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ABSTRACT

Retransmissions reduce the efficiency of data communication in
wireless networks because of: (i) per-retransmission packet head-
ers, (ii) contention overhead on every retransmission, and (iii) re-
dundant bits in every retransmission. In fact, every retransmission
nearly doubles the time to successfully deliver the packet. To im-
prove spectrum efficiency in a lossy environment, we propose a new
in-frame retransmission scheme using ©ACKs. Instead of waiting
for the entire transmission to end before sending the ACK, the re-
ceiver sends smaller pACKs for every few symbols, on a separate
narrow feedback channel. Based on these ©ACKs, the sender only
retransmits the lost symbols after the last data symbol in the frame,
thereby adaptively changing the frame size to ensure it is success-
fully delivered. We have implemented tACK on the Sora platform.
Experiments with our prototype validate the feasibility of symbol-
level pACK. By significantly reducing the retransmistion overhead,
the sender is able to aggressively use higher data rate for a lossy
link. Both improve the overall network efficiency. Our experimen-
tal results from a controlled environment and an 9-node software
radio testbed show that yACK can have up to 140% throughput
gain over 802.11g and up to 60% gain over the best known retrans-
mission scheme.
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1. INTRODUCTION

Packets transmissions over a wireless medium are lossy. Losses
typically occur because of interference, fading or noise, which in
turn causes poor signal to interference and noise ratio (SINR) at
the receiver. A low SINR reduces the probability of successfully
decoding all bits in the packet.

In existing data networks, such as Wi-Fi or cellular, the onus of
recovering a lost packet is with the link layer of the OSI stack. The
physical layer (PHY) may include some redundancy, i.e., channel
coding, in a frame to correct erroneous bits. But when the errors
cannot be recovered, the frame will be retransmitted by the MAC
layer. The sender usually relies on an acknowledgment (ACK)
packet from the receiver to detect transmission failures. For exam-
ple, in IEEE 802.11, if the sender does not receive the ACK packet
within a fixed timeout period, it retransmits the entire frame.

This frame retransmission is costly. First, each retransmitted
frame requires both PHY and MAC headers, which can consume
up to 100 bytes. While MAC header can be transmitted using high
modulation, the PHY header is sent at the lowest rate and usually
includes a sequence of training symbols (preamble) for synchro-
nization and channel estimation. In 802.11g, this header overhead
can add up to 52 ps. Second, the sender needs to re-contend for the
medium to retransmit the packet. Depending on the number of ad-
ditional contending nodes, the sender has to perform backoff, pos-
sibly several times, before the frame can be successfully delivered
to the receiver. For each unsuccessful retransmission, the sender
needs to wait for an ACK timeout before it can detect the loss. All
reduce the link efficiency in a noisy wireless channel. Finally, re-
transmitting the entire frame may unnecessarily send redundant bits
that may have already been received correctly by the receiver. In
previous work, Jamieson, et. al., tried to address the last issue by
selectively requesting only erroneous bits in retransmission [12].
But the first two issues remain unexplored.

In this paper, we propose a system that does away with frame-
level retransmissions. After a sender gets access to a medium, we
dynamically adjust the length of the packet (up to a maximum limit)
to ensure that it is reliably delivered. In a zero-loss network the
packet length is unchanged; while in a lossy network we pad the



frame, on the fly, with the bits that are received erroneously at
the receiver. Therefore, the receiver can recover the errors inside
a frame, instead of waiting for another frame retransmission. Since
the retransmitted symbols do not have additional PHY/MAC head-
ers or contention overhead, they significantly reduce the cost of er-
ror recovery. As we show in Section 6, our system can be 140%
more efficient than 802.11, and up to 60% better than the existing
best known retransmission scheme [12].

We achieve this in-frame error recovery by introducing a narrow-
band feedback channel, similar to the control channels proposed
in RI-BTMA [21] and other schemes [16]. However, instead of
transmitting a simple tone (or signature signal), in our system, the
receiver uses the control channel to send modulated acknowledg-
ments to the sender for received symbols. We call these tightly syn-
chronized symbol-level acknowledgments as micro-ACKs (uACKs).

Implementing the ©ACK system imposes several challenges. First,
the forward and feedback radios should be tightly synchronized.
The receiver needs to dynamically generate ©ACKs based on the
decoding results of the data symbols. The sender needs to re-encode
erroneous bit based on uACK feedbacks. This needs to occur in
real-time in the order of a few symbol durations (tens of us). Sec-
ond, the receiver needs to reliably determine the data symbols that
are correct or in error. Previous work [12] uses PHY hints to iden-
tify erroneous symbols. Although useful in several scenarios, this
scheme is not reliable when the link is operating at the modulation’s
threshold SNR, i.e., when retransmissions are more likely to occur.

This paper presents the design, implementation, and evaluation
of pACK. nACK uses a multi-radio architecture with multiple RF
front-ends tightly integrated onto one control board. We further
exploit a new side-channel inside 802.11 OFDM PHY to transmit
a CRC-checksum along with a group of data symbols to facilitate
error detection without adding additional overhead. Finally, we de-
sign and evaluate the PHY schemes for both, the side control chan-
nel and the ©tACK feedbacks. We show the tACK PHY design is
simple, yet reliable for their purpose in our system.

We implement ACK using a high speed software radio plat-
form [18]. Experiments with our prototype validate that symbol-
level nACK is practically feasible. We also show that with pACK,
the retransmission overhead can be significantly reduced, thereby
improving spectrum efficiency. Furthermore, we believe that the
idea of ©ACK has wider applicability, beyond error recovery. For
example, using 4tACK, a sender can detect collisions before the en-
tire transmission is complete, and therefore it can abort earlier to
save channel time, similar to [16]. Also, the ©ACK feedback chan-
nel can be used as an extended busy-tone [6], and therefore can
mitigate hidden and expose terminal problems.

The rest of paper is organized as follows. Section 2 motivates
our work with an analysis of the retransmission overhead. Sec-
tion 3 presents the detailed design of pACK. We further analyze
HACK in Section 4. After describing our implementation of pACK
using a high-speed SDR platform in Section 5, we evaluate the per-
formance of ©ACK in Section 6. Section 7 discusses related work
and Section 8 concludes.

2. OVERHEAD OF RETRANSMISSIONS

Although retransmissions help recover a packet, they add sig-
nificant redundancy and overhead, thereby reducing spectrum effi-
ciency. In this section we present a simple model to quantify this
overhead, which motivates the need for the ©ACK mechanism.

Model: We consider the impact of retransmissions on IEEE 802.11g
networks, although the results can similarly be extrapolated for
802.11a/n/b networks. In 802.11g, the timing parameters are, {50t =

9us,tsirs = 10us, and tprrs = 2tsior + tsrrs = 28us. The
contention overhead, determined empirically from Atheros cards is
tew = tsiot- CWQ"”’" = 810t per packet. Each OFDM data sym-
bol is 4 pus.

Using the model presented in [9], at modulation rate R, 4-R data
bits are encoded in a symbol. The frame is broken down and en-
coded in symbols of duration sy, = 4ps, where each frame is
preceded by a 20 puspreamble, and a 6 us signal extension. Using
all these values, the time to transmit a packet of size sqqtq bits at
data rate R Mbps, without any retransmissions is:

Tiata(R) = tow +tprrs +tpara +tsirs +tack
= T2us+ 28us
+(2048 + toymb[Sdata/(4R)] + 6ps) + 10us
+(2015 + tsymb [Sack /(4 Rack)] + 61us)
= 162+ 4( [Sdata/(4R)—| + [Sack/(4Rack)—| )/1‘3

When there are r retransmissions, the time to transmit a packet

is: r
Z Tdata(Ri)
> 16200+ 1) + A(r + 1)-([saata/(4R)]
+[sack/(4Rack)])ps

As we see, retransmissions delay the total time to transmit the
frame due to the following:

TreTe =

o Redundant bits (Trequndancy): These are bits that are cor-
rectly received by the receiver, yet are part of the retransmis-
sion. Depending on the number of bits in error, this adds any-
where from O (all bits are lost) to (47 ([(Sdata — 1)/(4R)])
when only 1 bit is decoded error.

o Contention (Tcontention): A retransmission has to contend
for the medium with all other nodes in the medium, just like a
fresh transmission. This adds the DIFS and contention over-
head, for a total of: (100-(r — 1)) ps.

o Header overhead (THcqqe-): Since the retransmission is
just like a new frame, it has to include all training symbols,
the PHY and MAC header, as well as an ACK frame. This
adds another ((r — 1)-(62 + [Sack/(4Rack)])) ps.

o Lower data rate (I pgtaRate): Bits in the retransmission are
usually sent using a lower data rate. In most common im-
plementations, the retransmission data rate is one rate lower
than the original data rate [2]. For example, when the original
packet is sent at 18 Mbps, and the retransmission at 12 Mbps,
the extra overhead is: (r — 1) * (Taata(12) — Tyqata(18)).

To get a quantitative feel of these numbers, we present the over-
head for a single retransmission in Table 2. We change the packet
size and data rate, and note that the retransmission consumes more
time than the original transmission because retransmissions are sent
at a lower data rate. The contention overhead is assumed to be
100 ps. It will be much larger in congested environments. Also,
TRedundancy 1 assumed to be the worst case, i.e., all but one bit
is erroneously decoded. As expected, the contention and header
overheads are a much larger fraction of the retransmission over-
head when the packets are small in size, or the data rates are higher.
This fraction is likely to dominate in IEEE 802.11n MIMO net-
works with much higher data rates. To summarize, even one re-
transmission more than doubles the delivery time of a packet, and
also reduces the spectrum efficiency because of the factors high-
lighted above.



(Pkt size, Data Rate) | Tuata(p5) | Trere — Taara(ps) | Roendency | Togprension | Theaders | Thatalace
(1500, 54) 389 417 0.53 0.24 0.16 0.07
(1500, 9) 1500 2166 0.61 0.05 0.03 0.31
(500, 54) 241 250 0.30 0.40 0.26 0.04
(500, 9) 611 833 0.53 0.12 0.09 0.26

Table 1: The overhead introduced by one retransmission on changing packet size (in bytes) and the data rate (in Mbps) of the
original transmission, and the fraction of overhead introduced by each of the four factors. Contention and packet headers dominate
for smaller packets, while redundancy is the largest overhead otherwise.

GOS: group of symbols

: erroneous symbol

at receiver

Preamble| GOS 1 LGOS 2 ]fOS 3 LGOS 4 LGOS 2 ]

[preamble] uACK | uNACK | uACK J uACK | EOS ]

Figure 1: Illustration of a frame transmission in ©ACK system.

3. ACK DESIGN

In this section, we present our system, that eliminates packet re-
transmission and thereby mitigates the overhead in recovering er-
rors. The receiver decodes each incoming data symbol and dy-
namically determines if the symbol is correct or in error. For a
group of successfully decoded symbols, the receiver will send an
acknowledgment (ACK) to the sender; otherwise, if erroneous sym-
bols are detected, an negative acknowledgment (NACK) is sent.
These ACK/NACK are transmitted back to the sender using a sep-
arate narrow-band feedback channel, which is tightly synchronized
to the feed-forward data communication channel. Since the ACK/-
NACKSs are at symbol level, we call them micro-ACKs/NACKs (or
HACKs/ uNACKs). The sender monitors the feedback channel and
marks the symbols that get NACKs. Then, when all data symbols
have been sent, the sender re-encodes these symbols and appends
them after the last data symbol. The sender continually re-encodes
the lost symbols until it receives an acknowledgment of the entire
frame from the receiver or a predefined maximum limit has reached.
In this way, an #ACK sender recovers all transmission errors inside
a frame, instead of relying on different retransmission frames.

Figure 1 illustrates a frame transmission in uACK system. In
the wide-band feed-forward (FF) channel, the sender sends data
symbols to the receiver after a preamble. The receiver, after syn-
chronizing to the preamble, starts immediately a feedback frame to
the sender in a narrow-band feedback (FB) channel. Each symbol
of the feedback frame acknowledges (or negatively acknowledges)
a group of data symbols (GOS) in the feed-forward channel. If
the sender gets a NACK, it will mark the corresponding GOS as
lost. Lost GOSes are re-encoded and appended after the last GOS.
As shown in Figure 1, the second GOS contains errors. Then, it
is re-encoded after GOS 4, the last group of symbols of the frame.
When the entire frame is correctly received, i.e., passed CRC check,
the receiver will send back an end-of-stream (EOS) symbol to the
sender, which, on receiving EOS, terminates the frame transmis-
sion. If the sender does not yet receive an EOS, but also does not
have any GOS marked lost, it will simply re-encode a GOS from
the very beginning (see details in Section3.3).

We now present the 4 ACK feedback design. Based on this de-
sign, in Section 3.2 we describe the error and collision detection at
the sender. We then describe in details the ©ACK in-frame error
recovery protocols in Section 3.3. We discuss other applications

feed-forward channel
Y e >l

Decoding
Feedback result

(788 | <t < i~ <

Figure 2: Architecture of 4 ACK. Two tightly synchronized ra-
dios are deployed at both sender and receiver. The receiver
sends real-time feedback symbols to the sender over a narrow-
band channel.

of pACK in Section 3.4. Finally, we finish by discussing several
related design issues in Section 3.5.

3.1 pACK feedback

#ACK relies on a multi-radio architecture for a receiver to send
fine-grained feedback when simultaneously receiving data symbols
from the sender. With the increased popularity of wireless commu-
nication, multi-radio structure has extensively studied and exploited
in previous systems [3]. However, pACK differs from these previ-
ous systems in that we integrate both radios into a single board and
thus they can be tightly synchronized at micro-second level. Fig-
ure 2 shows the system architecture of 4 ACK. Two tightly synchro-
nized radios are deployed at both sender and receiver. The receiver
receives data symbols in wide-band FF channel, and based on the
decoding results, dynamically modulates and sends feedback sym-
bols in real-time using a narrow-band FB channel. The sender also,
in real-time, re-encodes and sends the lost symbols based on re-
ceived feedbacks.

The key design question here is what shall be the granularity of
pACK and how much bandwidth should be allocated to the feed-
back channel. Ideally, we want to get tACK as fine as possible
(i.e., pACK for each received byte) to minimize the overhead of
redundant bits. However, too fine granularity pACK will require
more bandwidth at the feedback channel to convey this information,
which will add overhead to the system. Second, too fine pACK
might not be necessary at all since wireless errors are essentially
bursty [19]. Bits transmitted within the coherent time usually share
the same channel state and are lost in one burst, and therefore may
be acknowledged with one tACK. The coherence time depends on
the speed of multi-path fading in the wireless channel. In an indoor
environment, it varies from around 100us (fast fading) to tens of
milliseconds (slow fading) [19,20].

In this paper, we propose to generate one pACK every 20us,
which is much shorter than the coherence time in common indoor
wireless channel. This period of time contains five 802.11 OFDM
symbols. In theory, the receiver may need to convey only one bit
information (i.e., correct or wrong) for every group of symbols it re-
ceives. Thus, the feedback channel can be very narrow. For exam-
ple, the required baud rate the feedback is merely 1/20 = 50K H z.



Table 2: Symbol encoding in feedback PHY.

Symbol name Sy(l;;‘t;)(;lb‘tl);)r;a)try Chip values
ACK 1100 0111100010
NACK 1001 0011001101
EOS 0110 1100110110

Even with 100% guard-band, it takes around 0.5% overhead of a
WiFi 20M H z channel. However in practice, we may want more
bits in 4ACK to perform proper coding for reliability. In this paper,
we choose the bandwidth of the feedback channel to be 1M H z.
The feedback signal has a width of 500K H z and another 500K H z
spectrum serves as guard-band. We choose 500K H z guard-band
by referencing to the DECT standard [15], which deploys similar
guardband of 576 K H z with a channel width of 1.728 M H z.

Compared to 802.11, the feedback channel of ©ACK adds around
5% overhead to the system. But it obviates the need for the orig-
inal ACK frame and thereby reduces the time-domain overhead.
Recall in Section 2, when the frame size is 1500 bytes, the ACK
frame normally takes about 8% overhead when the modulation rate
is 24 M bps, which is comparable to our feedback channel overhead.
It should also be noted that at higher data rates that involve wider
channels (e.g., 40M H z channel in 802.11n), the feedback channel
overhead decreases reciprocally; while the overhead of ACK frame
increases (e.g., 20% with 300Mbps rate) due to shorter transmission
time of data symbols [17].

uACK uses very robust code and modulation scheme to ensure
high reliability of the feedback. The symbol time of the feedback is
equal to the duration of a GOS, which is 20us. Given 500KHz sig-
nal bandwidth, each feedback symbol can be coded into 10 chips. In
current design, we map four bits to one feedback symbol and these
bits are encoded into 10 chips, each of which is modulated using
basic differential binary phase-shift keying (DBPSK). Table 2 sum-
marizes the three feedback symbols currently defined in our system.
The remaining symbol values are reserved for future extensions.
The entire feedback frame (consisting of smaller ACKs for the data
symbols) is preceded with a 20us synchronization symbol that al-
lows the sender to detect and synchronize to the feedback frame.
The SYNC symbol value is 0x2FF.

3.2 Error detection

HACK requires the receiver to reliably detect erroneous symbol
groups to generate real-time fine-grained feedbacks. This partial
packet detection problem has been well studied in previous work
[8,12]. In [8], Ganti et. al. proposed to split the frame into frag-
ments and insert a CRC check sequence for each fragment. The
overhead to transmit these check sequences increase proportionally
with the number of fragments in a frame. Alternatively, Jamieson,
et. al. [12] proposed to use physical layer hints to classify correct or
erroneous symbols. These PHY hints usually use the soft-output of
the channel decoder. While PHY hints save the overhead of check-
sums, in our experiments, we find the PHY hint based classifier
becomes less reliable when the SNR is just enough to support the
modulation rate on a wireless link. Figure 3 shows such an exam-
ple. The PHY hint in this experiment is the soft-output of Viterbi
decoder [11] ! and the modulation rate is 24Mbps. Figure 3 plots
the cumulative fraction of soft-outputs for both correct and erro-
neous symbols. We see that when the link SNR is 12dB high, using

!The output is quantized log-likelihood (LLR) of a correct trellis
path in Viterbi decoder.
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Figure 3: CDF of Viterbi soft-outputs in two SNR settings. The
modulation rate is 24Mbps. (a) SNR = 10dB; (b) SNR = 12dB.

PHY hints can detect both correct and erroneous symbols reliably
(Figure 3(b)). But when the link SNR reduces slightly to 10dB
(just enough to support 24Mbps), the PHY hint cannot easily sep-
arate erroneous symbols from the correct ones, and it becomes a
difficult tradeoff between higher false negative (choosing a lower
threshold) or higher false positive (by choosing a higher threshold).
This is expected, since the PHY hints are generally good statistical
estimations of error probability for a large amount of symbols [20].
However, they may fall short in reliably predicting correctness of
specific set of symbols, especially when the probability of correct
and erroneous symbols are comparable at marginal SNR.

Unfortunately, it is not uncommon for a wireless link to work at
this marginal SNR regime, as modern rate adaptation mechanisms
tend to choose the highest modulation rates for better efficiency.
Consequently, in this paper, we allow the sender explicitly embed a
CRC checksum along each GOS to facilitate reliable error detection
at the receiver.

However, embedding an extra checksum would add extra packet
overhead. To avoid this overhead, we exploit a side-channel that
has not been used by existing 802.11 OFDM PHY. Current 802.11
PHY deploys four pilot subcarriers in each OFDM symbol, each of
which transmits dummy bits. These dummy bits carry no informa-
tion and are used by the receiver to track channel changes [13]. We
argue that such a design, although simple, is not efficient. In this
paper, we propose to modulate one bit information on each pilot
subcarrier without significantly reducing the channel tracking per-
formance. Specifically, let P; ; denotes the known pilot sequence
for symbol 7 on pilot subcarrier j. Then, instead of inserting F; ;,
the sender sends P, = cx P, j, where ¢, = {1, —1} is a differ-
entially coded binary data. The receiver, however, decodes cy, first,
before performing normal pilot tracking. To decode cy, the receiver
uses the pilot value of the previous symbol, P<’,L-7 1,5 as areference,
just like a differential demodulation. A group of cis can further be
protected with error-correction codes, and small number of bit er-
rors may not affect the correctness of ci. Once ci, is decoded, the
receiver can recover P; ; and feed it to normal pilot tracking algo-
rithms. Since in this scheme, we need to detect c;, first, we name
our approach as decision-directed pilot tracking (DDPT).

We briefly present some reasons on why DDPT does not degrade
tracking performance compared to original dummy pilots. We eval-
uate DDPT in detail in Section 6. First, we note that once cx is
successfully decoded, DDPT is just equivalent to original dummy-
bit pilot tracking (DBPT) scheme. This is easy to see, as once cx
is decided, the original pilot value P; ; can be directly recovered.
Second, it is reasonable to use a previous received pilot value as a
reference to demodulate cg, since the wireless channel holds stable
during the coherence time, which is from 100us to several mil-
liseconds for indoor environment like WiFi. The symbol period is
about 4 ps which is much shorter than the channel coherence time
in our setting. Third, even if there is a sudden interference causing



erroneous detection of ¢, which is BPSK modulated with proper
channel coding, we note that in this case the original pilot tracking
algorithm may also not perform well, since the interference may al-
ready corrupt the tracking results. Therefore, the symbols, in either
DDPT or DBPT, suffer a strong interference and fail to decode any-
way. Finally, to prevent the decision errors from propagating, we
perform DDPT only within a GOS. For the first symbol in a GOS,
we always insert normal pilot bits, while modulating information
only on the remaining four symbols.

With DDPT, ©ACK can embed up to 16 bits on the pilot subcar-
riers of a GOS. In this design, we use a simple Hamming (16,11)
code to protect this side-channel. There, we have eleven informa-
tion bits. Ten bits are used to encode a CRC-10 checksum, which is
used in B-ISDN and ATM networks. The other bit is used to indi-
cate whether or not the GOS contains retransmission metadata (de-
tailed in next section). We note that the Hamming code is slightly
weaker than the 1/2 code used for 6Mbps rate in 802.11, and may
have higher bit error rate (Section 6.1.2). In our future work, we
will investigate a better coding scheme for the pilot side channel.

Upon decoding a GOS, the receiver computes a CRC checksum
of the decoded bits and compares it to the one embedded in the pilot
subcarriers. If they match, the receiver sends out a positive uACK;
otherwise it sends a negative 4t ACK.

3.3 In-frame recovery protocol

Based on the error detection and feedback mechanisms discussed
earlier, pACK can perform in-frame recovery of erroneous sym-
bols. The in-frame recovery protocol works in the following way.

After detecting a preamble, the receiver starts to transmit the syn-
chronization symbol on the feedback channel. Then, for each GOS
it receives, the receiver will send a uACK or uNACK based on the
correctness of the GOS. All correctly received data are kept in an
assembly buffer. If all received data pass the frame CRC-check, the
receiver sends an EOS symbol to notify the sender. If after that, the
receiver continues receiving GOS, possibly due to the corruption of
the EOS symbols, it simply returns another EOS.

Based on the tACKs received, the sender puts the negatively ac-
knowledged bytes into a retransmission queue. After the last GOS
is sent, the sender fetches all data from the retransmission queue
and starts re-coding them into retransmission GOS(RGOS). RGOSs
are sent directly after the last GOS of the frame. Since the data in
the retransmission queue are no longer continuous, the first RGOS
should contain retransmission metadata to identify the correspond-
ing symbols at the receiver. The RGOS containing the retransmis-
sion metadata is marked by the meta-bit on its pilot side-channel.
The format of the retransmission meta-bit is simple. It contains at
least 6 bytes, as shown in Figure 4. The first field, number of sym-
bols(10-bit), indicates how many of symbols are re-encoded. The
field size (6-bit) indicates the number of retransmission block en-
tries in the metadata. Each block entry is 32-bit, including 16-bit
start position and 16-bit length. In our current implementation, the
size of this metadata header cannot exceed one GOS. For example,
if the frame is modulated with 6Mbps, the metadata may contains
only 2 entries; while for 54Mbps, the metadata header may hold up
to 26 entries. If there are more retransmission blocks that cannot
be fitted into one metadata header, multiple metadata headers may
need to be added.

All acknowledged data are then removed from the retransmission
queue. After one round of RGOS, if there is still any data remain-
ing in the queue, the sender will start a second recovery round. A
rare, but possible, scenario is that there is no data remaining, and
the sender has not yet received an EOS. For example, there might
be a hash collision in CRC-10, such that the receiver mistakes an er-

0 8 15
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Figure 4: The format of retransmission metadata.

roneous GOS as a correct one, and returns a positive 4 ACK. There-
fore, to handle this corner case, the sender has to mark all data as
lost and retransmit every byte in following symbols.

The sender will terminate transmission if it receives an EOS from
the feedback channel, or an upper bound of symbols have been
transmitted. We set this upper limit to prevent the sender from occu-
pying the channel for an unreasonably long period (Section 3.5). In
this paper, we set this upper limit as three times the frame size. The
sender will also abort transmission and retry after a backoff time if a
significant number of erroneous GOS have been detected (> 50%),
which usually indicates a persistent collision has occurred.

3.4 Other applications of ACK feedback

Beside the error recovery, the tightly synchronized nACK feed-
back can also improve the wireless network in following two ways.

Collision detection and early backoff. Using 4ACK, a sender can
detect collisions before the entire transmission is complete. If the
sender does not receive the first few pACK symbols, this means the
preamble was not likely received by the receiver, which usually im-
plies a collision may occur. Therefore, the sender can immediately
stop its transmission, and retry the frame after a backoff time.

Hidden terminal mitigation. p©ACK can also mitigate the hid-
den terminal problem without relying on explicit RTS/CTS hand-
shakes, which adds significant overhead. In ptACK system, a sender
can simply monitor both FF and FB channels. Since the receiver
constantly continually sends the 4 ACKs during the data transmis-
sion, the feedback can be viewed as a busy tone channel (similar to
DBTMA [6]). The contender will defer its transmission once de-
tecting the pACK feedback. Finally, tACK can also help to reduce
exposed terminals following the similar heuristic in [6].

3.5 Discussion

We now briefly touch upon some factors in the design of the
#ACK mechanism.

When to send ©ACK sync symbol? The receiver should send back
synchronization symbol in feedback channel as soon as it detects a
frame for it in the data channel. However, in current 802.11 de-
sign, the destination address is embedded in the MAC header. That
means the receiver can send fACK only after the first GOS has
been decoded, adding a large additional delay. Therefore, we pro-
pose the extend current PLCP header by an OFDM symbol to store
a physical layer address of the receiver. In this way, the receiver
can start ©ACK feedback right after the preamble of the data frame.
We note that PHY layer addressing has been previously exploited



in [16,23], and we can use similar approach to dynamically allocate
them inside a wireless network.

Range Mismatch: An important requirement is to ensure that the
FB channel has a similar range as the FF channel. Otherwise, the
hidden/exposed terminal problem will become worse. To ensure the
same range, both the channels are in the same band, i.e. either 2.4
GHz or 5 GHz. Furthermore, we leverage prior work on channel
widths [4] to adjust the transmit power of the FB channel such that
its range matches the FF channel.

Rate Anomaly: Packet fairness of IEEE 802.11 hurts the perfor-
mance of high data rate nodes in the presence of low data rate
nodes [22]. pACKs can make the situation worse since a trans-
mission with large number of bit errors will effectively increase its
packet size and occupy the medium for a longer period of time,
thereby hurting the performance of transmissions over completely
reliable links. To solve this problem, we (i) limit the maximum
time a node can occupy the medium including retransmissions, and
(i1) reduce the probability of a node that just occupied the medium
for a long time from immediately regaining access, similar to the
technologies proposed in [22].

Rate Adaptation: Using ©ACK, a sender can get a good estimate
of the BER on the link at any time. Therefore, it is possible to
dynamically pick the best rate for each symbol inside a frame. We
leave this as our future work.

FB channel allocation: In current two-radio implementation of
LACK, we statically assign a narrow FB channel for every FF chan-
nel. However, in the future, the frequency of the FB channel in a
wireless network may be dynamically selected to avoid potential
noisy channels. All FB channel may be allocated to a specific por-
tion of spectrum band. For example, in US, the 11 MHz of FB
spectrum (for the 11 channels) can be allocated in the unused chan-
nels 12 and 13 of IEEE 802.11b in 2.4GHz band. This spectrum is
only available for low-power operation, but given that our ACK is
low bandwidth, and hence lower power, we expect to be within the
FCC regulations for these channels. Alternatively, we may split a
portion of existing 802.11 channel for tACK FB use. For example,
we may allocate the upper (or lower) IMHz of 20MHz WiFi chan-
nel to feedback, while the remaining 19MHz spectrum is used for
FF data communication. Finally, we note that in the future, with
full-duplex technology [5], we expect ©ACK may have single radio
designs and the feedback can be sent using the same frequency as
the FF channel.

Frame duration field setting: In 802.11 standard, the MAC header
contains a duration field that records the expected frame transmis-
sion time plus the ACK. A contender after decoding the field will
defer according to the value in this field to avoid possible collision
to the ACK frame. For pACK, since the sender may dynamically
pad the frame with retransmission symbols, the transmission dura-
tion may not be known before hand and cannot be accurately set.
However, we note that ©ACK does not need this duration field for
correct protocol behavior. This is because of the following two rea-
sons. First, uACKs are sent in a different feedback channel. There-
fore, it is safe for a contending sender to pick up the medium im-
mediately after the FF data channel is sensed idle. Second, as dis-
cussed in Section 3.4, nACK can effectively detect collisions and
mitigate hidden terminals using the feedback. Therefore, it does
not need the traditional RTS/CTS handshake, which further relies
on this frame duration field to reserve channel time.

4. ANALYTICAL STUDY

We build on the model presented in Section 2 and analyze the
performance of the pACK technique. We also compare its perfor-
mance to Wi-Fi and the most closely related work, PPR [12].

Model: Suppose the symbol error rate is e; and a frame contains
N, symbols. Assuming the OFDM symbols are independent, the
frame error probability is ey = 1—(1—e;)™V*. To compare different
techniques, we define retransmission overhead (RO) as the fraction
of additional time to successfully transmit a frame.

RO = (TRCT(L' - Tdatu)/Tdata
TReT:c/Tdata - 17

where TreT, is the time taken to successfully deliver the packet at
the receiver including retransmissions. So, the RO is zero if there
is no loss, and greater than zero if there is any retransmission. In
our model, we assume the sender will persistently retransmit the
lost packet until it is successfully received. We note this is only
an approximation to practical systems that may only retry up to a a
maximum number (e.g., four times in 802.11). A complete model
that considers this maximum retransmission number will be our fu-
ture work.

Wi-Fi: The expected number of frame retransmissions for Wi-Fi
is:

Kyiri = 1x(1—ef)+2xep(l—ef)+...
+k * e}kil)(l —ef)+ ...
= 1/(1—ey)
Therefore, extending the formulation of Section 2:
Kuwifi
TReTr = Tdata(R) + Z Tdata(Ri)-
i=1

where R; is the data rate used for the i*" retransmission packet.

PPR: We assume that there is no retansmission aggregation in PPR
for latency reduction. Also, we do not model the dynamic pro-
gramming algorithm that PPR uses to compute the optimal trunks
to retransmit. Modeling such a dynamic algorithm is non-trivial. So
we leave it as our future work. Here, we just try to build an approx-
imate model: We assume PPR retransmits only erroneous bits and
we don’t consider the overhead of CRC-checksum for the runs of
good bits. Clearly, our approximate model captures an performance
upper bound of PPR.

Based on this simplification, we can compute the size of the k"
retransmission frame, s, in PPR as

Sk = €sS(k—1)-
The frame error rate of the k" retransmission is:
ep(k) =1—(1—es)).
Therefore,
o [k—1
Trets = Taata(R) + Z ( ef (Z)> Thota (Ry),
k=1 \i=0

where T2%,,, (Ry) is the air-time to send the k' retransmission (s,
symbols) with rate Ry.
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Figure 5: Retransmission overhead versus the symbol loss rate
on the wireless link. The packet size is 1500B and the data rate
is 54Mbps.

HACK: In our system, the erroneous symbols are directly appended
at the end of the frame. The number of retransmitted symbols is

New = No» (e1) = Noeo/(1 - e)
i=1
Let [ is the average burst length of erros. Then, the expected frame
size in pACK is

Ndata = Ns + ch + )\Nm:/lv

where ) is the metadata overhead to describe a burst loss in uACK
(Section 3.3). Finally, we can derive the expected air-time to send
a frame using pACK,

Trerz(R) = tow +tprrs +tpara + tuAcK delay
= T2us+ 28us
+(20us + tsyms [ Ndata/(4R)] + 6us)
= Tuaata(R) + tsyms([Nra(1+ A/1)/(4R)])

—dagck + t,u,ACK?delayy

where Tqcr = tsirs+tack isthe ACK overhead and t, ack_delay
is the latency of ©ACK feedback.

Figure 5 presents the quantitative results of 802.11, PPR, and
#ACK under different symbol error rates. When the symbol error
rates are low, the link is very reliable and the retransmission over-
head is also low. As the link becomes lossy, the retransmission
overhead of 802.11 increases exponentially and soon hits a wall
at symbol error rate of 1072, meaning that no matter how many
times it retransmits, the packet cannot be delivered. PPR reduces
the retransmission overhead by resending only the lost bits. There-
fore, the retransmission overhead increases slower than 802.11, but
the header and contention overhead is still high. ©ACK, however,
maintains a very low retransmission overhead even in very lossy
environments, i.e., the symbol error rate is as high as 1/2.

5. IMPLEMENTATION
5.1 Platform

We have implemented ©ACK based on the Sora software radio
platform [18]. To fully support ©ACK, we extended Sora in follow-
ing two ways:

RF front-end Multi-radio RAB

Sora RCB

Figure 6: Multiradio RAB for Sora. It can connect to up to four