UPMALIL Technical Report No. 97
February 21, 1995

Cycletrees: Flexible Interconnection Graphs
for Parallel Computing

Margus Veanes & Jonas Barklund

Box 311, S-751 05 Uppsala, Sweden
Phone: +48—-18—-182500
Fax: +46—18—511925

Abstract

Natural cycletrees, formally defined in this report, is a subclass of
Hamiltonian graphs with maximum degree 3 that contain a binary
spanning tree. A natural cycletree used as an interconnection network
thus supports directly broadcasting through the binary tree as well as
nearest-neighbour communication through the cycle. Natural cycle-
trees have several other interesting properties, e.g., they are planar,
easily extensible and can be contracted using the same methods as for
binary trees. The two main results of the paper are: (i) Given an arbi-
trary basic binary spanning tree, there exists a natural cycletree with
a minimal number of edges. (ii) Given a set of vertices, we present an
algorithm for constructing a natural cycletree such that it has a min-
imal number of edges, its binary spanning tree has the minimal total
path length and its structure satisfies a given abstract specification.
For example, if we wish to construct a natural cycletree connecting
k processing elements, we could invoke the algorithm with a set of &
distinct vertices and a simple specification (provided as an example in
the paper).



1 Introduction

A cycletree is a graph that has a basic binary spanning tree and a unique
Hamiltonian cycle. The problems addressed in this paper can be stated
succinctly:

1. Given a basic binary tree T', can we obtain a cycletree with as low
degree as possible by adding a minimal number of edges to 17

2. Given a cycle C, can we construct a cycletree with minimal degree,
having a binary spanning tree with minimal total path length, by
adding a minimal number of edges to C7

Solutions to these problems will be immediately applicable to process in-
terconnection graphs, because binary trees and Hamiltonian cycles support
directly the following important communication patterns. (Let the nodes
be numbered from 1 to N.)

1. Broadcasting or distributing data from node 1 to all the other nodes.
2. Collecting or combining data from all nodes to node 1.

3. Communication between nodes ¢ and ¢ + 1 for all 7, 1 < ¢ < N, and
possibly between nodes 1 and V.

These communication patterns occur frequently in many parallel program-
ming paradigms [10], but also in computations obtained by automatic par-
allelization of repetition usually in the form of sequential loops [25, 27, 31,
46, 51].

The theoretically ideal network has a complete interconnection graph, see
Figure 1. Clearly, such a network is prohibitively expensive to realize for a
large number of nodes. Some parameters that are commonly used to char-

Figure 1: The ideal network.

acterize networks are: number of edges, degree of the network (maximum
degree of the nodes), diameter (the largest distance between any two nodes),
average distance, symmetry, edge- and node connectivities, extensibility, and
reliability [1, 2, 7, 38, 39, 50].



In this paper, the following parameters are treated as the most important,
in the order given.

1. Minimal degree. When using an interconnection network for commu-
nication between computation nodes, the number of physical commu-
nication ports of each node is usually limited. For example, INMOS
Transputers have four communication ports, where typically one port
is needed for connection to an external device, leaving only three ports
for the interconnection network.! Three is the theoretical minimum
of ports required and it is thus imperative to design the network with
a degree of three.

2. Minimal total path length. The path lengths from the root to every
node affects the minimum time for broadcasting information from the
root or gathering information to the root, that is, two of the operations
listed above. More generally, we wish to map divide-and-conquer com-
putations onto the network, and it is desirable to minimize the depth
of such computation trees.

3. Minimal number of edges (while the cycletree under consideration ful-
fills certain criteria). The number of edges is another measure (apart
from the degree of the network) of the cost of realizing the network
and should be minimized, while maintaining the above two properties.

4. Flexible structure and size. Many proposed interconnection graphs re-
quire, e.g., that the number of nodes is 2¥ —1 for some &k > 0, or fix the
structure of the graph in such a way that it is difficult to describe the
addition of a new node to the graph. This is undesirable for those ap-
plications where the structure should be able to grow in smaller steps,
or where physical considerations make some structures expensive to
realize (e.g., if the locations of the nodes are fixed, then in some in-
terconnection graphs there could be comparatively long connections).

An inductively defined class of graphs that we call natural cycletrees, is
introduced. Figure 2 illustrates a natural cycletree. It is shown that

1. natural cycletrees indeed belong to the class of cycletrees;
2. the degree of every nontrivial natural cycletree is three;

3. the class of ringtrees [52] is strictly contained by the class of natural
cycletrees;

'Tn fact, our first application of natural cycletrees was as an interconnection network
between Transputers on a Meiko parallel computer.



Figure 2: A natural cycletree. The curved lines correspond to edges that
are not part of the binary tree and the dashed lines correspond to edges that
are not part of the cycle.

4. given any basic binary tree T', every natural cycletree which is minimal
for T has fewer edges than any other Hamiltonian graph having 7" as
spanning tree;

5. given any odd cycle C, every path-minimal natural cycletree for C
has C' as its Hamiltonian cycle and contains a binary tree that has
the minimal total pathlength; such a natural cycletree has fewer edges
than any other graph with those properties and the exact number of
edges can be computed by a formula.

Finally, a recursive algorithin is presented that, given a set of vertices, can be
used to produce natural cycletrees with various properties. That algorithm
is based on the inductive definition of natural chaintrees.

The problems set forth in the opening are thus answered positively by the
class of natural cycletrees and the algorithm for constructing them.

We now outline the remainder of the paper. Section 2 is a brief account
for the terminology. In Section 3 the concepts cycletree and natural cycle-
tree are formally defined and some basic properties are stated and proved.
Solutions to the minimality problems stated in the beginning are given in
Section 4. In Section 5 the order induced by the Hamiltonian cycle in a
natural cycletree is related to the recursive structure of natural cycletrees.
That relationship is used in Section 6 for automatic construction of a nat-
ural cycletree, parameterized with a formal specification of its structure.
Section 7 relates natural cycletrees to similar interconnection graphs. Fi-
nally, Section 8 concludes the presentation by summarizing the relationships
between the classes of graphs introduced in the paper and their applications.

2 Preliminaries

The reader is assumed to be familiar with elementary concepts in graph
theory [15]. Let G = (V,E) be a graph. Throughout the paper we will
assume that G is simple and undirected. We will sometimes denote the
edge-set of G by E¢ and the vertex-set by V. By writing Eg, ¢G, We mean
Eq, ® Eg, where ‘@’ is some set operation. An edge in E¢ is written as a



pair (a,b) where a and b are vertices in V. (Note that (a,b) = (b,a), as
G is undirected.) We use the notation G[X1, Xs,...,X,], to indicate that
each X;, i € {1,...,n}, is a distinguished partial subgraph of G; if X; is an
isolated vertex, i.e., X; = ({v}, D) for some vertex v, then we simply write v
for X;.

A free tree is a connected, acyclic, undirected graph. We say that a free
tree T is a binary tree if T has exactly one vertex of degree 0 or 2, called the
root of T', and all the other vertices have degree 1 or 3. A vertex of degree
1 is called an ezternal vertex or a leaf. A vertex of degree 2 or 3 is called an
internal vertex. If a binary tree is not an isolated vertex, i.e., its root has
degree 2, then we call it a basic binary tree. We make explicit the root r of
a binary tree T' by T'[r].

Note that a binary tree is not ordered, and thus a basic binary tree is not
the same as an extended ordered binary tree [24], although the concepts are
related. (Knuth [24, pp. 309 and 315] uses the term b-trees for (unordered)
binary trees as defined above.)

A Hamiltonian circuit or path in a graph G is a circuit or path which
visits all the vertices of G exactly once. We call the partial subgraph of G
traversed by a Hamiltonian circuit or path of G simply a cycle or chain in
G, respectively. We identify the terminals r and s of a chain C by C|r, s].
We say that a chain C[r, s] in G is unique with respect to r and s if there
exists no chain C'[r,s] in G such that C' # C.

3 Natural chaintrees and cycletrees

In the following we define formally two classes of interconnection graphs
called chaintrees and cycletrees. We show how a certain class of chaintrees,
which we call natural chaintrees, can be defined inductively. A natural cy-
cletree is constructed from two natural chaintrees.

Definition 3.1 (Chaintrees, Cycletrees) Let G[C]r,s]|,T[r]] be a graph
where Vo = Vp = Vg and Eg = Ecyr. G is a chaintree if T is a binary
tree and C' is a chain in GG that is unique with respect to its endpoints. G is
a cycletree if, in addition, T is a basic binary tree and r = s, i.e., C is the
unique cycle in G.

We write G[r,s] for a chaintree G[C|[r,s]|,T[r]]. The uniqueness criterion
in Definition 3.1 yields a unique ordering of the graph and is an important
implementation issue which is discussed in Section 5. We say that a chaintree
is trivial if it is an isolated vertex. We say that a cycletree is trivial if it
consists of only three vertices, i.e., when it is a “triangle”. We say that a
graph G[C, T], where Vo = Vi = Vi, is a candidate cycletree if T' is a basic
binary tree and C' a (not necessarily unique) cycle of G.



Let G[C,T] be a cycletree. We say that an edge e, e € Eg, is a tree edge
(with respect to T'), if e € Ep; a cycle edge, if e € E¢; a nontree edge, if
e € Ec_1; a noncycle edge, otherwise.

We proceed to show how to construct natural chaintrees inductively and
to show that natural chaintrees are indeed chaintrees. A natural cycletree
is constructed from two natural chaintrees. First, let us illustrate the form
of a natural cycletree by an example (see Figure 3). The edges represented
by solid lines form a unique cycle. The edges represented by straight lines
form a basic binary tree. The dashed lines represent edges that are not part
of the cycle. The curved lines represent edges that are not part of the basic
binary tree.

Figure 3: A full natural cycletree of 31 vertices.

Definition 3.2 (Natural chaintrees)
[1] Let r be a vertex. Then ({r}, 0)[r,r] is a natural chaintree.

[2(a)] Let Hi[r1, s1] be a natural chaintree, and let 7 and s be two distinct
vertices not in Vp,. Then

<VH1 U {Tv S}v EH1 U {(Tv Tl)v (Ta 3)7 (317 3)}>[Tv 3]

is a natural chaintree (see Figure 4).

[2(b)] Let H;[ri,si], ¢ € {1,2,3}, be disjoint natural chaintrees, and let r
and s be two distinct vertices not in Vi, un,un,. Then

<VH1UH2UH3U{T’ S}’ EH1UH2UH3U{(7", Tl)? (T’ S)’ (5’ TQ)’ (5’ T3)’ (517 82)}>['F, 53]

is a natural chaintree (see Figure 5).

[3] The only natural chaintrees are those given by clauses 1, 2(a) and 2(b).

Notice that this definition of natural chaintrees is similar to an inductive
definition of binary trees, where the inductive case is asymmetric, explicitly
separating the cases where one subtree is a leaf and where it is not. (Simply
do not add the edge (s1,s) in case 2(a) and the edge (s1,s2) in case 2(b).)



Figure 4: Case 2(a) of Definition 3.2. The bold lines illustrate a chain.

Figure 5: Case 2(b) of Definition 3.2. The bold lines illustrate a chain.



It is thus obvious that we can construct a natural chaintree from a binary
tree by adding some edges. The choice of which vertex is r in cases 2(a)
and 2(b) is arbitrary, so the edge (r,r1), which is the topmost edge of the
chain, can go to either child of r.

We can now construct a natural cycletree from two natural chaintrees as
follows.

Definition 3.3 (Natural cycletrees) Let Hi[r1,s1] and Hs[rg, so] be disjoint
natural chaintrees, and r a vertex not in Vg, ug,. Then

<VH1UH2 U {T}v EH1UH2 U {(Ta Tl)a (Ta TZ)? (317 32)})

is a natural cycletree (see Figure 6).

Figure 6: Construction of a natural cycletree. The bold lines illustrate a
cycle.

An example of a possible natural cycletree is shown by Figure 7. We get

Figure 7: A natural cycletree.

the following immediate result.

Theorem 3.4 The degree of every nontrivial natural cycletree is three.



Proof. An easy inductive argument can verify that in a nontrivial nat-
ural chaintree H|[r,s], the degrees of r and s are 2 and the degrees of all
other vertices are at most 3. The theorem then follows immediately from
Definition 3.3. |

The observant reader may have noticed that we cannot always uniquely
identify the basic binary tree in a natural cycletree, the smallest example to
illustrate this is when the natural cycletree is a triangle. This is, however,
only a minor detail and we deal with it in Section 5.

We will now prove that all natural cycletrees are cycletrees, using the
following lemma.

Lemma 3.5 A natural chaintree is a chaintree.

Proof. Let H|r,s'| be a natural chaintree. We must prove that H has a
unique chain C[r, s'] and that H contains a binary spanning tree. We prove
the first statement by induction over natural chaintrees.

[Base case] When H is an isolated vertex (r = s') then trivially C (C' = H)
exists and is unique.

[Induction case] We prove the lemma for cases 2(a) and 2(b) of Defini-
tion 3.2.

[Case 2(a)] Let Hi[ry,s1] be a natural chaintree as in Definition 3.2.2(a).
Assume as induction hypothesis that C1[r1, s1] is a chain in H; and that the
lemma holds for Hy. Clearly, C[r, s], where s = ', must use the edges (r,71)
and (s1,s) (see Figures 4 and 5), and thus the chain through H; must have
r1 and s1 as terminals. According to the induction hypothesis, C is such a
unique chain. Consequently,

C= <VH3 {(Ira Tl)a (317 3)} U ECl>[T7 3]
is a chain in H and there exists no other chain C'[r,s], C' # C, in H.

[Case 2(b)] Let H;[ri,s;], i € {1,2,3}, be natural chaintrees as in Defini-
tion 3.2.2(b). Assume as induction hypothesis that C;[r;, s;] is a chain in
each H; and that the lemma holds for every H;. Obviously, C[r, s3], where
s3 = §', must use the edges (r,71), (s1,82), (r2,5) and (s,73) (see Figures 4
and 5), and thus the chains through H;, Hy and Hjz must have r; and s;
as terminals. According to the induction hypothesis, C'y, Co and C5 are the
corresponding unique chains. Consequently,

C= (VHv {(Tv Tl)a (317 32)v (T27 3)7 (37 T3)} U EC1UC2U03>[Tﬂ 33]

is a chain in H and there exists no other chain C'[r, s3], C' # C, in H.
According to the induction principle we have proved the first statement

for all natural chaintrees. The second statement follows from the discussion

following Definition 3.2. |



We can now easily prove the following theorem by using Lemma 3.5.

Theorem 3.6 A natural cycletree G is a cycletree G[C,T].

Proof. Let G, r, Hi[r1, s1] and Hy[rg, s2] be as in Definition 3.3. As r has
degree 2, both of the edges (r,71) and (r,r2) must be part of any cycle of
G. Clearly the edge (s1,s2) must also be used. Thus, the chains through
H, and Hs must be C1[ry,s1] and Cq[rg, sa], respectively. It follows from
Lemma 3.5 that C; and (5 exist and are unique. Consequently

C = (Vg, {(r,m1),(51,52), (r2,7)} U Ecyuc,)

is the unique cycle of G. According to Lemma 3.5, each of H; and Hs
contains a binary spanning tree. The tree 7" having r as root and these
trees as immediate subtrees is a binary spanning tree for G. Hence G is a
cycletree. |

All cycletrees are not natural cycletrees. A non-natural cycletree is il-
lustrated by Figure 8. Another example of a non-natural cycletree is the
threaded X-tree in Figure 16.

Figure 8: A non-natural cycletree.

4 Minimality and path-minimality

In this section, our goal is to construct a Hamiltonian graph with a binary
spanning tree having “few” edges. More precisely, there are two comple-
mentary goals:

1. Given any binary tree T, add as few edges as possible to obtain a
Hamiltonian supergraph. We say that such a cycletree is minimal (for
T).

2. Given a cycle, add as few edges as possible to obtain a supergraph
that contains a binary spanning tree with minimum total path length.
We say that such a cycletree is path-minimal. We also give a formula
for the exact number of edges in a path-minimal cycletree.

The path length of a path is the number of edges on that path. The level of
a vertex s in a binary tree T'[r] is the path length of the shortest path from
r to s, e.g., r has level 0. The total path length of T' is the sum of the levels
of all vertices of T'.



Minimality
Given a basic binary tree T', we want to obtain a cycletree G[C,T] by adding
as few edges as possible to 7.

Definition 4.1 (Minimality) A cycletree G[C,T| is minimal for T, if
|Eq| < |E¢r| for any cycletree G'[C”, T.

Note that the the uniqueness of the cycle in a cycletree does not entail
minimality; this is illustrated with the next example.

Example 4.2 Consider the natural cycletree G illustrated in Figure 9. The
noncycle edges are (b, c) and (i,g). Clearly it has the same set of tree edges
with respect to the binary tree T'[a] as the cycletree in Figure 7, but the
total number of edges is less in Figure 9 than in Figure 7. |

Figure 9: A minimal (and path-minimal) cycletree.

We shall now prove that there exists a natural cycletree G[C,T] that is
a minimal cycletree for the binary tree T' (Theorem 4.4). As an immediate
consequence we get that all full natural cycletrees are minimal, e.g., the
natural cycletree in Figure 3 is minimal. This also confirms the result proved
for ringtrees [52], which are in fact full natural cycletrees.

We shall first prove a lemma in which we will make use of the following
definitions. Let T" be a basic binary tree. Let S[s] be a subtree of T" and r
the parent of s, if S # T'; any vertex not in Vp, otherwise. Define

|S|e =min{ |[Es_¢| | Cisacycle ANV =Ve A(r,s) € Ec },
and
|S|§Z =min{ |Eg_¢| | Cisacycle AVp =Vo A (r,s) & Ec }.

The norms |S|c and [S|¢ thus measure the minimal number of noncycle
edges in S, the first when the edge to the parent is part of the cycle, the

10



other when it is not. Informally, this is a measure of to what extent the cycle
edges can be used also in the tree. As a special case, |T'|¢ is the theoretical
lower bound for the number of edges of T' that cannot participate in a cycle.

Lemma 4.3 Let T be a basic binary tree and let G[C, T be a natural cycle-
tree such that there exists no other natural cycletree for T having less edges.
Then G is minimal for T and |Ep_c| = |T|g.

Proof. Let S[s| be any subtree of T'. Let r be the parent of s, if S # T;
any vertex not in Vp, otherwise. We claim that

_ ) ISle, if (s,7) € Eg;
|Bs—cl = { |S|¢, otherwise. (1)

An immediate consequence of Property 1 is that |T'|¢ = Er_¢, which proves
the lemma. It remains to prove Property 1, together with the following
property,

|Sle <[Slg +1<[Sle +1, (2)

by induction over binary trees (subtrees of T').

[Base case] If s is a leaf of T then |Es_¢| = |S|c = |S|¢g =0,and 0 <1 < 1.
It is obvious that Property 1 and Property 2 hold for §.

[Induction case| Let Si[s1] and S[s2] be the immediate subtrees of S and
assume that Property 1 and Property 2 hold for S7 and S>. There are two
subcases: either (r,s) is in C or it is not.

[(rys) in C] According to the discussion after Definition 3.2, we can
construct natural cycletrees such that either of (s, s1) and (s, s2) is in
the cycle (clearly, one of them must be). Without loss of generality,
assume that S; is the immediate subtree of S such that

S1le +1S2lg < [Silg + [92]e (3)

holds. We have assumed that Property 2 holds for S; and S5, simple
arithmetic gives that S can always be chosen in this way. The minimal
number of noncycle edges in S is thus

|Sle = [S1le +[S2lg + 1, (4)

where the addition of 1 counts the edge (s,s2). Furthermore, since
Property 1 holds for S; and S, i.e., |Es,—c| = |Si|e and |Eg,—¢| =
|S2|¢, and since |Es_¢| = |Es,—c¢|+|Es,—c|+ 1 (due to the structure
of natural cycletrees), it follows that |Es| = |S]¢.

11



[(r, s) not in C] In this case both (s,s;) and (s,s2) are in C. From
Property 2 it follows that

|S|g = |S1]e + [S2|e. (5)

Furthermore, since Property 1 holds for S and Sy, ie., |Eg,_¢| =
|Sl|e and |E52_C| = |SQ|E, and since |ES_C| = |E51_C| + |E5'2_C|
(again, obvious from the structure of natural cycletrees), it follows
that |Eg| = |S|g.

Property 1 now follows immediately from the two cases above. Also, Prop-

erty 2 follows from (4) and (5), because Property 2 holds for S; and Ss.
According to the induction principle, we have proved Property 1 and

Property 2 for all subtrees of T' and in particular for T itself. |

We can now easily prove the following theorem, which asserts that there is
no graph that contains a given binary spanning tree 7" and a unique cycle,
and has fewer edges than every natural cycletree spanned by T'.

Theorem 4.4 Let G'[C",T] be any candidate cycletree and let G[C,T] be a
natural cycletree that is minimal for T. Then |Eq| < |Eq|.

Proof. We know, by definition, that |T|¢ < |Eyr_¢r|. Using Lemma 4.3,
|Er_c| = |T|g, we get that |Ep_c| < |Ep_cr|. We know that |Eg| =
|Er_c| + |Ec| because there are no superfluous edges in G, and we know
trivially that |Eq/| > |Er_c| + |Ecr|. Hence |Eg| < |Eqrl, since |E¢| =
|Ec|- i

Path-minimal cycletrees

Let us assume that one wants to construct a cycletree G[C,T] given only
a set of vertices. Clearly, constructing 7' to have the minimal total path
length has several advantages. For example if T' is used as the interconnec-
tion graph of a process network then the total communication path length
of T is minimized. At this point it is worth noting that we are not giving top
priority to minimizing the average distance between an arbitrary pair of ver-
tices of G. The reason for introducing natural cycletrees in the first place is
to provide efficient communication for parallel computations that generally
need 7' for “global” communication and C' for “local” communication.

The depth of a binary tree T' is the maximum level of T'. We say that a
binary tree T' of depth d is tree-complete if all the leaves of T" are at levels
d and d — 1. We say that a cycletree G[C,T] is tree-complete (with respect
to T') if T is tree-complete.

We know that the total path length of a basic binary tree 7" is minimal if
T is tree-complete. (The relation to complete extended ordered binary trees

12



is obvious, see Knuth [24, pp. 399-400].) When constructing a cycletree
G[C,T] we also want to keep the number of additional edges at minimum,
which suggests the following definition.

Definition 4.5 (Path-minimality) Let G[C,T] be a tree-complete cycle-
tree. We say that G is path-minimal if |[Eq| < |E¢| for every tree-complete
cycletree G'[C, T"].

Clearly, if a cycletree G[C,T] is path-minimal then it is both minimal for
T and tree-complete. (The converse is in general not true, i.e., a cycletree
that is both tree-complete and minimal need not be path-minimal.)

Theorem 4.6 Let G[C,T] be a path-minimal cycletree, then

|Eq|

{(3n—1)/2—L(2k+1)/3J, ifn>4|(28+1)/3] —1; )

n—1+|(2¥+1)/3], otherwise.
where n = |Vg| and k = |logy(n +1)].

Proof. Let n = |Vg|. As T is a tree-complete basic binary tree, T" is full up
to level k—1, i.e., T has 2 vertices at level [, 0 < [ < k, and R = (n+1—-2F)/2
number of internal vertices at level £ — 1. Let us by I,,, denote the number
of noncycle edges at a full level? m of a natural cycletree, and by .J,,, that
of a natural chaintree. Then

IL,=2Jy,_1, m>0,

and, by using Definition 3.2, we obtain the following linear recurrence equa-
tion for J,,:

Jo = 0,
5= 1
In = JImo1 +2Jpm_o, m > 1.

Using standard techniques we get the following solution:

= 2M—§—1)m _ {

Zm—i—lJ
3 .

Let R’ be the number of noncycle edges at level k. We know that R’ must
be minimal, since G is path-minimal and the number of noncycle edges at
levels m, 1 < m < k, are fixed by I,,. There are R internal vertices at
level £ — 1 and for each of these vertices exactly one edge is a noncycle edge

2The level of an edge (r,s), where r is the parent of s, is the level of s.
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(assume that k& > 1). Thus R — R’ of these edges are at level k — 1. We get
the following formula for R, since R — R’ can be at most Ij_q,

o) B, HR—Ipq 205
] 0, otherwise.

We know that R = (n+1)/2 —2¥~! and I} _; = 2J)_o, thus

n -+ 1 b1 2]4;72 _ (_1)]672
R-1I,., = -2 -2
k—1 5 3
_ on+l 22’9—(—1)’c
2 3
n+1
= —Ipiq.
2 k+1

Thus the following is an equivalent formula for R':

R,_ (n+1)/2—Ik+1, ifn221k+1—1,
10, otherwise.

Now, the total number of edges of G is the number of cycle edges, which is
n, plus the number of noncycle edges at all levels. Thus

k—1
|Eg| = n+ Y In+R
m=1
k—2
= n+2> Jun+R
m=0
k—2 om _ (—l)m
= n+2 -+ R

2 k—2 k—2
= n+3 <m§::02m— Z(—1)m> + R

m=0

2 (e (-1 —1

— = 2k 1_1_7 Rl
n+3< 9 +

2k_ _1k
= n-l—#—l-l—R'
= n+Jy—1+R
_ n+Jy—14+n+1)/2—-2J;, ifn>4J, —1;
B n+J, —1, otherwise.

Bn—1)/2 —Jg, ifn>4J, —1;
- { n—1+Jg, otherwise.
(3n—1)/2 - [(2F+1)/3], ifn>4[(2F+1)/3] —1;
{ n—1+|[(2¥+1)/3], otherwise.
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Let G[C,T], n = |Vg|, be a cycletree where T is a full binary tree, i.e., n+1
is a power of 2. Then Formula 6 reduces to

n—1+[(n+2)/3], (7)

which was also shown by Xie and Ge [52] to be the number of edges in
a ringtree. One can easily verify that the natural cycletree in Figure 9 is
path-minimal, by using Formula 6. We also get the following corollary from
Theorem 4.6.

Corollary 4.7 Let G[C,T] be any candidate cycletree where T' is tree-com-
plete. Then G has at least as many edges as given by Theorem 4.6.

Proof. Immediate by using Theorem 4.4, because any path-minimal cycle-
tree is, by definition, also minimal. |

As an example of the use of the above formulas, assume that one has a
full cycletree of n vertices and wants to double its size to 2n + 1. How
many additional edges are required? By using Formula 7, we obtain that
n+2[(n + 3)/6] additional edges are required. Thus, doubling the number
of vertices roughly doubles the number of edges in a cycletree.

5 Ordered natural cycletrees

Up to this point natural cycletrees have been treated as undirected simple
graphs and are therefore not ordered. In order to use a graph for organizing
nodes, e.g., in an interconnection graph (as we will propose in Section 6), we
must be able to identify each subtree of a binary tree by means of direction,
using for example the terms left and right subtree.

Let T'[r] be a binary tree. We say that T is ordered if it is associated with
a mapping n : Vr\ {r} — {left, right} such that for each internal vertex v of
T with children v; and ve, {n(v1),n(ve2)} = {left, right}. We call n an order
mapping for T. We write T" to emphasize the ordering. If T"[r| is a basic
binary tree with immediate subtrees T1[r1] and Ts[r2] such that n(r;) = left
and 7(re) = right then we call 77 and Tb the left and right subtrees of T,
respectively. Clearly T can be ordered in many different ways, e.g., any full
basic binary tree of depth k£ can be ordered in 22" -1 {different ways.

Given an order mapping 7 define 77 so that 7j(v) = n(v), where left = right
and right = left. We can now define (by induction over the structure of
natural chaintrees) what we mean by the order mapping n,, induced by a
natural chaintree H|r,u]. As the base case let 1, , = (. Let s and H;[r;, s;],
for i € {1,2,3}, be as in Definition 3.2 and assume that we have order
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mappings 7; = 1, s; induced by H;. If case 2(a) is used to form H (u = s)
then
Mr,s = M U {7“1 — left, S — right }

If case 2(b) is used to form H (u = s3) then
Nrss = MU UnzU{r — left,s — right, ro — left, r3 — right}.

Let G be the natural cycletree obtained from r, Hi[r1, s1] and Ha[ro, s2] as
in Definition 3.3, and let 7; = n,, 5, be the order mappings induced by the
respective H;. The order mapping 7, ,, for G is defined as follows.

Mege = N1 U U{r — left,ry — right }.

Observe that there exist exactly two such mappings 7, ,, and 7, ,,, and
that 7r, », = M- When we say that a natural cycletree G is ordered,
we assume a fixed order mapping n and we write G” if we wish to make 7
explicit. It should be clear that the above notions are well-defined, i.e., that
the definitions indeed produce unique order mappings.

We will now present an alternative method of constructing natural cycle-
trees where the starting point is an ordered basic binary tree. The method
is based on the following notion.

Definition 5.1 (cycle order traversal) Let T be an ordered basic binary
tree. Traverse 1" in root-mode.

Root-mode Visit the root and mark it with ‘<.
Traverse the left subtree in pre-mode.
Traverse the right subtree in post-mode.
Visit the root again.

Pre-mode Visit the root and mark it with ‘|’.
Traverse the left subtree (if any) in pre-mode.
Traverse the right subtree (if any) in in-mode.

In-mode  Traverse the left subtree (if any) in post-mode.

Visit the root and mark it with ‘—’.

Traverse the right subtree (if any) in pre-mode.

Post-mode Traverse the left subtree (if any) in in-mode.
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Traverse the right subtree (if any) in post-mode.

Visit the root and mark it with “}’.

Let T'[r] be an ordered basic binary tree. Let v € V. We use v+ to denote
that vertex of T" which is the immediate successor of v in a cycle order
traversal of T

Theorem 5.2 For alln, G"[C,T] is an ordered natural cycletree if and only
if T" is an ordered basic binary tree and E¢ = { (v,v+) :v € Vp }.

Proof.

[:>] Let H1[01 [’I“l, 31], T1 [Tl]] and H2 [02 [’)"2, 82], T2 [’)"2]] be as in Definition 3.3
and consider G"[C, T[r]]. Assume that n = n, ,,. (Note that 7, ,, tells us
that T is the left subtree of T.) We know that the paths P, = (r1,...,s1)
and Py = (s2,...,72) corresponding to Cy and Cy, respectively, are unique
with respect to their endpoints. By the below lemma P, is the pre-mode
traversal of T} and P; is the post-mode traversal of T5. Clearly (r, P, Pa, )
corresponds to C' and is the cycle order traversal of 7.

[Lemma] Let H, r, s, H;[C;[r;,s;],T;[r;]] for i € 1,2,3 be as in Defini-
tion 3.2. We prove by induction over the structure of H that P = (r,...,s’)
is the pre-mode traversal of T"s' and P = (s',...,r) is the post-mode
traversal of T, (s' is one of {r,s,s3} depending on the case of the def-
inition.) Let n = n, . If H is the isolated vertex, s’ = r, then this holds
trivially.

Assume that P; is the pre-mode traversal of H;[r;, s;] for i € {1,2,3}, and
P; is the corresponding post-mode traversal.

If H is constructed using H; only, s’ = s, (by using 2(a)) then clearly
P = (r,P1,s) correponds to C]r,s| and is the pre-mode traversal of 1.
(Note that the right subtree of T" is just s, so the in-mode traversal of
the right subtree of 177 is simply (s').) Also P = (s, Py,r) is clearly the
post-mode traversal of T7.

If H is constructed according to 2(b) then P = (r, P, Py, s, P3) corre-
sponds to the chain in H and is the pre-mode traversal of T". Note that
(Py, s, P3) is indeed the in-mode traversal of the right subtree of 7. We get
also that P = (Ps,s, Py, P1,r) is the post-mode travesal of 7. Note that
(Ps3, s, P,) is indeed the in-mode traversal of the left subtree of T7.

[<] Let T"[r] be an ordered basic binary tree. We must prove that Then
G"[C,T[r]] is a natural cycletree, where Ec = { (v,v+) : v € Vp }.

The statement follows easily from Definition 5.1 and Definition 3.3 once
we haved proved the following lemma.
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[Lemmal] Let T'n[r] be an ordered binary tree and P = (r,...,s) its pre-
mode traversal. Then by adding the edges of P to T" we obtain a chaintree
Hlr,s] and n = 1.

The proof is by straightforward induction over I'. The base case, i.e.,
when 7' is just one vertex is trivial. The case when the right subtree is a leaf
corresponds to case 2(a) of Definition 3.3 and the case when the right subtree
is not a leaf correponds to case 2(b). There is an obvious correspondence
beteen Definitions 3.2 and 3.3 and Definition 5.1. |

The theorem provides us with an alternative definition of cycletrees, which
we will use in the subsequent sections.

We introduce some more useful terminology. Let v be a vertex of a natural
cycletree G"[C,T'[r]]. We call v a pre-, an in- or a post-vertex if v has mark
‘}, ‘=7 or 7, respectively (in the cycle order traversal of T"). We say
that the 7th vertex in the cycle order traversal of T' has address 7, r has
address 1. We often identify a vertex with its address and say “vertex a”
instead of “vertex v such that v has address a”. The addresses and marks
are illustarted in Figure 10.

Figure 10: An ordered natural cycletree.

Related concepts. The choice of names containing ‘pre’, ‘post’ and ‘in’
has a historical background in ordered binary trees. In fact, there is a
connection between ordered natural cycletrees and threaded binary trees [24].
Some types of threaded trees, to be used as interconnection graphs, have
been studied by Despain and Patterson [11] and are illustrated in Figure 16.

6 Natural cycletrees as interconnection graphs

We have so far studied some basic properties of natural cycletrees. Let
us now turn to the more practical issue of using natural cycletrees as in-
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terconnection graphs in the MP-RAM model, see for example Almasi and
Gottlieb [2] for a formal treatment of the various computational models.
We will present an algorithm that recursively configures a natural cycletree
from a given collection of nodes.

We will think of our RAMs simply as nodes. FEach node has a unique
address between 1 and N, where N is the total number of nodes. When
saying ‘node a’ we will mean ‘the node with address a’.

The interconnection graph has a vertex corresponding to each node in the
ensemble. An edge in the graph indicates that the nodes at its endpoints
can communicate via a bidirectional channel or link. Nodes so connected are
called neighbours. We will be referring to the vertices and the edges of an
interconnection graph as nodes and links, when we have that interpretation
in mind.

Let us assume having only a collection of N nodes that we want to config-
ure as a natural cycletree. As there exists a vast number of possible natural
cycletrees having N vertices (N must be odd and > 3), we assume that
certain constraints are given and must be satisfied, e.g., tree-completeness.
Let n be the number of internal vertices of a basic binary tree having N
vertices. The relationship between n and N is simply n = (N —1)/2. Let
M be the set of marks and N the set of natural numbers. In the following
we will assume that the constraints are given in the form of definitions for
partial functions split,,,, for each mark m € M, with the type

N x N = 2VN U {0}

(where () denotes an impossible “split”), such that for all m € M and
k,neN,

split,,(0,k) = { ()} and (n1,ng) €split,,(n,k) = n;+ns+1=n.

Let G[C,T] be a natural cycletree and S[s] a subtree of T'. Let n be the
number of internal vertices of S, let m be the mark and & the level of s. Then
split,, (n, k) is the set of allowed partitions, (ni,ng), of n into the number
of internal vertices, n1, in the left subtree of S, and the number of internal
vertices, ng, in the right subtree of S.

Example 6.1 If we want to divide the vertices as evenly as possible among
the subtrees then we can define ‘split’ as follows. For m € M and k,n € N,

{{n1,n—1—mnq) |

split,, (n, k) = np=1[(n—1)/2)Vn =[(n—-1)/2]}, ifn>0;
{Oh otherwise.
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Example 6.2 The formula

at (= { 1L e

says that each internal vertex must have a leaf as its right child. The nat-
ural cycletree in Figure 11 satisfies this constraint and is, for example, the

Figure 11: An extreme example of a natural cycletree.

interconnection graph of the cyclic-order odd-even transposition bilinear
sorter [26]. |

We needed neither the mark nor the level in the simple examples 6.1 and 6.2.
Using the mark and the level is more powerful and one can define a ‘split’
that yields, for example, a path-minimal natural cycletree. This is illustrated
with the next example.

Example 6.3 We wish to obtain a natural cycletree G[C,T] that is path-
minimal, i.e., it is tree-complete and has a minimal number of noncycle
edges (i.e., a minimal number of in-vertices).

Let d be the highest level of T' such that the number of vertices at level
d is 2%, i.e., the highest “full” level of T. Let ny be the number of internal
vertices in T'. T' is tree-complete if, and only if,

d = |logy(nr +1)].

After two definitions, we shall state a criterion (8) for path-minimality,
which must hold for each subtree of T'.

Clearly, T is tree-complete if, and only if, each subtree of T is tree-
complete. Consider any subtree S[s] of T', let n be the number of internal
vertices in S, let m be the mark and k the level of s. Define g : N XN — N
as follows:

g(l,z) =z — (2" = 1).

S is tree-complete if and only if S has g(d — k,n) internal vertices at level
d—Fk of S (ie., at level k of T'in S). For each mark m, define I : N' - N
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as follows:

20— (-1t [2+1
nm=nn = 2= { H,
1, if [ =0;
L) = {2[¢(l—1), otherwise,
0, if [ =0;
L) = {Iﬂ(l), otherwise.

I, (1) is the number of in-vertices at any “full” level [ of S[s], where m is
the mark of s [47, pp. 47, where J; denotes I () and I4+(1)].

Let h(S) be the number of internal in-vertices at level d — k of S. Now,
path-minimality of G is equivalent with h(S) being as large as possible, i.e.,

h(S) = min(g(d — k,n), I,(d — k)), (8)

as S is tree-complete and d — k is a full level of S.

Using the information above, we can define ‘split’ as follows. Assume,
when n > 0, that m; and mo are the marks of the left and right children of
s, respectively (m; and my are uniquely determined by m), then

: _J 0% ifn =0;
split,,, (n, k) = { {{n1,n2) | (I =d—kAy)}, otherwise,

where ¢ is the formula

g(l’n) = g(l - 17n1) +g(l - 1,’]12) A

g(l - lanl)ag(l - 1,712) < 2l71 A

min(g(l,n), In (1)) =

mln(g(l - 1,7L1),Im1 (l - 1)) + mln(g(l - 1,TL2),Im2(l - 1))

Figure 12 shows a path-minimal natural cycletree with 10 internal ver-
tices. We have split, (10,0) = {(4,5),(5,4)}, split|(4,1) = {(2,1)} and
split4(5,1) = {(1,3),(2,2)}. Note that, e.g., (6,3) is not in split,_(10,0)
because although it would give tree-completeness, the tree would not be
path-minimal. |

Before turning to the configuration algorithm, let us show how, for a given
subtree S[a], the addresses of a’s left and right children can be calculated in
a “top down” manner. Let Si[a;] and Sa[az] be the left and right subtrees
of S, respectively. We know from Section 5 that the vertices of S7 shall
precede in cycle order those of So. We know also the following:

e If ¢ is a pre-vertex then it is the first vertex of S (in cycle order).
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Figure 12: A path-minimal natural cycletree.

e If ¢ is an in-vertex then it is between S; and Ss.
e If a is a post-vertex then it is the last vertex of S.

For example, if a is a pre-vertex then a; = a+1 and a2 = a+1+|Vs, [+|Vg |,
see Figure 13.

Figure 13: Calculating the address of the right child of a pre-vertex.

We can now present the algorithm which constructs a cycletree recursively,
using the properties above. As it is a trivial matter to construct a cycle, one
is assumed to be given. Define v({z,y)) = 2(x +y + 1) + 1 and v(()) = 1,
mi((z,y)) = 2x + 1 and 71 (()) = 0, and m2((z,y)) = 2y + 1 and m2(()) = 0.
The intuition behind the above functions is as follows. Consider a binary
tree S having = + y + 1 internal vertices. Then v({x,y)) denotes the total
number of vertices in S. Accordingly, m1((z,y)) and m2({z,y)) denote the
total number of vertices in the left and right subtrees of S, respectively.

Algorithm 6.4 Let C' be a cycle of N vertices; N is odd and N > 3.
An enumeration of the vertices is assumed. The algorithm constructs an
ordered cycletree

G[C,T]) = (Vg, Ec U E),
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by adding the missing noncycle edges £ to C' in such a way that for every
subtree S of T' having root with mark m and level k, n; internal vertices
in its left subtree and no internal vertices in its right subtree, (ni,ns) €
split,, (n1 +na + 1, k).

[Initialize| Let ny = (N — 1)/2, i.e., ny is the number of internal vertices
in T. Let p € split,_ (n7,0) (note that v(p) = N). Now E is given by
cfg, (1,p,0) where ‘cfg’ is defined recursively as follows.

[Configure] cfg,,(a,p, k).

[Base case] If p = () then a is an external vertex at level k with
mark m;

cfg,,(a,p, k) = 0.

[Recursive case| If p = (n1,ny), then a is an internal vertex at level
k with mark m. The (addresses of the) left child a; and right child as
of a are calculated and the corresponding subtrees are configured as
follows. There are four cases depending on the mark m of a.

[m is «]
p1 € split) (n1,1); pa € splity(ng, 1);
a1 = 2; a3 = v(p);
cfg._(a,p,0) = cfg| (a1, p1,1) U cfgy(az, p2, 1).
[m is |] (see Figure 13)
p1 € split) (n1,k + 1); pa € split_, (na, k + 1);
a1 =a+1;a3 =a+14v(p1)+mi(p2);
cfg,(a,p, k) = cfg (a1,p1,k+ 1)U
cfg_,(az,p2,k + 1) U{ (a,a2) }
[m is 1]
p1 € split_, (n1,k + 1); p2 € splity(ng, k + 1);
az=a—1; a1 =a—1-v(p2) — m2(p1);
cfgy(a,p, k) = cfg_(a1,p1,k + 1)U
cfgi(az, p2, kb +1) U{(a,a1) }

[m is —]
p1 € splity(n1, k + 1); p2 € split (ng, k + 1);
a1 =a—1;as=a+1;
cfg_, (a,p, k) = cfgy (a1, p1, k + 1) Ucfg (az,p2, k + 1).
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Termination of Algorithm 6.4 is guaranteed by the fact that the second
argument of ‘cfg’ is strictly less in each recursive call of ‘cfg’. Thus eventually
the base case must be reached. For example, by running Algorithm 6.4 with
N = 11 and assuming a definition of ‘split’ as given in Example 6.2, the
algorithm produces the natural cycletree as shown in Figure 11. The dashed
lines correspond to the edge-set E in the algorithm.

7 Embedding of binary tree based networks

Embedding of circular and linear arrays, binary trees and binary tree based
networks, like X-trees [11], leap trees [20], back-to-back trees [13], de Bruijn
networks [42] and completely linked trees, in other networks such as hy-
percubes [20, 35, 37, 48, 49], meshes [28, 43, 54], rings [23], pyramids [12],
butterflies [40], and VLSI arrays [18, 22, 41, 53] have been studied exten-
sively. Several of those techniques and results apply directly, or with minor
modifications, to cycletrees.

Large virtual networks can be simulated by smaller networks by map-
ping several virtual nodes to one node [21]. The mapping problem, in its
most general form, is computationally equivalent to the graph isomorphism
problem, as shown by Bokhari [9], and therefore N'P-hard.

In a recent paper [5] Barak and Ben-Natan discuss degree and structure
preserving partition schemes for mapping (contracting) full trees. In par-
ticular, they introduce an ABFS (alternating breadth first search) partition
scheme, which for full binary trees yields a bounded contraction of degree
three. As a corollary of their Theorem 3.2 [5] we can prove that the same
partition scheme can be used to contract natural chaintrees as illustrated
by Figure 14.

Figure 14: The ABFS partition scheme applied to a full natural chaintree,
each grey area corresponds to a supervertex.

The same contracted graph is obtained, since the nontree edges occur
only locally within each “supervertex” at the leaf level. It is straightforward
to modify the ABFS partition scheme for natural cycletrees, to obtain a
corresponding bounded contraction of degree three.
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Contraction of a natural chaintree using the ABFS partition scheme thus
always yields a binary tree. Contraction of a natural cycletree, also with
the modified algorithm, generally yields a graph with maximum degree three
that is not a binary tree.

8 Properties of natural cycletrees and related networks

In this section we present some properties of natural cycletrees and give a
brief survey of related network topologies that have been proposed. For an
overview of other static and dynamic connection topologies see, e.g., Almasi
and Gottlieb [2].

Our main reason for introducing cycletrees is to support pipeline commu-
nication and broadcasting from (or collecting data to) a specific node, i.e.,
the two communication patterns mentioned in the introduction.

Therefore we have, for now, disregarded issues such as keeping the aver-
age distance between an arbitrary pair of nodes as short as possible, fault
tolerance and avoidance of congestion points for dense all-to-all communi-
cation. It is clear that in case of arbitrary communication patterns natural
cycletrees perform only marginally better than binary trees. As in binary
trees, the diameter and the average distance is proportional to the depth
of the tree, i.e., logarithimic in the best case. Cycletrees have better fault
tolerance than binary trees, however, because they are biconnected.

The main properties of a natural cycletree G[C,T] are the following.

e ( is the unique Hamiltonian cycle of G and T' a basic binary spanning
tree of G.

e The maximum degree of G equals the maximum degree of T'.

e If G is minimal for T then no Hamiltonian graph with 7" as a spanning
tree has fewer edges than G. A minimal natural cycletree exists for
any T.

o If G is path-minimal then T is tree-complete? and Eg is minimal.
There exists no Hamiltonian graph with a tree-complete binary span-
ning tree that has the same set of vertices but fewer edges than G. A
path-minimal natural cycletree exists for any odd number of vertices.

e (i can be extended incrementally to G’ by turning any leaf of T' into an
internal vertex with two leaves as children and letting those leaves “in-
herit” its nontree edges. Thus the structure is very flexible. Figure 15
illustrates extension on an in-vertex.

3T has the minimal total path length. Then the diameter of G is at most dmin + 1, if
dmin 1S the minimal possible diameter.
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Figure 15: Extending a natural cycletree on an in-vertex.

e ( is a planar graph. Moreover, there always exists a plane depiction of
G where E¢ is the contour of the infinite region. These, and other pla-
nar properties of natural cycletrees are used in the context of routing
in natural cycletrees [47].

The proofs of the properties stated in the last two items are left as easy
exercises; the others have been proved in the preceding text.

Binary trees and Linear arrays. A linear array is in itself a powerful
interconnection graph for many problems [8] and is used, for example, in the
Warp computer [3]. Tseng [46] discusses loop distribution on systolic arrays
and presents a systolic array parallelizing compiler for the AL language
specially designed for the Warp computer.

Another circular array based interconnection graph is the chordal ring [4].
A binary tree [22] is, for example, a common feature of the DADO architec-
tures [44]. Binary trees are generally used in dictionary machines [17].

X-trees. Most of X-trees introduced by Despain and Patterson [11], e.g.,
threaded X-trees (having maximum degree 4) and ringed X-trees (having
maximum degree 5) are full binary tree based interconnection graphs aug-
mented with extra links to provide uniform message traffic and fault toler-
ance. A threaded X-tree, see Figure 16, is actually a “preorder threaded”
binary tree (assuming left and right as shown in the figure), with an extra
thread from the rightmost leaf to the root. Threaded X-trees belong to the
class of cycletrees, see also Knuth [24, Exercise 2.3.1-33]. The threaded
binary tree in the lower left corner of Figure 16 is what is commonly un-
derstood as a threaded binary tree [24, pp. 319-320], i.e., it is threaded in
inorder (or symmetric order). Ringed X-trees are supergraphs of natural cy-
cletrees. Ringed X-trees are interesting in that they do not suffer from data
traffic congestion at the root, assuming arbitrary communication patterns.
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A leap tree. A hypertree.
(3 )
A simple ring. A chordal ring. A full binary tree.
fa—cqi-— 1
A completely linked tree. A half-ringed X-tree. A ringed X-tree.
Sy oo
A full cycletree (ringtree). A cyclic sneptree. A binary deBruijn graph.

A threaded binary tree. A threaded X-tree. A double threaded X-tree.

Figure 16: Some examples of related networks.
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Despain and Patterson point out that a threaded X-tree network is attrac-
tive because the threaded links provide a path that linearizes the nodes thus
making the network attractive if pipelines of processes are to be distributed
onto the tree. Natural cycletrees are also designed with this application in
mind, but are even more attractive because, in addition, they minimize the
degree and allow arbitrary basic binary spanning trees.

The X-tree structure is used, for example, in the Ottman, Rosenberg
and Stockmeyer machine [36]. The Leiserson machine [19, 29] uses the
completely linked binary tree structure (also called a semi X-tree [19]), which
is also a supergraph of a natural cycletree. In the Leiserson machine, the
internal nodes are used for routing only.

Hypertrees. Hypertrees [16] are similar to X-trees in their design. A
hypertree is based on a full binary tree structure. There are extra links con-
necting the nodes on the same level n, forming a set of n-cube connections.

Figure 17 illustrates a 4-cube. There is an edge between the i’th and the
j'th vertices whenever the binary representations of ¢ and j differ in exactly
one bit (i.e., the Hamming distance between ¢ and j is one). The hypercube

22 23)
p
18 @T

29

31

Figure 17: A 4-cube.

illustrated in the figure is actually the virtual 4-cube formed at level 4 of
the hypertree in figure 16. The vertices are enumerated from left to right
in normal order of the binary tree. The leftmost vertex at level 4 then has
number 16, which is why the labels in the cube begin with 16 (= 100003).
The vertical edges in the cube are the horizontal edges at level 4 in the
hypertree. Any other edge is actually a path through the upper part of the
hypertree, which is why we say that the hyper-cube is virtual.

The maximum degree of a hypertree is either four or five. Similarly to
X-trees, hypertrees were designed as general purpose interconnection graphs
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for problems where arbitrary communication patterns can appear. Hyper-
trees are better suited than ringed X-trees for problems where remote leaves
communicate heavily.

Leap trees [20] have a similar structure as hypertrees. These are full binary
trees with additional “leap” edges between the i’th and the j’th vertices (in
normal order with the first one being 0’th) at level k, whenever j = i +2¢"1.

The interconnection graph of the CM-5 parallel computer [45] is some-
times called a hypertree [33] and is a variant of fat-trees [30]. Although
related, this is not the same network.

DeBruijn networks. Binary deBruijn networks [42] of n nodes have a
Hamiltonian cycle and and a full binary tree of n — 1 nodes. The degree is
fixed, i.e., the same for all nodes. In the case of the binary deBruijn network,
the degree is four. Those networks have good fault tolerance properties and

are well suited as sorting networks, as demonstrated by Samatham and
Pradhan [42].

Hyper-deBruijn networks. This interconnection graph [14] is a combi-
nation of a hypercube and a deBruijn network. A hyper-deBruijn network
admits several other networks, including a circular array and a full binary
tree. Unlike hypercubes, hyper-deBruijn networks are bounded degree net-
works. A hyper-deBruijn network of 2" nodes can be designed to have a
maximum degree k, for any k such that 4 < k < n. The diameter is loga-
rithmic. It is a general purpose interconnection graph and the main design
goals are fault-tolerance, scalability and simplicity of routing.

Sneptrees. Another class of full binary tree based interconnection graphs
are the sneptrees [32]. Each node in a sneptree has degree four. Sneptrees
were designed as general purpose interconnection graphs. The main feature
of sneptrees is that they can simulate over-sized computation trees through
the additional links and are thus particularly suitable for divide-and-conquer
algorithms. A deBruijn network of degree 4 is one kind of sneptree. Cyclic
sneptrees contain two Hamiltonian circuits.

Ringtrees. Ringtrees [52] form a special case of cycletrees, namely, full
natural cycletrees. Natural cycletrees can therefore be seen as a generaliza-
tion of ringtrees. A ringtree is constructed of two k-linear trees. A k-linear
tree corresponds to a full natural chaintree of 2 — 1 vertices. Ringtrees
were designed largely for the same reasons as natural cycletrees. Unlike
the definition of a natural chaintree, the definition of a k-linear tree is not
inductive.
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9 Conclusions

The most common communication patterns that arise in parallel compu-
tations are, arguably, supported by a binary tree structure and a circular
array structure. These communication patterns occur frequently in many
paradigms for parallel programming [10], but also in computations obtained
by automatic parallelization of repetition usually in the form of sequen-
tial loops [31, 46, 51]. These communication patterns arise also in parallel
computations resulting from parallelization of repetition in declarative pro-
gramming using, e.g., bounded quantifications [6] or Reform [34], a field
where we plan to apply the techniques described herein.

Let us illustrate the relationships between the main classes of graphs that
we have introduced in this paper. Let CCT denote the class of candidate
cycletrees, i.e., all Hamiltonian graphs with a basic binary spanning tree, let
CT be the class of cycletrees and let NCT be the class of natural cycletrees.
Let MCT, TCT and PCT be the classes of minimal, tree-complete and
path-minimal cycletrees, repectively. Let R7 denote the class of ringtrees.
See Figure 18. Note that all the intersections in the figure are nonempty.

CcCT ‘ﬂ"

eT q

Figure 18: Some relationships between the various classes of graphs.

In this paper we focused on natural cycletrees and showed that a natural
cycletree includes any basic binary tree, has a unique Hamiltonian cycle,
and that the maximum degree of a natural cycletree is 3, which is clearly
the lowest possible. We showed that a minimal natural cycletree has the
theoretically smallest possible number of nontree edges. Thus, a natural
cycletree can be used to realize both a basic binary tree structure and a
circular array structure to the lowest possible cost, from an embedding or
mapping point of view.

Natural cycletrees have an appealing inductively defined structure. We
showed through Algorithm 6.4 how to construct natural cycletrees recur-
sively. This algorithm provides the outlines of how natural cycletree net-
works can be configured dynamically. Routing in cycletrees is treated else-
where [47].
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