Unification of Theories: a Challenge for
Computing Science

Tony Hoare
Oxford University Computing Laboratory
Wolfson Building, Parks Road, Oxford OX1 3QD

November 12, 1999

Abstract

Unification of theorics is the long-standing goal of the natural sci-
cnces; and modern physics offers a spectacular paradigm of its achicve-
ment. The structure of modern mathematics has also been determined
by its great unifying theorics - topology, algebra and the like. The
same ideals and goals arc shared by resecarchers and students of theo-
retical computing science.

Unification

The study of science has long been split into many branches; and within
each branch there are many specialisations. Each specialisation concentrates
on some narrowly defined natural process, and hopes to discover the laws
which govern it. In the carly days of a new branch of science, these laws
arc very specific to the outcome of a particular experiment; but as the range
of experiment broadens, a collection of laws are found to be special cases
of some more general theory; and in turn these theories are comprchended
within some theory of yet greater gencrality. This constant tendency in
science towards unifying theories has as ultimate goal the discovery of a clear
and convincing explanation of the entire working of the natural universe.

A classical example of a unifying theory is Newton’s theory of gravita-
tion, which assimilates the motion of the moon or plancts in the sky with

the trajectories of apples or cannonballs falling to carth. Unification often
begins more simply than that, with just a humble classification: Mendeleev’s
periodic table of elements classified them by their chemical properties; and
these were only later explained by the unifying theory of atomic valences. A
unifying theory is usually complementary to the theories that it links, and
does not seck to replace them. Physicists still hope to find a Grand Unified
Theory, which underlics the four known fundamental forces of nature; when
found, this will further reinforce our understanding of the separate theories.
It certainly will not replace them by abolishing the forces or repealing the
laws that govern them.

The drive towards unification of theories that has been so successful in
science has achieved cqual suceess in revealing the clear structure of modern
mathematics. For example, topology brings order to the study of continuity
in all the many forms and applications discovered by analysis. Algebra classi-
fies and generalises the many properties shared by familiar number systems,
and succinctly codifies their differences. Logic and set theory formalise the
common principles that govern mathematical reasoning in all branches of the
subject. Category theory makes yet further abstraction from logic, set theory,
algebra and topology. Computing science is a new subject, and we have not
vet achieved the unification of theories that should support a proper under-
standing of its structurc. In meeting this challenge, we may find inspiration
and guidance even from quite superficial analogics with better established
branches of knowledge.

A proposed unification of theories occasionally receives spectacular con-
firmation and reward by the prediction and subscequent discovery of new
plancts, of new clements or of new particles. In the timespan of decades
and centuries, the resulting improvement of understanding may lead to new
branches ol technology, with new processes and products contributing to the
health and prosperity of mankind. But at the start of the rescarch and on
initial study of its results, such benefits are purely speculative, and are best
left unspoken. The real driving force for the scientist is wonderment about
the complexity of the world we live in, and the hope that it can be described
simply enough for us to understand, and clegantly enough to admire and
enjoy. Computing scientists need no excuse to indulge and cultivate their
genuine curiosity about the complex world of computers, and the languages
in which their programs are written.

In satisfying this curiosity, we face the challenge of building a coherent

structure for the intellectual discipline of computing science, and in particular
for the theory of programming. Such a comprehensive theory must include a
convincing approach to the study of the range of languages in which computer
programs may be expressed. It must introduce basic concepts and proper-
tics which arc common to the whole range of programming methods and
languages. Then it must deal separately with the additions and variations
which arce particular to specific groups of related programming languages.
The aim throughout should be to treat cach aspect and feature in the sim-
plest possible fashion and in isolation from all the other features with which
it may be combined or confused. Just as the study of chemical molecules is
based upon their constituent atoms, the study of complex programming lan-
guages should be based on a prior analysis of their constituent features. This
is a prerequisite to understanding, reducing and controlling the complexity
of their interactions.

Any practical programming language must include a great many features,
together with many ad hoc compromises needed to reconcile them with ef-
ficient implementation and to maintain compatibility with many previously
relecased implementations. The construction of an effective conceptual frame-
work to understand and control the complexity of currently fashionable pro-
gramming languages is a continuing challenge and stimulus to productive
rescarch. But one must not be discouraged by the complexity of the initial
results. If progress is slow, this should be solved by more rigorous isolation
of the fundamental and more general issues. By concentrating on theory, the
pursuit of pure scicnce aims to convey a broader and deeper understanding
of the whole range of the subject, and to contribute a foundation, a structure
and an intellectual framework for [urther and more specialised studies of its
individual branches.

Paradigms

Programming languages may be classified in accordance with their basic con-
trol structures, or computational paradigm. The earliest and most widespread
paradigm is that of conventional imperative programming. Exccution of such
a language requires planned reuse of storage by assigning new valuces to its
individual locations. Examples of imperative languages are machine code,
FORTRAN, COBOL, and C. The functional programming paradigm makes
no reference to updatable storage. It specifies a function by a formula that

describes how to compute its result from its arguments. This paradigm is em-
bodied in the languages LISP, ML and Haskell. The logical paradigm specifies
the answer to a question by defining the predicates which the answer must
satisfy; scarch for an answer may involve backtracking, as in the language
PROLOG, or in more recent constraint logic languages CPL and CHIP. The
parallel programming paradigm permits a program to exploit the power of
many processing units operating concurrently and cooperating in the solu-
tion of the same problem. There are many variations of this paradigm; they
correspond to the mechanisms which arce implemented in hardware for the
conncection of separate processors, and the different kinds of channel through
which they communicate and interact with each other.

Many of the fastest computers are designed with multiple processing units
working out of a single homogencously addressed main store. In the study
of program complexity, this is known as the PRAM model; and it is finding
application in the Bulk Synchronous Paradigm, which requires occasional
global synchronisation. At a much lower level of granularity, a similar kind
of lockstep progression is standard in hardware design, and its theory is
embodied in SCCS.

The other main class of parallel programming paradigm replaces shared
storage by communication of messages, output by one process and input by
another. An early example was the actor paradigm, in which any message
output by any process could be collected at any subsequent time by any
other process, or the same one. A similar scheme underlies Linda. Most
subsequent message passing models require them to be directed through
channels, which conncct exactly two processes. In the dataflow variation,
messages which have been output by one process will be stored in the correct
scquence until the inputting process calls for them. In versions designed [or
asynchronous hardware design, the wires have no storage; so the outputting
process must undertake not to send a second message until the first has been
consumed. Finally, the most widely rescarched variant is that of fully syn-
chronised communication, where the output and input of a message occur
virtually simultaneously, as in the theories CCS, ACP, and CSP’ and the
programming language occam.

Certain language properties and features can be included or omitted from
any language, independently of its underlying paradigm. For example, non-
determinism is a property of a language by which a program leaves un-
specified the exact actions to be performed, or the exact result produced.

4

Norn-determinism tends to arise implicitly in parallel languages; but it is eas-
icr to study in isolation by mecans of some explicit choice operator, which is
independent of the language in which it is embedded.

Another capability is that of higher order programming, which allows a
program to treat other programs as data or results. It is a common feature of
a functional programming language. Timing can be introduced as a facility
for synchronising with a clock, measuring cither real or simulated time; and
hybrid systems include an clement of continuous change, perhaps modelling
an analogue computer or even the real world. A surprisingly powerful feature
in programming is probability, which permits the actions of a computer to be
selected by random choice with specified (or unspecified) probabilities. This
is widely used in simulation studices; it also promiscs to solve problems of
fault tolerance and sclf-stabilisation, particularly in distributed systems.

There are many important programming languages, practices and con-
cepts which have not yet been investigated by programming theory. These
include languages designed for more specific tasks, such as the calculation and
display of spreadsheets, the control of graphical interfaces, the genceration of
menus, or the maintenance and interrogation of large-scale data bases. Many
critical computing systems are already implemented in these languages, pos-
sibly in combination with each other or with some general purpose language.
As in other branches of engineering, it is such combination of technologies
that can present grave problems of design and maintenance. The respon-
sible engincer needs to understand the science which underlies cach of the
pure technologies, as well as that which explains the possible interactions
across their interfaces; because the interfaces provide a breeding ground for
the most elusive, costly and persistent errors. Avoidance of such errors may
be a long-term benelit from study of the common theory which underlies all
the technologies involved. There remain broad arcas of basic rescarch (o un-
derpin and unify even the existing technologies, quite apart from those that
may gain currcncy in the future.

Levels

This survey of the branches and specialisations in the science of program-
ming has classified them according to their choice of paradigm, language and
feature; this kind of classification by topic of study is characteristic of any
branch of science in its carly stages. But as our understanding matures, there

often appears an orthogonal classification, by which the same materials and
phenomena are treated by different theories, at different scales and different
levels of complexity or abstraction. The most mature branch of science is
physics, which explains the properties of matter by theories at four (or more)
levels: chromodynamics deals with the interactions of quarks, quantum the-
ory with elementary particles, nuclear physics with atoms, and molecular
dynamics with molecules. Above this, the theories of chemistry begin to di-
versify according to the choice of material studied. At each level the theory
is self-contained, and can be studied in isolation. But the most spectacular
achicvement of physics is the discovery that the theory at cach level can in
principle be fully justified by embedding it in the theory below: with the aid
of plausible definitions of its concepts, its laws arc provable at least as ap-
proximations to the underlying reality. The necessary calculations have been
checked in detail for the case of the simpler particles and atoms; and there
is no rcason to doubt the scientists’ faith in extrapolation of their results to
the cases that are too complicated for practical computation. Clarification
of the hicrarchical structure of its theories is what gives the study of physics
its pride of place among all the branches of science.

A similar hierarchy of theories is evident in mathematics, where set theory
is the basis of topology, which provides a foundation for analysis; in its turn,
analysis derives and justifies the laws of the differential calculus, which are
then applied to the solution of practical problems by engincers and scientists
from a broad range of disciplines. Fortunately, the successful application of
cach theory does not require any knowledge of its more abstract foundations.

The same multiplicity of theories can play a useful role in the understand-
ing even of a single programming paradigm. A theory at a macroscopic level
of granularity and at a high level of abstraction may be uselul for capture
and analysis of the requirements of the eventual user of a software product.
A theory at an intermediate level may help in the definition of the compo-
nents of the product itself, and the interfaces between its subassemblies and
parts. At the lowest level, a theory must fully explain the behaviour of pro-
grams written in a particular programming language. The links between all
the theories at these different levels must be thoroughly understood; without
that, it is impossible to reason with confidence that the delivered program
will meet the originally specified requirements.

Finally, even confining attention to a single theory defining a single class
of phenomenon at a single level of abstraction, there is scope for wide varia-

tion in the manner in which the theory is presented. For example, the theory
of gravitation may be presented in its original form as governing the effect of
forces acting at a distance. A more modern presentation is in terms of field
theory; and yet another uses Einsteinian geodesics. All these presentations
may be proved to be equally valid, because they are formally equivalent. A
branch of mathematics often enjoys a similar range of styles of definition.
For example, a particular topology may be defined as a family of open sets,
subject to certain conditions. Alternatively it can be specified as a closure
operation mapping any sct onto its smallest containing closed set. Or it may
be specified as a collection of neighbourhoods. Each presentation may be
suitable for a different purpose; and, because they are known to be equiva-
lent, an experienced mathematician will move cffortlessly between them as
required to solve the current problem. Understanding the relationship be-
tween the presentations ensures that the diversity is only beneficial; it is an
excellent indicator of the value and maturity of the theory itself.

A similar diversity of presentation is seen in a theory of programming,
which has to explain the meaning of the notations of a programming lan-
guage. The methods of presenting such a semantic definition may be clas-
sificd under three headings. The denotational method defines cach notation
and formula of the language as denoting some value in a mathematical do-
main which is understood independently — say as a function, or as a sct of
trajectorics, or a description of some more general kind of observation. The
algebraic style is more subtle and abstract. It does not say what programs
actually mean; but if two differently written programs happen to mean the
same thing, this can be proved from the cquations of an algebraic presenta-
tion. An operational presentation describes how a program can be executed
by a series of steps of some abstract mathematical machine. As in the hard-
ware of current general-purpose stored-program computers, the text of the
program itsclf is often taken as part of the state of the machine.

The denotational style of definition is closest to that used most normally
in mathematics, for example, to define complex numbers or matrices and op-
crations upon them. In the case of programs and other engincering products,
we can relate the definitions immediately to more or less direet observations
of the running of the program. A specification too is nothing but a description
of the observations which the customer will regard as acceptable. This gives
an cxtraordinarily simple definition of the central concept of program cor-
rectness. To be correct, a program must be just a subsct of the observations

permitted by the specification. The definition of a non-deterministic union
of two programs is equally simple — just the union of all the observations that
might be made of cither of the alternatives.

The great merit of algebra is as a powerful tool for exploring family rela-
tionships over a wide range of different theories. For example, study of the
foundations of mathematics has given denotations to a wide variety of num-
ber systems integers, reals, complex, etc. Deep distinctions are revealed in
the structure and content of cach kind of number so defined. It is only their
algebraic properties that emphasise the family likenesses across the range of
number systems. That is why we are justified in calling them all numbers,
and using the same symbols for all their arithmetic operators. There are
practical advantages too: the same theorems can be reused without proof in
all branches of mathematics which share the same axioms. And algebra is
well suited for direct use by engineers in symbolic calculation of parameters
and structure of an optimal design. Algebraic proofs by term rewriting are
the most promising way in which computers can assist the process.

The operational style of definition of a programming language is dis-
tinctive to the study of theoretical computing science, and it also plays an
essential practical role. For example, the scarch for program cfficiency and
the study of abstract complexity arc wholly dependent on counting the num-
ber of steps in program exccution. In analysing the faults of an incorrect
program, it is common to obtain information dumped from an intermediate
step of the running program; and this can be interpreted only in the light
of an understanding of an opcrational semantics. Furthermore, the existence
or at least the possibility of implementation is the best or only reason for
taking an interest in a particular set of notations, or dignifying them with
the title of a programming language.

Each of these three styles ol presentation has its distinctive advantages
for a study of the theory of programming. To combine these advantages,
the theory of programming should treat cach programming language in all
three styles, and prove that the definitions are consistent in the appropriate
scnse. The denotational definition can be given first; it provides a basis for
proof of the laws needed in the algebraic presentation. At a certain stage,
the laws are sufficiently powerful to derive and prove correctness of the step
(transition relation) of an operational semantics. This is a traditional and
fairly casy progression, from abstract definitions through mathematical proof
to one or more concrete implementations. But it is also possible to proceed

in the opposite dircction, from the concrete to the abstract. Starting with
an operational semantics, we can derive from it a collection of valid algebraic
laws and even a denotational semantics. The derivations in this direction use
new methods developed by computing scientists under the name simulation
or bisimulation, which has been very successfully explored in the context of
CCS, and can be extended to other languages.

Acknowledgement

The idecas of this talk have been developed with the aid of discussions with
members of IFIP WG 2.3.

Introductory Bibliography

Here is a rather arbitrary collection of book titles that may help to start on
the process of broadening the interests and generalising the understanding
of the reader who has been inspired by the goal of unifying theories.

References

[1] Baeten, J.C.M. and Weijland, W.P. Process Algebra. Cambridge Univer-
sity Press, 1990.

[2] Barr, M., Wells, C. Category Theory for Computing Science. Prentice
Hall, second edition, 1995.

[3] Barrow, John D. Theories of Everything. The Quest for Ultimate Expla-
nation. Oxford University Press, 1991.

[4] Dijkstra, Edsger W., Scholten, Carel S. Predicate Calculus and Program
Semantics. Springer Verlag, 1990.

[5] Hennessy, M.C. Algebraic Theory of Processes. MIT Press, 1988.

[6] Hoare, C.A.R. Unified Theories of Programming. Oxford University
Computing Laboratory, 1994.
ftp://ftp.comlab.ox.ac.uk/pub/Documents/techpapers/Tony.Hoare/theory94.ps.Z.

[7] Hoare, C.A.R. Communicating Sequential Processes. Prentice Hall, 1985.

[8] Lloyd, J.W. Foundations of Logic Programming. Springer Verlag, second
edition, 1987.

[9] Hentenryck, P. Van. Constraint Satisfaction in Logic Programming. MIT
Press, 1989.

[10] Milner, A.J.R.G. Communication and Concurrency. Prentice Hall, 1989.

[11] Vickers, S. Topology via Logic. Cambridge University Press, 1989.

10

