UPMALIL Technical Report No. 106
5 May, 1995
ISSN 1100-0686

Meta-programming with Theory Systems

Jonas Barklund
Katrin Boberg
Pierangelo Dell’Acqua
Margus Veanes

Uppsala University
Computing Science Department

Box 311, S-751 05 Uppsala, Sweden
Phone: +48—18—182500
Fax: +46—18—-511925

Abstract

A theory system is a collection of interdependent theories, some if
which stand in a meta/object relationship, forming an arbitrary num-
ber of meta-levels. The main thesis of this chapter is that theory
systems constitute a suitable formalism for constructing advanced ap-
plications in reasoning and software engineering. The Alloy language
for defining theory systems is introduced, its syntax is defined and a
collection of inference rules is presented. A number of problems suit-
able for theory systems are discussed, with program examples given in
Alloy. Some current implementation issues and future extensions are
discussed.

This paper appears as a chapter in Meta-logics and Logic Program-
ming, edited by K. Apt and F. Turini, and published by MIT Press in
1995.

1 Outline

A conventional logic program can be seen as the nonlogical axioms of a single
theory. This chapter presents a thesis that we obtain a more powerful tool for
applications in artificial intelligence and software engineering if we consider
systems of theories, where pairs of theories may stand in an object/meta
relationship, rather than single theories.

We proceed in 7 steps:

1. Arguing that multi-level programming should be a powerful tool for
many advanced applications, in particular artificial intelligence and
software engineering (Sect. 2).

2. Introducing theory systems as an approach to multi-level programming
(Sect. 3).

3. Defining the formal syntax and one possible inference system of a
language, Alloy, in which theory systems can be programmed (Sect. 4).

4. Defining the models of Alloy programs (Sect. 5).

5. Presenting examples of problem solving using theory systems expressed
in Alloy (Sect. 6).

6. Discussing self-reference and how to program it in Alloy (Sect. 7).

7. Proposing some future extensions, supporting technologies and some
current implementation issues (Sects. 8-9).

We end with some notes and conclusions.

For a general introduction to meta-programming in logic programming,
the reader is referred to the overviews by Barklund [3] and Hill & Gallagher
[19].

2 Artificial intelligence and software engineering

The studies of artificial intelligence in general and expert systems in partic-
ular make it clear that truly useful problem solvers must be constructed in
a quite different way than has been tried in the past. Among the problems
with current approaches are:

1. Lack of robustness with respect to domains.
2. Low adaptability of problem solving methods.

3. Failure to capture “common sense” reasoning.

These problems are indeed very difficult but we believe that the marginal
success so far is largely because the attempts at addressing them have been
carried out mostly using single-level architectures (cf. Sterling [31]). By
single-level architectures we mean systems without provisions for reasoning
about any part of their own beliefs or procedures and for adapting them-
selves according to these observations. The three problems mentioned above
could be approached as follows:

1. Given a program that solves problems in some domain, the system
might transform this program to adapt it to another domain. Also,
given a program that represents a piece of knowledge, together with
some suitably represented new knowledge, the system might create
a new program that incorporates both the knowledge present in the
old program and the new knowledge, after resolving any discrepancies
between them.

2. Given a subprogram that carries out a particular form of reasoning,
the system might transform it to a similar program that carries out a
somewhat different form of reasoning, better adapted to some circum-
stances.

3. This is the most difficult problem of these three. McCarthy defined a
program having common sense as one that “automatically deduces for
itself a sufficiently wide class of immediate consequences of anything
it is told and what it already knows” [27]. The heuristics for ex-
ploring the interesting consequences of new information or finding the
information necessary for solving a problem are naturally expressed as
meta-knowledge. These heuristics might need to be revised over time,
as they turn out to be more or less successful. This can be seen as a
metameta-level problem, indicating that one should not be restricted
to only two levels.

All three of these potential solutions involve writing programs that are ca-
pable (i) of observing parts of other programs, (ii) of examining those pro-
grams’ conclusions and perhaps also the reasoning behind these conclusions,
and (iii) of creating new programs, presumably starting from existing pro-
grams.

The reader should note that the preceding sentence could just as well
have been a statement about advanced software engineering; the same basic
operations seem to be useful in both application areas. Our thesis is that
a useful methodology for building correct software is one where a program
is constructed “implicitly” by writing a meta-program that takes a number
of “standard programs”, transforming and combining them to produce a
program that performs the desired task. The “standard programs” would

be of various kinds, some of them simple program pieces that perform various
kinds of recursion, for example, but some of them might be sophisticated
and complex programs that carry out a computation for the same domain
as the program to be produced.

The meta-programs may in some cases be very simple, merely compos-
ing and transforming the given programs in certain ways. However, if the
produced programs must satisfy particular criteria, for example, real-time
constraints, then the meta-programs may have to do a much more detailed
analysis or perhaps even run the generated programs as a step in their con-
struction.

The advantage with the outlined approach is that if the standard pro-
grams are completely understood, the produced programs will be as well.
Moreover, all future modifications to the produced programs are done by
changing the program that generated them, which is likely to lead to fewer
mistakes than manual work. This programming paradigm could truly be
called “high-level programming”.

Although the main body of work on artificial intelligence, reasoning and
expert systems has been spent on single-level formalisms, we are certainly
not alone in observing that a multilevel formalism should provide a better
tool for attacking the fundamental problems. We mention some related
formalisms at the end of this chapter; further references can be found in the
remainder of this book.

3 Logic Programming with multiple theories

Formally, a theory is a set of sentences in some language, including the
logical axioms of the language, that is closed under the inference rules of the
language. Once the language is fixed, any set of sentences in that language
defines a theory, obtained by adding the logical axioms of the language and
closing it under inference. In logic programming, the language might be
that of definite clauses with SLD-resolution and the logical axioms those
concerning (Herbrand) equality. A program is then a set of definite clauses
defining a single theory.

In applications that involve reasoning it is often appropriate to compute
with more than one theory. For example, we could write a program that sim-
ulates the reasoning of a collection of agents, representing the beliefs of each
agent as a theory (if we employ the “sentential” view of beliefs, perhaps first
used explicitly by McCarthy [28]). If the language prevents us from having
more than one theory in our program, then these “internal” theories have
to be represented in some other way, perhaps as data structures with the
programmer writing an ad hoc interpreter to simulate inference. There is
a large class of applications in “reasoning” and software engineering, per-
haps also in other areas, that are naturally written using multiple theories;
therefore multiple theories ought to be supported directly in the language.

Tup F U7 T T [D]

t . L ti
reflection coincidence

-

- “.

t1 o U t1<>uj

Figure 1: A generic theory system.

Theory systems constitute a useful formalism for writing these kinds of
programs, because the theories in a theory system are suitable for repre-
senting reasoning agents or parts of them, programs to be manipulated,
programs that manipulate them, etc. The meta/object relationship between
theories provides the inspection and control facilities needed in both kinds
of applications.

3.1 Theory systems

We propose now a simple structure for theory systems that appears to be
adequate for our purposes. A theory system is a mapping from (ground)
theory terms to theories. Any theory 7 contains theorems about theories
named 7 ¢ --- (0’ is a distinguished function symbol that we write using
infix notation). In fact, the restriction of a theory system to theory terms
of the form 7o .-, for some 7, is a theory system in itself. Such a theory
system can be thought of being defined by 7.

It is convenient to say that a theory t; is a meta-theory of any theory
identified as t; ¢ty ¢ --- ¢ tx, where k& > 1. Conversely we say that those
theories are object theories with respect to ¢;.

We use the symbol ‘-’ for relating theory terms and sentences. A the-
oremhood statement t; = "u; = U7 says that "u; F W' is a theorem of
t1. We mentioned that theories may contain theorems about other theories,
and "wu; F U7 in ¢; expresses that U is a theorem in the theory ¢; ¢ uy (cf.
Fig. 1). Note that a subset of the theorems of ¢;, namely those on the form
Tup b -+ -7 (the left shaded area in the figure), have a one-to-one correspon-
dence with the theorems of t; ¢ u1, and similarly for another subset of ¢,
(the right shaded area) and ¢; o u;.

The other kind of statement that we use for defining theory systems is
called a coincidence statement. If the program defining the theory system in
Fig. 1 contains a coincidence statement ¢ o u; = t;, then the theories 1 o u;

(—»

and ¢; have exactly the same theorems. (The relation denoted by ‘=’ is an
equivalence relation, i.e., it is reflexive, symmetric and transitive.) More
importantly, that statement ensures a one-to-one correspondence between a
subset of #; (the right shaded area) and ¢;. In absence of such a coincidence
statement, there is no connection whatsoever between theories, unless one
is a meta-theory of the other. In particular, proving "¢; - ®" in #; in order
to determine in ¢; whether ® is a theorem of ¢; requires that t; ¢ ¢t; = ;.

3.2 Representation

We will assume that all theories use the same definite clause language but
that the set of terms of this language is rich enough that for any variable,
function or predicate symbol o, there is some unique constant ¢’ which
represents, or names, o. Similarly, for each well-formed expression «, there
must be some unique ground term o that represents .

Our final requirement on the definite clause language is that for any theo-
remhood statement and coincidence statement there is some unique ground
atom representing it.

We can now define precisely the relationship between a meta-theory and
an object theory. Consider a theory system and a pair of theories identified
by some theory terms 71 and 71 ¢ 7o; the first is thus a meta-theory of the
second. Our theoremhood reflection principle states that

nE"mEsTenombEEk

and can be seen as a correctness statement for interaction between a meta-
theory and an object theory.
Our coincidence reflection principle states that

nE M= non=m0T13

and can be seen as a correctness statement for coincidence of internal theo-
ries.
Both these principles are valid for every theory system.
The traditional local reflection principle for a single theory T in mathe-
matical logic [30] reads
Pro("e7) = ¢

and states the correspondence between a provability statement and what is
to be proved, namely that if the provability predicate holds for an encoding
of a formula ¢, then ¢ holds as well. We call our statements reflection princi-
ples by analogy, as they state correspondences between names of statements
and what these statements are about.

These implications and equivalences should not be confused with the in-
ference rules sometimes referred to as “reflection principles” but for which

Tt W B R U
t1 oty t1 01y O3
131

Figure 2: Three meta-levels of theories.

a better name is “reflection rules” or “linking rules” (cf. the discussions by
Giunchiglia, Serafini & Simpson [18] and Costantini, Dell’Acqua & Lan-
zarone [15]). However, in Sect. 4.3 we will present two reflection rules cor-
responding to the two implications of the theoremhood reflection principle.

Fig. 2 depicts part of a theory system in which a theory t contains a
theorem "u F "v F ®7". The reflection principle requires that the theory
t o u contains the theorem "v = ®" and thus that ¢ ¢ u ¢ v contains ®. The
figure thus illustrates that theory systems may be arbitrarily deep and that
the theoremhood reflection principle applies at any level.

Finally, the following is an example of a program defining a simple theory
system.

Tim & "% F Tasty(z)" < Cannibal(y) Az Names y (1)
Tim & Cannibal (Tom) (2)
Tim o Tom = Tom (3)

The theoremhood statements 1 and 2 specify two axioms of the theory Tim.
According to the theoremhood reflection principle, statement 1 also says
something about theories named T%m ¢ ---. One such theory is Tim ¢ Tom,
which coincides with Tom, according to statement 3. When the theories are
thought of as representing the beliefs of agents, we can read the statements
as saying “Tim believes that all cannibals find themselves tasty”, “Tim
believes that Tom is a cannibal” and “Tim’s view of Tom’s beliefs is correct”,
respectively. From this reading we can deduce that Tom finds himself tasty,
and in Sect. 4.3 we will show how to derive this conclusion using an inference
system.

4 Syntax

We will now define the syntax, inference rules and informal semantics of
Alloy, a language for computing with theory systems. What we define in this
section can be seen as the “core” syntax of Alloy: the language of definite
clauses extended with name terms, name atoms, theoremhood statements
and coincidence statements.

The language, at this stage, does not contain negation, except that de-
nials are introduced as part of proving goals (as usual in SLD-resolution).

In Sect. 6.2 we use negation in some examples, which are therefore not
meaningful until Alloy is extended with negation.

4.1 Formal syntax

The Alloy language has two components: the system component for defining
theory systems and the theory component for defining individual theories.

Alphabet. Besides punctuation symbols, the part of the alphabet that
is common to both components of the language consists of a class of variables
and, for each n > 0, a class of function symbols and a class of predicate
symbols of arity n. Collectively, function and predicate symbols are referred
to as functors. As usual, function and predicate symbols of arity 0 are
referred to as constants and propositional constants, respectively. The class
of predicate symbols include the binary symbols ‘=" and ‘Name’, two binary
symbols that will be denoted by ‘+'” and ‘=", and the propositional constants
‘True’ and ‘False’. The function symbols include the binary symbol ‘¢’

The alphabet has also a collection of connectives ‘<=, ‘A’ and ‘?7’, and
naming symbols ‘77, <V, 7 (“dot”) and ‘. A dot is used in combination
with variables only. If = is a variable, then % is called a variable with a dot,
& a variable with two dots, etc., in general a variable with one or more dots
is called a dotted variable.

In addition, the system component of the language has the binary oper-
ators ‘-’ and ‘=’.

We will use letters P, @@ and R to stand for predicate symbols, F' and G
to stand for function symbols, z, vy and z to stand for variables.!

Theory component. In the following we define the expressions of the
theory component. We will do so by a simultaneous inductive definition of
terms, atoms, queries and sentences as separate subclasses and refer to them
collectively as theory expressions.

In the definition of terms and atoms we will make use of the notion of
an expression being a schema of another. Intuitively, E is a schema of an
expression e whenever some (or none) subexpression occurrences of e have
been replaced by dotted variables (“holes”) in E. In general, we say that £
is a k-level schema of e if one of the following conditions holds.

l.e=E,
2. e is not a connective and F is a variable with k£ dots,
3. e=¢pley,...,e,) and

o F = Eg(El,...,En), or

!The letters may also be subscripted.

o /=FEy(kn,...,E;|X) for some j, 0 < j <n,

where each E; is a k-level schema of ¢;, 0 <4 < n, and X a variable
with k dots.

4. e="d"and E ="D", where D is a (k + 1)-level schema of d.

By simply schema we mean a 1-level schema. It is an immediate consequence
of the definition that if E is a schema of e and a subexpression of e has been
replaced by a variable with k& dots in £, then this dotted variable occurs
nested within £ —1 pairs of ‘"’ and ‘. For example, if F' is a binary functor,
then i (y, G(2)7) is a schema of F(y, G(2)7).

Terms. The class of terms is the least class satisfying the following
conditions.

1. Each variable and constant is a term.

2. If F' is a function symbol of arity n and ti,to,...,t, are terms, then
F(ty,tg,...,ty) is a term.

3. If X is a schema of a functor or a theory expression, then "X is a
term, called a name term.

Letters ¢ and u will be used for terms.

Atoms. The class of atoms is the least class satisfying the following
conditions.

1. If P is a predicate symbol of arity n and %q,...,%, are terms, then
P(ty,...,ty) is an atom, called a predication.

2. If T is a schema of a term ¢t and S a schema of a sentence s, then
H("T7,"S7) is an atom, called a name atom.

3. If T is a schema of a term ¢t and U a schema of a term wu, then
=("T","U") is an atom, called a name atom.

Letters A and B will be used for atoms. We will use the shorthand "T"+ S
for H("T7,"S™) and "T = U for ='("T7,"U").2

It follows easily from the definitions of terms and atoms that a variable
with n dots is embedded within k, £ > n, nested levels of naming. For a
variable with n dots, the lowest dot makes a “hole” in the innermost pair
of 7 and ‘", the next dot in the next pair and so on. If k¥ = n, then the

2We could let H' be Demo, in which case "T + S would be shorthand for the familiar
Demo("T™,"S™).

variable is called free in the corresponding term or atom. For example z is
the only free variable of the name term

"TF(z,9,2)"

A name term or name atom is said to be proper if it is ground. Consider
for example
'_F(.’El) F afg(a:'l,y,A) +—z\

This name atom is not proper because it contains four free variable occur-
rences of three different variables. Only for proper names can we tell which
expression they name.

Queries. The class of queries is the least class satisfying the following
conditions.

1. An atom is a query; True is called the empty query.

2. If C and D are queries, then C' A D is a query.
Letters C' and D will be used for queries.

Sentences. The class of sentences is the least class satisfying the fol-

lowing conditions.

1. If A is an atom and C is a query, then A < C is a sentence, called a
program clause.

2. If C is a query, then C'?7 is a sentence, called a goal.

3. If C is a query, then < C (shorthand for False <— C) is a sentence,
called a denial.

The variables of a program clause and a denial are universally quantified.
A goal, on the other hand, is the negation of a denial and thus existentially
quantified:

—(+ C) & ~(Y(False + C)) & —(False + IC) & IC & C7.

System component. The language of the system component has two
kinds of expressions: theoremhood statements and coincidence statements.

e Ift¢is a term (called a theory term in this context) and s is a sentence,
then ¢ I- s is a theoremhood statement.

e If#; and t9 are (theory) terms, then t; = t9 is a coincidence statement.

Collectively they are referred to as system expressions.

4.2 Normalized language

In order to be able to handle terms conventionally, we want each term to
have a normal form, where the naming symbols ‘?, “", ¢ and ‘|’ have been
eliminated. We call the elimination process normalization and the result a

normalized term. In this context " — 7 is a function mapping expressions

to expressions; " — " is required to be compositional in order to enhance
the expressive power of the language. This means that if e is a compound
expression eg(eq, ..., e,), then "e™ can be expressed as a composition of all

Te; ', 0 <4 < n. In addition, "o = v.

Clearly there exist several different normalizations. Probably the most
general approach is to have a binary function symbol ‘o’; denoting a com-
position function that produces the name of a compound expression from
the name of a functor or a connective and a list of names of expressions.
Using this approach, the notion of lists is needed; this can be accomplished
by using a binary function symbol ‘e’ and a constant ‘A’ to represent the
empty list. (We will use the less cumbersome notation [e1, eg, ..., ep|z] for
o(e1,0(e2, - o(en,) 1))

The alphabet is assumed to have a unique name €’ for each symbol e, in
such a way that the mapping e — ¢’ is injective.> If these names are all
terms, then the normalization can be described by the following transfor-
mations.

e

—
Te7 —s € ifeisasymbol
— O(reo—la [r61—|7"'al—en—l|x])

Teg(er,-..,en)’ —> o(Tep [er ..., en)

Tegler, ... en|t)”

We can however take advantage of the restriction that we imposed on the
definition of schemas, namely disallowing holes for connectives, and make the
following modifications to the above transformations. For each connective
¢, the alphabet has a corresponding function symbol ¢’ of the same arity as
c. If ep in the last case above is for example ‘A’, then

r61/\€2—| — /\I(I—el—l,reg—l).

We get similar transformations for the other connectives. For example, using
this normalization, the normal form of ""F(z,7,%)"" is obtained as follows.

TF(z, 3,47 = To(F, 2y, 4])”
— o(, [F", [+, y, 2]))
— oo, [F",o(e',[2", [y, 2]])])

3If ¢’ itself is a symbol it has a name e”, etc.

10

*

— oo, [, 0(e', [2", 0(o', [y, T[] D)D)
— o(o/, [F",0(e',[2",0(', [y, o(¢', [z, ADD])

Unnecessary naming of ‘o’, ‘e’ and ‘A’ can be avoided by defining the trans-
formation so that ‘o’, ‘e’ and ‘A’ become “transparent” with respect to
naming, i.e., "A7 — A, To(e,e2)! —> o("e; ,"ey) and "e(er,e)! —
e("e; ", "e2). Note that this does not violate the injectivity of the naming
function. Assuming this modification then, for example,

I—I—F("'E’ y? 2..:)1—' L> O(F”’ I:x”’yl’z])'

4.3 Inference system

Equality, naming and unification. Before normalizing the language of
a program, we extend each of its theories with every axiom on the form
"t" Names t, where t is a term.

After normalizing, as described in Sect. 4.2, the usual Herbrand equality
theory, as axiomatized by Clark [14], can be used. (However, computation
of the naming relation ought to be integrated with unification in order to
delay computation of names of nonground terms.)

As all correct normalizations will behave in the same way, with respect to
equality of the normalized expressions, it would alternatively be conceivable
to extend Herbrand equality to name expressions without normalization.

Inference rules. The inference system that we are to explain here is by
no means the only possible inference system for Alloy, in fact, it is not even
complete. We choose this inference system for presentation because it is
simple and because it is complete for propositional programs. For an actual
implementation we are presently developing a more goal-oriented inference
system, outlined in Sect. 9.

The main purpose of the inference system is to be able to prove statements
of the form 7 F C7, i.e., that a goal C?7 is a theorem of some theory 7.
This can either be accomplished by a refutation, i.e., by assuming 7 - <C
and proving 7 < (inconsistency in 7), or by a proof that may include
refutations as subproofs. A successful refutation of a denial 7 F «C is
always ended by cancelling 7 F <-C and concluding 7 = C? (through the
application of the RR rule described below).

We shall present seven inference rules. The first rule is ordinary SLD-
resolution within a theory. Let AC denote the atom selected from a query
C and s7C the rest of the query. It is assumed that the predicate symbol of
the selected atom is not Names.

T+ C THA+D

RS TF (= A D) 0 = mgu(A, AC)

11

The second rule is a “Relativized RAA” rule, allowing us to make sub-
proofs that are refutations.
[T <«C]

TH ¢+
THC?

RR cancel ¢

The third and fourth rules are the reflection rules, justifiable from the the-
oremhood reflection principle (Sect. 3.2). They make use of the meta/object
relationship between a pair of theories in both directions: If a theory 7/
reasons that its internal theory 7o contains some sentence x, then 737 ¢ 70
indeed contains k, and vice versa.

M "ToF K TMOTOF K

TD TU
TMOTO F K "o KT

The fifth and sixth rules are similar to the third and fourth, but are instead
justifiable from the coincidence reflection principle. They express that if a
theory has as a theorem stating that two of its internal theories coincide,
then we may infer that these theories do coincide, and vice versa.

TET =1 TOT|=TOTy

CD CU
TOTI=TOT TE ' =7n"

The seventh rule uses a coincidence between two theories to transfer a the-
orem of one of them to the other.

=1 TIFEK

CE
kK

From these inference rules one could derive others, for example, an indirect

SLD-resolution inference.

TMI_'_7'0|—<—C—' TMI_'_T()'—A(—D—'
™ F"ToF (+vC A D)f”

0 = mgu(A, AC)

This derived inference rule can be justified:

TM|—F7'0|—<—C—I TMl—rTol—A<—D—'
TD TD
T oTo F+— C TMOTOF A+ D

v o To F (+ vC A D)0

bk ToF («vCAD)E

RS

Another useful derived rule is for indirect reasoning with coinciding theories,

T =" TE M FEKT
THE"rF KT ’

12

justified as follows.

i S DY el S
CD TD
TOTI =TOTy ToTI F K

TOTy K
TE"mE KT

CE

TU

As an example, consider again the cannibal example of Sect. 3.1. Here is
how to prove the statement Tom Tasty(Tom)?.

(1) [Tim <" Tom & Tasty(Tom)™|*
RS
(2) Tim t < Cannibal(y) A" Tom™ Names y .

Tim = +"Tom™ Names Tom

S

NM

Tim & < True
Tim =" Tom + Tasty(Tom)? et
(3) Tim o Tom & Tasty(Tom)? TD
Tom + Tasty(Tom)?

CE

We mentioned above that this inference system is incomplete. What must
be done in order to increase the number of provable statements is taking care
of proofs that involve improper names. See Sect. 9 for a further discussion
of how this can be done.

5 Semantics

Let Z be the set of theory terms and M = {9, },c7 a family of (arbitrary
first order®) structures for the language of theory expressions under a given
normalization. The elements of M are called theory structures. A system
structure is a pair (M, =), where = is an elementary equivalence relation
on M. (Two first order structures are said to be elementarily equivalent
whenever they have the same set of logical consequences.)

Let P be an Alloy program, i.e., a set of system expressions, and let
(M, =) be a system structure. If the theory structures are Herbrand inter-
pretations, we can assume without loss of generality that P is ground; P
could then be a Herbrand instantiation (possibly infinite) of an underlying
nonground program. We say that (M, =) is a model of P if the following
hold:

TEpeP = M Ey; (4)
N=mneP = M, =My (5)
M,): '_,(I—7-2—|7 ’_(101) = Mron): 12 (6)

“Here we need not restrict ourselves to Herbrand interpretations only.

13

mﬁ): E,(FT2—|7 ’_7-3—|) = m7'1<>7'2 = f'):)’1’1'107'3; (7)

g‘nTlO(TQOTg) = m(T10T2)<>7‘3 (8)
tis a ground term = 9. = "¢ Names t. (9)

Conceptually, the set of theoremhood statements of P is partitioned by the
theory terms. Each part is identified by a theory term, the denotation of
which is a model for that part (4). A coincidence statement between any two
theory terms enforces the structures they denote to be elementarily equiv-
alent (5). The theoremhood and coincidence reflection principles must be
satisfied by the theory structures (6, 7). Furthermore, ¢ must be associative
with respect to elementary equivalence between the denoted structures (8).
From formulas 6 and 8 we can easily deduce that

M, EmonkFe'eM, E nFrkFe'.

Finally, the Names predicate symbol must denote a naming relation (re-
stricted to terms), i.e., one that relates any ground term with its name (9).
It is also clear that the set of logical consequences of any theory structure
is closed under SLD-resolution, as the set of theorems of any first order
structure is complete.

Considering the special case when P is just a Horn clause program, i.e.,
when all the sentences of P are of the the form 7 - ¢ where ¢ is a Horn clause
and 7 is the only theory term, then the notion of system structure collapses
to that of a first order structure. In that case conditions 5-7 are trivially
satisfied. The only extra requirement, not part of a standard definition of a
model of P, would be (9).

In our approach we have not altered the notion of logical consequence,
as was done for example by Jiang [20], in order to handle meta-reasoning.
Instead we introduce the notion of system structure, following closely the
informal semantics, giving us a notion of semantics which is a modest ex-
tension of a first order semantics in the sense that the basic building blocks,
theory structures, are still first order structures. A more thorough investi-
gation of the semantics of Alloy will be the subject of a future publication.

6 Applications using theory systems

In this section we shall present a number of useful applications of meta-
programming with theory systems, some of them commonly known, some
of them new. We shall show how fragments of these applications can be
programmed elegantly in Alloy. Our ambition is twofold. Firstly, we wish
to convince the reader of the strength and versatility of meta-programming
with theory systems, continuing and extending the work by Bowen & Kowal-
ski [8], Sterling [31], Bowen [7], Brogi & Turini [12] and others. Secondly,
we hope to illustrate programming in Alloy and how many problems can

14

be programmed in a much more straightforward and concise way than in
single-level programming or single-theory meta-programming.
6.1 Reasoning Agents

Many forms of reasoning for artificial agents have been proposed, such as
abductive reasoning, inductive reasoning, non-monotonic reasoning, case
based reasoning, temporal reasoning and so on. A favourite approach of
many philosophers and other researchers in artificial intelligence is to invent
a new specialized logic for each one of these forms of reasoning. There
are many problems with this approach. One is that it is not clear at all
that these logics can be combined to build artificial agents capable of more
than one form of reasoning. Another is that there are often no efficient
implementation techniques known for these new logics.

A more sensible method is to employ a single logic, with known properties,
which can be implemented; such as some subset of classical logic. However,
many of the forms of reasoning mentioned above cannot be mapped straight-
forwardly to classical logic. (This has even been used as an argument against
using logic at all for reasoning agents.)

Fortunately, there is a partial solution. If we go from using single-level
logic languages to meta-logic languages for theory systems, we obtain a mod-
est extension of classical logic in terms of semantics but we get a substantial
extension in terms of reasoning capabilities, because we can express various
forms of reasoning in the logic itself. This approach becomes even more
sensible when one recognizes that many forms of reasoning actually contain
a substantial element of meta-level reasoning. For example, default reason-
ing involves observing that some question cannot be decided and making a
hypothesis (although it is not always recognized as such) about the answer.

In Alloy we can represent an agent’s beliefs by a theory, which internally
defines a system of theories. Some of these theories might represent (cor-
rectly or incorrectly) the agent’s view of other agents’ beliefs, ambitions and
motives; cf. Fig. 3. Other theories might represent the agent’s beliefs about
the surroundings and about various domains. Presumably, there are also
theories that encode various problem solving strategies and tactics.

This approach has several advantages.

e Modularity. An agent’s mind is internally structured.

e Multiple levels. It is possible to represent beliefs and procedures at
various meta-levels, e.g., theories synthesizing problem solving proce-
dures to be used in specific domains represented by “lower” theories.

e No parapsychology. As the theory representing the beliefs of an agent
is clearly separated from the theory representing another agent’s be-
liefs about the first agent’s beliefs, our formalism does not create
“mind-reading” and confusion (unless explicitly programmed).

15

reflection b2

O
7./

i1 t1 o to

Figure 3: An agent ¢;, which has a (distorted) view of the beliefs of another
agent to, constituting a theory t; o ts.

-
-

Figure 4: “Can the driver in car C, coming from south, pass the crossing?”

e Generality. Various properties of knowledge and beliefs (see the fol-
lowing section) can be programmed into the system but they are not
automatically present.

As an example of programming multiple agents that reason about each
other, consider the traffic problem illustrated in Fig. 4.

Three cars are simultaneously approaching a four-way crossing. There
are no other signs or traffic lights, so the rule is that drivers should give
way to cars coming on their right side. Using a simple application of this
rule, we obtain that car A can pass, while cars B and C' must wait, because
they give way to some car on their right side. However, the driver of car C
could instead reason that car B must wait, because the driver of car B will
see car A on her right entering the crossing and give way to it. Hence, the

16

driver of car C' might conclude that he can safely pass.

Our purpose here is not to argue whether it would be legal or not for the
driver of car C to pass, based on the argument above®, but to show that
such multiagent reasoning can be programmed straightforwardly in Alloy.

The following statement encodes the problem of the driver of car C.

Traffic b "D(C, South) - Pass([D(A, North), D(B, East), D(C, South)])?"

(10)
The theory Traffic is where our reasoning about the drivers will take place.
Each theory Traffic o D(z,y) represents (our view of) the beliefs of the
driver of car z, coming from direction y. Each theory Traffic ¢ D(x1,y1) ¢
D(z9,y2) represents (our view of) the beliefs that the driver of car x1, coming
from direction y; has about the beliefs of the driver of car x2, coming from
direction yy has, etc.

A theorem Pass(z) in a theory --- o D(z,y) would mean that the driver
in question would believe that she can pass a crossing in which she sees the
cars listed in z. Similarly, a theorem Wait(z) would mean that she would
believe she has to stop.

The first two clauses are interesting, because they help us to encode a
form of group belief.

Traffic = Driver(D(z,y), D(z,y))
Traffic = Driver(D(x,y) ¢ p,d) < Driver(p,d)

Every atom on the form Driver(D(x1,y1)o - -0D(xp, Yn), D(Zn, yn)) is a the-
orem in Traffic. For example, we can derive Traffic = Driver(D(C, South),
D(C, South)) and Traffic = Driver(D(C, South) o D(B, East) o D(A, North),
D(A, North)). Note that each such theorem is about a theory term encoding
some driver’s view of some driver’s view of ... some driver’s beliefs, and the
ultimate driver in such a chain. We can use the predicate Driver in Traffic
for expressing that something should be believed by every driver and that
every driver should believe that other drivers believe so, etc., arbitrarily
deep.

°It is easy to observe that many real drivers seem to reason exactly this way.

17

The following three clauses define the actual reasoning.

Traffic - "t) - Pass(c) < Not-in-crossing (21, c¢)”
Driver(t,d) A t; Names t A x1 Names x A Gives-way-to(d, x)
Traffic - "t1 = Wait(c) < In-crossing (1, c)A
xo Names x1 A ¢c; Names cA
"y F Pass(¢y)?
Driver(t,d) A t1 Names t A x1 Names x A Gives-way-to(d, x)
Traffic = "ty - Pass(c) < In-crossing (41, c)A
zo Names x1 A\ ¢cg Names cA
rx:g F Waz't(c'l)?—'—' —
Driver(t,d) Aty Names t A x1 Names x A\ Gives-way-to(d, x)

The first clause says that any driver will reason: if there is no car approach-
ing from such a direction that I must give way to it, then I may pass.

The second clause says that any driver will reason: if there is a car ap-
proaching from such a direction that I must give way to it, and I believe
that driver will reason that he can pass, then I must wait.

The third clause says that any driver will reason: if there is a car ap-
proaching from such a direction that I must give way to it, but I believe
that driver will reason that he must wait, then I can pass anyway.

The next four clauses of Traffic simply determine who must yield to whom.

Traffic b Gives-way-to(D(-, North), D(_, West))
Traffic = Gives-way-to(D(-, West), D(_, South))
Traffic b Gives-way-to(D(-, South), D(_, East))
Traffic = Gives-way-to(D(-, East), D(_, North))

The predicates In-crossing and Not-in-crossing are list membership /non-
membership predicates; these predicates are here part of the group belief of
drivers (alternatively we could have placed them in every theory Traffico---).

Traffic - "t) - In-crossing(z, [z]_])”
Driver(t,d) A t; Names t
Traffic - "t) = In-crossing(x, [_|c]) + In-crossing(z,c)” +
Driver(t,d) A t; Names t
Traffic - "t| - Not-in-crossing(z,[])” <
Driver(t,d) A t; Names t
Traffic - "t, = Not-in-crossing(z, [y|c]) < = # y A Not-in-crossing(z,c)” +
Driver(t,d) Aty Names t

A full proof of the original statement 10 is rather long, but involves proving

18

the following statements, among others.

Traffic © D(C, South
Pass([D(A, North
Traffic o D(C, South) o D(B, East) +-
Wait([D(A, North), D(B, East), D(C, South)])?
Traffic o D(C, South) = Pass([D(A, North), D(B, East), D(C, South)])?
Traffic = "D(C, South) = Pass([D(A, North), D(B, East), D(C, South)])?"

o D(B, East) o D(A, North) -
,D(B, East), D(C, South)])?
o

~ — — ~—

6.2 Properties of Knowledge

Some formalisms intended for knowledge representation, reasoning and meta-
reasoning (such as Konolige’s modal logic of knowledge [22]) build various
properties of knowledge or belief into the formalism. Five well-known prop-
erties of this kind are (using the notation of Konolige, where bel(S) is the set
of beliefs of an agent S, while [S]¢ is the proposition that agent S believes ¢):

Saturation (K). Reasoners are closed under inference, so bel(S) is satu-
rated.

Knowledge (T). For knowledge, beliefs must be true, so ¢ € bel(S) =
¢ is true.

Consistency (D). Reasoners are supposed to be consistent in their knowl-
edge, so ¢ € bel(S) = —¢ & bel(S).

Positive introspection (4). If reasoners believe something, they also be-
lieve that they believe it, so ¢ € bel(S) = [S]¢p € bel(S).

Negative introspection (5). If reasoners do not believe something, they
also believe that they do not believe it, so ¢ & bel(S) = —[S]¢ €
bel(S).

Alloy is intended, among other things, for applications of this kind, but only
the first property has been built into the language. Instead, we might ex-
press these properties as part of our meta-programs. This makes it possible
to model also reasoning agents that do not have these properties, or who
have quite different properties. Let us show how these properties could be
represented in a suitably extended version of Alloy, one by one. We will
assume that there is a theory A which defines an internal theory system, in
which the beliefs of some agent is represented by a theory identified as B in
A (and thus as A ¢ B outside A).

Saturation (K) This property is built in, as Alloy theories are closed under
inference. This means that Alloy can only represent directly agents
whose beliefs are closed under inference.

19

Knowledge (T) This postulate can be expressed for some particular bi-
nary predicate P as a theoremhood statement

At P(z,y) < "Bt P(u,0)?" Au Names x A v Names y.

If we would like to express the T postulate for any predicate symbol
we should do it in a meta-theory of A.

A variant of the T postulate can be expressed as
AF"W F P(4,0)" < "BF P(4,0)7",

in which A has an internal theory W which contains A’s view of the
world. This statement says that if A believes that B believes some P
atom, then that atom is also contained in A’s beliefs about the world.

Consistency (D) Cousistency of the reasoner B could be expressed as an
integrity constraint

AF <« "BEFEp'A"BEnotp’

(However, Alloy currently has no inference rules that take integrity
constraints or negation into account.)

Positive introspection (4) This is straightforward:

AF"BF"BFp <« "Bt ¢ Ap Names q

Negative introspection (5) If Alloy were to be extended with negation,
then negative introspection is also easy:

AF"BFnot™BEp" < not "B F ¢ Ap Names q

6.3 Program Composition Operators

Brogi, Mancarella, Pedreschi and Turini have proposed an algebra of oper-
ators for composing logic programs [9]. The operators are PUQ, PNQ, P*
and P < @, for union, intersection, encapsulation and import of programs,
respectively. Their meta-interpretive definition can be coded elegantly in
Alloy, provided that we choose one unary and three binary function sym-
bols for constructing theory terms that stand for the theories resulting from
these operations.

We let all the theories of a logic program with theory operators constitute
a theory system internal to a theory M. The definition of M contains
five theoremhood statements that define the theorems of theories named

20

by operator expressions. Here we represent the operators by the function
symbols U, I, E and T', respectively.

MFEFTU®BG) Faeé e Tphaeé

METU@§) Faed«gFaeé

METI(p,4) F a+ ¢« Partition(c,c1,co) N"pEa<+ G "ATgEa+ é
MFETE(p)Fa<+ True' < "pkFa?’

METT(p,¢g) Fa< ¢« "pka<« ¢" A Partition(c,c1,¢2) AN"¢ F éa?”

This straightforward program, which uses a ground representation, is no less
elegant than the program by Brogi & Contiero [11] that uses a nonground
representation. (We assume that the ternary predicate Partition has been
defined to compute the partition of a conjunction into a pair of (possibly
empty or unitary) conjunctions.

For example, consider a program in the algebra with three “basic” the-
ories Rules, Public and Private [10]. In the Alloy program, the clauses of
these theories should appear as theoremhood statements M ¢ Rules F - - -,
M o Public - - - -, and M ¢ Private - - - -, respectively. We can then add a co-
incidence statement such as GiveCredits = M oU (T (Rules, Private), Public)
in order to define a theory GiveCredits which can subsequently be queried.
Any query to GiveCredits will then be computed in the composed theory
(Rules < Private) U Public.

6.4 Implicit Programming

Essentially all programs today are written manually by programmers. The
programmers build on past experience and sometimes even directly on pro-
grams written in the past. (Indeed, this happens every time an existing
program needs modification; we may see it as writing a program that is to
perform almost the same computation as an existing program.) This might
happen in many ways. Sometimes a program piece can be reused as is,
when the abstraction it provides is exactly the one sought for. Typically
pieces of the existing program need to be systematically rewritten in some
way, for example, an extra argument might need to be added to a procedure
or a base case replaced. If the existing program needs extensive rewriting,
perhaps only its basic structure remains, such as the recursion pattern.

When really done systematically, this is a useful methodology. If the exist-
ing program does what is expected from it and each small change transforms
it in a known way, then we may have confidence that the program resulting
from a sequence of such changes computes what we expect. It is a serious
problem today that modifications of the kind outlined above can rarely be
carried out flawlessly. The resulting program then does not do what is ex-
pected and expensive corrective work is required. We may never know when
the program becomes error-free.

21

Suppose we could partly automate this process, so the programmer could
instead take a program or a program fragment and specify exactly which
modifications must be done. The requested transformation would then be
applied and the process continued until the desired program had been cre-
ated. Given a collection of generally useful program fragments, the pro-
grammer might even build an entirely new program by incorporating and
transforming these components. An alternative, often discussed in the realm
of functional programming, is to provide very powerful abstractions so ev-
ery problem can be coded in terms of these high-level abstractions. This
approach is mathematically very appealing but has not yet turned out to
be a practical approach to programming. The process outlined above is
closer to an approach taken by actual programmers and also seems to be
useful for reasoning exactly about the resulting programs. A more detailed
comparison between these approaches seems necessary in the future.

As an example, let us show a simple program that adds an extra argument
to a predicate. The transformation program is in a theory called 7T'.

T & " Extend (i, p) b < d «
"mbEa+c¢'A
Nonoccurring Variable("a « ¢, v)
TransAtom(a,b,p,v) A
TransQuery(c,d, p,v) A

T t TransAtom("p(|2)", "p(0|2) ", p,v) < True

Tt TransAtom("¢(|2)","¢(|Z) ", p,v) < p # q

T+ TransQuery (" True”,” True™, _, _) <= True

T+ TransQuery("a A ¢, "bAd, p, V)
TransAtom(a, b, p,v) A
TransQuery(c,d, p,v)

(We assume that the predicate Nonoccurring Variable has been defined to
compute (in its second argument) some variable name that does not occur
in the name given as the first argument.)

In order to use this program, we must make 7’s view of the inspected
and the defined theories coincide with the actual theories that we wish to
inspect and define:

T o JohnsBrain = JohnsOldBrain
T o Extend(JohnsBrain, Likes) = JohnsNewBrain

Henceforth, the theory JohnsNewBrain will be exactly like the theory Johns-
OldBrain, except that any clause which contains a predication Likes(- - -) has
been replaced by a clause in which these predications have all been replaced
by Likes(---,v), where v is some variable that did not occur in the original
clause.

22

7 Self-reference

The reader may have noted that we have avoided using any circular theories.
There is no automatic mechanism which gives a theory access to information
about its own provability.

There are several advantages with systems that do not contain self-refer-
ring theories, i.e., theories that do not really reflect upon themselves but at
most upon “views” of themselves. For example, there will be no paradoxes
and implementation becomes simpler and more efficient.

The disadvantage with prohibiting or avoiding self-reference is, of course, a
reduced expressivity. It is not possible to define agents that truly introspect.
It is an open question at this time how serious a restriction it would be to
prohibit self-reference completely, but it is clear that one can often make
do with a sufficiently high tower of theories, each being a meta-theory for
the theories below it. A very close approximation to a single theory which
is a meta-theory for itself is obtained through an infinite tower of identical
theories, each being a meta-theory for the theories below it. Such a tower
can be expressed in Alloy.

If we wished to make an Alloy theory T ¢ U truly self-referential, e.g.,
through a theory I'in T'¢ U, we could add one of the two equivalent state-
ments ToU oI =ToU and T+H"U oI =U" to the program. It is easy
to show that with either statement, in any model (M, =) of the program,
we will have that Mr.pyor = Mroy. That is, whatever T ¢ U “observes”
in the theory it calls I, is really also in T ¢ U itself. This is a “two-way”
self-reference: T o U may query itself by querying the theory it calls I, or
it may compute clauses and add them to itself if it contains clauses such as
’__[|—p—'(_ ceepee

One could allow T o U to query itself but not add clauses to itself by
instead adding here are three simple (and equivalent) ways: a theoremhood
statement

TE UolFp'«<"UFpT,

to the program. It is easy to show that M.y C Mrover, i-e., that whatever
is satisfied by Mp.y is also satisfied by Mropor, so T o U ¢ I includes an
“image” of T o U.

However, note that there is no clause that could be added to T ¢ U in
order to achieve this effect. The rationale is simply that self-reference must
be “sanctioned” from outside a theory.

8 Abduction

Abduction is a form of reasoning with a purpose to determine hypotheses
that explain an observation, typically in the context of knowledge assimila-
tion [23, 26]. Abductive reasoning seems particularly interesting in combi-
nation with meta-reasoning. Suppose the beliefs of John are represented by

23

a theory Beliefs(John), which internally defines a theory system in which
there is a theory Beliefs(Mary), representing John’s beliefs about Mary’s
beliefs. Suppose further that

Beliefs(John) +
SmilesAt(a,b) < "Beliefs(i) b Likes(d,0)" A u Names a A v Names b,

i.e., a statement that those who believe they like him smile at him. If John
notices Mary smiling at him, we can assume that a belief SmilesAt(Mary,
John) appears among John’s beliefs, calling for an explanation. By perform-
ing abductive reasoning, the hypothesis " Beliefs(Mary) = Likes(Mary, John)™
appears as a good candidate for inclusion in Beliefs(John) because it would
imply the observation. John therefore might assume that Mary believes she
likes him.

This is of course merely a simple example but the area of agents perform-
ing meta-reasoning about each other’s actions, beliefs, motives and ambi-
tions is clearly one where abductive reasoning needs to be carried out as
part of the meta-reasoning.

Abductive reasoning can be carried out in many ways. One way is to
add inference rules for abductive reasoning, obtaining new abductive proof
procedures [21]. However, it is also possible to realize abductive reasoning
through meta-level deduction, as suggested by Bowen & Kowalski [8]. Such
achievement of abductive reasoning through meta-reasoning is a topic that
ought to be explored further using theory systems.

9 Implementation and language extensions

In our implementation efforts, we are extending Luther [5], an instance of
Warren’s abstract Prolog machine [32]. The idea is that the generalized
SLD-resolution rule should be essentially as efficient as in Prolog, regardless
of the number of “indirection” levels. This can be made possible by rep-
resenting the clauses of all theories, also those that only exist as a “view”
in some other theory, by ordinary abstract machine code. An interesting
difficulty is when a program clause is not an explicit axiom in a theory but
is obtained through some computation in a meta-theory of the current the-
ory. This we intend to solve by never actually creating the program clause
but rather use directly the parts of the program clause that are explicit in
the meta-theory and then carry out a computation in the meta-theory. The
following example should illustrate the technique. Consider the following
program fragment.

Ty o TO = TO
Tu F"To & P&, F(9)) < Q) A 27+ R(&,9,2)

If we were to prove a P atom in T (or in Thy ¢Tp), we could first carry out
a computation in T); of the complete name of some clause P(---, F(--))

24

Q(---) A --- where the dotted parts were filled in by the R atom in T};.
However, computing the whole clause could well be a waste of resources, as
is easy exemplified: Suppose that the goal atom is actually P(42, G(54)).
Unification of the goal atom with the head of the generated program clause
will always fail immediately and the computation in Tj; of the program
clause would be worthless. What we do instead is to compile as part of the
code reachable from T a clause

P(z1,F(y1)) < x Names x1 Ay Names y1 A R(x,y,z) A Q(y1) A afz].

We see that all parts of the clause that were explicitly given in the meta-
level clause are present in this clause. The two Names atoms constrain the
variables and y so that any value they obtain must be a name of something
that can be unified with 2; and z9, respectively. The expression a[z]| can
best be described as a call to whatever becomes the value of z. In the worst
case, this might require using an interpreter but it seems to us that in this
situation, the value of z is usually taken from some context where there is
machine code available for the named query. In this case, that code can be
used (with some care). If we consider again the goal atom P(42,G(54)) we
see that this clause will fail before computing any part of the body.

As mentioned before, the style of computation described above realizes
a different inference system from the one described in Sect. 4.3. In this
system, computations in various theories can be interleaved, as shown by
the example. The idea is to be as goal-directed as possible.

It is clear that negation of some kind must be added to the language, either
explicit negation, negation as failure or both. If we incorporate negation
as failure in Alloy, we will investigate the merits of a monotonic version
of negation as failure, where the theory in which a finitely failed proof is
obtained is given explicitly.

It would also be very interesting to incorporate some form of abductive
procedure in Alloy, because of the natural links between meta-reasoning and
abduction pointed out in Sect. 8. Denials are already formally present in
the language and would then function as integrity constraints when given
as part of a program [26].

10 Notes and related work

There have been a few changes in the definition of Alloy since our previous
publication [4].

1. Theory terms now include expressions on the form ---o---
2. In addition to program clauses, Alloy now has goals and denials.
3. What used to be called a tagged program clause is now called a theo-

remhood statement and may contain any sentence.

25

4. Representation statements have been generalized to coincidence state-
ments (a representation statement ¢ > wu can be written as t o u = u).
This allowed us to generalize the reflection rules and simplify the in-
ference system considerably.

5. There is an SLD-resolution style inference rule instead of an inference
rule for program clauses.

It should be obvious for the knowledgeable reader that the development of
Alloy is very much inspired by work of Kowalski [25, 26], and by Reflective
Prolog of Costantini & Lanzarone [16].

There have recently appeared some proposals for systems for meta-reason-
ing with a similar philosophy as ours. Attardi & Simi [1] use what they call
“relativized truth” but obtain a system quite similar to ours. One significant
difference is that they choose to duplicate their inference system (a natural
deduction system): the rules are present once for the object level and again
for the meta-level. Moreover, among their basic axioms for the meta-level,
there is one which ensures positive introspection. We have preferred to
have no such epistemic bias, except for saturation. Giunchiglia et al. [18]
have defined a multilevel deduction system with distinct levels, called MK.
There is only one theory per meta-level but the communication between
meta-levels is similar to that in Alloy. This seems to be the basis for the
reasoning part of GETFOL, a system that is also capable of code introspection
and revision [17].

Our proposal for a meta-programming based software engineering meth-
odology is related to the proposal by Kowalski about using meta-language
for assembling programs [24] and the work by Brogi et al. about using the-
ory operators for building programs, which is discussed in more detail in
Sect. 6.3.

Bowen & Weinberg [6] and Bacha [2] have investigated compilation of
partially known clauses in a context similar to ours.

Sato [29] proposes an approach to meta-programming through a complete
truth predicate ¢r in three valued logic. Sato’s definition of ¢r is self refer-
ential, and gives in the general case an inconsistent definition of ¢r in two
valued logic by being paradoxical. As a slight modification of the definition
of tr he introduces a three valued complete demo predicate.

The language is fully amalgamated, like the theory part of Alloy to which
it corresponds. (Note, however, that the system part and the theory part of
Alloy are clearly separated both syntactically and semantically.)

The main similarity with our approach to meta-programming is the abil-
ity to reason with several levels, which is made possible by ¢r being self-
referential; thus making it possible to express tr("...¢tr(...,...)... 7, ...)
(the nesting can be of arbitrary depth). Furthermore, like naming in Alloy,

26

the structural coding makes it possible to decompound terms and formulas
to their least parts and look, for example, at codes of functors.

Jiang [20] proposes an ambivalent approach to meta-reasoning, by in-
troducing a language called AL where syntactically no distinction is made
between terms, formulas or functors. Jiang takes a radically different ap-
proach from ours by defining what he calls a “Herbrand-based” semantics,
which does not build upon the standard notion of logical consequence in first
order model theory. It is hard to form a definitive opinion of the proposed
semantics because as it is presented, it is not well-defined and thus cannot be
understood without having to guess the intentions. Neither does he present
an inference system, nor hint at any possible implementation of the pro-
posed ideas. (It should be noted, however, that AL to some extent captures
meta-programming as it is often done in Prolog, which has an operational
semantics.)

Syntactically, the main similarity with our approach is the possibility
to express reasoning across several meta-levels. The main distinction is
that there is no naming or coding involved, formulas can occur directly as
subexpressions in other formulas. The program clause 1 could for example
be expressed as

Bel(Tim,Vz(Cannibal (z) — Bel(z, Tasty(z))).

The idea is that whether an expression is to be interpreted as a function or
a relation is determined by the context where it appears.

Christiansen has proposed an amalgamated language in which there are
two levels of reasoning [13]. The operational semantics of the language is
based on instance predicates, relating names of formulas such that one is
an instance of the other. As was shown by Kowalski [25, 26] and further
developed by Hill & Gallagher [19], such instance predicates can be used
with meta-variables replacing names of subexpressions in a way which turns
out to be operationally similar to the way in which variables are represented
using nonground representations.

11 Conclusion

As can be seen from this article, Alloy is a language still under development.
We can already conclude, however, that it allows a direct way of expressing
multilevel knowledge, in particular recursive beliefs.

The main difference between Alloy and the mainstream of meta-logic pro-
gramming lies in the support for arbitrary many meta-levels and in that
self-reference is the exception rather than the rule.

One may certainly doubt that a language claimed to be so powerful is
efficiently implementable and this can only be proved by an actual imple-
mentation, which is under way. One reason for hope is the belief that much

27

of the computation will still be deduction within a single theory (which may
be someone’s view of someone’s view of ... a theory) and this should be
possible to support with essentially the efficiency of an ordinary Prolog sys-
tem. The difficulties seem to lie in the meta-programming specific parts and
in the fact that there are so many ways to use a piece of information in a
meta-programming setting. For example, a program clause may be actually
used for deduction, a name for it may be used as data, so may a name for
a name for it, etc. Program clauses computed from names with “holes” is
likely to be another (manageable) obstacle to efficient computation.

Acknowledgements

This research has been influenced by valuable discussions with our col-
leagues, particularly Stefania Costantini, Gaetano Lanzarone, and Andreas
Hamfelt, and our partners in the Compulog 2 project, particularly Antonio
Brogi, Pat Hill, Bob Kowalski and John Lloyd.

The research reported herein was supported financially by the Swedish
National Board for Technical and Industrial Development (NUTEK) under
contract No. 92-10452 (ESPRIT BRP 6810: Computational Logic 2).

J. B. thanks his family for their continuing support.

References

[1] Attardi, G. and Simi, M., Building Proofs in Context, in: F. Turini
(ed.), Proc. META 94, LNCS 883, Springer-Verlag, Berlin, 1994.

[2] Bacha, H., Meta-Level Programming: a Compiled Approach, in: J.-L.
Lassez (ed.), Proc. 4th Intl. Conf. on Logic Programming, MIT Press,
Cambridge, Mass., 1987.

[3] Barklund, J., Metaprogramming in Logic, UPMAIL Technical Re-
port 80, Uppsala Univ., Computing Science Dept., 1994, to be
published in encyclopedia of computer science and technology, marcel
dekker, new york.

[4] Barklund, J., Boberg, K. and Dell’Acqua, P., A Basis for a Multilevel
Metalogic Programming Language, in: F. Turini (ed.), Proc. META
94, LNCS 883, Springer-Verlag, Berlin, 1994.

[5] Bevemyr, J., The Luther WAM Emulator, UPMAIL Tech. Rep. 72,
Comp. Sci. Dept., Uppsala Univ., Uppsala, 1992.

[6] Bowen, K. A. and Weinberg, T., A Meta-Level Extension of Prolog, in:
J. Cohen and J. Conery (eds.), Proc. 1985 Symp. on Logic Program-
ming, IEEE Comp. Soc. Press, Washington, D.C., 1985.

[7] Bowen, K. A., Meta-Level Programming and Knowledge Representa-
tion, New Generation Computing, 3:359-383 (1985).

28

8]

[10]

[11]

[12]

Bowen, K. A. and Kowalski, R. A., Amalgamating Language and Met-
alanguage in Logic Programming, in: K. L. Clark and S.-A. Tarnlund
(eds.), Logic Programming, Academic Press, London, 1982.

Brogi, A., Mancarella, P., Pedreschi, D. and Turini, F., Composition
Operators for Logic Theories, in: J. W. Lloyd (ed.), Computational
Logic, Springer-Verlag, Berlin, 1990.

Brogi, A., Program Construction in Computational Logic, Ph.D. The-
sis, Dipartimento di Informatica, Universita di Pisa, 1993.

Brogi, A. and Contiero, S., Godel as a Meta-Language for Compos-
ing Logic Programs, in: F. Turini (ed.), Proc. META 94, LNCS 883,
Springer-Verlag, Berlin, 1994.

Brogi, A. and Turini, F., Metalogic for Knowledge Representation, in:
J. A. Allen, R. Fikes and E. Sandewall (eds.), Principles of Knowledge
Representation and Reasoning: Proc. 2nd Intl. Conf., Morgan Kauf-
mann, Los Altos, Calif., 1991.

Christiansen, H., Efficient and Complete Demo Predicates for Definite
Clause Languages, Technical Report 51, Dept. of Computer Science,
Roskilde University, 1994.

Clark, K. L., Negation as Failure, in: H. Gallaire and J. Minker (eds.),
Logic and Data Bases, Plenum Press, New York, 1978.

Costantini, S., Dell’Acqua, P. and Lanzarone, G. A., Extending Horn
Clause Theories by Reflection Principles, in: C. MacNish, D. Pearce
and L. M. Pereira (eds.), Logics in Artificial Intelligence, LNAI 838,
Springer-Verlag, Berlin, 1994.

Costantini, S. and Lanzarone, G. A., A Metalogic Programming Lan-
guage, in: G. Levi and M. Martelli (eds.), Proc. 6th Intl. Conf. on
Logic Programming, MIT Press, Cambridge, Mass., 1989.

Giunchiglia, F. and Cimatti, A., Introspective Metatheoretic Reason-
ing, in: F. Turini (ed.), Proc. META 94, LNCS 883, Springer-Verlag,
Berlin, 1994.

Giunchiglia, F., Serafini, L. and Simpson, A., Hierarchical Meta-Logics:
Intuitions, Proof Theory and Semantics, in: A. Pettorossi (ed.), Meta-
Programming in Logic, LNCS 649, Springer-Verlag, Berlin, 1992.

Hill, P. M. and Gallagher, J., Meta-Programming in Logic Program-
ming, Technical Report 94.22, School of Computer Studies, Univ. of

29

Leeds, 1994, to be published in Handbook of Logic in Artificial Intel-
ligence and Logic Programming, Vol. 5, Oxford Science Publ., Oxford
Univ. Press.

Jiang, Y., Ambvivalent Logic as the Semantic Basis of Metalogic Pro-
gramming, in: P. Van Hentenryck (ed.), Logic Programming, Proc.
11th Intl. Conf, MIT Press, Cambridge, Mass., 1994.

Kakas, A. C. and Mancarella, P., Abductive Logic Programming, in:
Proc. NACLPY0 Workshop on Non-Monotonic Reasoning and Logic
Programming, MCC, Austin, Texas, 1990.

Konolige, K., A Deduction Model of Belief, Pitman, London, 1986.

Kowalski, R. A., Logic for Problem Solving, North Holland, New York,
1979.

Kowalski, R. A., The Use of Metalanguage to Assemble Object Level
Programs and Abstract Programs, Report, Imperial College, London,
1982.

Kowalski, R. A., Meta Matters, Invited presentation at Second Work-
shop on Meta-Programming in Logic, 1990.

Kowalski, R. A., Problems and Promises of Computational Logic, in:
J. W. Lloyd (ed.), Computational Logic, Springer-Verlag, Berlin, 1990.

McCarthy, J., Programs with Common Sense, in: M. Minsky (ed.),
Semantic Information Processing, MIT Press, Cambridge, Mass., 1968.

McCarthy, J., First Order Theories of Individual Concepts and Propo-
sitions, in: B. Meltzer and D. Michie (eds.), Machine Intelligence 9,
Edinburgh University Press, Edinburgh, 1979.

Sato, T., Meta-Programming through a Truth Predicate, in: K. Apt
(ed.), Proc. Joint Intl. Conf. Symp. on Logic Programming 1992, MIT
Press, Cambridge, Mass., 1992.

Smorynski, C., The Incompleteness Theorems, in: J. Barwise (ed.),
Handbook of Mathematical Logic, North-Holland, Amsterdam, 1977.

Sterling, L. S., Logical Levels of Problem Solving, J. Logic Program-
ming, 1:138-45 (1984).

Warren, D. H. D.,; An Abstract Prolog Instruction Set, SRI Tech. Note
309, SRI Intl., Menlo Park, Calif., 1983.

30

