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Abstract

This report focuses on the following basic decision problems of finite tree au-
tomata: nonemptiness and intersection nonemptiness. There is a comprehensive
proof of EXPTIME-completeness of the intersection nonemptiness problem, and
it is shown that the nonemptiness problem is P-complete. A notion of succinct-
ness is considered with respect to which the intersection nonemptiness problem
is in fact a succinct version of the nonemptiness problem. The report includes
a short survey of closely related problems which shows that there is a rule of
thumb: if a decision problem for (deterministic) finite automata is complete for
a certain space complexity then the same decision problem for (deterministic)
finite tree automata is complete for the corresponding alternating space complez-
ity, but alternating space is precisely deterministic time, only one exponential
higher.



1 Introduction

Finite tree automata [14, 51] is a natural generalization of classical finite automata
to automata that accept or recognize trees of symbols, not just sequences of symbols
or strings. In the deterministic case, this generalization is best understood by first
looking at a deterministic finite automaton with input alphabet ¥ as a finite ({e}UX)-
algebra with its elements as states, where € is a constant and the symbols in ¥ are
unary function symbols.! The generalization consists of arbitrary (not just unary)
function symbols in ¥. The recognizability condition of a ground (or closed) term is,
like in the unary case, simply that its value is a final state.

Many decision problems concerned with finite automata (nonemptiness, inequiva-
lence, etc.) have natural counterparts with finite tree automata. Like in the case of
finite automata, decision problems of finite tree automata are typically complete for
the computational complexity classes they belong to and have, due to their simple
formulation, proved to be useful tools in classifying complexity bounds of other prob-
lems. In particular, inequivalence [44, 46] and intersection nonemptiness [7, 15, 47]
are examples of such decision problems.

The intersection nonemptiness problem of finite tree automata arises naturally in
the context of type inference in logic programming [15]. The same decision problem
restricted to top-down deterministic finite tree automata arises also in sort inference
in typed functional programming [47]. Our main motivation for studying this problem
is its close connection with a certain fragment of intuitionistic logic with equality and
a subcase of a problem called simultaneous rigid E-unification, or SREU, that arises
in the automated theorem proving context [19]. These connections are investigated in
a separate joint paper by Degtyarev, Gurevich, Narendran, Veanes and Voronkov [7].
Until SREU was proved undecidable by Degtyarev and Voronkov [9, 10, 11, 12] there
appeared many faulty proofs of its decidability [17, 18, 22].

The main contributions of this report can be summarized as follows. We present
a comprehensive proof of EXPTIME-completeness of the intersection nonemptiness
problem of finite tree automata. More precisely, it is proved that the hardness result
holds already for deterministic finite (bottom-up) tree automata. Although the com-
plexity of this problem has been used in the above mentioned contexts and also in the
context of a “decidability” proof of SREU [22], its proof is either merely remarked
upon [15], or only briefly outlined and incomplete [22, 47]. The proof of its complex-
ity is however highly nontrivial and in order to trust it we had to prove it ourselves.
In general, it was very hard to find complexity results related to the basic decision
problems of finite tree automata, as they are scattered throughout the literature, and
we decided to make a short survey by collecting the complexity results of the closely
related problems. This survey is summarized with Table 1 in the conclusions. We
show also that the nonemptiness problem of finite tree automata is P-complete by
showing its close connection with the two well-known P-complete problems alternat-
ing graph accessibility [24, 28] and generability [24, 30, 31]. We consider a notion of
succinctness with respect to which the intersection nonemptiness problem is in fact a
succinct version of the nonemptiness problem. We believe that these decision prob-
lems of finite tree automata will appear in other contexts, and expect that this survey
will be useful therein.

In general there is a rule of thumb saying that if a decision problem for (deter-
ministic) finite automata is complete for a certain space complezity class, then the
same decision problem for (deterministic) finite tree automata is complete for the
corresponding alternating space complexity class, but alternating space is precisely

IThe idea is that the interpretation of € is the initial state and that the interpretation of a unary
function symbol o is a function o such that there is a transition with label ¢ from a state ¢ to a
state p iff o(¢g) = p. So the value of a term o1 (o2(---on(€))) is the state after reading the string
on -+ 0201. This observation is attributed to Biichi and Wright [1].



deterministic time, only one exponential higher [3].

The rest of the report is organized as follows. In Section 2 we recall the main
notions used in this report, namely finite tree automata and alternating Turing ma-
chines. In Section 3 we introduce the basic decision problems of finite tree automata
that are considered in this report. In Section 4 we show that the nonemptiness prob-
lem is P-complete and in Section 5 that the intersection nonemptiness problem is
EXPTIME-complete. In Section 6 the report is summarized and we present a table
of the computational complexities of the closely related problems.

2 Preliminaries

We introduce here the main notions and definitions used in this report. Given a
signature ¥, i.e., a set of function symbols with fixed arities, the set of all ground (or
closed) terms over ¥ is denoted by 7x. Unless otherwise stated it is always assumed
that ¥ is nonempty, finite and includes at least one constant (function symbol of
arity 0). We will also assume certain familiarity with some basic notions from term
rewriting [13], regarding ground rewriting systems.

2.1 Finite Tree Automata

Finite tree automata, or simply tree automata from here on, is a generalization of
classical automata and were first studied by Doner [14] and independently by Thatcher
and Wright [51]. The main motivation was to obtain decidability results for the weak
monadic second order logic of the binary tree. A remarkable feature of tree autmata
is that they provide an alternative characterization of both the class of regular sets
and the class context-free languages (see Doner [14]). Here we adopt a definition of
tree automata based on rewrite rules. This definition is used for example by Conquidé
et al [4] and Dauchet [6].

> A tree automaton or TA A is a quadruple (@, %, R, F') where

— (@ is a finite set of states,
— XY is a signature or an input alphabet,

— R is a set of rules of the form o(q,...,q,) = ¢, where o € X has arity
nzoandfb%;---;%EQ;

— F C Q@ is the set of final states.

A is called a deterministic TA or DTA if there are no two different rules in R
with the same left hand side.

It is also assumed that @) and ¥ are disjoint. Note that if A is deterministic then R is
a reduced set of ground rewrite rules, i.e., for any rule s — t in R ¢ is irreducible and s
is irreducible with respect to R\ {s — t}. So R is a ground canonical rewrite system.
Tree automata as defined above are usually also called bottom-up tree automata. Top-
down tree automata were introduced by Rabin [42] and were also studied by Magidor
and Moran [34]. Here we will use the following definition based on rewrite rules.

> A top-down tree automaton or TTA A is a quadruple (@, X, R, I) where @) and
Y are like above,

— R is a set of rules of the form ¢ — o(qi,.-.,q,), where ¢ € X has arity
TLZO&deI;QM---;QnEQ;

— I C @ is the set of initial states.

A is called a deterministic TTA or DTTA if I is a singleton set, and whenever
g —r o(q) and ¢ — g o(p) then 7= p.



Terms are also called trees. A set of terms (or trees) is called a forest. Acceptance
for tree automata or recognizability is defined as follows.

» The forest recognized by a TA A = (Q,%, R, X) (ora TTA A= (Q,%,R™!, X))
is the set
T(A)={r€Ty | (FqeX)T —rq}.

A forest is called recognizable if it is recognized by some TA (or TTA).

Two tree automata are equivalent if they recognize the same forest. It is wellknown
that the nondeterministic and the deterministic versions of TAs have the same expres-
sive power [14, 21, 51], i.e., for any TA there is an equivalent DTA. Clearly there is no
essential difference between a TA and a TTA. However, the class of forests recognized
by DTTAs are properly contained in the class of all recognizable forests. A simple
example of that is the forest {f(a,b), f(b,a)} that is clearly recognizable but not by
any DTTA [21, Example 2.11].

We say that a TA is total if every term over its input alphabet reduces to some
state. Every TA can trivially be extended (by adding new rules and a new dummy
state) to an equivalent total TA. Every total DTA A = (Q, X, R, F') can be seen as a
pair (2, F'), where 2 is a ¥-algebra with universe ) whose interpretation function is
determined by R as follows: for all f € ¥ (of arity n) and ¢,q1,...,q, € @,

fm(%;;%):q = f(ql;---;qn)—>Rq-

Then we have that
T(A):{TE'TZ|TmEF}. (1)

Conversely, any pair (2, F') where 2 is a finite Y-algebra and F' a subset of its universe,
can be seen as a DTA. This is actually the definition of a DTA used by Gécseg and
Steinby [21]. For an overview of the notion of recognizability in general algebraic
structures see Courcelle [5] and the fundamental paper by Mezei and Wright [38].
We will refer to (classical) nondeterministic finite automata as NFAs and to deter-
ministic finite automata as DFAs. In general, we will follow Hopcroft and Ullman [26]
regarding the formal definitions and notational conventions of finite automata.

2.2 Alternation and Computational Complexity

Alternation was introduced by Chandra, Kozen and Stockmeyer [3] as a generalization
of nondeterminism. First, let us give an intuitive definition of an alternating Turing
machine or ATM. An ATM is like a nondeterministic Turing machine (TM), except
that every configuration or instantaneous description (ID) is labelled as either “uni-
versal” or “existential”, actually each state is either universal or existential and an ID
is labelled accordingly.? We inductively determine if an ID “leads to acceptance” as
follows. Any final ID leads to acceptance. For any nonfinal ID we have two cases: an
existential ID leads to acceptance if at least one of its successors leads to acceptance;
a universal ID leads to acceptance if all of its successors lead to acceptance and it has
at least one successor.

All computation models based on a Turing machine can be considered as variants of
a TM with different acceptance conditions, this point is emphasized by Johnson [29].
We follow Hopcroft and Ullman [26] regarding the formal definition of a nondetermin-
istic Turing machine. For the sake of clearness we recall here the main definitions.

» A nondeterministic Turing machine M is a 7-tuple (Q, Xin, 2,9, go, b, F'), where

— (@ is a finite set of states,

2In the original definition of an ATM there is also a possibility of a “negated” state, but it can
be omitted without loss of generality [3, Theorem 2.5].



Y is a finite set of tape symbols,
— b is a tape symbol called blank,
— Yy, is a subset of ¥ called the set of input symbols,

— ¢ is a mapping from @ x X to subsets of @ x ¥ x {left,right}, and is
called the transition function of M,

— qo is the initial state of M, and
— F C Q@ is the set of final states.

By an instantaneous description or ID of M we mean any string vqw where
q € Q is a state of M and vw € X* (the position of ¢ marks that the tape head
points to the first symbol in w).

An ID w is a successor of a nonfinal ID v, in symbols v F w, if w follows from
v in one step according to the transition function of M.

We define an ATM formally as follows.

» An alternating Turing machine is a pair (M,U) where M is a TM and U a
subset of the states of M, called the set of universal states. The states of M
not in U are called ezistential.

An ATM with an empty set of universal states is simply a TM. An ID of an ATM
is said to be ezistential (respectively universal, final, initial) if its state is existen-
tial (respectively universal, final, initial). We can now formally define the notion of
acceptance for ATMs.

» Let M be an ATM with initial state gg and x a string over its input alphabet.
Then M accepts z iff the initial ID goz, leads to acceptance, where leads to
acceptance is defined recursively as follows.

— Any final ID leads to acceptance.
— If v is a nonfinal ID then it leads to acceptance iff

x v is existential and some successor of v leads to acceptance, or

x v is universal, all successors of v lead to acceptance and v has at least
one successor.

Note that the acceptance condition of an ATM without universal states is the same
as the acceptance condition of the underlying TM.

Alternating Space vs Deterministic Time The notion of space (and time) com-
plexity of ATMs is the same as that of TMs. The key property that we are going
to use is that, alternating space is precisely deterministic time, only one exponential
higher [3]. In particular,

e APSPACE = EXPTIME,
e ALOGSPACE = P,

where the classes APSPACE and ALOGSPACE consist of all problems that can be
solved by a polynomial space ATM and a logarithmic space ATM, respectively. The
class EXPTIME consist of all problems that can be solved by a deterministic TM that
is time bounded by 2" for some ¢ > 0. For a general overview of the relationships be-
tween EXPTIME and other complexity classes see Johnson [29] or Papadimitriou [40].



3 Basic Decision Problems of Finite Tree Automata

All the basic decision problems of finite tree automata, like the nonemptiness problem,
the inequivalence problem (or the more general inclusion problem) are decidable (see
Gécseg and Steinby [21]). The proofs are fairly easy by first transforming a TA into a
DTA by a powerset construction and then using a “pumping property” for DTAs. It is
also easy to show that recognizable sets of terms are closed under Boolean operations.
This is illustrated next.

e Complementation: Let A = (Q,X, R, F) be a total DTA. The complement
of Ais the DTA A = (Q,%,R,Q \ F). It follows immediately from (1) that
T() = T \ T(A).

e Intersection: Let A = (Q1,%, R, F1) and B = (Q2,%, R2, F5) be TAs. The
direct product of A and B is the TA A x B = (Q1 x Q2,%, R, F} X Fy), where

-

R={f{(a1,b1),.-.,(an,bp)) = (a,b) | f(@) — a€ Ry, f(b) > b€ Ry}
It follows easily that T(A x B) = T(A)NT(B).

Note that if A and B above are total DTAs then so is their direct product. Let A and
B be total DTAs. Clearly the inclusion and inequivalence problems for DTAs reduce
effectively to the nonemptiness problem, since T'(A) C T(B) iff T(A)NT(B) = 0. It
follows for example that

TA)=T(B) & (T(A)NT(B)U(T(B)NT(A)=10
T(AxBxBxA) =0 (2)
In the following two sections we will address the following decision problems.

» Nonemptiness of TAs (or, more particularly, of DTAs or DTTAS) is the following
decision problem: Given a finite tree automaton A, is T(A) nonempty?

» Inequivalence of TAs (or, more particularly, of DTAs or DTTASs) is the following
decision problem: Given finite tree automata A and B with the same signature,
are T'(A) and T'(B) unequal?

» Intersection nonemptiness of TAs (or, more particularly, of DTAs or DTTAs)
is the following decision problem: Given a finite sequence (A;);<, of finite tree
automata, is (), _,, T'(A;) nonempty?

For finite automata the same decision problems are defined analogously. It is clear
that, by using (2), inequivalence of DTAs reduces (in logarithmic space) to nonempti-
ness [21]. For DFAs this was already shown by Moore [39]. It is also clear that for a
fixed n, the intersection nonemptiness problem reduces to the nonemptiness problem
in logarithmic space.

4 Nonemptiness and Inequivalence of Finite Tree Automata

For finite automata (either deterministic or nondeterministic) the nonemptiness prob-
lem is basically the same as the graph accessibility problem and is thus complete for
nondeterministic logarithmic space or NL-complete [45]. It follows that the inequiv-
alence problem of DFAs is also NL-complete. Analogously, for finite tree automata
there is a simple reduction from the alternating graph accessibility problem to the
nonemptiness problem and vice versa. Alternating graph accessibility was shown
P-complete by Immerman [28] by a direct simulation of any ALOGSPACE ATM.
There is also a very simple reduction from generability, which is another P-complete
problem due to Jones and Laaser [30] and Kozen [31], to nonemptiness of DTAs and



vice versa. We follow Greenlaw, Hoover and Ruzzo [23, 24] in our formulation of
alternating graph accessibility and generability.?

» Alternating graph accessibility. Given is a directed graph with a set of vertices
V and a set of edges E, a subset U of V, and designated vertices a and b in V.
The vertices in U are called universal and those in V' \ U are called ezistential.
The problem is to decide if apath(a,b) holds, where, for any two vertices x and
y, apath(x,y) is true if either

1. z =y, or
2. x is existential and there exists a vertex z with (z,z) € E and apath(z,y)
is true, or

3. x is universal and for all vertices z with (z,z) € E, apath(z,y) is true.

» Generability. Given is a finite set @), (the graph of) a binary function f on @,
a subset V' of @ and an element ¢ in Q.

The problem is to decide if ¢ is in the smallest subset of @ that includes V' and
is closed under f.

The generability problem remains in P even with more than one function. More gener-
ally, it is the problem of deciding if, given a finite algebra, a subset of its universe and
an element in it, this element is in the subalgebra generated by the given subset [31].
(See for example Wechler [54] for definitions.) Actually, as we will see, generability
is basically the same problem as nonemptiness of DTAs. In the following proof it is
easily seen that all reductions can be carried out within logarithmic space, assuming
reasonable representations of the problems, and we will not mention that explicitly.

Theorem 1 Nonemptiness of DTTAs, DTAs and TAs is P-complete.

Proof. First we show how alternating graph accessibility reduces to nonemptiness of
DTTAs. Consider a directed graph G = (V, E) a subset U of V' of universal vertices,
and two designated vertices ¢ and b in V. We can assume without loss of generality
that the out-degree of any vertex in G is either two or zero. Le A be the TTA
(V,%,R,{a}), where ¥ = {¢, g1, g2, f }, ¢ is a constant, g1, g2 unary function symbols,
and f a binary function symbol. Let the rules of A be as follows:

1. b —pgec,
2. for each vertex x and edges (x,y1), (z,y2) € E,
(a) if « is universal then x — g f(y1,y2),
(b) if z is existential then © — g ¢1(y1) and £ — g g2(y2).
Clearly A is a DTTA. It follows easily that for any vertex z,
apath(z,b) < (3T € Te)xr g, (3)

and thus apath(a,b) iff T(A) is nonempty. The ‘=’ direction follows by induction on
the size of any alternating path to b and case analysis on z (universal or existential).
The base case (z = b) is trivial. Let us consider one induction case, namely when x
is existential and different from b. Then, for some vertex z,

apath(z,b) = (x,z) € E, apath(z,b)

(IH) *
= & -—gryg(z),z —RT

*
= x—pgyg(n),

3The book of Greenlaw, Hoover and Ruzzo [24] includes an excellent up-to-date survey of around
150 P-complete problems.



where 7 € Ty and g is either g; or go. The ‘<=’ direction follows also easily by
induction on the length of reductions.

We prove now that the nonemptiness problem of TTAs (and thus TAs) is in P
by giving a simple reduction from it to alternating graph accessibility. Let A be a
TTA (Q,%, R,I). Assume without loss of generality that there is only one constant
¢ in ¥ and that I is a singleton set {go}. We construct a graph G = (V, E) with
designated vertices ¢ and b and a subset U as the set of universal vertices as follows.
Let V = Q UU where U is the collection {u; | ¢ = t € R} U {u.} of new vertices.
Let a = qo and b = u.. Let

E = {(q,ut);(ut,q1);---;(Ut;qn)|q_>f(q1;---;Qn)€R}-
t

Like above, statement (3) is proved for all € () by induction. It follows that
apath(a,b) iff T(A) is nonempty.

Finally, we give a simple reduction from generability to the nonemptiness problem
of DTAs to show that it’s P-hard. Let () be a finite set, f a binary function on @,
V C Q and ¢gr € Q. Let A be the DTA (Q, X, R, {¢r}), where ¥ consists of a binary
function symbol f and a constant ¢, for each ¢ € V. Let R be the following set of
rules:

R = {c¢—=qlqeeV}u{fla,e) —alfla,e)=q}
It follows easily that T'(A) is nonempty iff ¢¢ is in the least subset of @ including V'
that is closed under f. X

Nonemptiness of DTAs is in fact the same problem as (the more general formulation
of) generability given above. Consider a total DTA A with signature ¥ as the pair
(2, F) where 2 is a Y-algebra and F' a subset of its universe. Nonemptiness of T'(A)
is simply the question of whether there exists a term 7 € Ty, such that 7% € F, or in
other words, if the subalgebra of 2 generated by the empty set intersects with F'.

The nonemptiness problem is clearly a particular case of the inequivalence problem.
It is also easy to see that there is logspace reduction from any two DTAs A and B to
the DTA in (2). It follows thus that inequivalence of DTAs is also P-complete. From a
statement in Seidl [46, Theorem 4.3: P-completeness of inequivalence of m-ambiguous
TTAs] follows that inequivalence of DTTAs is P-complete as well. For TAs in general
the situation is different however. In order to reduce the inequivalence problem of
two TAs into the nonemptiness problem by using (2) it is necessary to first transform
the TAs in question into DTAs which in general implies an exponential increase in
the number of states (this is true already in the case of NFAs [43, 36]). In fact, Seidl
has proved that the inequivalence problem of TAs is EXPTIME-complete [46, The-
orem 2.1]. The inequivalence problem of NFAs and regular expressions is PSPACE-
complete [37]. For more recent developments regarding complexity of word problems
see Mayer and Stockmeyer [35].

5 Intersection Nonemptiness of Finite Tree Automata

We proceed in two steps. First we prove that intersection nonemptiness of DTAs is
EXPTIME-hard. Then we show that intersection nonemptiness of TAs is in EXP-
TIME.

EXPTIME-hardness of these problems has been stated before (without detailed
proofs) and used in various contexts. EXPTIME-hardness of intersection nonempti-
ness of TAs has been remarked by Frithwirth et al [15] and used in the context of
type inference of logic programs. Goubault gives an incomplete EXPTIME-hardness
proof of the intersection nonemptiness problem of DTAs in the context of a faulty
EXPTIME-completeness proof of simultaneous rigid E-unification [22]. (Note that
this proof is faulty by the result of Degtyarev and Voronkov [10, 11, 9, 12].) Seidl [47]



uses EXPTIME-hardness of the intersection nonemptiness of DTTAs and outlines a
proof in the context of sort inference in typed functional programming. The proof
presented here is a generalization of the proof of PSPACE-hardness of the intersec-
tion nonemptiness of DFAs by Kozen [32]. It’s general outline is the same as in the
remarks or proof outlines provided in the above references.

We reduce the intersection nonemptiness problem of TAs to a wellkown problem
in EXPTIME [2]. It is also remarked by Frithwirth et al that this problem is in
EXPTIME [15]. It should be noted that informally this is clear already from the fact
that the size of a direct product of an unbounded number of TAs is exponential and
to test nonemptiness takes polynomial time in the size of that product by Theorem 1.

We state the main result of this section as the following theorem. Formally, it
follows from Lemma 7 and Lemma 11 below.

Theorem 2 Intersection nonemptiness of TAs and DTAs is EXPTIME-complete.

Any signature can ofcourse be encoded with just one binary function symbol and a
collection of constants. In particular, by examining the construction of the DTAs in
the hardness part of the proof of Theorem 2 we see that the signature ¥ of the DTAs
consists of one binary function symbol f, one constant ¢ and a collection of unary
function symbols. For any DTA A = (Q, X, R, F) let A’ = (Q',X', R', F) denote the
following DTA. For each unary function symbol ¢ in ¥ let ¢, be a new constant and
gy @ new state. Let X' consist of f, ¢ and those new constants, and let Q' be @
extended with those new states. Let R’ be like R except that each rule g(q) — p in
R is replaced with the rules ¢, = ¢, and f(gy,q) = p. Given DTAs A, and A, with
signature ¥ it follows easily that T'(A}) N T'(A4%) is nonempty iff T(A4;) NT(Ap) is
nonempty. We obtain thus the following corollary.

Corollary 3 Intersection nonemptiness of DTAs is EXPTIME-hard even when re-
stricted to signatures consisting of constants and one binary function symbol.

It is wellknown that the use of intersection can shorten a regular expression by an
exponential amount. So for example the inequivalence problem for regular expressions
is PSPACE-complete [37], but becomes EXPSPACE-complete when intersection is
added [16, 27]. (Similar effect if obtained with interleaving [35].) In case of finite
automata or finite tree automata, taking their intersection corresponds to taking their
direct product. In some cases the size of a finite automaton or TA, can be decreased
by an exponential amount by representing it by a sequence of finite automata or TAs,
resepectively. To be precise let us consider the following notion.

» Given asequence A = (A;)i<n of TAs, let I1 4 denote the TA Agx Ay x---xA,_;.
The sequence A is called a product representation of any TA that is isomorfic
with II 4.

It follows immediately from Theorem 2 and the property T'(Ax B) = T'(A)NT(B) (for
TAs A and B), that the product nonemptiness problem of finite tree automata (i.e.:
Given a product representation of a TA A, is T(A) is nonempty?), is EXPTIME-
complete. For finite automata the product nonemptiness is PSPACE-complete by
Kozens result [32]. Let us note that the usual notion of succinct representation of
a graph is a boolean circuit which given as input binary representations of two inte-
gers (representing two nodes in that graph) computes the corresponding entry of the
adjacency matrix of that graph [20]. For example, the succinct graph accessibility
problem is PSPACE-complete [41] (also for undirected graphs [33]).

In general one can define product representation of an abitrary finite first order
structure in the above manner, i.e., as sequence of first order structures (with the
same type) denoting the corresponding direct product. It follows for example from
Corollary 3 that product generability is EXPTIME-complete. Let us also note that



it is generally believed that EXPTIME is nothing else but P on exponentially more
succinct input [40]

5.1 EXPTIME-hardness of Intersection Nonemptiness of DTAs

We give a polynomial time reduction of polynomial space ATMs to the intersection
nonemptiness problem of DTAs. It follows that the problem is APSPACE-hard and
thus EXPTIME-hard. For the rest of this section let

M = ((Q;Einaga(s; qO;baF)aU)

be a fixed ATM that is space-bounded by some polynomial S such that S(m) > m.
We can assume without loss of generality that M has a single tape, this follows
from a straightforward generalization of the corresponding property for TMs [26,
Theorem 12.2]. Let » € X be a fixed string and n = S(|z|). Let ID stand for the set
of all possible strings that represent IDs of M that may be padded with extra blanks
at the end so that each string represents the first n tape symbols of M, i.e.,

m = |J zWesh,
0<k<n

From here on we will by ID mean any element of ID. We can assume without loss of
generality that M satisfies the following conditions:

e The initial state go is existential and occurs only in the initial ID (IDy =

e M has exactly one final state gr and the final ID has the form IDy = qu(”).
e Each universal ID has 0 or 2 successors.

Let all the symbols in ¥ U @ have arity 1,i.e., treat them like unary function symbols.
Let also () and nil be new function symbols with arities 2 and 0, respectively. Let
=X UQU{(),nil}. We will represent “computations trees” of M by certain terms
in 7p. For a string v = cj¢a -+ - ¢, over YU @ and 7 a term we write 7v for the term
cm(Cm—1(---c1(7)--+)), and for any two terms 71 and 72 we write (71, 72) for the term

(O (71,72).
» ID-trees is the least class of terms in 7t that satisfies:

— nil is an ID-tree, called the empty ID-tree;

— if 7 and 7 are ID-trees such that either both are empty or only 75 is empty
and v € ID then 7 = (1, 2)vb is an ID-tree.

We refer to 71 and 7» as the left and right subtrees (or collectively immediate
subtrees) of T, v is called the root of 7. We will use the notations Left(r),
Right(7) and Root(r). We let also Root(nil) = e.

Let 7 and 7 be ID-trees. We say that 7' is an m-fold subtree of 7 if either m = 0
and 7" = 7 or 7' is an (m — 1)-fold subtree of some immediate subtree of 7. By subtree
we mean m-fold subtree for some m > 0. The depth of 7 is the largest m > 0 such
that there exists an m-fold subtree of 7, e.g., the depth of nil is 0.

The roots of all the nonempty subtrees of 7 are called its nodes. A nonempty
subtree of 7 with empty immediate subtrees is called external. A nonempty subtree
of 7 that is not external is called internal. The root of any external subtree of 7 is
called a leaf of 7. We will use the following definitions.

» An ID-triple is any element of ID x ID x (ID U{e}), where € denotes the empty
string. By a move of M we mean any ID-triple (v, v, vs) where either



— v is existential, v - v; and v2 = €, or

— v is universal, v F vy, v F v9 and vy # va.
We write v > (v1,v2) iff (v,v1,v2) is a move.
» A move-tree is any ID-tree 7 such that for each internal subtree 7' of 7,
Root(7") > (Root(Left(7')), Root(Right(7"))).
A move-tree is valid if its root is the initial ID and its leaves are final IDs.

The notion of a valid move-tree is a straightforward generalization of the notion of
a valid computation of M on input z. We will exploit the following obvious charac-
terization of acceptance in terms of valid move-trees: M accepts x iff there exists a
valid move-tree.
5.1.1 Main Construction The kernel of the hardness proof is a polynomial time
construction of a collection of tree automata such that their intersection is precisely
the set of all valid move-trees. We will construct two kinds of automata, one for each
k,1<k<n.

1. The first kind recognizes all move-trees the leaves of which are final IDs and
which satisfy the following additional property. Roughly, for all internal m-fold
subtrees 7 where m is even, the ID-triple (v,v1,vs), where v is the root of 7
and v; and vy the roots of the left and right subtrees of 7, is a possible move
by looking only at the tape symbols immediately surrounding the k’th symbol.

2. The second kind recognizes all move-trees the root of which is the initial ID and
which satisfy the same additional property as above, except for odd m.

First we will formally define the sets of ID-trees correspeonding to items 1 and 2,
and show that their intersection gives us precisely all the valid move-trees. Then
we present formal constructions of DTAs that recognize these sets. We need some
additional notations and definitions.

By a position we mean any integer k such that 1 < k < n. Let k be a position and
v=a;--a;—19a; - a, € ID where ¢ € Q. We will write v[k] and View(v, k) for the
following substrings of v,

_ qag, if k=1;
vlk] = {ak, otherwise.

v[klv[k + 1], ifk=1,;
View(v, k) = v[k — 1]vlk], it k=mn;
v[k — 1vlk]v[k + 1], otherwise.

We let also View(e, k) = € and for any ID-triple (v, v1,v2),
View ((v,v1,v2), k) = (View(v, k), View(vy, k), View (vs, k)).
Consider a fixed position k.
» A k-move is an ID-triple ¥ = (v, v1,v2) such that the following holds.

1. If v[k] € QX then there exist a move o such that View (W, k) = View(7, k).
2. Ifv[k] = a € ¥ then v [k] € {a}UQa and either vy = € or v3[k] € {a}UQa.

We write v >y, (v1,v2) iff (v,v1,v2) is a k-move.

The following propositions follow easily and we leave their proofs to the reader.

10
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Figure 1: Base case of T.
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Figure 2: One possible induction case of Ty (g is universal, 711,721 € T} and
T12, o2 € T} U {nil}).

Proposition 4 An ID-triple is a move iff it is a k-move for all positions k.

Proposition 5 For all positions k and all ID-triples © and W. If U is a k-move and
View(7, k) = View (W, k) then & is a k-move.

For all positions k, let T} denote the following set of terms. Below we will show that
T} is recognizable and that the time complexity to construct a tree automaton that
recognizes T}, is polynomial in n.

» T} is the set T of all ID-trees such that

1. (nil,nil)ID¢b € T,
2. (11, 2)vb € T if 7y is nonempty and,
(a) v > (Root(ry), Root(ms)),
(b) Left(m) € T and Right(m) € T U {nil}, and
(c) either 7 is empty, or Left(m) € T and Right(mz) € T U {nil}.
So any ID-tree in T}, has external subtrees of the form shown in Figure 1. A possible
induction case is illustrated in Figure 2. For each position k, we let T}' denote the

following sets of terms. Also in this case we will show that each T} is recognizable by
a tree automaton that can be constructed in polynomial time.

» 17 is the set of all (71, 72)IDob where 7,75 € T and either both are empty or
only 7y is empty, where 7' is the set of all ID-trees where gy doesn’t occur such
that

1. nil €T,

2. (m1,m2)vb € T if 7 is nonempty and (a—c) hold,
(a) v >y, (Root(r1), Root(7z)),
(b) Left(r),Right(m1) € T, and
(c) either 75 is empty or Left(z), Right(m) € T

11
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Figure 3: All ID-trees in T} have this form.

All ID-trees in T}; are illustrated in Figure 3.
Let 7 € Ty N T} and let 7' be any internal m-fold subtree of 7 for some m > 0. If
m is even (odd) then it follows by definition of T} (T}), that

Root(7") > (Root(Left(7")), Root(Right(7"))).
We have thus the following property.

Proposition 6 For all positions k, if 7 € Ty NI} then for all internal subtrees ' of
T’

Root(7") > (Root(Left (7)), Root(Right(7"))).
We can now state our main lemma.

Lemma 7 The intersection nonemptiness problem of DTAs is EXPTIME-hard.

Proof. Construct tree automata Ay and Aj for 1 < k < n such that T'(Ag) = T}
and T'(A}) = T} (see Lemma 8 and Lemma 9). Each one is constructed in time that
is polynomial in n = S(|z|), and thus the total time complexity of the costruction of
all the automata is polynomial in |z|. It is sufficient to show that

n
{7 ] 7 is a valid move-tree } = ﬂ (T, NTY)
k=1

The direction ‘C’ (i.e., that each valid move tree is in T} and T}) is easy to check.
(Note that the property that all computation paths of M have even length is needed
here.) We prove the direction '2’. Let 7 € (,_, (TxNT}). It follows immediately from
the definition of any T}, that the leaves of 7 are final IDs. It follows also immediately
from the definition of any T}’ that the root of 7 is the initial ID. It remains to prove
that 7 is a move-tree, i.e., that for any internal subtree 7 of 7,

Root(7") > (Root(Left(7')), Root(Right(7'))),
but this follows by first applying Proposition 6 and then Proposition 4. X

5.1.2 Recognizability of T), Consider a fixed position k£ distinct from 1 and n.
The handling of positions 1 and n is similar. We will construct a tree automaton Ay
that recognizes T},. It will be clear that one can easily extract an algorithm from this
construction that has polynomial time complexity in n. Let

A = YITUQRIIXUIQIYUIIQES,
I = Ax(AU{e).

As the main part in the construction of Ay we will use a family {M;};c g0y of DFAs,
where each M; is a DFA that accepts ID and for each v € ID simply scans v and
accepts it in the final state p(q ;) iff View(v, k) = a. Formally, we let, for all i € TU{0},

M; = (Piaz U Q:éiap(&i):{p(a,i) | o€ A}): L(Ml) = ID:

12



such that for all « € A and v € ID,
6i(P(0,i),V) = P(a,iy & View(v,k) = a.

Furthermore, all the P;’s are assumed to be pairwise disjoint. In particular we can
take all the members to be copies of say My. It is easy to construct My in time that
is polynomial in n. Let also My be a DFA (with new states) such that

My = (Pfaquaéfap(O,f)a{pf})7 L(Mf) = {IDf}
Let now R; for ¢ € I U {0,f} denote following sets of rules:
Ri = {C(p)—}pl|6i(c,p):pl7 CGEUQa papIEPi}'

For any string v = ¢1¢2...¢p—16, over X U @ and state p we will write pv for the
term ¢ (Cm—1(-- - c2(c1(p)) ---)). It is clear that for any string v over ¥ U @, and any
two states p and p’ in P;,

Si(pv) =p' & pv—r 1.
Let {te,te} U {ts | & € A} be a set of new state symbols.

» Ay is the following tree automaton:

Q" = {tet}U{ta|la€e AYURURU(JP,
i€l
A = T
R* = | JRiURyUR;U
i€l
{nil >t }U
{ (tea t6> — P(0,f) } U
{{te;te) = P00y, (teste) = Poo)} U
{{ts,ty) = Pogy | (B,y) €T} U
{P(,0)b = ta|a€A}U
{ PView((v,01,00),k)0 = b | v D> (v1,02) } U
{peb — te },
FAe  — {tf}.

Note that pview((v,v1,00),k) 1 the final state prview(v,r),s) in M;, where i is the index
(View(vy, k), View(va, k)). It is easy to check that Ay is indeed a deterministic tree
automaton. The structure of Ay is illustrated in Figure 4.

Lemma 8 T'(A4;) = Ty.

Proof.

[Proof of T'(Ay) C T Let 7 € T(Ayg), ie., 7 € Tr and 7 — pa, tr. We prove that
7 € Tj. The proof is by induction on the length of the reduction 7 — t¢. There are
two cases, depending on the last step of the reduction.

1. T—*>pfb—> t¢, or

2. 7 PView(#,k)0 — tr for some k-move 7. Let View(?, k) = (o, 8,7).

13
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Figure 4: Tree automaton Ay. A transition from p(, 3,) to tf exists only if
(a, B,7) = View(7, k) for some k-move 9.

Let us consider the first case first. From the definition of the rules of A* and the
disjointness of the underlying DFAs it follows that the reduction has to be of the
following form: (simply trace the arrows backwards in Figure 4)
peb — te
ponIDe ——r P
(nil,nil)y = P(0,£)5

which shows that 7 = (nil, nil) ID¢d, and thus 7 € T;. We now consider the second
case. Then

St

P(a.7) —
PO.8)W —Rp., Plagn) (somew € ID such that View(w, k) = o)
{ts;ty)  — P
So 7 = (71, 2)wb where 7, — t3 and 7» — t,. Since B # e it follows that the
reduction 71 —s ts must have the following form:

p(670)b — tﬁ
P(0,0)W1 R, P3,0) (some w; € ID such that View(w,k) = f),

14



and either (t¢,t.) — p(o,0) Or (tr,tr) — P(o,0)- Assume (without loss of generality)
that the former reduction step took place and that v = € (and thus 7 = nil).

Under these conditions Root(r;) = wy, Left(r;) — ¢ and Right(r;) = nil. Tt
follows by the induction hypothesis that Left(r;) € Ty. Let @ = (w,w,€), since
View(w, k) = View(?,k) and 7 is a k-move, it follows by Proposition 5 that o is a
k-move. Now 7 € T}, by the definition of T}.

[Proof of T}, C T(A;)] Let 7 € T. Clearly 7 € Tr. We must show that 7 — t;. The
proof is by induction on the size of 7. The base case is 7 = (nil, nil) ID¢b and it follows
by above that 7 — t;. The induction case is 7 = (11, 2)vb, where 7 = (711, T12)1D,

1. v >y, (v, Root(m)),
2. 11 € Ty, and 112 € T, U {nil}, and
3. either 7 is empty or Left(r) € T} and Right(ry) € T}, U {nil}.

We can assume without loss of generality that 7 and 715 are empty. Let (a, 3,€) =
View((v,v1,€),k). By using the induction hypothesis and the rules of A; we obtain
the following reduction:

T —ram  ((trt)vid, t)od
— (P(0,0)v1D, te)vb
Ry (P(8,0)Ds te)vD
— <t5 , t€>vb

— P,sgvb
R, p(aﬁyﬁ)b'
But v > (v1,€), and thus p(q g, — . X

5.1.3 Recognizability of T} Like above, we consider a fixed position k distinct
from 1 and n, and construct a tree automaton A; that recognizes 7}’. It will be clear
that the construction has polynomial time complexity in n. We will not be as detailed
as we were in the previous section due to the similarity of the construction.

Let A and I be as in Section 5.1.2 except that the initial state gy of M is omitted
from ). Let also M; for i € I U {0} have the same definition (except for that same
restriction). Let M be the following DFA: (with new states)

M = (Pf7 E; 6f7p(0,f); {pf}), L(Mf) = {;Ub(nf‘ﬂ")}

Let now R; for i € I U {0,f} denote the same sets of rules as defined above. Let
{t,te,te} U{to | @ € A} be a set of new state symbols.

» A7 is the following tree automaton:

QY% = {titot}U{talacAJURURU|]JP,
el
»4% = T,
RA4 = URiURoURfU{QO(p(o,o))—>P(0,f)}U
el
{nil >t} U

{{teste) = pr0,0), (tte) = Pooys (t:1) = Py} U
{{ts,ty) = Po,g,) | (B,7) € T} U
{p(ayg)b—)ta | a € A}U

15
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Figure 5: Tree automaton Aj. A transition from p, g,+) to t exists only if
(a, B,7) = View(7, k) for some k-move 9.

{pView((v,m,vz),k)b —t | v D ('UhUZ) } U
{peb =t },
FA% = {t).

Note that A} is indeed a deterministic tree automaton (in particular note that the
go-transition from p(o ) to p(o,r) doesn’t violate the determinism). The structure of
Ay is illustrated in Figure 5. The proof of Lemma 9 i analogous to the proof of
Lemma 8.

Lemma 9 T(A4;) =T}.

5.2 The Intersection Nonemptiness Problem of TAs is in EXPTIME

We reduce the intersection nonemptiness problem of TAs to the inference problem
for full implicational dependencies or FIDs. An FID is just a universal relational
Horn sentence, we write it as an implication ¢ ¢ 1 where ¢ is an atom and % a
conjunction of atoms. The only function symbols in an FID are constants. The
inference problem is simply the question of whether a given conjunction of FIDs
implies another given FID. This problem can be solved in exponential time (actually
it is EXPTIME-complete [2, 52]).
Let A; for 1 < i < n for some n > 1 be TAs with a common input alphabet X,

Ai:(QiazaRiaFi)a (1S7/Sn)
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Let A = (Q,%,R,F) be the direct product of all the A;’s. So the states of A
are elements of ], Q; and the rules of A are defined as follows, we write g for

(Q1;Q2;--->Qn) € Q:
R = {U(qla"'aqk) _>g|g(qi17qi27---7qik) —R; Qi (1 SZS”) }

We know that 7'(A) is nonempty iff ();_, 7'(4;) is nonempty. We will construct a set
of FIDs P with a distinguised atom Nonempty such that P - Nonempty iff T'(A) is
nonempty. Furthermore, it will be obvious that this construction takes polynomial
time (actually linear time) in the total size of the A;’s (not in the size of A, the size
of A is in general eponential in the total size of the A;’s).

First, for 1 < i < n and each k-ary function symbol o € X, let Rule be a new
relation symbol of arity & 4+ 1. Let also Final; for 1 < ¢ < n and Reduce be relation
symbols of arity 1 and n, respectively. To simplify matters, we can assume without
loss of generality that all function symbols in ¥ have arity at most 2. There are
following atoms (or atomic FIDs) in P: for each A; and final state ¢ in it there is an
atom

Final;(q)

in P; for each A; and rule o(q1,...,qr) = g (where k > 0) in R; there is an atom

Rule! (q1,..-,qk,q)
in P. In addition, P includes the following FIDs: for each constant ¢ € ¥ the FID

n
Reduce(Z) «+ /\ Rulef (x;),
i=1
for each unary function symbol o € ¥ the FID

Reduce(Z) /\ Ruley (y;, z;) A Reduce(y)
i=1
and for each binary function symbol ¢ € ¥ the FID

n
Reduce(T) + /\ Rule! (y;, z;, ;) A Reduce(y) A Reduce(Zz).
i=1

Finally, P includes the FID

n
Nonempty < Reduce(Z) A /\ Final;(x;).

i=1
We have the following relationship between derivations from P and reduction in R.

Proposition 10 For all § € (), P  Reduce(q) iff there exists a term T € Ty, such
that T =g q.

Proof. Let § € @ be fixed and consider the direction ‘=’. Assume that P F
Reduce(7). We prove by induction on the length of the proof of P F Reduce(q) that
there exists a term 7 € 75, such that 7 —» 5 q.

The base case is when there is a constant ¢ € ¥ such that P - Rule§(g;) for
1 <¢<n. Then ¢ —p, ¢; for 1 < i < n and thus 7 = ¢ —x ¢. The induction
case is when there is a nonconstant function symbol f € ¥ (we can assume that f is
binary) and states p,7 € () such that

PFr Rule{ (pi,Ti,gq;) (for 1 <i<mn), P Reduce(p), P I Reduce(F).

17



By the induction hypothesis follows that there exist terms 71 and 7» in 7s such
that m — g p and » — g 7. From P + Rule{(pi,ri,qi) (for 1 < i < n) follows
that f(p;,7i) —r, ¢ (for 1 < i < n) and thus f(p,7) —r ¢. Consequently
T=f(r,12) g

The direction ‘<=’ is equally straightforward to prove by induction on the length of
the reduction 7 — g §. X

Since P + Nonempty iff there exists a final state g in A such that P F Reduce(q), it
follows by Proposition 10 that P F Nonempty iff T'(A) is nonempty. The construction
of P is clearly linear in the total size of the A;’s. By Chandra et al [2] it follows thus
that:

Lemma 11 The intersection nonemptiness problem of DTAs is in EXPTIME.

We obtain an alternative proof of Lemma 11 by looking at P as a logic program
and asking the question if the goal Nonempty follows from it. It is clear that in any
proof tree of Nonempty from P the nodes (or intermediate goals) have a size that is
linear in n, simply because there are no nonconstant function symbols in P. The
computational complexity of the problem of deciding if P - Nonempty is therefore in
EXPTIME by a correspondence between logic programs and ATMs by Shapiro [48,
Theorem 4.4] and the relationship EXPTIME = APSPACE.

We can also note that NFAs correspond to monadic TAs, i.e., TAs over a signature
where there are besides constants only unary function symbols. If we assume the
above A;’s to be modadic then the nonemptiness problem of T'(A) corresponds to the
nonemptiness problem of the intersection of the corresponding NFAs. It is easy to
see by looking at P that one can construct an ATM without universal nodes (i.e.,
a TM) that uses only linear space in n and “accepts Nonempty” iff P - Nonempty.
Thus the intersection nonemptiness problem of NFAs is in PSPACE. This fact follows
already from the proof of the PSPACE-completeness of the intersection nonemptiness
problem of DFAs by Kozen [32], where the part of the proof regarding inclusion in
PSPACE holds also for NFAs.

6 Conclusions

In this report we considered computational complexity of some basic decision problems
of finite tree automata. In particular, we proved EXPTIME-completeness of the
intersection nonemptiness problem (Theorem 2) and we showed P-completeness of the
nonemptiness problem (Theorem 1). It follows that for a fixed number of finite tree
automata, the problem of nonemptiness of their intersection is also P-complete. We
discussed a notion of succinctness with respect to which the intersection nonemptiness
problem is in fact a succinct version of the nonemptiness problem.

Our main motivation for studying these problems and their computational com-
plexity is their close connection with the decidability and computational complexity
of certain fragments of intuitionistic logic with equality and subcases of a certain
problem called simultaneous rigid E-unification that arises in the automated theorem
proving context [19]. These connections are investigated in a separate joint paper by
Degtyarev, Gurevich, Narendran, Veanes and Voronkov [7]. Until SREU was proved
undecidable by Degtyarev and Voronkov [9, 10, 11, 12] there appeared many faulty
proofs of its decidability [17, 18, 22]. See the survey paper by Degtyarev, Gurevich and
Voronkov [8] for the impact of this undecidability result on the automated theorem
proving community. Further implications are studied by Veanes [53], and Gurevich
and Veanes [25].

The computational complexities of the problems studied in this report and of closely
related problems is summarized in Table 1. In general there seems to be a rule of
thumb that says that if a decision problem for (deterministic) finite automata is
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Intersection
Nonemptiness | Inequivalence nonemptiness
DFA NL NL PSPACE
NFA NL PSPACE PSPACE
DTA P P EXPTIME
DTTA P P EXPTIME
TA P EXPTIME EXPTIME

Table 1: Computational complexities of some basic decision problems of finite automata
and finite tree automata. All problems are complete for the respective classes.

complete for a certain space complezity then the same decision problem with (deter-
ministic) finite tree automata is complete for the corresponding deterministic time
complezity, only one exponential higher. Besides Table 1, further justification for this
rule follows by comparing computational complexities of some other decision problems
of finite tree automata studied by Seidl [46] with the corresponding decision problems
of finite automata studied by Stearns and Hunt IIT [49, 50]. This relationship be-
tween computational complexities of decision problems of finite tree automata and
finite automata is reflected by the fact that proofs of the former are usually extensions
of proofs of the latter, by going from using nondeterministic Turing machines to using
alternating Turing machines.

Remarks about Table 1 The nonemptiness problem of finite automata is in fact
the graph accessibility problem and is thus complete for nondeterministic logarithmic
space or NL-complete [45]. Using (2), inequivalence of DFAs reduces to nonempti-
ness [39] and since nonemptiness is a particular case of inequivalence, it follows that
inequivalnece of DFAs is NL-complete as well. For finite automata in general, inequiv-
alence is PSPACE-complete by Meyer and Stockmeyer [37]. PSPACE-completeness
of nonemptiness of intersection of finite automata was proved by Kozen [32].

Nonemptiness of finite tree automata is closely related to the two wellknown P-
complete problems: alternating graph accessibility [28] and generability [30, 31]. It
follows by (2) that inequivalence of DTAs is also P-complete. EXPTIME-hardness
of the intersection nonemptiness problem of finite tree automata has been observed
by other researchers [15, 22, 47]. In particular, Seidl outlines a proof in the case of
DTTAs [47]. He has also proved that inequivalence of TAs is EXPTIME-complete [46,
Theorem 2.1] and it follows also from a statement by Seidl that when restricted to
DTTASs, inequivalnece is P-complete [46, Theorem 4.3].
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