough to provide needed development support for a separate project in 
distributed component applications. We have found that COP only introduces a minimum of 
overhead in the local case, while providing outstanding OS support for evolutionary development 
and distributed applications. 
 

2. Component Software Overview 
 
In this section, we will provide a brief overview of the component software methodology and two 
popular infrastructures. Components have been an extremely rich area of ongoing work during 
the last ten years. Necessarily, we will only focus on aspects directly related to this paper. To 
begin, we will provide definitions for some important terms used in this paper. 
 
The term component was specifically defined in the previous section. Roughly speaking, a 
component provides functional building blocks for a complex application. An interface is a well-
known contract specifying how a component's functionality is accessed. Interfaces take the form 
of a set of function or method calls, including parameter and return types. A component instance 
refers to a component that has been loaded into memory and is accessible by a client. All 
communication between component instances occurs through interfaces. Component software 
fundamentally maintains a strict separation between the interface and the implementation. This 
separation is a key requirement for enforcing components to encapsulate their functionality and 
for guaranteeing component independence. 
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Independence allows components to be composed without introducing implicit interactions that 
may lead to subtle program errors. The ability to compose is also enhanced by allowing one 
component to be substituted for another, so long as the substitute provides the same, or an 
extension of, the functionality of the original. Through polymorphism components with differing 
implementations of the same interface may be interchanged transparently. A final issue in 
composition is the point in time at which component choices are bound. Late binding allows an 
application to choose components dynamically. 
 
Independence, polymorphism, and late binding are methodological concepts that facilitate reuse 
in component software. Component infrastructures also address related implementation issues, 
namely mixed development languages and execution platforms. All popular infrastructures 
provide mechanisms that allow development in multiple languages and execution across multiple 
hardware platforms. 
 
Two of the more popular component infrastructures are Microsoft’s Component Object Model 
(COM) [Microsoft, 1995] and the Object Management Group’s Common Object Request Broker 
Architecture (CORBA) [Object Management Group, 1996]. Although originally motivated by 
different goals, they have largely converged to promote software reuse independent of 
development language in both a single-machine and distributed computing environment. COP is 
built on top of COM, and so the next subsection will provide an overview of COM. The 
following subsection will then contrast the differences between COM and CORBA, focusing 
especially on the effects on a system such as COP. 

2.1. Component Object Model (COM) 
 
COM was developed by Microsoft to address the need for cross-application interaction. As the 
work evolved, the Distributed COM (DCOM) extensions [Microsoft, 1998] were introduced to 
support distributed computing. COM provides language independence by employing a binary 
standard. Component interfaces are implemented as a table of function pointers, which are called 
vtables because they mimic the format of C++ virtual function tables.  References to component 
instances are referred to as interface pointers. These are actually double-indirect pointers to the 
vtable. The extra level of indirection is provided as an implementation convenience. For example, 
an implementation can attach useful information to the interface pointer, information that will 
then be shared by all references to the interface. 
 
In keeping with component software methodology, COM maintains a strict separation between a 
component interface and implementation. COM in fact says nothing about the implementation, 
only about the interfaces. Interfaces can be defined through single inheritance. (Note only the 
interface is inherited; implementation is entirely separate.) The lack of multiple inheritance is not 
a limitation.  COM components can implement multiple interfaces regardless of inheritance 
hierarchy. This provides much the same power as multiple interface inheritance. 
 
All COM interfaces must inherit from the IUnknown interface. IUnknown contains a 
QueryInterface() method and two methods for memory management. For our 
discussion, QueryInterface() is the most important. A client must use this method to 
obtain a specific interface pointer from a component instance. 
 
COM components are identified by a globally unique class ID (CLSID). Similarly, all interfaces 
are specified by a global unique interface ID (IID). A client instantiates a component instance by 
calling the COM CoCreateInstance() function and specifying the desired CLSID and 
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IID. A pointer to the desired interface is returned. Given an interface pointer, the client can use 
QueryInterface() to determine if the component also supports other interfaces. 
 
By convention, COM holds that all published interfaces are immutable in terms of both syntax 
(interface method names and method parameters) and semantics. If a change is made to an 
interface, then a new interface, complete with a new IID, must be created. Immutable interfaces 
provide for a very effective versioning mechanism. A client can request a specific interface 
(through its published IID) and be assured of the desired syntax and semantics. 
 
Under COM, components can be instantiated in three different execution contexts. Components 
can be instantiated directly in the application’s process (in-process), in another process on the 
same machine (local), or on another machine (remote). The ability to access instances regardless 
of execution context is called location transparency. COM provides location transparency by 
requiring that all instances are accessed through the vtable. 
 

Application
Network

Connection

Component
Instance

StubProxy

 
Figure 1: For a call to a remote component instance, the proxy first marshals data arguments into a suitable 
transmission format. The request and data are then sent across the network by the transport mechanism. 
(The default mechanism is an object-oriented extension of DCE RPC.) At the server, the stub receives the 
request, unmarshals the data, and invokes the requested interface function. The process is reversed for the 
function return values. 
 
For in-process instances, the component implementation is usually held in a dynamically linked 
library (DLL) and is loaded directly into the process’ address space. The vtable then points 
directly to the component implementation. For local or remote components, the component 
implementation is loaded into another process and the application must engage in some type of 
inter-process communication (IPC). To handle these cases, COM instantiates a proxy and stub 
pair to perform the communication (see Figure 1). The vtable is set to point directly to the proxy. 
 
Before an IPC mechanism can be used, data must be packaged into a suitable transmission 
format. This step is called marshaling. The proxy is responsible for marshaling data and then 
sending the data and the request to the component instance. At the component instance, the stub 
receives the request, unmarshals the data, and invokes the appropriate method on the instance. 
The process is reversed for any return values. 
 
A system programmer can customize the IPC mechanism. Otherwise COM defaults to using 
shared memory for the Local case and an extension of the Open Group’s Distributed Computing 
Environment remote procedure call facility (DCE RPC) [Hartman, 1992] for the Remote case.  
 

2.2 COM, CORBA, and a Component-based API 
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Both COM and CORBA share many fundamental similarities, especially in the area of distributed 
computing. For remote communication, CORBA uses an architecture that is very similar to COM. 
In essence, both architectures offer the same capabilities for remote component instances.  
 
The two systems however differ greatly in their versioning capabilities. Of current CORBA 
implementations, IBM’s System Object Model (SOM) builds interface specifications at run-time 
[Forman, 1995], and so interface methods can be added or re-ordered, but not removed. SOM’s 
strategy does not address semantic changes. To address semantic changes, CORBA repository 
IDs could be used to uniquely identify interfaces in much the same manner as COM IIDs. 
However, repository IDs are only checked when an instance is created and not when an instance 
reference is obtained directly from another component instance. A more fundamental problem is 
that CORBA's conventional object model merges all inherited interfaces into the same 
namespace, so it is impossible to simultaneously support multiple interface versions unless all 
method signatures are different. A component-based API built on top of CORBA would therefore 
not be able to offer very robust versioning capabilities. 
 
This work focuses on component software support for evolutionary development and distributed 
resources in operating systems. Component software infrastructures provide a plethora of other 
interesting application support, such as transactions, licensing, and persistence. These areas are 
beyond the scope of our current work. 
 

3. COP Implementation 
 
In this section, we describe the COP implementation. The first subsection describes how the 
monolithic WIN32 API was factored into a set of interfaces. The second subsection then 
discusses the COP run-time system, including its support for versioning, distributed computing, 
and legacy applications. 

3.1 Factoring a Monolithic API 
 
The first step in constructing a component-based API is to split, or factor, the monolithic API into 
a set of interfaces. After factoring, the entire API should be modeled by the set of interfaces, with 
individual and independent OS resources and services modeled by independent interfaces. A 
good factoring scheme produces interfaces that are appropriately independent and provides the 
benefits of clarity, effective versioning, and clean remoting of resources. 
 
Our discussion here applies our factoring strategy to the Win32 API. (Our factoring of a 1000+ 
subset of Win32 is listed in Appendix A.) However, our strategy and techniques should be 
generally applicable to monolithic, procedural APIs. 
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BOOL AdjustWindowRect(RECT *, DWORD, BOOL);
HANDLE CreateWindow(...);
int DialogBoxParam(...,HANDLE, ...);
int FlashWindow(HANDLE, ...);
HANDLE GetProp(HANDLE, ...);
int GetWindowText(HANDLE,...);

IWin32WindowFactory
CreateWindow()

IWin32Utility
AdjustWindowRect()

IWin32WindowHandle
FlashWindow()

IWin32WindowState
GetWindowText()

IWin32WindowProperty
GetProp()

IWin32DialogHandle
DialogBoxParam()

Final Factorization:

API Subset:

 

Figure 2: The factoring of a simple subset of the Win32 API. Proposed interfaces are listed in bold and 
prefixed with “IWin32”.  IWin32WindowHandle aggregates the IWin32WindowState and 
IWin32WindowProperty interfaces. IWin32DialogHandle inherits from IWin32WindowHandle, since 
dialogs extend the functionality of plain windows. 

 
Our factoring strategy involves three steps. First, the monolithic API calls are factored into 
groups based on functionality. For example, all graphical window calls are placed in a 
IWin32Window1 group. Second, the calls in each group are factored into three sub-groups 
according to their effect on OS resources. The effect is easily identifiable through the call 
parameters and return value. A loaded OS resource is exported to the application as an opaque 
value called a kernel handle. Calls that create kernel handles 
(i.e. OS resources) are moved to a factory interface, and calls that then query or manipulate the 
these kernel handles are moved to a handle interface. Any other calls that do not directly involve 
kernel handles (but may instead manipulate OS settings or provide generic services) are moved to 
a utility interface. 
 
In the third step, we further refine the factorization. In many cases, a monolithic API may contain 
a set of calls that acts on a number of different OS resources. For example, Win32 has several 
calls that synchronization on a specified handle. The specified handle can represent a standard 
synchronization resource, such as a mutual exclusion lock, or less common synchronization 
resources such as processes or files. Our first two steps in factoring will not capture this 
relationship. Continuing the example, the synchronization calls will be placed in a 
IWin32SyncHandle interface, while the process and file calls will be placed in 
IWin32ProcessHandle and IWin32FileHandle interfaces, respectively. For correctness though, 
the process and file interfaces should also include the synchronization calls. Since the process and 
file handles can be thought of as logically extending the functionality of the synchronization 
                                                        
1 The IWin32 prefix denotes an interface to a Win32 API component. 
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handle, we can model this relationship through interface inheritance. Both IWin32ProcessHandle 
and IWin32FileHandle will inherit from the IWin32SyncHandle interface. 
 
Figure 2 is an example of our factoring of the Win32 window functions. The example necessarily 
focuses on a small, but representative, subset (six calls) of the 130+ window calls. The 
AdjustWindowRect() call determines the necessary size of a window given specific 
settings. The second call, CreateWindowEx(), creates a window, and the remaining calls 
create a window, execute a dialog box, flash the window’s title bar, query various window 
properties, and return the current text in the window title bar.  
 
These calls all operate on windows and so are first factored to a windows group. Next the calls 
are further factored depending on the use of a kernel handles (denoted by HANDLE in Figure 2). 
In the third step, we have further factored the IWin32WindowHandle into IWin32WindowState 
and IWin32Property interfaces. The State and Property interfaces simply help to make the API 
easier to read. These interfaces do not extend the IWin32WindowHandle interface, but instead 
compose the interface. We model this relationship through interface aggregation. Also, we have 
factored the dialog calls into their own interface, since the dialogs are logically extensions of 
plain windows. Again this relationship is modeled through interface inheritance. 
 
Properly applied, this factorization strategy will produce a set of interfaces, each with a tightly 
defined set of calls to access the appropriate underlying OS resource. The factorization will 
improve API clarity by clearly defining the specific methods for accessing each OS resource and 
also the relationship between API calls. Versioning capabilities will also be improved since 
modifications can be isolated within the affected interfaces. Finally, a good factorization 
inherently encapsulates functionality (and the associated state), which facilitates the remoting of 
OS resources. 

Operating System

Application

COP Component Layer

Legacy Translation Layer

 
Figure 3: The COP Runtime system consists of a component layer that presents the OS API and an 
optional Legacy Translation layer available for Win32 applications. 
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3.2 Run-time System 

Overview 
 
At run-time, the application accesses the OS through the COP component layer (see 
Figure 3). These components implement the interfaces described in the previous 
subsection. As with the interfaces they implement, the components can also be roughly 
classified as factories, handles, or utilities.  
 
Most applications will instantiate factory components during initialization and then use the 
factories to create OS resources during execution. A basic implementation of a factory component 
first invokes the OS to create the desired resource. The OS will return a kernel handle to identify 
the resource. This handle however is only valid on the local machine. To enable remote access to 
the resource, the factory also creates an instance of the associated handle component and stores 
the kernel handle in the instance’s private state. Then rather than returning the kernel handle, the 
factory returns a pointer to the instance of the handle component. The application makes 
subsequent accesses to the resource through the instance pointer.  
 
Utility components do not directly manipulate loaded kernel resources, but instead 
provide generic services such as conversion between time formats or calculating the 
necessary window rectangle to contain a specified client rectangle and the general 
window elements. These components can instantiated whenever necessary, anywhere 
throughout the system. Again once instantiated, all accesses will occur through the 
instance pointer. 
 
On a simple level then, the instance pointer provides COP with one of its main 
advantages over typical modern OS APIs. The instance pointer uniquely names the 
loaded resource throughout the system and also acts as a gateway to the underlying 
remoting mechanism (COP/DCOM). With COP, applications can create resources 
throughout the system and subsequently use the instance pointer to access them in a 
location transparent manner. 

Versioning 
 
COP’s other main advantage over modern OS APIs is its versioning capabilities. These 
capabilities follow directly from our factoring strategy and COM’s robust versioning 
mechanism. As described above, published COM interfaces are immutable and are 
named by a globally unique ID. Clients can request specific interfaces and be assured of 
desired call syntax and semantics. 
 
To mark the specific interfaces, an application can store the appropriate IDs in its data segment. 
Alternatively, the OS binary format could be extended to support static binding to a dynamic 
interface in the same way that current operating systems support static binding to DLLs (or 
shared libraries).  With such an extension, an application binary would declare a set of interfaces 
to which it should bind instead of a set of DLLs. Of course, COP-aware applications can query 
dynamically for special interfaces. 
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Application

In-process
Component

Instance

Proxy

Stub

Local
Component

Instance

Proxy
Manager
(Optional)

Stub

Remote
Component

Instance

ProxyProcess
Boundary

Machine
Boundary

Operating
System

Operating
System

Operating
System

 

Figure 4: COP is able to instantiate OS resources in a number of locations: inside the client process (in-
process), in another process on the same machine (local), or on another machine (remote). The client 
application can still access the resources in a location transparent manner by virtue of the proxy manager, 
proxy, and stub components. 

Location Transparency 
 
One of the main contributions of COP is the ability to instantiate OS resources anywhere 
throughout a distributed system (see Figure 4). COP components can be instantiated 
inside the application’s process (in-process), in another process on the same machine 
(local), or on another machine (remote). As described in Section 2, in-process 
components only experience the added overhead of an indirect function call. In the local 
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case, a COM proxy/stub pair is used to marshal data across the process boundaries. The 
local case is less efficient than the in-process case, however it provides better fault 
isolation. The remote case also uses the same general proxy/stub architecture. However, 
in the remote case, COP also includes an optional Proxy Manager that can be used to 
optimize remote communication. A common Proxy Manager task is to cache remote data 
in the hopes of avoiding unnecessary communication. For example, COP currently 
caches information to improve the re-drawing of remote windows. The Win32 call 
BeginPaint() signals the beginning of a re-draw operation by creating a new drawing 
context resource. In order to be available remotely, this resource must be wrapped by a 
COP component. Rather than creating a new component instance on each re-draw 
operation, COP currently caches a component instance (in the Proxy Manager) and re-
uses the instance for the re-draw wrapper. 
 
Although hidden from the application, extra state is obviously required to maintain the 
location transparency. For instance, the system must keep track the location of 
component instances and data concerning the network connection. COM maintains this 
state automatically. COP components often have little extra state to maintain. As the only 
common example, handle components need to store the value of their associated kernel 
handle. Optional Proxy Manager implementations may also require extra state, for 
instance the cache of remote data mentioned above.  
 
In a less common case, some components need extra state to maintain location 
transparent results. The different execution context – in-process, local, or remote – may 
cause some calls to execute differently. (We of course try to maintain the same operation 
as the normal Win32 API.) For example, the call RegisterClass() registers a 
window class2 for use within a process. The call returns an error if the class is already 
registered within the process. A naïve component implementation could report this error 
incorrectly in some cases. In COP, this call falls under the IWin32WindowUtility 
interface (since it does not target kernel handles). Consider the case where two 
applications try to register the same class on the same remote machine. To access 
RegisterClass(), both applications would create an instance of 
IWin32WindowUtility. Since these instance will both be remote and on the same 
machine, COM creates the instances inside the same process to optimize performance. 
Note that the instances are separate COM instances, but they do share the same process. 
The first application to register the class will succeed, but the second application will fail 
since the class has already been registered inside the COM process. In attempting to 
mimic standard Win32 operation, this error would be incorrect since the application 
processes are separate. In COP, the IWin32WindowUtility implementation maintains a 
list of classes each process has registered.  The implementation can then determine if the 
caller has already registered the specified class and avoid any spurious errors. 
 

                                                        
2 A window class specifies various window settings, such as the default cursor and background. Windows 
are created based on registered window classes. 
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Obstacles to Remoting OS Resources 
 
Apart from state problems, there are other OS aspects that do pose remoting problems. 
OS callback functions are a significant obstacle to remote execution. Numerous API 
functions contain callback functions that the caller specifies and the OS invokes on 
certain events. For example, the Win32 call EnumWindows() calls a specified callback 
function for each top-level window on the screen. Callbacks are a problem when the 
caller (i.e. the location of the callback function) is on a different machine from the OS 
invoking the callback. COP solves this problem in the same way that it remotes OS 
resources. COP wraps all callback functions with components. Instead of passing the 
address of the callback function, COP passes a pointer to the component instance 
wrapping the callback. The OS can then simply use the instance pointer to invoke the 
callback function in a location transparent manner. 
 
Asynchronous events are the other main obstacle to remote execution. Some OS resources, such 
as windows, synchronization objects, and asynchronous I/O, must respond to asynchronous 
events. Windows must receive events such as mouse clicks, key strokes, and re-draw messages 
and send them to the user-specified window procedure for processing. The OS must ensure 
synchronization objects are given to requestors as semantics dictate. In asynchronous I/O, the OS 
must notify the caller when an I/O operation is complete. In all these cases, the OS assumes all 
involved parties reside on the same machine. COP therefore needs to provide extra support to 
remote these types of resources. 
 
COP remotes these resources by creating a special event agent on the remote machine. 
This agent is responsible for fielding asynchronous events and forwarding them to the 
client application. COP currently has support for remote windows. A window procedure 
is simply a special case of a callback routine. The OS calls the window procedure on 
every window event. At window creation time, COP creates a component instance to 
wrap the specified window procedure. COP then invokes the CreateWindowEx() 
method of the IWin32WindowFactory instance on the remote machine.  
 
The IWin32WindowFactory instance creates an IWin32WindowHandle instance, which 
will manage the actual window.  The IWin32WindowHandle instance creates the window 
as part of initialization. Instead of specifying the application’s window procedure though, 
IWin32WindowHandle specifies its own procedure. In addition stores the pointer to the 
instance of the application’s window procedure, which was provided through a hook in 
CreateWindowEx(). 
 
COM actually delivers remote function call requests to COP components through a 
standard message queue. An idle component instance simply spins on the message queue, 
waiting for function call requests. Fortuitously, window events are also delivered through 
the same message queue. In the course of polling for incoming requests, the 
IWin32WindowHandle instance will also discover pending window events. The instance 
can then use the stored instance pointer to send the messages to the application’s window 
procedure for processing. 
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Synchronization and asynchronous I/O can be handled in the same manner – an event 
agent can be instantiated on the remote machine. The agent will wait for the desired event 
and then forward notification to the application via a callback component. 

Legacy Translation Layer 
 
Our ultimate intention is for applications to write directly to the COP API. To ease the transition 
and to support legacy applications that can not be re-written, we have also built an optional COP 
Translation layer (see Figure 3). This layer is responsible for intercepting the procedural Win32 
calls and translating them to COP. To help minimize translation overhead, we have purposely 
designed the COP interface methods to use the same parameters as their Win32 counterparts. 
 
Run-time interception is performed with the Detours package [Hunt, 1998]. One of this package’s 
many features is the ability to instrument an application’s binary file and add a specified DLL to 
the start of the list loaded at program initialization. This ensures that the specified DLL is the first 
loaded by the application. We use Detours place our COP startup DLL at the start of the list. The 
startup DLL then uses the Detours package to intercept and re-route Win32 calls to the Legacy 
Translation layer. Detours performs the interception by re-writing the first few instructions of a 
subroutine so that upon entrance, control is automatically transferred to a user-defined detour 
function. The replaced instructions are combined with a jump instruction to form a trampoline. 
The detour function can call the trampoline code to invoke the original subroutine, in our case the 
original Win32 call. 
 
The Legacy Translation layer is then responsible for creating the COP factory and utility 
instances as necessary. (The handle instances are created by the factory instances.) The layer of 
course caches pointers to interfaces to avoid unnecessary overhead. This approach works well for 
existing, single-machine Win32 applications, and also even allows the functionality of these 
applications to be transparently extended. The Translation Layer can be configured to 
automatically create resources on remote machines. For example, all window resources can be 
started on a remote machine, very similar to X-Window [Scheifler, 1986] remote displays. We 
have used this feature to remote the display of several existing Win32 applications. A remote 
display however only leverages a small amount of COP’s most power feature – the ability to 
trivially connect to resources scattered throughout a distributed system.  
 
The design of the Translation layer is relatively straightforward, but one significant problem did 
arise. Our translation layer intercepts all invocations of a specified call, even if the call is invoked 
from within another Win32 call. Re-entrancy problems can result. For example, COP allows 
applications to access the Win32 registry3 on remote machines, however COP must do so by 
instantiating a registry (IWin32Registry) component on the remote machine. The component is 
instantiated through the Win32 CoCreateInstanceEx() call, which itself accesses the 
registry. If COP intercepted and handled the registry call from CoCreateInstanceEx(), 
an infinite recursion would result. The Legacy Translation Layer tracks when an application is 
inside a Win32 call and avoids COP handling if an infinite recursion would start. This problem 
does not arise outside of legacy support, since all clients explicitly specify the execution context 
when attaching to the COP API. 

                                                        
3 The Win32 registry is a database of application configuration information. 
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4. Results 
 
The initial goal for COP is to support the development of the Millennium system. Millennium 
will be a thin software layer that monitors the execution of a distributed component-based 
application and intelligently distributes the component instances to maximize performance. As 
components are distributed throughout the system, they still must be able to access remote OS 
resources. COP provides that capability.  
 
To this end, we have currently remoted the registry, windows, graphic device interface (the low-
level drawing routines), and file APIs. This subset consists of approximately 350 calls and is 
enough to support the development of Millennium. This also includes the appropriate support in 
the Legacy Translation Layer. 
 
The primary advantage of COP is enhanced functionality – better versioning support and the 
ability to instantiate OS resources throughout a distributed system. To gauge the overhead 
introduced by COP, we have performed two benchmark tests. Our tests were performed on a 
Gateway 2000 machine with a Pentium II processor running at 266MHz. The machine has a 
512Kbytes off-chip cache and 64Mbytes of RAM. Our benchmark timings were calculated based 
on the Win32 QueryPerformanceCounter()call, which has a resolution of 
approximately 1 microsecond on our machine. 
 
Our first benchmark focused on estimating the overhead of our Legacy Translation layer. Our test 
measured the amount of time to make a “null” Win32 call. (The call actually passes one 
integer parameter and returns an integer value.) Our benchmark application simply calls 
a generic Win32 function, which COP intercepts and routes to the Translation Layer. The 
Translation Layer then invokes the associated component instance. The component instance 
immediately returns a success value, which the Translation Layer returns to the application. 
 
As expected, an in-process component instance adds very little overhead in this case. The Win32 
“null” call can be executed in 1.3 microseconds. If the component instance is instantiated as a 
Local server (in another process), the Win32 “null” call time jumps to 200 microseconds. This 
jump in time is due to the crossing of procedure boundaries. 
 
The second test we performed was to examine the full overhead on an existing Win32 
application. We chose RegEdt32, a tool for editing the Win32 registry. At startup, the application 
reads the entire registry and displays the contents on screen for editing. We measured the time 
required to start the application and read all elements from the local registry. We feel this is an 
interesting benchmark because it includes not only the time to make COP calls, but also the time 
to instantiate COP components. Our COP implementation patched all the involved registry calls, 
and the startup phase involved a little over 9,500 registry calls, all handled by COP. We report the 
average of three runs. Our machine was rebooted in between each run in order to remove effects 
from the Window NT (file) cache. 
 
The plain application (with no COP overhead) starts up in 0.833 seconds. The application using 
COP in-process components starts in 1.118 seconds, a 34% increase. A large amount of this 
overhead is due to the cost of instantiating the components. In a normal situation, this overhead 
would be amortized. The application using COP Local components starts in 5.296 seconds, with 
the increase due to the frequent process boundary crossings. 
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We did not benchmark COP with remote components, since the choice of network will have such 
a strong influence on the results. We feel that these results show that in-process COP components 
add only a minimal amount of overhead, while providing benefits in versioning management. 
When COP components are moved to remote machines, the overhead will be much higher, but 
network transmission time will still be the dominant concern. Regardless, the functionality of the 
system will be much greater – an application can easily access scattered, remote OS resources.  

5. Related Work in Operating Systems 
 
Kernel call interposition is the process of intercepting kernel calls and re-routing them to pieces 
of extension code. There has been a large amount of work, published and unpublished, in this 
area. Interposition Agents [Jones, 1993] in particular was highly influential to our work. This 
work demonstrated that a kernel call interface (Berkeley UNIX 4.3) could be factored into a small 
set of abstractions, which were then used as the basis for an object oriented interposition toolkit. 
Another recent system of note is SLIC [Ghormley, 1998]. This system allows multiple 
interposition extensions to be composed at run-time, but the system is not object or component-
based. SLIC and Interposition Agents can be considered full-featured interposition systems. COP 
uses interposition techniques, but our goal is not a general interposition system. Our goal is a new 
style of API that provides versioning and distributing computing benefits. A general interposition 
system should be built on top of our component-based API. 
 
As we consider a component-based OS API here, other research efforts are considering building 
an entirely component-based OS. The OS could then be assembled dynamically in order to reflect 
the execution environment. Two such examples are MMLite [Helander, 1998] and Jbed [Oberon, 
1998]. Both of these operating systems can drop unnecessary components, such as virtual 
memory or network communication, when running on a slim embedded processor platform. To 
our knowledge, none of this work addresses API versioning or the naming of remote OS 
resources. Also, importantly this work requires building a kernel from scratch, whereas our work 
can be easily applied to existing commercial operating systems. 
 
The work closest to our own is the Inferno distributed operating system [Dorward, 1997]. In this 
system, all OS resources are treated as files – that is named and manipulated like files. This 
unique approach provides the advantage of a global, hierarchical namespace for all resources, but 
also the disadvantage of a rather limited access interface. In contrast, our approach in COP retains 
the natural semantics for manipulating remote resources.  
 
There have been numerous projects that have focused on remoting small subsets of OS 
functionality. X Windows [Scheifler, 1986] provides remote access to a system's graphical user 
interface. Microsoft's Terminal Server [Microsoft, 1997] does the same for Windows NT 
platforms. Distributed file systems like NFS [Lyon, 1985] provide remote access to files. Unlike 
these systems, a component-based API targets the remoting of all OS resources. 

6. Conclusions 
 
Component software provides excellent support for the evolutionary development of 
software and for distributed computing. By basing an OS API on components, a system 
can gain considerable leverage in these two areas. The OS can export different versions 
of the API, allowing the API to be modified without jeopardizing legacy applications. 
Instead the support for legacy applications can be dynamically loaded. By modeling the 
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OS resources as components in the API, a global namespace is created. An application 
can instantiate and manipulate any number of resources scattered throughout a distributed 
system. Natural access semantics for the remote resources is maintained by virtue of the 
encapsulation of functionality inherent in components. Applications will no longer have 
to rely on ad-hoc methods to access remote resources. 
 
Future work on COP will focus on increasing coverage of the Win32 API. (There are 
thousands of calls in the API.) Also we are interested in researching methods to provide 
consistent, global view and management of resources throughout a cluster and also for 
providing fault tolerance and security throughout the system. 
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Appendix A: Proposed Factoring of a 1000+ subset of Win32 
 
This Appendix lists the interface hierarchy and factoring of a 1000+ subset of Win32. The subset 
contains the necessary Win32 calls to support three OS-intensive applications: Microsoft 
PictureIt!, the Microsoft Developers’ Network Corporate Benefits sample, and Microsoft 
Research’s Octarine. The first is a commercial image manipulation package, the second is a 
widely distributed sample three-tiered, client-server application, and the third is a prototype 
COM-based integrated productivity application. This subset does not cover DirectX or ODBC, 
but we feel it does cover many of the major areas of functionality in Win32. 
 
All obsolete Windows 3.1 (16-bit) calls have been placed in IWin16 interfaces. In 
implementation, the top-level call prototypes will mirror their WIN32 counterparts, with the 
appropriate parameters replaced by interface pointers. Note that these calls can wrap lower-level 
methods that implement different parameters. For example, the lower level methods could return 
descriptive HRESULTs directly and the WIN32 return types as OUT parameters. Also, we expect 
ANSI API calls to be implemented as wrappers of their UNICODE counterparts. The wrappers 
will simply perform argument translation and then invoke the counterpart. 
 
The next subsection lists the interface hierarchy. Inheritance relationships are clearly shown by 
the connecting lines, while aggregation is pictured by placing one interface block within another. 
 
The final subsection then lists the call factorization. In the factorization list, “X : Y” denotes that 
X inherits from Y, and “Y Ä X” denotes that X is aggregated into Y. 
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Interface Hierarchy 

IWin32SecurityToken

IWin32WaitableTimer

IWin32Semaphore

IWin32Mutex

IWin32Event

IWin32Pipe

IWin32FindFile

IWin32FileMapping

IWin32File

IWin32Console

IWin32Module

IWin32ConsoleFactory

IWin32EventFactory

IWin32FileUtility

IWin32FileSystem

IWin32FileFactory

IWin32FileMappingFactory

IWin32ModuleFactory

IWin32MutexFactory

IWin32AtomicUtility

IWin32PipeFactory

IWin32ProcessFactory

IWin32SemaphoreFactory

IWin32WaitableTimerFactory

IWin32SecurityTokenFactory

IWin32SyncHandle

IWin32AsyncIOHandle

IWin32Handle

IWin32Thread

IWin32ThreadContext

IWin32ThreadMessage

IWin32Process

IWin32ProcessContext

IWin32Api

IWinApi
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IWin32CriticalSection

IWin32CriticalSectionFactory

IWin32Keyboard

IWin32KeyboardLayout

IWin32KeyboardLayoutFactory

IWin32DDE

IWin32DDEFactory

IWin32DDEUtility

IWin32OLE

IWin32OLEUtility

IWin32OLEFactory

IWin32OLEMarshalUtility

IWin32OleStg

IWin32OleStgFactory

IWin32OleStream

IWin32OleMoniker

IWin32OleMonikerFactory

IWin32HeapFactory

IWin32VirtualMemory

IWin32VirtualMemoryFactory

IWin32Registry

IWin32Printer

IWin32PrinterUtility

IWin32PrinterFactory

IWin32Resource

IWin32SecurityACL

IWin32SecurityACLUtility

IWin32SecurityDescriptorFactory

IWin32SecurityAccess

IWin32SecurityDescriptor

IWin32Drop

IWin32EnvironmentUtility

IWin32Shell

IWin32Heap

IWinApi

IWin32Memory

IWin32Api
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IWin32WindowUtility

IWin32WindowFactory

IWin32DialogFactory

IWin32MenuFactory

IWin32Print

IWin32EnhMetaFile

IWin32DeviceContextFactory

IWin32FontFactory

IWin32PaletteSystem

IWin32GDIObjFactory

IWin32PenFactory

IWin32BitmapFactory

IWin32EnhMetaFileFactory

IWin32PaletteFactory

IWin32BrushFactory

IWin32RegionFactory

IWin32Dialog

IWin32DialogState

IWin32Bitmap

IWin32Brush

IWin32Font

IWin32Pen

IWin32Palette

IWin32Region

IWinApi

IWin32GDIObj

IWin32Menu

IWin32MenuState

IWin32DeviceContext

IWin32Path

IWin32ScreenClip

IWin32DeviceContextFont

IWin32DeviceContextProperties

IWin32DeviceContextCoordinates

IWin32Window

IWin32WindowState

IWin32WindowProperties

IWin32Api
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IWin16ProcessFactoryIWin16File

IWin16FileFactory

IWin16GlobalMemory

IWin16GlobalMemoryFactoryIWin16LocalMemory

IWin16LocalMemoryFactory

IWin16Profile

IWin32SystemUtility

IWin32Beep

IWin32WindowsHook

IWin32WindowsHookFactory

IWin32WindowsHookUtility

IWin32StringUtility

IWin32Utility

IWin16MetaFile IWin16MetaFileFactory

IWin32Colorspace

IWin32ColorspaceFactory

IWin32Icon

IWin32IconFactory

IWin32Cursor

IWin32CursorUtility

IWin32CursorFactory

IWin32MWP

IWin32RectIWin32Clipboard

IWin32ClipboardFactory

IWin32GL

IWin32GLUIWin32Accel

IWin32AccelFactory

IWin32Atom

IWin32AtomFactory

IWin16Registry

IWinApi

IWin16Handle

IWin32Api

IWin16Memory

IWin16DeviceContext

IWin16Api
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Call

Factorization 
 
Generic Handles 
 IWin32Handle 

closeHandle 
Atoms 
 IWin32Atom 

GlobalDeleteAtom 
GlobalGetAtomNameA 

 IWin32AtomFactory 
GlobalAddAtomA 

Clipboard 
 IWin32Clipboard 

 ChangeClipboardChain 
 CloseClipboard 
 GetClipboardData 
 GetClipboardFormatNameA 
 GetClipboardFormatNameW 
 GetClipboardOwner 
 GetClipboardViewer 
 GetOpenClipboardWindow 
 IsClipboardFormatAvailable 
 SetClipboardData 

 IWin32ClipboardFactory 
 RegisterClipboardFormatA 

 RegisterClipboardFormatW 
Console 
 IWin32Console : IWin32SyncHandle 

 GetConsoleMode 
 GetNumberOfConsoleInputEvents 
 PeekConsoleInputA 
 ReadConsoleA 
 ReadConsoleInputA 
 SetConsoleMode 
 SetStdHandle 
 WriteConsoleA 

 IWin32ConsoleFactory 
 AllocConsole 
 GetStdHandle 
Drawing 
 IWin16DeviceContextFont : 

IWin16DeviceContext 
 EnumFontFamiliesA 

 EnumFontsW 
 GetCharWidthA 
 GetTextExtentPointA 
 GetTextExtentPointW 

 IWin16MetaFile : IWin16DeviceContext 

 CloseMetaFile 
 CopyMetaFileA 
 DeleteMetaFile 
 EnumMetaFile 
 GetMetaFileA 
 GetMetaFileBitsEx 
 GetWinMetaFileBits 
 PlayMetaFile 
 PlayMetaFileRecord 

 IWin16MetaFileFactory 
 GetEnhMetaFileA 

 SetEnhMetaFileBits 
 SetMetaFileBitsEx 

 IWin32Bitmap:IWin32GDIObject 
 CreatePatternBrush 

 GetBitmapDimensionEx 
 GetDIBits 
 SetBitmapDimensionEx 
 SetDIBits 
 SetDIBitsToDevice 

 IWin32BitmapFactory 
 CreateBitmap 

 CreateBitmapIndirect 
 CreateCompatibleBitmap 
 CreateDIBSection 
 CreateDIBitmap 
 CreateDiscardableBitmap 

 IWin32BrushFactory 
 CreateBrushIndirect 

 CreateDIBPatternBrushPt 
 CreateHatchBrush 
 CreateSolidBrush 

 IWin32Colorspace 
 DeleteColorSpace 

 IWin32ColorspaceFactory 
 CreateColorSpaceA 

 IWin32Cursor 
 DestroyCursor 

 SetCursor 

 IWin32CursorFactory 
 GetCursor 

 IWin32CursorUtility 
 ClipCursor 

 GetCursorPos 
 SetCursorPos 
 ShowCursor 

 IWin32DeviceContextÄ 
IWin32DeviceContextFont, 
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IWin32DeviceContextCoords, 
IWin32Path, 
IWin32DeviceContextProperties, 
IWin32ScreenClip 

 AngleArc 
 Arc 
 ArcTo 
 BitBlt 
 Chord 
 CreateCompatibleDC 
 DeleteDC 
 DrawEdge 
 DrawEscape 
 DrawFocusRect 
 DrawFrameControl 
 DrawIcon 
 DrawIconEx 
 DrawStateA 
 DrawTextA 
 DrawTextW 
 Ellipse 
 EnumObjects 
 ExtFloodFill 
 ExtTextOutA 
 ExtTextOutW 
 FillRect 
 FillRgn 
 FloodFill 
 FrameRect 
 FrameRgn 
 GdiFlush 
 GetCurrentObject 
 GetCurrentPositionEx 
 GetPixel 
 GrayStringA 
 GrayStringW 
 InvertRect 
 InvertRgn 
 LineDDA 
 LineTo 
 MaskBlt 
 MoveToEx 
 PaintRgn 
 PatBlt 
 Pie 
 PlgBlt 
 PolyBezier 
 PolyBezierTo 
 PolyDraw 
 PolyPolygon 
 PolyPolyline 
 Polygon 
 Polyline 

 PolylineTo 
 Rectangle 
 ReleaseDC 
 ResetDCA 
 RestoreDC 
 RoundRect 
 SaveDC 
 ScrollDC 
 SetPixel 
 SetPixelV 
 StretchBlt 
 StretchDIBits 
 TabbedTextOutA 
 TextOutA 
 TextOutW 
 WindowFromDC 

 IWin32DeviceContextCoordinates 
 DPtoLP 

 LPtoDP 

 IWin32DeviceContextFactory 
 CreateDCA 

 CreateDCW 
 CreateICA 
 CreateICW 
 CreateMetaFileA 
 CreateMetaFileW 

 IWin32DeviceContextFont  
 EnumFontFamiliesExA 

 GetAspectRatioFilterEx 
 GetCharABCWidthsA 
 GetCharABCWidthsFloatA 
 GetCharABCWidthsW 
 GetCharWidth32A 
 GetCharWidth32W 
 GetCharWidthFloatA 
 GetFontData 
 GetGlyphOutlineA 
 GetGlyphOutlineW 
 GetKerningPairsA 
 GetOutlineTextMetricsA 
 GetTabbedTextExtentA 
 GetTextAlign 
 GetTextCharacterExtra 
 GetTextCharsetInfo 
 GetTextColor 
 GetTextExtentExPointA 
 GetTextExtentExPointW 
 GetTextExtentPoint32A 
 GetTextExtentPoint32W 
 GetTextFaceA 
 GetTextMetricsA 
 GetTextMetricsW 
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 SetMapperFlags 
 SetTextAlign 
 SetTextCharacterExtra 
 SetTextColor 
 SetTextJustification 

 IWin32DeviceContextProperties 
 GetArcDirection 

 GetBkColor 
 GetBkMode 
 GetBoundsRect 
 GetBrushOrgEx 
 GetColorAdjustment 
 GetColorSpace 
 GetDeviceCaps 
 GetMapMode 
 GetNearestColor 
 GetPolyFillMode 
 GetROP2 
 GetStretchBltMode 
 GetViewportExtEx 
 GetViewportOrgEx 
 GetWindowExtEx 
 GetWindowOrgEx 
 OffsetViewportOrgEx 
 OffsetWindowOrgEx 
 PtVisible 
 RectVisible 
 ScaleViewportExtEx 
 ScaleWindowExtEx 
 SetArcDirection 
 SetBkColor 
 SetBkMode 
 SetBoundsRect 
 SetBrushOrgEx 
 SetColorAdjustment 
 SetColorSpace 
 SetDIBColorTable 
 SetICMMode 
 SetMapMode 
 SetMiterLimit 
 SetPolyFillMode 
 SetROP2 
 SetStretchBltMode 
 SetViewportExtEx 
 SetViewportOrgEx 
 SetWindowExtEx 
 SetWindowOrgEx 
 UpdateColors 

 IWin32EnhMetaFile: 
IWin32DeviceContext 

 CloseEnhMetaFile 
 CopyEnhMetaFileA 

 CreateEnhMetaFileA 
 CreateEnhMetaFileW 
 DeleteEnhMetaFile 
 EnumEnhMetaFile 
 GdiComment 
 GetEnhMetaFileBits 
 GetEnhMetaFileDescriptionA 
 GetEnhMetaFileDescriptionW 
 GetEnhMetaFileHeader 
 GetEnhMetaFilePaletteEntries 
 PlayEnhMetaFile 
 PlayEnhMetaFileRecord 

 IWin32EnhMetaFileFactory 
 SetWinMetaFileBits 

 IWin32FontFactory 
 CreateFontA 

 CreateFontIndirectA 
 CreateFontIndirectW 
 CreateFontW 

 IWin32GDIObject 
 DeleteObject 

 GetObjectA 
 GetObjectType 
 GetObjectW 
 SelectObject 
 UnrealizeObject 

 IWin32GDIObjectFactory 
 GetStockObject 

 IWin32Icon 
 CopyIcon 

 DestroyIcon 
 GetIconInfo 

 IWin32IconFactory 
 CreateIcon 

 CreateIconFromResource 
 CreateIconFromResourceEx 
 CreateIconIndirect 
 CreateMenu 

 IWin32Palette : IWin32GDIObject 
 AnimatePalette 

 GetNearestPaletteIndex 
 GetPaletteEntries 
 ResizePalette 
 SelectPalette 
 SetPaletteEntries 

 IWin32PaletteFactory 
 CreateHalftonePalette 

 CreatePalette 

 IWin32PaletteSystem 
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 GetSystemPaletteEntries 
 GetSystemPaletteUse 
 RealizePalette 

 IWin32Path 
 AbortPath 

 BeginPath 
 CloseFigure 
 EndPath 
 FillPath 
 FlattenPath 
 GetMiterLimit 
 GetPath 
 PathToRegion 
 StrokeAndFillPath 
 StrokePath 
 WidenPath 

 IWin32PenFactory 
 CreatePen 

 CreatePenIndirect 
 ExtCreatePen 

 IWin32Print : IWin32DeviceContext 
 AbortDoc 

 EndDoc 
 EndPage 
 Escape 
 ExtEscape 
 SetAbortProc 
 StartDocA 
 StartDocW 
 StartPage 

 IWin32Rect 
 CopyRect 

 EqualRect 
 InflateRect 
 IntersectRect 
 IsRectEmpty 
 OffsetRect 
 PtInRect 
 SetRect 
 SetRectEmpty 
 SubtractRect 
 UnionRect 

 IWin32Region : IWin32GDIObject 
 CombineRgn 

 EqualRgn 
 GetRegionData 
 GetRgnBox 
 OffsetRgn 
 PtInRegion 
 RectInRegion 
 SetRectRgn 

 IWin32RegionFactory 
 CreateEllipticRgn 

 CreateEllipticRgnIndirect 
 CreatePolyPolygonRgn 
 CreatePolygonRgn 
 CreateRectRgn 
 CreateRectRgnIndirect 
 CreateRoundRectRgn 
 ExtCreateRegion 

 IWin32ScreenClip : 
IWin32DeviceContext 

 ExcludeClipRect 
 ExcludeUpdateRgn 
 ExtSelectClipRgn 
 GetClipBox 
 GetClipRgn 
 IntersectClipRect 
 OffsetClipRgn 
 SelectClipPath 
 SelectClipRgn 
Environment 
 IWin32EnvironmentUtility 

 FreeEnvironmentStringsA 
 FreeEnvironmentStringsW 
 GetEnvironmentStrings 
 GetEnvironmentStringsW 

 GetEnvironmentVariableW 
 SetEnvironmentVariableA 
 SetEnvironmentVariableW 
File 
 IWin16File : IWin16Handle 

 _hread 
 _hwrite 
 _lclose 
 _llseek 
 _lopen 
 _lwrite 

 IWin16FileFactory 
 OpenFile 

 _lcreat 
 _lread 

 IWin32File : IWin32AsyncIOHandle 
 FlushFileBuffers 

 GetFileInformationByHandle 
 GetFileSize 
 GetFileTime 
 GetFileType 
 LockFile 
 LockFileEx 
 ReadFile 
 ReadFileEx 
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 SetEndOfFile 
 SetFilePointer 
 SetFileTime 
 UnlockFile 
 WriteFile 
 WriteFileEx 

 IWin32FileFactory 
 CreateFileA 

 CreateFileW 
 OpenFileMappingA 

 IWin32FileMapping: 
IWin32ASyncIOHandle  

    MapViewOfFile 
    UnmapViewOfFile 

 IWin32FileMappingFactory 
 CreateFileMappingA 

 IWin32FileSystem 
 CopyFileA 

 CopyFileEx 
 CopyFileW 
 CreateDirectoryA 
 CreateDirectoryExA 
 CreateDirectoryExW 
 CreateDirectoryW 
 DeleteFileA 
 DeleteFileW 
 GetDiskFreeSpaceA 
 GetDiskFreeSpaceEx 
 GetDriveTypeA 
 GetDriveTypeW 
 GetFileAttributesA 
 GetFileAttributesW 
 GetFileVersionInfoA 
 GetFileVersionInfoSizeA 
 GetLogicalDriveStringsA 
 GetLogicalDrives 
 GetVolumeInformationA 
 GetVolumeInformationW 
 MoveFileA 
 MoveFileEx 
 MoveFileW 
 RemoveDirectoryA 
 RemoveDirectoryW 
 SetFileAttributesA 
 SetFileAttributesW 
 UnlockFileEx 
 VerQueryValueA 

 IWin32FileUtility 
 AreFileApisANSI 

 CompareFileTime 
 DosDateTimeToFileTime 

 FileTimeToDosDateTime 
 FileTimeToLocalFileTime 
 FileTimeToSystemTime 
 GetFullPathNameA 
 GetFullPathNameW 
 GetShortPathNameA 
 GetShortPathNameW 
 GetTempFileNameA 
 GetTempFileNameW 
 GetTempPathA 
 GetTempPathW 
 LocalFileTimeToFileTime 
 SearchPathA 
 SystemTimeToFileTime 

 IWin32FindFile : IWin32ASyncIOHandle 
 FindClose 

 FindCloseChangeNotification 
 FindFirstFileEx 
 FindNextChangeNotification 
 FindNextFileA 
 FindNextFileW 

 IWin32FindFileFactory 
 FindFirstChangeNotificationA 

 FindFirstChangeNotificationW 
 FindFirstFileA 
 FindFirstFileW 
Interprocess Communication 
 IWin32DDE 

 DdeAccessData 
 DdeDisconnect 
 DdeFreeDataHandle 
 DdeFreeStringHandle 
 DdeUnaccessData 

 IWin32DDEFactory 
 DdeClientTransaction 

 DdeConnect 
 DdeCreateStringHandleA 

 IWin32DDEUtility 
 DdeGetLastError 

 DdeInitializeA 
 ReuseDDElParam 
 UnpackDDElParam 

 IWin32Pipe : IWin32AsyncIOHandle 
 PeekNamedPipe 

 IWin32PipeFactory 
 CreatePipe 
Keyboard 
 IWin32Keyboard 

 GetAsyncKeyState 
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 GetKeyState 
 GetKeyboardState 
 MapVirtualKeyA 
 SetKeyboardState 
 VkKeyScanA 
 keybd_event 

 IWin32KeyboardLayout 
 ActivateKeyboardLayout 

 IWin32KeyboardLayoutFactory 
 GetKeyboardLayout 

Memory 
 IWin16GlobalMemory : IWin16Memory 

 GlobalFlags 
 GlobalFree 
 GlobalLock 
 GlobalReAlloc 
 GlobalSize 
 GlobalUnlock 

 IWin16GlobalMemoryFactory 
 GlobalAlloc 

 GlobalHandle 

 IWin32Heap : IWin32Memory 
 HeapAlloc 

 HeapCompact 
 HeapDestroy 
 HeapFree 
 HeapReAlloc 
 HeapSize 
 HeapValidate 
 HeapWalk 

 IWin32HeapFactory 
 GetProcessHeap 

 HeapCreate 

 IWin16LocalMemory : IWin16Memory 
 LocalFree 

 LocalLock 
 LocalReAlloc 
 LocalUnlock 

 IWin32LocalMemoryFactory 
 LocalAlloc 

 IWin16Memory 
 IsBadCodePtr 

 IsBadReadPtr 
 IsBadStringPtrA 
 IsBadStringPtrW 
 IsBadWritePtr 

 IWin32Memory 
 IsBadCodePtr 

 IsBadReadPtr 
 IsBadStringPtrA 
 IsBadStringPtrW 
 IsBadWritePtr 

 IWin32VirtualMemory : IWin32Memory 
 VirtualFree 

 VirtualLock 
 VirtualProtect 
 VirtualQuery 
 VirtualUnlock 

 IWin32VirtualMemoryFactory 
 VirtualAlloc 

Module 
 IWin32Module : IWin32Handle 

 DisableThreadLibraryCalls 
 EnumResourceNamesA 
 FindResourceA 
 FreeLibrary 
 GetModuleFileNameA 
 GetModuleFileNameW 
 GetProcAddress 
 LoadBitmapA 
 LoadBitmapW 
 LoadCursorA 
 LoadCursorW 
 LoadIconA 
 LoadIconW 
 LoadImageA 
 LoadMenuA 
 LoadMenuIndirectA 
 LoadStringA 
 SizeofResource 

 IWin32ModuleFactory 
 GetModuleHandleA 

 GetModuleHandleW 
 LoadLibraryA 
 LoadLibraryExA 
 LoadLibraryW 

 
Multiple Window Position 
 IWin32MWP 

 BeginDeferWindowPos 
 DeferWindowPos 
 EndDeferWindowPos 
Ole 

 IWin32Ole 
 CoDisconnectObject 

 CoLockObjectExternal 
 CoRegisterClassObject 
 CoRevokeClassObject 
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 IWin32OleFactory 
 BindMoniker 

 CoCreateInstance 
 CoGetClassObject 
 CoGetInstanceFromFile 
 CreateDataAdviseHolder 
 CreateDataCache 
 CreateILockBytesOnHGlobal 
 CreateOleAdviseHolder 
 CreateStreamOnHGlobal 
 OleCreate 
 OleCreateDefaultHandler 
 OleCreateFromData 
 OleCreateFromFile 
 OleCreateLink 
 OleCreateLinkFromData 
 OleCreateLinkToFile 
 OleGetClipboard 
 OleLoad 

 IWin32OleMarshalUtility 
 CoMarshalInterface 

 CoReleaseMarshalData 
 CoUnmarshalInterface 

 IWin32OleMoniker 
 CreateGenericComposite 

 CreateItemMoniker 
 CreatePointerMoniker 
 CreateURLMoniker 
 MkParseDisplayName 
 MonikerCommonPrefixWith 
 MonikerRelativePathTo 

 IWin32OleMonikerFactory 
 CreateBindCtx 

 CreateFileMoniker 
 GetRunningObjectTable 

 IWin32OleStg 
 OleConvertIStorageToOLESTREAM 

 OleSave 
 ReadClassStg 
 ReleaseStgMedium 
 WriteClassStg 
 WriteFmtUserTypeStg 

 IWin32OleStgFactory 
 StgCreateDocfile 

 StgCreateDocfileOnILockBytes 
 StgIsStorageFile 
 StgOpenStorage 

 IWin32OleStream 
 GetHGlobalFromStream 

 OleConvertOLESTREAMToIStorage 

 OleLoadFromStream 
 OleSaveToStream 
 ReadClassStm 
 WriteClassStm 

 IWin32OleUtility 
 CLSIDFromProgID 

 CLSIDFromString 
 CoCreateGuid 
 CoFileTimeNow 
 CoFreeUnusedLibraries 
 CoGetMalloc 
 CoInitialize 
 CoRegisterMessageFilter 
 CoTaskMemAlloc 
 CoTaskMemFree 
 CoTaskMemRealloc 
 CoUninitialize 
 GetClassFile 
 GetHGlobalFromILockBytes 
 IIDFromString 
 OleGetIconOfClass 
 OleInitialize 
 OleIsRunning 
 OleRegEnumVerbs 
 OleRegGetMiscStatus 
 OleRegGetUserType 
 OleSetClipboard 
 OleUninitialize 
 ProgIDFromCLSID 
 PropVariantClear 
 RegisterDragDrop 
 RevokeDragDrop 
 StringFromCLSID 
 StringFromGUID2 
 StringFromIID 
 OpenGL 
 IWin32GL 

 glBegin 
 glClear 
 glClearColor 
 glClearDepth 
 glColor3d 
 glEnable 
 glEnd 
 glFinish 
 glMatrixMode 
 glNormal3d 
 glPolygonMode 
 glPopMatrix 
 glPushMatrix 
 glRotated 
 glScaled 
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 glTranslated 
 glVertex3d 
 glViewport 
 wglCreateContext 
 wglGetCurrentDC 
 wglMakeCurrent 

 IWin32GLU 
 gluCylinder 

 gluDeleteQuadric 
 gluNewQuadric 
 gluPerspective 
 gluQuadricDrawStyle 
 gluQuadricNormals 
Printer 
 IWin32Printer 

 ClosePrinter 
 DocumentPropertiesA 
 GetPrinterA 

 IWin32PrinterFactory 
 OpenPrinterA 

 OpenPrinterW 

 IWin32PrinterUtility 
 DeviceCapabilitiesA 

 EnumPrintersA 
Process 
 IWin16ProcessFactory 

 WinExec 

 IWin32Process : IWin32SyncHandle Ä 
IWin32ProcessContext 

 DebugBreak 
 ExitProcess 
 FatalAppExitA 
 FatalExit 
 GetExitCodeProcess 
 GetCurrentProcessId 
 GetProcessVersion 
 GetProcessWorkingSetSize 
 OpenProcessToken 
 SetProcessWorkingSetSize 
 TerminateProcess 
 UnhandledExceptionFilter 

 IWin32ProcessContext 
 GetCommandLineA 

 GetCommandLineW 
 GetCurrentDirectoryA 
 GetCurrentDirectoryW 
 GetStartupInfoA 
 SetConsoleCtrlHandler 
 SetCurrentDirectoryA 
 SetCurrentDirectoryW 

 SetHandleCount 
 SetUnhandledExceptionFilter 

 IWin32ProcessFactory 
 CreateProcessA 

 CreateProcessW 
 OpenProcess 
 
Registry 
 IWin16Profile 

 GetPrivateProfileIntA 
 GetPrivateProfileStringA 
 GetPrivateProfileStringW 
 GetProfileIntA 
 GetProfileIntW 
 GetProfileStringA 
 GetProfileStringW 
 WritePrivateProfileStringA 
 WritePrivateProfileStringW 
 WriteProfileStringA 
 WriteProfileStringW 

 IWin16Registry 
 RegCreateKeyExA 

 RegCreateKeyW 
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