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ABSTRACT 

Urban computing for city planning is one of the most 

significant applications in Ubiquitous computing. In this 

paper we detect flawed urban planning using the GPS 

trajectories of taxicabs traveling in urban areas. The 

detected results consist of 1) pairs of regions with salient 

traffic problems and 2) the linking structure as well as 

correlation among them. These results can evaluate the 

effectiveness of the carried out planning, such as a newly 

built road and subway lines in a city, and remind city 

planners of a problem that has not been recognized when 

they conceive future plans. We conduct our method using 

the trajectories generated by 30,000 taxis from March to 

May in 2009 and 2010 in Beijing, and evaluate our results 

with the real urban planning of Beijing. 
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INTRODUCTION 

Ubiquitous computing has largely been applied either in 

relatively homogeneous rural areas, where researchers have 

added sensors in places such as forests and glaciers, or in 

small-scale, well-defined patches of the built environment, 

such as smart houses or rooms [7]. Attention has recently 

been shifting to urban areas, which are regarded as the third 

place between rural areas and houses, or the public place 

between home and work [12]. Urban areas are more 

complex and interesting spaces than the other two, as they 

are navigated both through physical movement and 

interpretations of social context. Though urban settings tend 

to be far more dynamic in terms of what and who would 

participate in an application or system, urban spaces also 

bring us a lot of opportunities in exploring novel systems 

and applications facilitating people’s life and serving the 

city. Emerging in this circumstance, urban computing 

comes up with the new ubiquitous computing concept 

where every sensor, person, vehicle, building, and street in 

urban areas can be used as a computing component for 

serving the people and the city.  

Urban computing for urban planning is one of the most 

significant application scenarios in the urban spaces [7][12]. 

The advance of human civilization has given rise to the 

need for urban planning that integrates land use planning 

and transportation planning to improve the built, economic 

and social environments of communities. Urbanization is 

increasing at a faster pace than ever in many developing 

countries, while some modern cities in developed countries 

are engaging in urban reconstruction, renewal, and sub-

urbanization. Therefore, we need innovative technologies 

that can automatically and unobtrusively sense urban 

dynamics and provide crucial information to urban planners. 

Naturally, big cities faced with the challenges to urban 

planning usually have a large number of taxicabs traversing 

in urban areas. For example, the numbers of taxis in Mexico 

City, Beijing, Tokyo and Seoul are all over 60,000 

respectively. Meanwhile, there are approximated 30 cities, 

including New York City, Shanghai, Hong Kong, London, 

and Paris that have more than 10,000 licensed taxis 

individually. To enable efficient taxi dispatch and 

monitoring, taxis are usually equipped with GPS sensors, 

which enable them to report on their location to a 

centralized server at regular intervals, e.g., 1~2 minutes. In 

other words, a lot of GPS-equipped taxis already exist in 

major cities around the world, generating huge volumes of 

trajectories everyday [5][6][15]. 

Essentially, GPS-equipped taxicabs can be viewed as 

ubiquitous mobile sensors constantly probing a city’s 

rhythm and pulse, such as traffic flows on road surfaces and 

city-wide travel patterns of people. For instance, Beijing 

has approximately 67,000 licensed taxis generating over 1.2 

million occupied trips per day (in terms of the recorded taxi 

trajectories). Supposing each taxi transports 1.2 passengers 

per trip on average, there are about 1.44 million personal 

trips generated by these taxis in Beijing per day. This figure 

is 4.2% of the total personal trips (35 million) created by all 

kinds of transportations including buses, subways, taxis and 

private vehicles within the Six Ring Road of Beijing City 

(reported by Beijing transportation bureau July 2010). 4.2 

percent is a significant sample reflecting people’s travel in 
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the city. Meanwhile, the traffic flow on a road can be well 

modeled by the mobility of taxis traveling on the road 

together with a large number of private vehicles and buses. 

In this paper we aim to detect the flawed and less effective 

urban planning in a city according to the GPS trajectories of 

taxicabs recorded in a certain period, such as 3 months. 

There are two main challenges involved in this work: 1) 

Modeling the city-wide traffic and travel of people using 

taxi trajectories; 2) Embodying the flawed planning to 

reveal the relationship among these flaws. In our method, 

we first partition a city into some disjoint regions using 

major roads. Then, we project the taxi trajectories of each 

day into these regions and formulate transitions between 

each pair of regions. Later, we detect the salient region 

pairs having heavy traffic beyond the capacity of the 

existing connections between them. The region pairs 

frequently detected across many days will be regarded as 

the flawed planning. At the same time, we associate the 

individual flaws into a series of graphs reflecting the global 

defects of the urban planning according to the spatial and 

temporal properties of these flaws. The contribution of this 

report lies in three aspects: 

 Traffic modeling: We model the city-wide traffic of 

taxis of each day using a matrix of regions. Each item 

in the matrix consists of a set of features representing 

the effectiveness of the connection between two 

different regions. The values of these features are 

derived from the taxi traces passing the two regions. 

 Flaw detection: We seek the possibly flawed region 

pairs (called a skyline) from the matrix of each day 

using a skyline operator. We associate the skylines (of 

a day) into some graphs (representing global flawed 

planning), and mine the frequent sub-graph patterns 

from the graphs across a certain number of days. The 

mined results consist of both flawed planning and the 

relationship between them. 

 Real evaluation: We evaluate our method using a 

series of large-scale real GPS trajectories generated by 

30,000 taxis in Beijing from March to May in 2009 

and 2010. As a result, we find strong data from the 

real urban planning of Beijing, justifying the 

effectiveness of our method. 

The rest of the paper is organized as follows. Section 2 

overviews the problem and our solution. Section 3 presents 

the process for modeling city-wide traffic. Section 4 

describes the detection of the flawed planning. In Section 5 

we evaluate our work. After summarizing the related work 

in Section 6, we draw our conclusions in Section 7.  

OVERVIEW 

Definition 1 (Taxi Trajectory): A taxi trajectory    is a 

sequence of time-ordered GPS points,            
  , where each point consists of a geospatial coordinate set, 

a timestamp, and a state of occupation (with passengers or 

not), e. g.,                 . 

Definition 2. (Region): The map of a city is partitioned into 

disjoint regions ( ) bounded by high level (i.e. major) roads. 

Each region may consist of a number of road segments and 

lands. Refer to Figure 2 for an example. 

Definition 3. (Transition): Given a trajectory       
       , a directional transition        is generated 

between    and    if    is the first point (from   ) falling in 

region    and    is the first point (from   ) falling in region 

   (   ). A transition   is associated with a leaving time 

(    ), an arriving time (    ), and a travel distance   and 

speed   calculated according to Equation 1 and 2. 

         ∑                   ,       (1) 

                     ⁄ ,                  (2) 

              denotes the Euclidian distance between two 

consecutive GPS points. 

Figure 1 presents the architecture of our method, which 

consists of two major components: 1) modeling city-wide 

traffic based on taxi trajectories and 2) detecting flawed 

planning. We will detail each step of these two components 

in the following two sections respectively. 

 

Figure 1. The architecture of our method 

MODELING CITY-WIDE TRAFFIC 

This component first partitions a map of a city into some 

regions, and then builds a set of region matrices that 

correspond to different time of day and day of week.  

Map Partition 

As shown in Figure 2, we partition the urban area of Beijing 

into disjoint regions using major roads (like the red and 

blue roads). Each region stands for a community including 

some neighborhoods and low-level road segments (denoted 

as gray polylines). The partition method carries more 

semantic meanings of people’s travel than using a uniform 

grid-based partition. At the same time, we conduct our 

research based on regions instead of road segments for two 

reasons. First, traffic problems appearing on roads are just 

observations, while regions carrying rich knowledge about 

people’s living and travel are the source of the problem. 

Second, flaws represented by regions contribute to both 

land use and transportation planning. However, the road 

segments can only help transportation planning. For 

instance, if the connection between two regions are 

determined to be less-effective, the possible solution for 

fixing this flaw could be building new roads between them 

(pertaining to transportation planning), or adding some 

local businesses, e.g., shopping malls, in the region 

outsourcing people (i.e., land use planning).  

Taxi 

Trajectories
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Map Database
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Here, we employ Connected Components Labeling (an 

image segment method) [11] to segment a map into regions 

effectively and efficiently, as the problem of subdivisions in 

a polygonal region is NP-complete.  

 
Figure 2. Heat map of the partitioned regions in Beijing 

Building Region Matrix 

This process is comprised of the following three steps. 

1) Temporal partition: In this step, we first partition the taxi 

trajectories into two parts according to workday and rest 

day (consisting of weekends and public holidays) since 

people’s travel on these two types of days are different. 

Then, we further segment time of day into some slots in 

terms of the traffic conditions in the city.  

First, in the same time slot, the traffic conditions and the 

semantic meaning of people’s travel are similar. For 

example, Figure 3 A) shows the average travel speed of all 

the taxis (with passengers) in Beijing at different times of 

workdays. The average travel speed of the entire city of 

Beijing as defined previously in time slot 7:00-10:30am is 

lower than that of the entire day. This matches the generally 

accepted assumption that people are going to work during 

the morning rush hours. Likewise, the time slot of 4pm-

7:30pm corresponds to the evening rushing hour in the 

workday when people go home. Second, if we do not 

respectively explore the trajectories from different time 

slots, we will miss some actually flawed planning as the 

detected results could be dominated by some regions only 

having heavy traffic in a particular time slot. Third, the time 

partition enables us to explore the temporal relations 

between the results detected from continuous time slots, 

helping us deeply understand the flaws. We will further 

justify the temporal partition later. 

  
 A) Workday                                     B) Rest day 

Figure 3. Traffic conditions in Bejing changing over time 

According to Figure 3, we obtain the time slots shown in 

Table 1. Later, we build a region matrix for each time slot 

of each day (refer to the following paragraphs). 

Time Work day Rest day 

Slot 1 7:00am-10:30am 9:00am-12:30pm 

Slot 2 10:30am-4:00pm 12:30pm-7:30pm 

Slot 3 4:00pm-7:30pm 7:30pm-9:00am 

Slot 4 7:30pm-7:00am  

Table 1. Time partition for workdays and rest days 

2) Transition construction: We pick out the effective trips 

with passengers from taxi trajectories in terms of the 

occupancy state associated with a sample (a weight sensor 

is embedded in a taxi to detect whether there are additional 

persons beside a driver in the taxi). So, an effective taxi 

trajectory represents a passenger’s trip. Then, we project 

these trajectories onto the map and construct transitions 

between two regions according to definition 3. As 

demonstrated in Figure 4, two trajectories,    and    , 

respectively traversing       and         , formulate 

four transitions:      ,      ,      , and      , 

denoted as the blue arrows. Note that, a trajectory 

discontinuously traversing two regions, such as       in 

   , still formulate a transition between the two regions. 

The distance   of this transition is ∑                   , 

and the travel speed is approximately              . 

 

Figure 4. Transfer a trajectory into transitions 

Definition 4 (Region Pair). A region pair is a pair of 

regions          having a set of transitions (between 

them). By aggregating the transitions, each region pair is 

associated with the following three features:  1) volume of 

traffic between these two regions, i.e., the count of 

transitions    , and 2) expectation of these transitions’ 

speeds     , and 3) ratio   between the expectation of the 

actual travel distance      and the Euclidian distance 

between the centroids of two regions,                . 

     
∑         

   
,                       (3) 

     
∑         

   
,                      (4) 

                     ⁄ ,    (5) 

Where   is the collection of transitions between    and    .  

Figure 5 plots the region pairs from a time slot 7-10:30am 

in a workday in the              space. A black point 

represents a region pair. The projections of these region 

pairs on XZ and YZ spaces are also visualized with green 

and blue plots. Note that the value of a given   could be 

smaller than 1 as taxis might cross two adjacent regions 

with a distance shorter than that between the two centroids. 

Some might be concerned with the transitions generated by 

the trajectories discontinuously passing two regions, e.g., 
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     traveling from    to    in Figure 4, in which a taxi 

visited several other regions before reaching   . We can 

analyze this problem from two perspectives. First, the 

connectivity of the two regions should be represented by all 

the possible routes between them instead of the fast (or 

direct) transitions. Sometimes, reaching a region through a 

roundabout route passing other regions is also a good 

choice to avoid traffic jams. Second, these discontinuous 

transitions do not bias the       and  . If there is an 

effective shortcut between two regions (e.g.,    ), most 

taxis intending to travel from   to    will still take the 

shortcut instead of the roundabout route. That is, the mount 

of discontinuous travel is only a small portion in the 

transition set. As a result,      and   are still close to the 

real travel speed and ratio that people could travel from   to 

  . On the contrary, if all the taxis have to reach    by 

passing additional regions, e.g.,   , that means the route 

directly connecting    and    is not very effective. 

 

Figure 5. Distribution of region pairs in the workday 

3) Build region matrix: We formulate a matrix of regions  , 

as demonstrated in Figure 6, for each time slot in each day. 

An item in the matrix is a tuple,                  , 

denoting the number of transitions, expectation of travel 

speed, and   between region    and   . Supposing there are 

  workdays and   rest days,       matrices will be built 

if using the scheme of the time slots shown in Table 1. 

 
Figure 6. Region matrix and the properties of each item 

DETECTING FLAWED URBAN PLANNING 

We first detects the skyline of each region matrix in terms 

of the values of each tuple. Then, we mine graph patterns 

representing flawed planning from these skylines. 

Skyline Detection 

             will model the connectivity and the traffic 

between two regions. Specifically,   captures the geometric 

property of the connection between a pair of regions. A 

region pair with a big   means people have to take a long 

detour traveling from one region to the other.      and     
represent the features of traffic. A big     and small      

imply heavy traffic carried by the existing routes between 

two regions. In this step, we aim to retrieve the region pairs 

with a big  , small      and large    , which indicate 

flawed urban planning. 

We first select the region pairs having the number of 

transitions above the average from a matrix  . Then, we 

find the skyline set   from these selected region pairs 

according to      and  , using skyline operator [1].  

Definition 5. (Skyline): The skyline is defined as those 

points which are not dominated by any other point. A point 

dominates another point if it is as good or better in all 

dimensions and better in at least one dimension. 

Specifically, in our application, each        is not 

dominated by others,              , in terms of      

and  . That is, there is no region pair        having a 

lower speed and bigger   than       . Figure 7 A) depicts 

an example of the skyline set   using a blue dash line where 

a point denotes a region pair. Clearly, no blank points 

simultaneously have a smaller      and bigger   than the 

points from the  .  

 

Figure 7. An example of skyline detection 

Figure 7 B) shows the process for seeking the skyline. For 

example, point 1 does not pertain to the skyline because it is 

dominated by point 2. However, point 2 does not dominate 

point 3 as point 3 has a bigger   than point 2. Likewise, 

point 5 and 8 are detected as the skyline while point 4, 6, 

and 7 are dominated by the skyline. 

The detected skyline is comprised of three kinds of region 

pairs. 1) A region pair with a very small      and  , 

illustrated in Figure 8 A). This means two regions are 

connected with some direct routes while the capacity of 

these routes are not sufficient as compared to the existing 

traffic between the two regions. The small      and   also 

indicate that people have no other choice (even if it is a 

detour) but to take these ineffective routes for traveling 

between the two regions. Otherwise, the   will become 

bigger. 2) A region pair with a small      and big  , 

shown in Figure 8 B). This denotes that people have to take 

detours for travelling between two regions while these 
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detours suffer from heavy traffic leading to a slow speed. 

This is the worst case among these three situations. 3) A 

region pair with a big      and big  , depicted in Figure 8 

C). These two values imply that people travel between two 

regions by taking some far detours which are fast, e.g., a 

high way. Though the speed is not slow, the long distance 

will cost people a lot of time and gas. So, the connectivity 

between such kinds of regions still has flaws.  

 
Figure 8. Three kinds of region pairs in a skyline 

Note that we focus on finding the most salient flawed urban 

planning instead of all the poor ones. Seeking the skyline 

from the region pairs with a large volume of traffic (    is 

above the average), we guarantee 1) the detected skyline is 

related to many people’s travel and 2) each (    ,  ) is 

calculated based on a large number of observations.  

Pattern Mining from Skylines 

In this step, we first build a skyline graph for each day by 

connecting the region pairs in the skylines of different time 

slots. Then, we detect the sub-graph patterns from these 

graphs using a graph pattern mining algorithm [13].  

1) Formulating skyline graphs: As demonstrated in Figure 9, 

there is a skyline in each time slot (denoted as a row) of 

each day (represented by a column). Two region pairs from 

two consecutive slots are connected if they are spatially 

close to each other. For example, in Day 1 we connect the 

region pair          from slot 1 to          from slot 2, 

because these two region pairs share the same node    and 

appear in the consecutive time slots of the same day. 

Likewise,          to          from these two slots are 

connected. However,          from slot 1 and          

from slot 3 cannot be connected as they are not temporally 

close. The built skyline graphs are shown in the fourth 

column. Note that, there could be multiple isolated graphs 

pertaining to a day like day 2. 

2) Mining frequent sub-graph patterns: We mine the 

frequent sub-graph patterns from the skyline graphs   

across a certain number of days for two reasons. One is to 

avoid any false alteration. Sometimes, a region pair with 

effective connectivity could be detected as a part of skyline 

because of some anomaly events, such as traffic accidents. 

The other is to provide a deeper understanding of the 

flawed planning. By associating individual region pairs, we 

can find the causality and relation among these regions, 

which is more valuable for understanding how a problem is 

derived. The bottom of Figure 9 shows the mined skyline 

patterns using different supports. Here, the support of a sub-

graph pattern   is calculated as Equation 6, where   is a 

skyline graph containing the sub-graph    and   is the 

collection of skyline graphs across days. The denominator 

denotes the number of days that the dataset across. 

           
             

           
,              (6) 

For instance, the support of          is 1 since it appears 

in the skyline graphs of all three days while that of     
     is 2/3 as it only appears in Day 2 and Day 3. Given a 

threshold   we can choose the patterns with the support   . 

These patterns represent the flawed urban planning which is 

salient and appears frequently. 

 
Figure 9. Mining frequent skyline patterns 

Besides, we mine the association rules among these patterns 

according to Equation 7 and 8 where         denotes the 

number of days that    and    co-occurred and      means 

the number of days having   . Two patterns formulate an 

association rule, denoted as      , if the support of 

        and its confidence    (a given threshold). 

                
       

           
 ,         (7) 

                   
       

    
.           (8)  

For example, as depicted in Figure 9,               
     whose support is 2/3 and confidence is 2/3, while the 

confidence of                   is 1.  

The mined association rules can consist of over 2 patterns. 

For instance,         , i. e.,    has a very high 

probability (conditioned by   and  ) to occur when    and 

   appear simultaneously. Meanwhile, these association 

rules may not be geospatially close to each other, hence 

revealing the causality and correlation between the flawed 

planning that seems to have no relationship in the geo-

spaces. The experiments include more examples. 

EVALUATION 

Settings 

In this section, we carry out our method with a large-scale 

taxi trajectory dataset generated in Beijing in the past two 

years, and evaluate the detected results based on the real 

urban planning published by the government of Beijing. 
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Taxi trajectories: Table 2 shows the properties of the two 

trajectory datasets that we used for evaluating our method. 

We select the data from the same time span within a year in 

case people have different travel patterns in different 

seasons. The latter is slightly larger and denser as some 

expired taxis are replaced by new taxis with better facilities.  

Datasets 2009. 3-5 2010.3-6 

Number of taxis 29,286 30,121 

Effective days 89 116 

Number of 

points 

Total 679M 1,730M 

Per taxi/day 306 528 

Distance 

(KM) 

Total 310M 600M 

Per taxi/day 128 171 

Average sampling rate (s) 100 74 

Ave. dist. between two points (m) 457 349 

Table 2. Two datasets of taxi trajectories used for evaluation 

Map data: We use the road network data of Beijing, which 

has 106,579 road vertices and 141,380 road segments. We 

pick out 25,262 major road segments with level 0, 1, and 2 

(0 is the highest level representing highways, 6 is the lowest 

denoting small streets) to partition the urban area of Beijing 

into some regions. As a result, we obtain 444 regions.  

We verify the detected flaws in the following two ways: 

1) We select some urban planning, such as new subway 

lines and roads, which has been implemented for use 

between the times of the two datasets, and study whether 

the carried out planning reduces the flaws existing in the 

former dataset. 

2) We check if some flaws that have been detected in both 

two datasets by our method embodied in the future urban 

planning of Beijing (i. e., the problem of these regions has 

been recognized by the city planner).  

We compare our approach with a baseline method which 

retrieves the top hottest regions in Beijing according to the 

following metric  , where   denotes the road segments 

falling in the region   . 

  
                           

       ∑            
;            (9) 

This metric represents the density of taxis sending people to 

a region in a unit time slot (hour). Here, the total length of 

road (in a region) makes more sense beyond the area size of 

the region since the length (and capacity) of roads reflect 

the real spaces that vehicles can travel. Meanwhile, we do 

not differentiate the capacities of the road segments in a 

region any longer as all of them are local streets. We will 

show the heat maps of Beijing in terms of this metric later.  

Results 

Figure 10 and 11 present the distributions and trends of 

             changing over time of day in the urban 

area of Beijing on workdays and rest days respectively. The 

value shown in each figure is an average result across a 

number of days (from the dataset of 2010). The trends and 

distributions of 2009 are similar to those of 2010, though 

the exact values have minor differences. So, we do not 

show them in our paper. The two sets of figures present two 

aspects of information. First, they demonstrate the clear 

differences (of distributions and trends) between workdays 

and rest days and among different time slots, justifying the 

importance of temporal partition. Second, the three features 

(we used to detect flawed planning) well reflect on people’s 

mobility patterns and traffic at a city-wide level. A lot of 

commonsense knowledge and interesting stories can be 

found in these figures, validating their effectiveness.  

For example, as illustrated in Figure 10 A) and Figure 11 

A), the morning rush hour on the rest days comes 2 hours 

later than workdays, which denotes that on average people 

start outdoor activities on the rest days (in Beijing) 2 hours 

later than on the workdays. However, the rest days and 

work days have the same evening rush hours at 6pm. This 

denotes people always keep their time for dinner which is 

important to them no matter the day of the week and when 

they get up. Meanwhile, workdays have a slightly heavy 

traffic in the morning rush hours than in the evening one; 

on the contrary, the rest days have an opposite result. Figure 

10 C) contains two clear peaks (at 10am and 5pm) where 

the number of region pairs with a   greater than 1.2 

increases rapidly, while those where  <1 remain stable. 

This denotes that more taxi drivers have to take a slight 

detour to reach a destination quickly during rush hours 

instead of choosing the shortest path as they can at other 

times (since the direct paths become crowded). That could 

mean the taxi fare increases during rush hours. 

 
2009 2010 

Workdays 

Average # 

of region 

pairs in a 

skyline 

Time slot 1 7.65 9.09 

Time slot2 7.40 7.05 

Time slot 3 7.35 7.29 

Time slot4 6.70 7.82 

Skyline 

graphs 

# of nodes 12.93 16.18 

# of links 8.40 10.81 

 

Rest days 

Average # 

of region 

pairs in a 

skyline 

Time slot 1 6.68 7.97 

Time slot2 6.68 7.66 

Time slot 3 6.66 7.37 

Skyline 

graphs 

# of nodes 11.91 14.49 

# of links 7.05 8.86 

Table 3. Properties of the detected skylines and skyline graphs 

Table 3 shows the properties of the skylines detected from 

each time slot and the graph formulated for a day. The 

values are averages across a number of days. First, the size 

of the skylines and graphs becomes slightly larger in 2010 

as compared to 2009. For instance, the skyline of time slot 

1 (7am-10:30am) in a workday contains on average 7.65 

region pairs in 2009 while this number reaches 9.09 in 2010. 

At the same time, the number of nodes, i.e., regions (refer 

to Figure 9 for an example) in a skyline graph also 

increased from 12.93 (in 2009) to 16.18 (in 2010) in the 

workdays. These results indicate that the traffic conditions 

in Beijing become worse in 2010 than 2009 (the figures of 

these two years are comparable since the number of taxis in 

these two years are similar and we have divided the counts 

by days, i.e., irrelevant to the period of time). Second, the 

skylines of workday have a bigger number of region pairs 



 

than the rest days, leading to a larger size of skyline graph 

in workday as well. This trend occurs in both years, 

denoting that people’s mobility is relatively more focused 

on rest days (shopping and entertainment areas are more 

likely to be the destinations) while they would travel to a 

variety of locations on workdays for more purposes. 

               
A)  E(V)                                                                     B)  |S|                                                                      C)    

Figure 10. Distribution and trend of workday changing over time of day (in urban areas of Beijing): In these figures Y axis is the 

number of region pairs. For instance, as shown in Figure 10 A), at 10am on work days, there are about 4,000 (4k) region pairs whose 

E(v) 20km/h and 6k regions pairs with a 20km/h      30km/h.  

               
A)  E(V)                                                                     B)  |S|                                                                           C)     

Figure 11. Distribution and trend of the rest days changing over time of day (in urban areas of Beijing): In these figures Y axis is the 

number of region pairs. For instance, as demonstrated in Figure 11 B), at 6pm on rest days, there are approximately 6k region pairs whose 

4 |S|<10 and 3k region pairs having 10 |S|<20. 

Table 4 presents the number of trips (with passengers) that 

a taxi generated in different time slots in 2009 and 2010 

respectively. Clearly, the numbers of 2010 become smaller 

than those of 2009, which means taxi drivers took fewer 

passengers than before. The major reason causing this is 

that the average travel speed of a taxi sending a passenger 

to a destination becomes lower, increasing the travel time of 

a single trip (as shown in the two bottom rows of Table 4). 

In short, the traffic conditions of Beijing become worse in 

2010 (compared with 2009). It is not difficult to understand 

this result given that the number of auto mobiles in Beijing 

has reached 4.8 million with a rapid growth of 800,000 

from 2009 to 2010, reported by Beijing Traffic 

Management Bureau. At the same time, the number of 

residents in Beijing exceeded 19 million in 2010 with a 

growth of over 560,000 from 2009. Moreover, as Beijing 

has been becoming an advanced city, a significant number 

of flowing population (e.g., 184 million tourists, i.e., over 

0.5 million per day) have traveled to Beijing in 2010, 

generating addition traffic. The other reason is that some 

newly built transportation systems, such as subway lines, 

change the transportation modes of some people who took 

taxis previously in some regions. Also, a few people 

traveling by taxis before bought their own private cars in 

2010. But, the number of people expecting to take a taxi 

may not decrease in Beijing as the added population could 

be larger than the number reduced by the second reason. 

  Workday Rest days 

Slots 1 2 3 4 1 2 3 

Trip 
2009 3.1  4.6  3.2  3.8  2.0  5.0  4.3  

2010 2.7  4.4  2.9  3.7  1.7  4.5  3.9  

Speed 

km/h 

2009 29.6

4  

34.2

6  

29.1

8  

42.3

7  

33.4

5  

32.8

4  

41.7

6  2010 28.0

0  

32.7

2  

28.3

4  

40.8

0  

32.9

2  

32.0

6  

41.0

7  
Table 4. Number of trips per taxi per day and average speed: 
The actual number of trips could be slightly bigger as we remove 

some trips with sensor signal error. Both years have a similar 

portion of such data, hence the gap is correct. 

The indication derived from Table 3 and 4 is also embodied 

by the heat maps of Beijing shown in Figure 12, where the 

color of most regions becomes shallower in 2010 than 2009, 

especially in some hot areas. This denotes that the number 

of passengers that reach a region in a unit time decreased. 

Actually, the transportation and land use of these hot 

regions do not change while the population of Beijing 

increased in 2010. In short, the number of people expecting 

to take a taxi should increase in these areas. The only 

reason leading to this result is that the travel speed of taxis 

in these regions decreased. However, a few regions, like 

Wangjing area located in the East-West corner of the 4
th

 

Ring Road, have attracted more people with its recent 

development (many companies, shopping malls and 

restaurants have been built here), becoming deeper in color. 

However, the hot regions may not be the defects in urban 

planning though very likely to be, while some regions 
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which are not that hot could have flaws. Additionally, the 

heat map does not reveal the relation between the flawed 

regions. To address these issues, Figure 13 presents the 

flawed urban planning (frequent sub-graph patterns) 

determined by our method in 2009 and 2010 respectively. 

Clearly, there are some regions, which are not very hot, that 

have been detected as flawed planning (we will evaluate 

these regions later). By comparing these two sets of figures, 

we observe the following two aspects: 

                      

                      
                        A)  7:00am-10:30am                                      B) 10:30-4:00pm                                       C) 4:00pm-7:30pm 

Figure 12. Heat maps of Beijing of the same workday from different two years 2009/5/12 and 2010/5/12 according the  : The depth 

of color filling a region stands for the number of people reaching a region by taxis in an hour (refer to Equation 9 for details). 

            
 

         

Figure 13. The flawed urban planning detected based on the taxi trajectories of 2009 and 2010 in the workdays and rest days: The 

color of a region denotes the frequency that a region has been detected as a flaw (the deeper means more frequent), and the arrows 

represent the direction of transition between two regions. The first row shows the results of 2009 and the second row stands for 2010. 

Figures in the left column pertain to workdays and the other column belongs to the rest days. The results are frequent sub-graph patterns 

with a support  0.06. Clearly, a hot region shown in Figure 12 might not be the region with frequent traffic problem, vice versa.  
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A) New roads built around Wangjing area                  B) The launch of the Subway line 4                              C) The central part of Beijing 

Figure 14 Illustration on the flawed planning that appeared in 2009 while disappearing in 2010 

1) Some flawed planning occurring in 2009 disappeared in 

2010. As shown in Figure 14 A), some region graphs like 

         disappeared in 2010 because of the two newly 

built roads (depicted as the yellow lines). These two roads 

were opened between the times of the two datasets. Before 

the launch of Nanhuqu west road in August 2009, people 

living in the areas above the 4
th

 ring road in this figure had 

to enter the 4
th

 Ring Road (a high way) using the only 

entrance located in    . Now, a significant portion of people 

can reach the 4
th

 Ring Road by taking the Nanhuqu west 

road directly; hence not necessarily travel to     by passing 

  . Similarly, regions like          disappeared in 

Wangjing area with the launch of the Wangjing west road, 

as people have additional ways for traveling among them. 

Other examples demonstrated in Figure 14 B) and C) reveal 

the effect of subway line 4 (launched in September 2009) 

on urban planning in Beijing. Before the launch,          

shown in Figure 14 B) had traffic problems according to the 

results of our method. However, with the subway line 4 

more people can reach     by taking subway systems with a 

one-stop transfer (e.g., starting at subway station    in line 

10 and ending at    or    in line 4). This transport mode is 

faster and cheaper than by a taxi. Similar explanations can 

also be applied to other flawed urban planning having 

disappeared in Figure 14 B). Figure 14 C) illustrates two 

interesting stories, reflecting on how the subway line 4 

affects the traffic of the central part of Beijing, where     

belongs to central business district and regions within the 

subway line 2 contains a lot of famous tourist attractions, 

such as Houhai bar street along Houhai lake in     and 

Wangfujing pedestrian street in    . Previous, many people 

went to Houhai bar street from     by taxis after finishing 

their business. Though there is a subway station   on line 2 

close to    , most bars are located in the west side of the 

lake, leading to a 20-minute walk distance to a traveler. 

After the launch of the subway line 4, there is a subway 

station    with a distance smaller than 500 meters to the bar 

street. Consequently, people have additional choices for 

their trips. A similar story can be found in the disappeared 

flaw         , where people travel to     for diner after 

visiting    while most restaurants are located close to    .  

2) The number of regions having defects increased in 2010 

beyond 2009 and some flaws occurring in 2009 still exist. 

Figure 15 demonstrates some flawed planning (represented 

by frequent sub-graph patterns) that still exists in 2010. The 

blue polyline shown in Figure 15 A) is the subway line 15 

(which was partially launched in Dec. 2010 after the time of 

the trajectory data), and the green one stands for line 14 

(which is still under construction). The planning of these 

two subway lines denotes that the urban planner has 

recognized the problem existing in the regions, justifying 

the validity of the results generated using our method. 

Furthermore, we specify the linking structure between these 

regions. For example, region   ,    and     formulate a 

graph pattern, which means that they often appear together. 

Such kind of graph patterns reveals the relation between 

individual flawed regions and presents a comprehensive 

view on the defects of a plan. So, when designing a new 

plan, a city planner cannot only discover regions with 

problems but also understand the flaws systematically.  

 
Figure 15. Subway Lines 14 and 15 and related existing flaws  

From the result presented in Figure 13, we also find some 

association rules between the detected graph patterns. 

Figure 16 illustrates an example,               
    ,         ] with support=0.05 and confidence=0.7. In 

short,          and          have a probability of 0.7 to 

appear if          occurs. This pattern suggests that many 

people leaving     are heading to regions     and     while    

becomes the bottle-neck of these transitions. Such kind of 

implied problem is not easy to find (without using our 

method), as sometimes the detected regions may not be 

geospatially close. For instance,     is not close to    , and 

    is not adjacent to   . Due to the limited spaces, we will 

show more interesting results and a live demo during the 

presentation at the conference.  
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Figure 16. Association rules mined from the data of 2010 

RELATED WORK 

Mining Taxi Trajectories 

A significant number of published documents have 

presented work aiming to mine the trajectories of taxicabs 

since the trajectory data has recently become widely 

available. They [5][10] studied taxi drivers’ pick-up 

behavior in creating higher profit (e.g., how to easily find 

passengers) by analyzing fleet trajectories. Paper [16] 

presents some probabilistic models predicting a driver's 

destination and route based on historical GPS trajectories. 

Paper [6] estimates the real-time traffic flows on some road 

segments in terms of the recently received taxi trajectories. 

Yuan et al. [14][15] learn the practical, driving path to a 

destination from taxi trajectories, considering that taxi 

drivers are experienced drivers. Different from the above-

mentioned work, we mine taxi trajectories for supporting 

urban planning instead of for an end user. We are the first 

team to carry out such studies for this purpose. 

Urban Computing 

The advances of ubiquitous computing technology have 

brought considerable attention to urban computing in recent 

years [7][12]. Most literature discusses the urban computing 

from the perspective of social computing in the urban area, 

e.g., estimating the similarity between users in terms of 

their location histories [2][3][9], extracting social structures 

from mobile phone data [4], enabling friend and location 

recommenders in the real world [17][18], and studying the 

influence of pervasive systems on people in urban spaces 

[8]. Different from these studies, we explore the urban 

computing from the perspective of urban planning, sensing 

people’s mobility in a city unobtrusively with taxis and 

detect flaws with implicit engagement of citizens.  

CONCLUSION 

In this paper, we detect the flaws in the existing urban 

planning of a city using the GPS trajectories of taxis 

traveling in the urban areas. The detected results are 

comprised of two sets of findings. One is the frequent sub-

graph patterns consisting of region pairs with salient traffic 

problems and the linking structure among these regions. 

The other is the association relations between these patterns. 

These results can first evaluate the effectiveness of the 

carried urban planning, and second provide a 

comprehensive view on the existing problem for decision-

making when city planners conceive future plans. We 

executed our method based on real data generated by 

30,000 taxis in Beijing in 2009 and 2010, and evaluated the 

validity of our results using real urban planning of Beijing, 

including the newly built subway lines and roads and city 

projects that are still under construction. Some interesting 

discoveries are revealed from the data as well. 

In the future, we might analyze how the detected flaws are 

derived from the existing urban planning by 1) studying the 

geographic features of a region, such as the road segments 

and points of interests, and 2) the purpose of people’s travel, 

e.g., for shopping, sports, work etc. 
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