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Abstract

Recently it was proved that the problem of simultaneous rigid E-unification
(SREU) is undecidable. Here we perform an in-depth investigation of this mat-
ter and obtain that one can use SREU to uniformly represent any recursively
enumerable set. From the exact form of this representation follows that SREU
is undecidable already for 6 rigid equations with ground left hand sides and 2
variables.

There is a close correspondence between solvability of SREU problems and
provability of the corresponding formulas in intuitionistic first order logic with
equality. Due to this correspondence we obtain a new (uniform) representation
of the recursively enumerable sets in intuitionistic first order logic with equality
with one binary function symbol and a countable set of constants. From this
result follows the undecidability of the 33-fragment of intuitionistic logic with
equality. This is an improvement of a recent result regarding the undecidability
of the 3"-fragment in general.
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Chapter 1

Introduction

Recently it was proved that the problem of simultaneous rigid E-unification (SREU)
is undecidable [9]. This (quite unexpected) undecidability result has lead to a series
of undecidability results in related areas, and is also the main motivation behind this
work. We perform an in-depth investigation of the undecidable nature of SREU. As
a result we obtain that one can use SREU to uniformly represent any recursively
enumerable set. From this representation follows that SREU is undecidable already
for 6 rigid equations with ground left hand sides and 2 variables.

As a corollary of this investigation we obtain a new characterization of the recur-
sively enumerable sets in intuitionistic first order logic with equality with one function
symbol, say f, and a countable set of constants. More precisely, we can conclude this
result as follows. Let W be an r.e. set of strings over some subset of constants as
the alphabet. If ¢ is a term f(ci, f(co,.-., f(cn,c0)-..)) let t stand for the string
€16y .. . ¢, where all the ¢; are constants. There is a quantifier free formula p(z, z,y)
of the form

(¢1 = S1 :tl)/\"'/\(w7:>87:t7)

where all the ; are closed conjunctions of equations and all the variables in all the
s; and t; are among {z,y, z}, which is obtained effectively from the index of W such
that for all ground terms ¢ in L

tew o H JxIyp(t, z,y),

where ; stands for intuitionistic provability.

1.1 Background of SREU

Simultaneous rigid E-unification was proposed by Gallier, Raatz and Snyder [17] as a
method for automated theorem proving in classical logics with equality. It can be used
in automatic proof methods, like semantic tableaux [14], the connection method [4]
or the mating method [1], model elimination [27], and others that are based on the
Herbrand theorem, and use the property that a formula is valid (i.e., its negation is
unsatisfiable) iff all paths through one of its matrix are inconsistent. This property
was first recognized by Prawitz [35] (for first order logic without equality) and later
by Kanger [22] (for first order logic with equality). In first order logic with equality,
the problem of checking the inconsistency of the paths results in SREU.

1.2 Outline of the Report

In Chapter 2 we explain the notations used in the report. We also explain some
background material concerning deterministic finite automata and rewrite systems.
We want to point out here that the reader is not assumed to be an expert on rewrite
systems (the author is not). We only use very simple results and the report is com-
pletely selfcontained. What is important to understand from this chapter (that the



succeding chapters will make heavy use of) is how the graph of the transition function
of a deterministic finite automaton can be seen as a convergent rewrite system.

In Chapter 3 we define the basic components needed to represent computations.
These are words and sentences. Words are simply representations of strings and
sentences are representations of sequences of strings. The main result of this chapter
is Theorem 3.2.4. It shows how one can construct a system of rigid equations that
describes sentences with words in certain regular sets such that the sentence itself has
a given regular pattern. This theorem is used in Chapter 5.

In Chapter 4 we describe a technique that can be used to express roughly that one
sequence of strings is an encoding of pairwise adjacent strings of another sequence.
This is stated as Theorem 4.2.1. This technique is the cornerstone of the main result
of this report (Theorem 5.2.1).

In Chapter 5 we prove that one can use SREU to represent (uniformly) any recur-
sively enumerable set. The main result is Theorem 5.2.1. The system that is obtained
has a very simple structure. The undecidability of SREU follows directly from this
result (2 variables and six rigid equations is enough). We also give an overview of
some other proofs of the undecidability of SREU that have appeared in the literature.

In Chapter 6 we give a uniform charterization of all r.e. sets with certain simple
formulas in intuitionistic first order logic with equality, using only one function symbol
of arity 2 and some number of constants. The main result here is Theorem 6.1.1. (It
is actually a simple corollary of Theorem 5.2.1.) In particular, the undecidability of
the J33-fragment of intuitionistic logic follows from it, this is an improvement of the
recent result regarding the undecidability of the 3*-fragment in general [11].

In Chapter 7 we summerize the current status and state some open problems
regarding decidability questions about SREU.



Chapter 2

Preliminaries

Here we explain the notational conventions of this this report and give the main
definitions concerning SREU. Also some of the background material used in this
report, concerning rewrite systems and deterministic finite automata is presented
here. We introduce some useful notions and state some simple but useful lemmas
relating finite automata with convergent rewrite systems.

In particular, the graph of the transition function of any deterministic finite au-
tomaton corresponds directly to a convergent rewrite system. This property remains
true under union of graphs of transition functions of deterministic finite automata
with disjoint sets of states, which is used in proving Theorem 3.2.4 (the main theo-
rem of next chapter).

2.1 Basic Notions

Throughout the report, the first order language that we are working with is designated
by L. L has one binary function symbol . and a countable set of constants L. We
will use infix notation for . and assume that it associates to the right, so t1 « t2 . t3
stands for the term .(t1,.(t2,t3)). In general we will use the letters ¢ and s to stand
for terms in L.

Formulas are defined as usual from atomic formulas, i.e., equations since there are
no relation symbols other than ‘=’, using the connectives A, V, = and quantifiers 3
and V. The notions of free and bound variables is standard. For a formula ¢ we write
p(&), where & = x1,a,...,z, for some n € N, to indicate that all the free variables
in ¢ are among the Z. For ¢t a term, ¢(...,z;—1,t, Tit1,...) stands for the formula
obtained by substituting ¢ for x; in @(. .., xi—1, T, Tig1,---)-

Substitutions are mappings from variables to terms, and are extended to arbitrary
expressions in the usual manner. An application of a substitution # on an expression
X is written X6. A formula is said to be closed if it contains no free variables. A
term is said to be ground if it contains no variables. We say also that an equation or
a set of equations is ground if all the terms involved are ground. For a formula ¢(%)
we write Vo for a universal closure of ¢, i.e., for VZp.

We write X C Y to say that X is a nonempty finite subset of Y. We will often
overload the mening of ‘=’, we trust the reader to understand the exact meaning from
the context.

2.2 Simultaneous Rigid E-Unification

Here we define the main notions concerning simultaneous rigid E-unification. A

» rigid equation is an expression of the form F & s = t where E is a finite set
of equations and s and t are arbitrary terms. A system of rigid equations is a
finite set of rigid equations.



A substitution 6 is a

» solution of or solves a rigid equation E | s =t if

FV(/\ ed) = s6 =1f.

ecelE
0 solves a system of rigid equations if it solves each member of the system.

Here F is classical or intuitionistic provability (for this class of formulas they are the
same). The problem of solvability of systems of rigid equations is called simultaneous
rigid E-unification or SREU for short. Solvability of a single rigid equation is called
rigid E-unification.

2.3 Convergent Rewrite Systems

In order to simplify certain proofs we will make use of some results from rewrite
systems [13, 21]. We start by introducing some terminology and finally we state a
lemma, that will be used later. We don’t require the reader to be familiar with rewrite
systems.

Let — be a binary relation on terms. We define first some well-known properties
of —. The reflexive and transitive closure of — is denoted by —. We say that
— is

» noetherian if there is no infinite chain t; — to — -+ — t; — - -+,

» confluent if s — t; and s — ¢, imply that there is a ¢ such that ¢, — ¢ and
toy — t,

» a rewrite relation if s — t implies that u[sf] — u[tf] for all terms s, t and w,
and substitutions 6,

where u[t] stands for u with certain subterm occurence ¢. Let E be a finite set of
equations. We say that E is a

» rewrite system with respect to an ordering > on terms if we have s =t or ¢ > s
for all equations s =t in E.

We sometimes write E~ if E is a rewrite system with respect to >, to emphasize the
ordering. We say that an equation s =t of F is a

» rule s=1t of B~ if s = t,

» by — g~ or simply — g we denote the smallest rewrite relation for which
s — g t whenever s =t is a rule of E.

We sometimes write — for — g if E is clear from the context. A term s is said to
be in

» normal form or irreducible with respect to E if there is no term ¢ such that
s —gt.

We say that a rewrite system F is noetherian (confluent) if the corresponding rewrite
relation — g is noetherian (confluent), and we say that E is

» convergent if it is both noetherian and confluent.



Convergent systems enjoy the property that each term has a unique normal form.
Furthermore, if we want to decide whether an equation s = t logically follows from a
set of equations E, and E is a convergent rewrite system, then it is enough to see if
the normal forms of s and ¢t with respect to E coincide (cf [13, Section 2.4]).

This is the main motivation behind the completion procedure [24] that attempts
to construct a convergent rewrite system from a given set E of equations. The kernel
of this procedure is based on the superposition algorithm in combination with the
critical pair lemma [13] or [21, Lemma 3.1]. (See also [24, Corollary of Theorem 5]
or [21, Theorem 3.2].) This lemma can be used to prove that certain rewrite systems
are confluent. In particular we have the following case. A rewrite system E is called

» left-reduced if for every rule s = t of E, s is irreducible with respect to E\{s = t}.
Lemma 2.3.1 A left-reduced and noetherian ground rewrite system is convergent.
Proof. Follows from the superposition algorithm and Lemma 3.1 in Huet [21]. X

That particular property is also pointed out by Bachmair and Ganzinger [3, Sec-
tion 2.3].
We now let > stand for the following fixed ordering between terms:

» ¢ > s iff ¢ has more symbols that s.

On a couple of occasions = will temporarily be extended so that a > b holds between
certain constants a and b. The important property that will not be violated in that
case is that the set of all such a’s is disjoint from the set of all such b’s.

Note It is clear (even in the extended case) that if £~ is a ground rewrite system
then it is noetherian (in any reduction step either the number of symbols or the
number of a’s (as above) decreases).

2.4 Deterministic Finite Automata

We will make use the following definitions. We follow Hopcroft and Ullman [20].
Formally, a

» deterministic finite automaton (DFA) M is a 5-tuple (@, X, 6, go, F) where

— (@ is a finite set of states,
— XY is a finite input alphabet,

— 0:Q x X — Q is the transition function (0 can be partial, i.e., undefined
for certain elements of @ x X),

— qo € Q is the initial state, and
— F C Q@ is the set of final states.

We assume that the states and the input alphabet are disjoint subsets of Ly. When
we say that a constant occurs in M we mean that it is either in () or in X. Let
M =(Q,%,d,q0, F) be a DFA. We say that the

» language accepted by M, L(M), is the set of all strings ajas...a, € ¥*,n >0,
such that 6(¢gj—1,a;) = ¢; for 1 < j <n, where g, is a final state.

We say that two DFAs are

» state-disjoint if their sets of states are disjoint.



We extend this notion to a family of DFAs in the usual manner. We will also make
use of the following definition. Let M = (Q,X,d,qo, F) and M' be two DFAs. We
say that

» M’ is the extension of M with (a, f), if a and f are distinct constants that don’t
occur in M and

M =(QU{f}, Tu{a}, dU{(g,a)~flaeF}, g, {f}),
we write M|a, f] for M',

The reason why the definition is useful is that MJa, f] has exactly one final state f
and that Lemma 2.4.1 holds.

Let r be a regular expression. When it is clear from the context, we write r for the
regular set that it denotes. We sometimes also use regular sets in regular expressions.
For example, if a is the regular expression consisting of just the constant a and R is
a regular set then Ra stands for the regular set {wa | w € R}.

Lemma 2.4.1 Let M be a DFA. Then L(M]Ja, f]) = L(M)a.
Proof. Immediate from the definition of M|a, f]. X

Let M = (Q,%,9,qo, F) be a DFA. We define G as the following set of equations
and call it

» the graph of M, Gy ={a.q=p|d(q,a)=p},

i.e., Gy represents the graph of the transition function of M with the first two argu-
ments reversed. We generalize the notion of graph to a (finite) family M = {M, }ier
of DFAs as follows:
Gm = U Gm; -
=i

The following lemma will be the key property in many proofs.

Lemma 2.4.2 Let M = (Q,%,0,q0,F) be a DFA, then Gy is a convergent rewrite
system.

Proof. All the equations in Gy have the form a.p = g where a, p and g are constants.
So g@ is a rewrite system. Furthermore, G, is left-reduced because § is a function.
The statement follows now by using Lemma 2.3.1 and the note after that lemma. X

Let M be a DFA. What Lemma, 2.4.2 tells us is that, whenever we want to prove
that an equation logically follows from G, it suffices to prove that both sides of
that equation reduce to the same normal form with respect to Gy (and vice versa
ofcource). We will also need the following stronger version of Lemma 2.4.2.

Lemma 2.4.3 Let M be a state-disjoint (finite) family of DFAs, then Gy is a con-
vergent rewrite system.

Proof. Obvious generalization of the proof of Lemma 2.4.2. Note that the union
of the transition functions of the members of M is still a function because of the
state-disjointness of M. X



Chapter 3

Words and Sentences

Here we prove some useful properties about representing regular sets. Words are cer-
tain terms of L that represent strings, and sentences are certain terms that represent
sequences of strings.

The main theorem of this chapter is Theorem 3.2.4. Many properties of simultane-
ous rigid equations regarding representation of regular sets follow from it, for example
Theorem 3.1.3. A result corresponding to Theorem 3.1.3 is stated also in [19, 33].!
Also several theorems used in Plaisted [33, Theorems 8.2-8.11] can be stated as corol-
laries of Theorem 3.2.4.

3.1 Words

The basic components in our later constructions are words. Words are our choice
of representing strings of characters, where characters are (represented by) just con-
stants. Mostly we will use the letters v and w to stand for strings of constants.
Formally, we say that a gound term ¢ of L is a

» ¢-word or simply a word when it has the form a1 «az«---.ay, .q for somen € N
where all the a; and ¢ are constants. If n = 0 then ¢ is said to be empty.

If t is a word @1 « @2 « - - - vy, » ¢ we mostly use the shorthand v .q for ¢ where v is the
string aias - - - a,. We also say that ¢

» represents the string v, in symbols t=v.

Note that any constant ¢ is an empty g-word and represents e. Mostly we want to be
more specific and talk about strings in certain regular sets. Let R be a regular set
over some set of constants in L. We say a ground term ¢ of L is a

» word in R if t is a word and it represents a string in R.
For any string v we write
> v" for the reverse of v, and for a set of strings R we write R" for {v" |v € R}.

It is well-known that if R is a regular set then so is R', see for example Hopcroft and
Ullman [20, p 281]. The following two lemmas will be used to prove Theorem 3.1.3
and they will also be used in later sections.

Lemma 3.1.1 Let M = (Q,%,0,q0,F) be a DFA, let M' = M|a, f], and let t be a
qo-word. The following statements are equivalent:

IThere is a minor technical mistake in [33, Theorem 8.5] (corresponding to our Theorem 3.1.3)
where, given a regular set R, one has to consider a DFA that accepts the reverse of R, not R itself.



1. tis a word in L(M)" (i.e., t € L(M)),
2.t —*>gM q for some q € F,
3. avt g, f.
Proof. We have that t = Qp:* A201 « Go for some n € N where each a; is a constant.

Let v =aia2---ay,,ie,v=t.

[Proof of ‘1 = 2°] Assume v € L(M). Thus 6(gi_1,a;) = ¢; for 1 < i < n where
gn € F. So{a;.qi-1 =¢; |1 <i<n} C Gy and thus we can construct the reduction

"
G-+ A201 Q0 —>Gyy An " Q24 G1 —Gyy On = Qn—1 —>Gpy Gn- (3.1)

So t —+g,, ¢n and g, € F.

[Proof of ‘2 = 1’] Assume t —g,, g, for some ¢, € F. From the structure of ¢
and the fact that all the rules in Gy have the form ¢y + co = ¢3 where {c1, 2,3} are
constants, it follows that the reduction must have the form (3.1) and {a;.qi—1 = ¢; |
1<i<n} CGy. It follows by definition of Gy that v is accepted by M.

[Proof of ‘1 & 3’] Apply ‘1 & 2’ to M' (for M) and a .t (for t) to obtain that
va € L(M') iff a.t —>g,,, f. But L(M') = L(M)a by Lemma 2.4.1. X

Lemma 3.1.2 Let ¥ be a set of constants and q a constant not in X. There is a set
of equations Word%, such that  solves Word%, & x = q iff z0 is a g-word in T*.

Proof. Let Word}, = {a.q = ¢q| a € £ }. Note that Word{, is the graph of the trivial
DFA that has one state ¢ and accepts £*. Since Wordy, is convergent it is enough to

show that z6 —*>W0rdq2 q iff z0 is a g-word in ¥*, which is easy to prove. X

Theorem 3.1.3 Let M = (Q,%,9,q0, F) be a DFA. There is a system S(x) of rigid
equations such that 6 solves S(x) iff 20 is a go-word in L(M)".

S@ = | Wrdy & or=aw,
gM/ a.Tr = f
where Word) is given by Lemma 3.1.2 and M' = M]a, f].
[Proof of ‘=’] Assume 6 solves S(z). By Lemma 3.1.2 26 is a go-word in ¥*, and
by Lemma 2.4.2 a . 20 L)gM, f. Use now Lemma 3.1.1.

[Proof of ‘<’] Assume z6 is a go-word in L(M)" C ¥*. So 6 solves the first rigid
equation according to Lemma 3.1.2, and a . x6 —*>gM, f follows from Lemma 3.1.1.
So 6 solves the second rigid equation by Lemma, 2.4.2. X

Proof. Let

<

Example 3.1.4 To illustrate the construction above, consider the DFA M such that
L(M) =1+ 2(10)*, with the following transition diagram:

0
The DFA M' = M]a, f] has then the following transition diagram:




From these diagrams we can see that the graphs of M and M’ are as follows:

Ou = {lego=q, 2.90=¢, l.ga=¢q3, 0.¢5=¢q2}
G = GuU{a.qi=f, a.q2=f}

For example if 26 represents the string 012 then

a012. go —Gu a0l . g2
—gy a0.g3
——Gm . q2

_)ng f

which shows that 210 € L(M), whereas if zf represents the string 0012 then z6
reduces to 0.¢2 and there is no rule to reduce this further, so a0. g2 can’t be reduced
to f showing that 2100 ¢ L(M). i

3.2 Sentences

Sentences are just representations of sequences of strings. Let us first choose a fixed
constant [] (“nil”) of L. Formally, a ground term ¢ of L is called a

» sentence if it has the form ¢, «to .-+ t, «[] for some n € N where each ¢; is a
word. If n = 0 then ¢ is said to be empty.

We use [t1,t,...,t,] as a shorthand for the corresponding sentence. We say that a
sentence t = [t1,t2,..., L]
» represents the sequence of strings ¢ = (ﬂ, to,... ,tAn)

Our aim here is to represent sequences of strings, where each string belongs to some
member of a given family of regular sets, such that the sequence has some given
regular pattern. For that purpose we introduce the following notion.

Let ¥,I' C Lo and let {R;}4er be a family of regular sets over £ and let R be a
regular set over I'. We say that a sentence ¢t = [t1,t2,...,t,] is a

» sentence in {R,}F if each t; is a ¢;-word in Ry, for some ¢; € I'and q1q2 -+ ¢, €
R.

In other words, ¢ is a sentence in {R,}# iff any ¢g-word of ¢ is a word in R,, and if
we replace all the words of ¢ with the corresponding empty words then the resulting
term is a []-word in R. When all the members of the family are the same regular set
then we drop the index in our notation.

Example 3.2.1 Some examples to illustrate the definition:

1. t is a sentence in {a™}®T®" means that ¢ is a (possibly empty) sentence of b-
words and c-words such that each one represents a nonempty string of a’s. For
example [a . b, aaa . c] is such a sentence.

2. tis a sentence in {R}® means that ¢ is a unit sentence [s] where s is a b-word in
R,

3. t is a sentence in {R,, Ry, Rc}“b*c means that the first word of ¢ is an a-word in
R,, the last word of ¢ is a c-word in R, and the middle ones (if any) are b-words
in Rb.



Let I' C Lg. We write

» Er for the set of equations { ¢ = choice(I") | ¢ € I'\ {choice(T")} }, where ‘choice’
is some fixed choice function for P, (Lo).

The following two lemmas will be used in the proof of Theorem 3.2.4.

Lemma 3.2.2 Let X,T C Lo\ {[]} be disjoint. There is a set of equations Senty. such
that 0 solves Sents, by = = [| iff 6 is a sentence in {S*}7.

Proof. Let ¢ be the constant choice(I') and let Sentt: be the following set of equations:
Senty, = FEpUWordsU{e.[] =[]},

where Words, is given by Lemma 3.1.2.

Extend the ordering > so that ¢ > ¢ for all ¢ € T'\ {e}. Clearly, (Sent%)” is
left-reduced (check that for any rule ¢ = s in Senti., ¢ can be reduced only with this
rule, here the disjointness of ¥ and T is needed). It follows from Lemma 2.3.1 and
the note after that lemma that Sent}, is convergent. It suffices therefore to prove the
following statement:

xf Qsentg [ <« 26 is asentence in {S*}1.

[Proof of ‘=] By induction on the length of the reduction z6 Qsentg []-
[Base case] zf = [|. Trivially, [] is a sentence in {X*}'" because ¢ € I'*.

[Induction case] 76 — ¢.[] — [|. Thus 26 =t.s and s — [ and t — .

We prove first by induction on the length of the reduction of t — & that ¢ is a
g-word in ¥* for some ¢q € I.

[Base case] ¢t = ¢. Trivially ¢ is an e-word in X*.

[Induction case] We have two cases to consider, based on what the last
rule of the reductions is.
i. If t = ¢ — € by some rule ¢ = ¢ in Ep, then ¢t = ¢ because ¢ is the
right hand side of no rule, and trivially ¢ is a g-word in X*.
ii. Otherwise t — a.c — & by some rule a.e = ¢ in Words;. Then
t =a.t" and ' — ¢ because a is the right hand side of no rule. By

the induction hypothesis ¢’ is a ¢g-word in ¥* for some ¢ € I', and thus
sois a.t'.

It follows that ¢ is a ¢g-word in ¥* for some fixed g € T'".

By the induction hypothesis s is a sentence in {E*}", so s = [s1,82,...,5m]
for some m € N where each s; is a ¢;-word in ¥* for some ¢; € T.
Consequently z8 = [t, 51,52, ...,5,] is a sentence in {S*}1 .

[Proof of ‘<’] Assume that z6 is a sentence in {£*}'". Thus 26 = [t1,ts,...,t,] for

some n € N where each t; is a g;-word in ¥* for some ¢; € I

1. For each t;, reduce ¢; in t; to € by using the rule ¢; = ¢ in Ep. Let us call the
resulting term s;. So each s; is an e-word in X*.

2. Use the rules from Words, to reduce each s; to e.

3. Finally, use the rule €.[] =[] to reduce [e,¢, ... €] to [].

10



From (1-3) follows that x6 —*>Sent§ - X

Lemma 3.2.3 Let M be a state-disjoint family of DFA’s and M a fizted member
of M. The following holds for all states q of M, all qg-words t and all terms s. If
t =g, s thent —g,, s and s is a p-word for some state p of M.

Proof. By easy induction on the length of the reduction of ¢ L>gM s. Let q be a
state of M, t a g-word and s a term.

[Base case] If the length of the reduction is 0, i.e., ¢ = s, then trivially ¢ L)gM s
and s is a g-word.

[Induction case] Assume t —g,, t' —g,, s. Since t is a word, the rule that is
used in the first step must be of the form a.q = ¢' (for some constants a and ¢'),
yielding a ¢'-word ¢'. But that rule must be in Gy because g is a state of M and the
family is state-disjoint, i.e., t —»g,, t’. So ¢' is a state of M. From the induction

hypothesis follows now that t —g,, s and s is a p-word for some state p of M. X
We can now state the main theorem of this section.

Theorem 3.2.4 Let ¥, C Lo \ {[]} be disjoint. Let {R.}ccr be a family of regular
sets over ¥. Let R be a regular set over I'. There exists a system S(x) of rigid
equations such that 0 solves S(z) iff 0 is a sentence in {R.}.

Proof. We start by constructing a state-disjoint family M = {M_}.cruqpy of DFA’s
with the following properties. First let all the members M., ¢ € T', be such that

L(Mc) = Rcr; Mc = (Qc; 2760767 Fc)

Let Fr = UcerFe. Let M = (Q, Fr, 9, ][], F) be a DFA such that gy, - -~ q2qn € L(M) iff
there exists ¢ico + -+ ¢, € R such that ¢; € Fi, for 1 < i <m. (It is easy to construct
M from a DFA for R' by replacing any transition (p,c) — p' in the latter with the
set { (p,q) = p' | ¢ € Fi. } of transitions.) Finally, let M = M]a, f].

Assume also all the DFAs above to be such that M is state-disjoint.

Let now S(x) be the following system of rigid equations:

S) = {Sentg F z=],

where Sent}, is given by Lemma 3.2.2. We will prove that 6 solves S(z) iff 26 is a
sentence in {R.}f. First of all, we make the following observations:

e If § solves S(z) then 26 is a sentence in {£*}'"" by Lemma 3.2.2.

o If 26 is a sentence in {R.}%, it is by definiton also a sentence in {2*}'" and
solves therefore Sents; k; = = [] by Lemma 3.2.2.

Based on these observations and Lemma 2.4.3 it is sufficient to prove the following:
if 20 is a sentence in {¥*}!" then

a.rd 3¢, f < x0is asentence in { R}

So let x8 = [t1,t2...,ty] be a sentence in {X*}1", where each t; is an ¢;-word in X*
for some {c1,¢a,...,¢n}t C L.

[Proof of ‘=’] Assume that a .z L)gM f. This reduction is possible only if

1) t; —=g,, g¢; for some fixed constant g; for 1 < j < m, and
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2) aqiga Gm e[| —>ga folet = qrqz - gm.

Let j be fixed and consider (1). By applying Lemma 3.2.3 to (1) and that ¢; is a
cj-word (note that c; is a state of M.,) we obtain (1’). By applying Lemma 3.2.3 to
(2) we obtain (2’).

1) t; L)gMCJ_ q; and g; is a state of M., and

2) ad.[] ., I

From (2’) follows, by using Lemma, 3.1.1 (recall that Mp = M]a, f]), that ¢ € L(M).
By definition of M this implies that ¢; € Fc;_, 1 < j < m, for some cjc}, - ¢, € R,
where, by state-disjointness and (1’), each ¢} = ¢;. So

e cicy---cy € R

From (1°) and that ¢; € F¢, follows, by using Lemma 3.1.1 (recall that the constant
c; is the initial state of M,;), that

e tjis acj-word in L(M,;)" = R, for 1 < j < m.

From these two points follows that z6 is a sentence in {R,}.

[Proof of ‘<’] Assume that zf is a sentence in {R.}*, i.e., each t; is a ¢;-word in
R., = L(Mcj)]r and cicp -+ - ¢, € R. By Lemma 3.1.1 ¢ L)gMc]_ q; for some q; € F,.

Let § = qiq2 -+ - qm- So, by definition of M, ¢ € L(M)". Thus ag. ] —*>gM[] f by
Lemma 3.1.1. By putting the reductions together, we have that a . z6 L)gM f. KX
Theorem 3.2.4 turns out to be quite useful. Many properties of simultaneous rigid
equations regarding representation of regular sets follow from it, for example Theo-
rem 3.1.3 — just consider unit sentences. Some other cases were mentioned in Ex-
ample 3.2.1. We conclude this section with an example that illustrates the above
construction.
Example 3.2.5 Let {Rc}ce{q,42,45} D€ @ family of regular sets over {0,1}, where

R, = 071, Ry, = 0°10* and Ry, = 10*. Let R = ¢i¢5¢3. Assume that M, for
¢ € {q1,q2, g3} have the transition diagrams below, so L(M,) = R.".

A O O
0

MQS: @ :

From these and R we obtain a DFA M with the following transition diagram:

qds
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Let M be the family {M,,, M,,, M,,, My}. We get that

Gm = {l.qi=q, O.qa=q}U
{0ig2=q2, leqz=¢5, 0.qs=¢q5}U
{0.g3=¢q3, l.gz=gqs}V
{s6-0=p, G-Pr=p, @G.pr=p}U
{a.p2 = f}.

Take for example
t:[OOI.ql, 0010.QQ, 1.QQ, 10.(]3].

Then ¢ is clearly a sentence in {R,,, R,,, Ry, }**. We can also see that a.t —g,, f.
First each g;-word of ¢ is reduced to a final state of My,, so t 5 (g4, 5, G5, qs), then

(44,5, G5, 06] — p2 and finally a.py — f. So a.t — f showing that 6, such that
xzf = t, solves the corresponding system S(z) constructed in the proof of Theo-
rem 3.2.4. O
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Chapter 4

Shifted Pairing

The purpose of this chapter is to describe a technique, called shifted pairing, that can
be used to construct a system of rigid equations, the solutions of which are sentences
with certain interesting properties. Similar technique was used by Plaisted [33] and
we have taken the term shifted pairing from there. The main result of this chapter is
Theorem 4.2.1.

4.1 Encoding Pairs of Strings

Given a set of constants ¥ C Ly, we want to encode pairs of strings over ¥ in a simple
manner. Let b be a fixed constant in Lq called a blank. We can assume without loss
of generality that & € ¥, ¥\ {b} is nonempty and that we only wish to encode pairs
of strings in ¥* that don’t end with a blank (otherwise just expand ¥ with 5). We
say that a function () : ¥ x ¥ — Lo is a

» pairing function for ¥ if () is injective and (X) = {(a,b) | a,b € £} is disjoint
from ¥, and we associate the following sets of equations with ():
I = {(@bh=alabes),
n = {(a,b)=blabeX}
We will abbreviate H? and HQ by II; and II,, respectively.

Let () be a pairing function for X. Consider
v = (a1, br)(az, b2) - - (ax, br) € (E)"

for some k € N and let n,m € N be least such that a,11,...,a; and by,41,...,b are
blanks. We say that

» v encodes the pair (a1as - - ap,bibe - - by,) of strings.

We will write (v, w) for any string that encodes the pair (v, w) of strings in ¥* \ £*b.
Note that (v, w) has some arbitrary number of (b,5)’s as suffix.

4.2 Shifted Pairing

We want to encode adjacent pairs of strings in a given sequence of strings. Let
Y C Ly. Assume b € X, X\ {b} is nonempty and let () be a pairing function for X.
Let & = (wy,ws,. .., wy,) be a nonempty sequence of strings in X* \ £*b. We say that
a sequence ¥ = (v1,vs,...,0,) of strings in (X)* is a

» shifted pairing of W if v; encodes the pair (w;, w;4+1) for 1 <14 < n and v,, encodes
the pair (wy,€), i.e., ¥ = ({w1, wa), (w2, ws), ..., (Wp—1, Wy}, (Wn,€))-
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Figure 4.1: Shifted pairing.

This is illustrated in Figure 4.1.

Theorem 4.2.1 Let ¥ C Lo be such that b € ¥, ¥\ {6} is nonempty, and let () be
a pairing function for . Let also T' C Ly. Assume that T, (X), T’ and {[]} are all
pairwise disjoint.

Let g € ¥\ {b}. There is a system SP,(z,z,y) of rigid equations such that

e 0 solves SPy(z,x,y) iff
. g//b is a shifted pairing ofa/rb and the first string of@ 18 qgg,

for any substitution 6 such that z8 is a c-word in (X \ {b})* for some c € T, z0 is a
sentence in {S\ S*0}°" and yb is a sentence in {(X)T}T.

Proof. Let ¢ = choice(I'). Assume that 26 is a word in (X \ {6})* and let ¢, = q. 26
and w = t,,. Assume also that 26 = t and yf = s are sentences in {SF\ E*?‘)}FJr and
{(Z)* I, respectively. So

t = [tl,tQ,...,tn], nZl, t; is a word in E+\Z*b,

s = [s1,82,..,8m], m>1, s;isawordin (¥)T.

Define SP,(z,z,y) as the following system:

IUErU{b.e =¢} F z=uy,
_ E:
SPeml) =\ mUB Ube=c e =1} k& a=(0.2).y
B

Extend the ordering > so that ¢ = ¢ for all ¢ € T'\ {¢} and (a,b) > a, (a,b) = b
for all a,b € ¥. From the assumption that the sets ¥, (X), T and {[]} are pairwise
disjoint, it follows that Ej and Ej are left-reduced. By using Lemma 2.3.1 and the
note following that lemma, we get that E; and E, are convergent.

The only rules in E; or E5 that can be used to reduce t are in Er. Let t' be the
normal form of ¢t with respect to E; or Es, so

t'=[wy.c,wyue,...,wy €]
where w; = t; for 1 < i < n. It is therefore sufficient to prove the statement:
s L>E1 t'and t, . s L>E2 t' iff 5 is a shifted pairing of # and w; = w.

[Proof of ‘=] Assume s —*>E1 t'and t, . s —*>E2 t'. From s —*>E1 t' follows that
n =m and
S; L>E1 wi.e (1<i<n).

From t, . s in;z t' follows that w; = w and s —*>E2 [wave,...,wy«€]. This last
reduction implies that

$i = Wip1 -8 (1<i<n), spel] —m [
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Let i € {1,...,n — 1} be fixed. From s; —»p, w;.c and s; —p, w1 « € follows
that 5; encodes the pair (w;, w;+1). The reduction s, .[] —g, [] is possible only if
Sn L)Ez e. Together with s, L>E1 wy, € it follows that §,, encodes the pair (w,,€).
So § is a shifted pairing of # and wy = w.
[Proof of ‘<’] Assume ¥ is a shifted pairing of # and w; = w. So n = m and §;
encodes the pair (w;, w;41) for 1 <i < n where w,+; = €.

We prove first that s L>E1 t', by proving that s; L>E1 w;.€ for1 <i _§ n. Let
i be fixed. Use first the rules in II; and a rule in Er to obtain the word w;b.c. Use

then the rule b.e = ¢ to remove the blanks.
We prove now that ¢, « s %Ez t'. Trivially t, L)Er‘ wy . € since w = wy. Let

i € {1,...,n} be fixed. To see that s; L)Ez Wiy « €, use first the rules in Il and
a rule in Er. Remove then the blanks with the rule . = €. Finally use the rule
e[l =] to get rid of the last e. X

This theorem is the kernel behind the main result of this report (Theorem 5.2.1).
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Chapter 5

Uniform Characterization of
RE with SREU

The main result of this chapter and the whole report is Theorem 5.2.1 which shows
that any r.e. set can be represented by a system of simultaneous rigid equations which
is obtained uniformly in the r.e. index of that set. The construction of the system is
in fact easily seen to be primitive recursive.

In particular, this theorem and the way the system in the theorem is constructed
imply that given any r.e. set W over some alphabet ¥ and a string w over 3, one can
effectively construct a system of rigid equations, having ground left hand sides and
only two variables, which has a solution iff w € W. So SREU is undecidable already
with ground left hand sides (which was also shown by Plaisted [33]) and only two
variables (that is a new result).

We start by giving the formal definitions of the notions that are needed. The
terminology is taken mainly from Hopcroft and Ullmann [20]. We then prove the
main result, which is Theorem 5.2.1.

5.1 The Turing Machine Model

In this section we give the formal definition of the Turing machine model that we
will use and some definitions of related concepts, in particular the notion of valid
computations. Formally, a

» Turing machine (TM) M is a 7-tuple (Q, X9, 21,0, qo, b, F'), where
— @ is the set of all states of M,
— 3 is the input alphabet not including b,
- ¥ =%y U {b},
—0:Q x ¥ > Q x Xy x{L,R} is the transition function,
— qo € Q is the initial state, and
— F C (@ is the set of final states.

We also assume here, as we did with DFAs, that Q and ¥; are disjoint subsets of Lg.
The constant b is still called a blank. Let M = (Q, 2o, X1, 0, qo, b, F') be a TM. An

» instantaneous description (ID) of M is any string agf where ¢ € Q and a € £7
and (3 is a string in X7 not ending with a blank.

The intended meaning of an ID agf of M is to give a complete description of a
possible execution state of M. There ¢ is the state of the machine, a corresponds to
the contents of the tape from the left edge of the tape to (but not including) the symbol
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pointed to by the tape head, and 3 is the rest of the contents of the tape terminated
by the rightmost nonblank. So any “snapshot” of M during its computation is some
ID (there can ofcource exist ID’s that can never be reached by M). Let B stand for a
string of 0 or more blanks. Define

» move as a pair (v,w) of ID’s such that if vb = agaf and 0(q,a) = (p, b, R) then
wb = abpf,

|---a---|a|---ﬂ--- |a|b|ﬁ
7 Fm 7
q p

and if vB = acqaf and 0(q,a) = (p,b,L) then wh = apebp,

Far
q p

o [cla] B o [c|b] B
T T

i.e., w is obtained from v according to the next move function.

The binary relation of all moves of M is denoted by F,;, as shown above already, and
its transitive and reflexive closure by +},. The

» language accepted by M, L(M), is the following set

L(M) ={we X | guwti apf where p € F and apf is an ID }.

Valid Computations

The notions of valid and invalid computations [20] of a TM are a powerful tool in
proving undecidability results about context free languages. The technique that is
used in our proof (in particular shifted pairing) bears certain similarities to the tech-
nique that is used to prove that the language of any TM is given by the intersection
of two context free languages [20, Lemma 8.6]. A

» wvalid computation of M is a nonempty sequence (wy,ws,...,w,) such that

each w; is an ID of M, ie., w; € ¥7Q (X7 \ £70) for 1 <4 < n,
— w; is the initial ID, one of the form gov where v € X,
wy, is a final ID, w,, € L} F(27 \ £70),

— w; Far wigq for 1 <4 < n, ie., each pair (w;, w;1+1) is a move of M.

We will use the following relationship between valid computations and the language
of M without further notice: there is a valid computation of M with initial ID ggv iff
v € L(M).

5.2 The Main Theorem

Let M be a Turing machine. In the following theorem we will, effectively from M,
construct a system Sys(z,x,y) of rigid equations which represents the language ac-
cepted by M by the set of all solutions for z. The auxiliary variables z and y are such
that, for any 6 that solves Sy/(z, z,y), 20 is a valid computation of M with initial ID
qogb and 375 is a shifted pairing of z0.

This theorem turns out to have some far-reaching consequences. We mention some
of them at the the end of this section. The results of the following chapter are also
based on this theorem.
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Theorem 5.2.1 Let M = (Q, %0, X1,9,q0,0, F) be a TM and let € be constant not in
Q orXy. Thereis a system Sy (z,x,y) of rigid equations such that for any substitution
6 that solves Sy (z,x,y), 20 is an e-word and

L(M) = {;5 | 8 solves Spr(z,z,y) }.

Proof. Let ¥ =¥, UQ and let () be a pairing function for ¥. Assume also, without
loss of generality, that all the sets ¥, (¥), I' = {e,e1} and {[]} are pairwise disjoint
and that e = choice(T"). Let Riq, R, and Ry, be the following regular sets:

Ra = X{Q(E7\ X1D),
Ran = XIF(XT\X1D),
Ry, = TYT*AYT*,
where
T = {<a7a>|a621}7

A

{(g,b)(a,p) | 8(¢g,a) = (p,b,R) } U
{ (e, p)(a,¢)(a,b) | 6(q,a) = (p,b,L),c € Ty }.

So Rig C X7 and Rg, C X7, are the sets of IDs and final IDs, respectively. A string
visin Ryy C ()T iff v encodes a move of M. Use now Theorem 3.2.4 to obtain the
systems Siq(x) and Spy(y) and Lemma 3.1.2 to obtain the system Si,(2), such that

1. 0 solves Siq(z) iff 6 is a sentence in {€ — Rjq,e1 Rﬁn}s*“,
2. 6 solves Sy, (y) iff y0 is a sentence in {&€ — Ry,y,&1 — (E)*}E*El, and
3. 6 solves Sip(z) iff 26 is an e-word in X§.

Let SP, (2, x,y) be the system obtained from Theorem 4.2.1. So, for any substitution
6 that solves the systems given in (1-3) we have in particular that 26 is an e-word

in (So U Q)*, 28 is a sentence in {S+ \ £*5}'", and yh is a sentence in {(T)+}7.
Theorem 4.2.1 tells us then that, for any such 6,

4. 8 solves SPy, (2, z,y) iff qO;E is the first string of 260 and 375 is a shifted pairing
of z6.

Define now Sy/(z,x,y) as follows:
SM(Z,CU,:U) = Sid(w) V) va(y) U Sin(z) V) SPQO (Z7$7y)'

If there is a substitution 6 that solves Sy (z, z,y) then 26 is an e-word by item 3. It
remains to prove prove that { z0 | 6 solves Sy(z,z,y) } = L(M).

[Proof of ‘C’] Assume that 6 solves Spr(z,z,y). By item 1, and the definitions of
Riq and Rap,

20 = (v1,v2,...,0,), w;isanID of M for 1 <i <n, v, is final.
By item 2 and the definition of Ry,
375 = (w1, wy), (wo,ws), ..., (Wy_1,wy,),-), w;ta wi, forl<i<m.
By item 4 and the definition of shifted pairing, n = m, v; = qogg, and

v, = w; (1<i<n-1),
v;i = w; (2<i<n).

So 26 is a valid computation of M and thus 26 € L(M).
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[Proof of *2°] Let w € L(M). So there is a valid computation (v1,vs,...,v,) where
vy = gow. Let @ be such that

0 = [v1.&,... Up_1.€, UpE1],
y0 = [(vi,v2)ee,... (Up_1,0p) €, (Un,€).e1],
20 = w.e.

From items (1-3) follows immediately that 6 solves the system Siq(2)USmy (¥)USin(2)-
From item 4 follows that 8 solves the system system SP,, (2, z,y). X

Corollary 5.2.2 SREU is undecidable.

Proof. Let M be a TM and w a string over its input alphabet. Let S(x,y) be the
system Syr(w «e,x,y) given by Theorem 5.2.1. The construction of S(z,y) is clearly
effective and S(z,y) is solvable iff w € L(M). X

Corollary 5.2.3 SREU is undecidable even when restricted to ground equations on
the left hand side and allowing only two variables, in any first order language with at
least one binary function symbol and one constant.

Proof. The system S(z,y) in the preceding corollary contains only ground equations
on the left hand side and has two variables = and y.

Furthermore, one can easily simulate any number of constants with just one con-
stant ¢ and ., e.g., as follows. If at most 2¥ constants for some k& € N are required
then the #’th constant can be simulated by the term correspoding to the perfectly
balanced binary tree of depth k + 1 and with 2¥ 4 1 leaves such that the i’th vertex
at level k is internal and all the others are external. For example if £ = 3 then the
third simulated constant is the term

c C cC ¢ ¢ C ¢
cc

Because of the way words and sentences are defined, all the statements in this report
remain intact even if all constants are simulated. X

This corollary shows that an even smaller subclass of SREU is undecidable than
known before. Plaisted [33] has a proof for ground left hand sides and three variables
on the right hand sides (and his proof uses several function symbols of arity 1 and 2).

5.3 Undecidability Proofs of SREU

Here we outline the main points of some of the undecidability proofs of SREU that
have emerged since the problem was first [9] found to be undecidable. The different
proofs reflect the undecidable nature of SREU more or less directly. The most trans-
parent proof is probably by reduction of second order unification, which shows how
close these problems really are to each other. The proof by reduction of Hilberts 10’th
is less transparent and reveals that one can express certain derivations with a system
of rigid equations. The least transparent proof, revealing more or less completely the
undecidable nature of SREU, is ofcourse the one preseted above.

5.3.1 Reduction of Monadic Semi-unification

The first proof of the udecidability of SREU [9] was by reduction of the monadic
semi-unification to SREU. This proof has its roots in [6] where it is proved that the
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variable-bounded semi-unification! can be reduced to SREU. Semi-unification was
proven undecidable by Kfoury, Tiuryn and Urzyczyn [23] and the monadic semi-
unification was proven undecidable by Baaz [2]. A semi-unification problem consists
of a set of expressions s; < t;, 1 < i < n, where s; and t; are terms. Its solution
consists of a substitution o and a set of substitutions 73, 1 < i < n, such that ros;
coincides with ot;. In the monadic case each 7; is either empty or involves exactly
one variable.

The first step in reducing the monadic semi-unification to SREU is to give a uniform
(in n) presentation of this problem by a finite set of (simpler) ®-unification problems.
A ®-unification corresponds roughly to some particular permutation (or guess) of n
variables invoved in the 7; (there are at most n! such guesses). It follows that ®-
unification is undecidable. A ®-unification problem is then reduced to SREU. This
reduction is rather technical, and it does not really reveal the nature of SREU that
makes it undecidable.

5.3.2 Reduction of Second Order Unification

The second proof of the undecidability of SREU by Degtyarev and Voronkov [8, 11],
and probably the most straightforward one, is by reducing second order unification to
SREU. The undecidability of second order unification was proved by Goldfarb [18].

A second order unification problem is the problem of deciding if a finite set S of
second order equations is unifiable. A second order equation is an expression t = s
where ¢ and s are terms with possibly some (second order) variables in place of
function symbols. One can without loss of generality assume that all the equations
in S are such that

1. either all variables in ¢ and s are first order, or

2. that s is z(s1,..., Sy,) where all variables in all the s; and ¢ are first order and
x is a second order variable.

In the second case a second order substitution # maps x to a term xf where so
called bound (first order) variables {ws,...,w,,} (say @) may occur, meaning that
z6 corresponds to the A-abstraction Awzf. For 6 to be a unifier for s = ¢ it must be
the case that z0{s;0/w,...,s,8/wm,} coincides with t6.

The set S is reduced to the following system of rigid equations [11, Theorem 1].
(Roughly speaking.) The first case is simply reduced to the rigid equation k ¢t = s.
The second case is reduced to two rigid equations. The first one stating that z is a
term possibly containing new “constants” from «f, and the second one stating that
{wy = $1,..., Wy = sy} § ¢ =t, where the w; are constants.

Clearly, this is just a slight reformulation of the original problem, and one readily
proves that S has a unifier if and only if this system of rigid equations is solvable [11,
Lemma 5].

5.3.3 Reduction of Hilberts 10’th

In 1900 David Hilbert presented a list of 23 problems at a mathematics conference in
Paris. The 10’th problem was, if there exists an algorithm that for each diophantine
equation can decide whether it has an integer solution or not. A diophantine equation
is an equation p(z1,...,z,) = 0 where p(Z) is a polynomial in variables Z with
coefficients that are integers, e.g., 3z°y* — 5xz + 3 = 0 is a diophantine equation.

It took 70 years before Matiyasevi¢ proved the problem to be undecidable [29]. As
the third undecidability proof of SREU [10], Degtyarev and Voronkov showed how to
reduce Hilberts 10’th to SREU. The proof is quite short and the key argument [10,
Lemma 6] lies in representing multiplication with a system of rigid equations.

11t is not known if this problem is decidable.
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The idea is to represent a multiplication of £ and [ as a list D of pairs, such that
the first pair in D is (ko,lp) (some start values) the next (ko + k,lo + 1), the one after
that (ko + 2k,lp + 2) and so on until the last element is (ko + kl,lp +1). So if we
denote such a list by Dy, 4, (k,[) then

_ [(k07l0)]7 if 1 =0;
Dy 1 (k1) = { [(ko,10)| Dio-+k.10+1(k, 1 —1)], otherwise.

So the first element of the last pair in Do o(k,1) is kl. This can be expressed by a
sytem of rigid equations. (Using two lists, in the same spirit as shifted pairing.)

Similar technique is used by Voda and Komara [38] to claim (we did not check the
details) the undecidability of the problem of Herbrand skeletons, i.e., given n and a
formula ¢ = 3¥p(ZF) where ¢ is quantifier free, if the Herbrand skeleton of size n of
¥ is solvable. (The Herbrand skeleton of size n of ¢ is the disjunction of n variants
of ¢.) For n =1 SREU is a special case of this problem.

5.3.4 Reduction of PCP

The Post’s Correspondence Problem (PCP) over an alphabet ¥ can be stated as
follows. Given (v1,vs,...,v;) and (wy,ws,...,w) as two sequences of strings over
Y., is there a sequence i1,%2,...,%,, m > 1, such that

= U3, Vi 05, 7

m

Wiy Wiy + Wy

m

This is an undecidable problem [34]. To reduce PCP to SREU one uses the same
basic technique that is used to reduce the membership problem above. This was done
by Plaisted [33]. The proof gets more complex because it is not as straightforward to
describe the legal transposition relation as it is to describe the moves of a TM.
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Chapter 6

Uniform Representation of
RE in Intuitionistic Logic
with Equality

In this chapter we show that any r.e. set can be represented by a f.o. formula 1 (z) of
the form JzJyp(z, x,y), where ¢ is quantifier free and its only connectives are A and
=, in a language (with equality) with just one binary function symbol and a countable
set of constants. Furthermore, the construction of 1 is performed uniformly in the
index of the r.e. set in question.

We obtain that the d3-fragment of intuitionistic logic is undecidable. This is an
improvement of the undecidability result of the 3*-fragment in general shown recently
by Degtyarev and Voronkov [10, Theorem 10] (or [11, Theorem 3]).

A closely related problem is the skeleton instantiation problem, i.e., the problem
of existence of a derivation with a given skeleton. Voronkov shows that SREU is
polynomially reducible to this problem [39, Theorem 3.12] (where the actual proof
system under consideration is a sequent calculus LJ= for intuitionistic logic with
equality). Moreover, the basic structure of the skeleton is determined by the number
of variables in the SREU problem and the number of rigid equations in it. Our
result implies that this problem is undecidable already for a fairly restricted class of
skeletons.

6.1 The Main Theorem

Recall the following. L has one binary function symbol . and a countable set of
constants. The input alphabet of a Turing machine is assumed to be a subset of the
constants in L. If ¢ is the term .(c1,.(c2,...,:(cn,€)...)), where all the ¢; and ¢ are
constants, we call it an e-word and we write cics ...c, « € for t, and t stands for the
string ¢z ... ¢, Let ki stand for provability in intuitionistic predicate calculus with
equality and let . stand for provability in classical predicate calculus with equality.

Theorem 6.1.1 Let M be a Turing machine. There is a formula p(z,2,y) and a
constant € in L such that the following statements are equivalent, for all ground terms
tin L:

1. t is an e-word in L(M),
2. F JxTyp(t,z,y)-
Proof. Let Sy(z,x,y) be the system of rigid equations given by Theorem 5.2.1. So
Su(z,z,y) = {Ejksj=t;|1<j<T7},
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where each Ej is a set of (ground) equations, let

plzay) = N (N =s=t).

1<j<T e€E;

[Proof of ‘1 = 2°] Assume w € L(M) and ¢t = w.e. By Theorem 5.2.1 there is a ¢
such that z6 = t that solves Sy/(z,x,y). By definition, this means that k. ¢(t, 26, y0).
But

Fe@(t,z8,y0) = i o(t,z0,y0)

for this particular class of formulas. Statement 2 follows now by 3-introduction.

[Proof of 2 = 1°] By explicit definabilty of intuitionistic logic there are ground terms
t, and ¢, such that F; ¢(t,t.,t,). It follows that 6, such that 20 = ¢, 26 = t, and
y6 = ty, solves the system Sys(z,2,y). Thus tis an e-word in L(M) by Theorem 5.2.1.
X

Some comments The exact number of implications in the formula ¢ is not the least
possible. The author believes that it is possible to give an equivalent formula with
just 4 implications. This requires a slightly different formulation of Theorem 4.2.1.
Technically the presentation becomes more cumbersome, although nothing substantial
changes.

6.2 Undecidability of the 33-fragment of Intuitionistic Logic

This is an improvement of the undecidability result of the 3*-fragment in general
shown recently by Degtyarev and Voronkov [10, Theorem 10] (or [11, Theorem 3]):

Corollary 6.2.1 The class of formulas in intuitionistic logic with equality, of the
form JxIyp where ¢ is quantifier free and the only connectives in @ are \ and =, is
undecidable.

Proof. Note that the construction of the formula ¢(¢,z,y) in Theorem 6.1.1 is
effective. X

Note that it is enough that the number of implications in ¢ is 6. This is because in
the corresponding system of rigid equations, the rigid equation S;,(¢) is ground and
can be decided for example by using the Shostak congruence closure algorithm [36, 5].

Decidabilty problems for some other fragments of intuitionistic logic with and with-
out equality were studied by Orevkov [31, 32], Mints [30] and Lifschitz [26]. More re-
cently some new results have been obtained by Degtyarev and Voronkov [40, 39, 12, 7],
and Tammet [37].

Another interesting question is the relationship between classical (.) and intu-
itionistic provability of the formulas ¢,; in Theorem 6.1.1. For example, if it was the
case that F. 3z3ypa (¢, z,y) always implies that ¢ € L(M) then the problem of Her-
brand skeletons would be undecidable already for a very restricted class of formulas.
Voda and Komara have recently claimed that this problem is undecidable [38].

One should note that the classical and the intuitionistic provability of the “SREU
formulas” is not the same in general even if all the left hand sides are ground. A
simple counterexample is 3z2((c = 0= 2z = 1) A (¢ = 1 = z = 0)). This formula is
obviously valid classically, whereas it is not true in a Kripke model consisting of three
nodes formed as a V', where, except for trivial identities, only ¢ = 0 is true in the left
branch and only ¢ =1 is true in the right branch.
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Chapter 7

Current Status and Open
Problems

Decidability of rigid E-unification has been known for some time now [16], for a clear
proof see for example De Kogel [5]. The current status about what is known about
SREU and rigid E-unification is summarized below.

1. Rigid E-unification with ground lefthand side is NP-complete [25]. Rigid E-
unification in general is NP-complete and there exist finite complete sets of
unfiers [16, 15].

2. If all function symbols have arity < 1 then SREU is PSPACE-hard [19]. If only
one unary function symbol is allowed then the problem is decidable [7, 6]. If
only constants are allowed then the problem is NP-complete [7] if there are at
least two constants.

3. If there are more than one unary function symbol then the decidability is still an
open question, it is known however that the word equation solving [28] (unifi-
cation under associativity), which is an extremely hard problem (no interesting
upper bounds for the complexity of this problem are yet known), can be reduced
to SREU [6].

4. In general SREU is undecidable [9], already with ground left hand sides [33] and
two variables (this report).

Some other decidable cases of SREU are also described by Plaisted [33]. It should
also be noted that the decidability of SREU with just one variable is an open question
and thus also the decidability of the I-fragment of intuitionistic logic with equality.
Note that SREU is decidable when there are no variables, then each rigid equation
can be decided for example by using the Shostak congruence closure algorithm [36, 5].
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