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1 IntroductionWe study classical �rst-order logic with equality but without any other rela-tion symbols. The letters ' and  are reserved for quanti�er-free formulas.The signature of a syntactic object S (a term, a set of terms, a formula, etc.)is the collection of function symbols in S augmented, in the case when Scontains no constants, with a constant c. The language of S is the languageof the signature of S.Any syntactic object is ground if it contains no variables. A substitutionis ground if its range is ground, and it is said to be in a given language ifthe terms in its range are in that language. A set of substitutions is groundif each member is ground. A ground substitution � corroborates a formula' (or is a corroborator for ') if the formula '� is provable. Given a positiveinteger m, a set of m ground substitutions f�1; : : : ; �mg is an m-corroboratorfor ' if the disjunction '�1 _ � � �_'�m is provable. One popular form of theclassical Herbrand theorem [27] is this:An existential formula 9~x'(~x) is provable if and only if thereexist a positive integer m and an m-corroborator for ' in thelanguage of '.The minimal appropriate number m will be called the multiplicity of '.The multiplicity may exceed one. Here is a formula of multiplicity twosuggested by Erik Palmgren in a di�erent but similar context; we use `�'for the formal equality sign.'(x) = (c � 0 ) x � 1) ^ (c � 1 ) x � 0)The Herbrand theorem plays a fundamental role in automated theoremproving methods known as the rigid variable methods [45]. We can identifythe following procedure underlying such methods. We call it the principalprocedure of rigid variable methods. Let 9~x'(~x) be a closed formula thatwe wish to prove.Step I Choose a positive integer m.Step II Check if there exists an m-corroborator for '.Step III If Step II succeeds then 9~x'(~x) is provable, otherwise increase mand return to Step II.The kernel of the principal procedure is of course Step II or:The Herbrand Skeleton ProblemInstance: A quanti�er free formula ' and a positive integer m.Question: Is the multiplicity of ' bounded by m ?1



We refer the reader to [10] for a detailed discussion of the problem. Itis important to us here that the Herbrand Skeleton Problem is intimatelyrelated to the Existential Intuitionistic Problem and the Simultaneous RigidE-Uni�cation Problem [22]. The �rst of these problems is easy to formulate:The Existential Intuitionistic ProblemInstance: An existential formula 9~x'(~x).Question: Is the formula provable in intuitionistic logic?The second requires auxiliary de�nitions. A rigid equation is an expressionE 8̀ e where E is a �nite set of equations and e is an equation. A groundsubstitution � solves a rigid equation E 8̀ e if E� ` e�. A system (that isa �nite set) of rigid equations is solvable if there is one substitution thatsolves all rigid equations in the system.The Simultaneous Rigid E-Uni�cation Problem (SREU)Instance: A system of rigid equations.Question: Is the system solvable?The SREU problem has an interesting history [10]. Several false decidabil-ity claims have been published until �nally it has been proved undecidableby Degtyarev and Voronkov [12, 14, 16, 17]. Later Plaisted has shown thatthe fragment of the SREU problem with ground left-hand sides is undecid-able [36] (the left-hand side of a rigid equation E 8̀ e is E).It is easy to see that SREU is essentially a special case of the Herbrandskeleton problem with Horn formulas and multiplicity one. It follows thatthe Herbrand skeleton problem is undecidable even in this very special case.Voronkov suggested the following generalizaton of the Herbrand SkeletonProblem. Let f be a function that assignes a positive integer to every pair(k; ') where k is a positive integer and ' a formula in our logic. Moreover,it is assumed that k < l implies that f(k; ') < f(l; '). Such a function iscalled a strategy for multiplicity. The intended meaning of the �rst argumentof a strategy is the number of times that Step II of the principal procedurehas been executed.The Herbrand f -Skeleton ProblemInstance: A quanti�er free formula ' and a positive integer k.Question: Is the multiplicity of ' bounded by f(k; ') ?In case f(k; ') = m for all ' and k, the Herbrand f -Skeleton Problemwill be called the Herbrand m-Skeleton Problem, or simply the m-Skeletonproblem. Thus the undecidability result of Degtyarev and Voronkov impliesthat the 1-Skeleton problem is undecidable. Voda and Komara have provedthat, for each �xed m, the m-Skeleton problem is undecidable [42]. Oneimportant conclusion for automated theorem proving, drawn in [42], is thatthere is no m for which there exists an e�ective decision procedure that2



would tell us whether m substitutions su�ce to establish the provability ofa given quanti�er free formula.Actually, we had hard time to understand the proof of Voda and Komarauntil, �nally, we convinced ourselves that they have a proof. We wondered ifthere is a way to derive their result from the Degtyarev{Voronkov theorem.It turns out that indeed there is such a way.In order to formulate our results, we need to recall a few de�nitions andgive de�nitions of our own. Recall that a Horn clause is a disjunction ofnegated atomic formulas and at most one non-negated atomic formula; aHorn clause is often represented as a set of its disjuncts. Here we restrictattention to Horn clauses that contain exactly one non-negated atom. AHorn formula is a conjuction of Horn clauses. Since the equality sign is theonly relation symbol in our logic, every Horn clause  is equivalent to animplication E ) s � t where E is a conjunction of equalities.We say that a collection of formulas is constant-disjoint if there is noconstant that occurs in two or more of the given formulas. Call a Hornformula ' guarded if, for every variable x that occurs in ', there exists aclause E ) s � t in ' where E and s are ground and x occurs in t. Finally,call a corroborator of a disjunction ' partisan if it corroborates one of thedisjuncts of '. Now we are ready to formulate our �rst result.Partisan Corroboration Theorem Every corroborator for a disjunctionof constant-disjoint guarded Horn formulas is partisan.This theorem is proved in Section 3. We believe it is of independentinterest. It allows us an easy derivation of the Voda{Komara result fromthe Degtyarev{Voronkov theorem in Section 4.In fact, we strengthen the Voda{Komara theorem in several ways. Foreach m, we e�ectively reduce SREU to the Herbrand m-Skeleton problem insuch a way that the positive-arity part of the signature remains unchanged.In particular, for every m, the monadic (all function symbols are of arity� 1) SREU reduces to the monadic Herbrand m-Skeleton problem; thisreduction is of interest because the decidability of monadic SREU is anopen problem [26].In Section 5, we improve upon a construction in Veanes [41] and show theundecidability of a fragment of SREU with only two variables and three rigidequations with ground left-hand sides. Using this fact, we show, for eachpositive integer m, the undecidability of the m-Skeleton problem where eachformula is a conjunction of 3m Horn clauses with 2m variables and groundnegative literals; the negative literals can even be �xed.In Section 7 we obtain some undecidability results related to the prenexfragment of intuitionistic logic with equality and proof search in intuitionistic3



logic with equality. Finally, in Section 8 we describe the current status ofSREU and related results and list some open problems.2 PreliminariesWe will �rst establish some notation and terminology. We follow Chang andKeisler [4] regarding �rst order languages and structures. For the purposesof this paper it is enough to assume that the �rst order languages that we aredealing with are languages with equality and contain only function symbolsand constants, so we will assume that from here on. We will in general use�, possibly with an index, to stand for a signature, i.e., � is a collection offunction symbols with �xed arities. A function symbol of arity 0 is called aconstant. We will always assume that � contains at least one constant.2.1 Terms and FormulasTerms and formulas are de�ned in the standard manner and are called �-terms and �-formulas respectively whenever we want be precise about thelanguage. We refer to terms and formulas collectively as expressions. Inthe following let X be an expression or a set of expressions or a sequence ofsuch.We write �(X) for the signature of X: the set of all function symbols thatoccur in X, V(X) for the set of all free variables in X and C(X) for the setof all constants in X. We write X(x1; x2; : : : ; xn) to express that V(X) �fx1; x2; : : : ; xng. Let t1; t2; : : : ; tn be terms, then X(t1; t2; : : : ; tn) denotesthe result of replacing each (free) occurence of xi in X by ti for 1 � i � n.By a substitution we mean a function from variables to terms. We will use� to denote substitutions. We write X� for X(�(x1); �(x2); : : : ; �(xn)).We say that X is closed or ground if V(X) = ;. By T� or simply T wedenote the set of all ground �-terms. A substitution is called ground if itsrange consists of ground terms.A closed formula is called a sentence. Since there are no relation symbolsall the atomic formulas are equations, i.e., of the form t � s where t and sare terms and `�' is the formal equality sign.Atomic formulas and negated atomic formulas are called positive andnegative literals respectively. A clause is a disjunction of literals. By aHorn clause we mean a clause with exactly one positive literal.1 A Hornclause can be written as E ) s � t where E is a conjunction of equations,and s and t are terms. By a Horn formula we understand a conjunction ofHorn clauses.2.2 First Order StructuresFirst order structures will (in general) be denoted by capital gothic letterslike A and B and their domains by corresponding capital roman letters like1By a Horn clause we mean thus a strict Horn clause.4



A and B respectively. A �rst order structure in a signature � is called a�-structure. For F 2 � we write FA for the interpretation of F in A.If A is a �-structure and �0 � � then A��0 is the �0-structure that isthe reduction of A to signature �0. Let A and B be �-structures, A is asubstructure of B, in symbols A � B, if A � B and for each n-ary F 2 �,FA = FB�An.For X a sentence or a set of sentences, A j= X means that the structureA is a model of or satis�es X according to Tarski's truth de�nition. A setof sentences is called satis�able if it has a model. If X and Y are (sets of)sentences then X j= Y means that Y is a logical consequence of X, i.e., thatevery model of X is a model of Y . We write j= X to say that X is valid,i.e., true in all models.One easily establishes, by induction on terms and formulas that, if A � Bthen for all quanti�er free sentences ', A j= ' i� B j= '.By the free algebra over � we mean the �-structure A, with domainT�, such that for each n-ary F 2 � and t1; : : : ; tn 2 T�, FA(t1; : : : ; tn) =F (t1; : : : ; tn). We let T� also stand for the free algebra over �.Let E be a set of ground equations. De�ne the equivalence relation =Eon T by s =E t i� E j= s � t. By T�=E (or simply T=E) we denote thequotient of T� over =E. Thus, for all s; t 2 T ,T=E j= s � t , E j= s � t:We call T=E the canonical model of E.2.3 Term RewritingIn some cases it is convenient to consider a system of ground equations asa rewrite system. We will assume that the reader is familiar with basicnotions regarding ground term rewrite systems [18]. We will only use veryelementary properties. In particular, in the next section we will use Bir-cho�'s completeness theorem for equational logic [2]. In the case of groundequations it states simply that, given a ground set of equations E and anda ground equation s � t, E j= s � t i� s can be reduced to t by using theequations in E as rewrite rules in both directions.In Section 5 we will use the following property of canonical (or convergent)rewrite systems (cf [18, Section 2.4]). Let R be a ground and canonicalrewrite system. Then for any two ground terms t and s, the equation t � sfollows logically from R (seen as a set of equations) i� the normal forms oft and s with respect to R coincide, i.e.,R j= t � s , t#R = s#R:3 Some Logical ToolsIn this section we will prove some logical properties that will be used inthe next section. The main result is Theorem 5. The following lemma is5



actually a consequence of  Lo�s-Tarski theorem.2 We say that two (sets of)expressions X and Y are constant-disjoint if C(X) \ C(Y ) = ;.Lemma 1 Let 'i for i 2 I, be pairwise constant-disjoint quanti�er freesentences. Then j= Wi2I 'i implies j= 'i for some i 2 I.Proof. For i 2 I, let �i = �('i) and let � = Si �i. Assume by contradic-tion that 6j= 'i for all i 2 I. Then there is (for each i 2 I) a �i-structureAi such that Ai j= :'i. Without loss of generality, take all the Ai to bepairwise disjoint.We now construct a �-structure A such that Ai � A��i for i 2 I. First letA = Si2I Ai. For each i 2 I and constant c 2 Li let cA = cAi . For each n-aryfunction symbol F in � de�ne FA as follows. For all ~a = a1; : : : ; an 2 A,FA(~a) = � FAi(~a); if ~a 2 Ai;a1; otherwise.It is clear that A is well de�ned because of the disjointness criteria and thatAi � A��i for i 2 I. Hence A��i j= :'i, and thus A j= :'i for each i 2 I.But this contradicts that j= Wi2I 'i. �If we drop the constant-disjointness criterion in Lemma 1, then of coursethe lemma is false. A simple counterexample isj= 0 � 1 _ :(0 � 1):We will state now some other obvious but useful lemmas. Lemma 2 is aneasy corollary of Birkho�'s completeness theorem.Lemma 2 Let t and s be ground terms and let E and E0 be ground sets ofequations such that C(E0) \ C(E; s) = ;. The following is true.1. If E0 [E j= t � s then E j= t � s.2. If E j= t � s then �(t) � �(E; s).Proof. Assume that E0 [ E j= t � s. By Bircho�'s completeness theoremwe know that s can be rewritten to t by using E0[E as a set of rewrite rules.So there is a sequence of terms s0; s1; : : : ; sn�1; sn where s0 = s, sn = t andsi is rewritten to si+1 by using some rule in E0 [ E, for 0 � i < n. Byinduction on i (for i � n) follows that �(si) � �(E; s) and only a rulefrom E can be used to rewrite si. Part 1 follows by Bircho�'s completenesstheorem and part 2 follows immediately (take E0 = ;). �2Existential sentences are preserved under extensions.6



For a �nite set E of equations we will write E also for the correspondingconjunction of equations and let the context determine whether a set or aformula is meant.Lemma 3 Let t and s be ground terms and E0 and E ground sets of equa-tions such that E is �nite and C(E0) \ C(E; s) = ;. ThenT=E0[E j= (E ) t � s) ) j= (E ) t � s):Proof. From T=E0[E j= (E ) t � s) follows immediately that T=E0[E j=t � s and thus E0 [ E j= t � s. Hence E j= t � s by Lemma 2, i.e.,j= (E ) t � s). �We will use the following de�nitions. Let ' be a quanti�er free formula andm a positive integer.I A set of m ground substitutions � is an m-corroborator for ' ifj= _�2�'�:When � = f�g we say that � is a corroborator for ' or corroborates'.The m-Skeleton problem is the problem of existence of m-corroborators forgiven formulas.I For x 2 V('), a guard for x in ', if it exists, is a clauseE ) t � sin ' such that E and s are ground and x occurs in t. We say that^x2V(') xis a guard of ' if each  x is a guard for x in '; ' is is called guardedif it has a guard.Intuitively, in the light of the second part of Lemma 2, the notion ofa Horn formula being guarded is a su�cient condition to guarantee thatif there is a corroborator � for ' then the range of ��V(') is T�('), i.e.,�('�) = �(').SREU is, by de�nition, the problem of existence of corroborators for Hornformulas. However, we only need to consider guarded Horn formulas. Tosee that consider a Horn formula '; let � be its signature expanded with a7



constant if ' has no constants and let c be a constant in �. Let '0(x) bethe Horn clause E� ) x � c whereE� = f f(c; : : : ; c) � c j f 2 � g:Let now  be the guarded Horn formula( ^x2V(')'0(x)) ^ ':Clearly,  has a corroborator i� ' has one. Note that, for all terms t,j= (E� ) t � c) , t 2 T�:Example 4 A simple example of a guarded Horn formula is = (A1 ) c01 � x � c1) ^(A2 ) c02 � y � c2) ^(�1 ) x � y) ^(�2 ) x � t � y)where A1, A2, �1, �2 and t are ground, c1, c01, c2 and c02 are constants and� is a binary function symbol. The guard of  is(A1 ) c01 � x � c1) ^ (A2 ) c02 � y � c2):An example of a Horn formula with a common guard for all variables is' = (A) x � y � c) ^(�1 ) x � y) ^(�2 ) x � t � y);where A, �1, �2 and t are ground and c is a constant. The guard of ' isA) x � y � c:Both formulas are of particular interest for us, see Section 5. 2We will use the following de�nition.I A corroborator of a disjunction ' is partisan, if it corroborates somedisjunct of '.The main result of this section is the following theorem.Theorem 5 (Partisan Corroboration Theorem) Every corroborator ofa disjunction of constant-disjoint guarded Horn formulas is partisan.8



Proof. Let ' = Wi2I 'i where all the 'i's are constant-disjoint guardedHorn formulas. Let � be a corroborator for '. We must prove that �corroborates 'i for some i 2 I.We can assume (without loss of generality) that there exist positive inte-gers m and n such that each 'i has the following form:'i = ^1�k�m(Eki ) ski � tki )| {z } i ^ ^1�k�n(Dki ) uki � vki );where  i is a guard of 'i, i.e., each Eki and ski is ground and V('i) = V( i),for all i 2 I. Let Ci = C('i) for i 2 I. We have thatCi \Cj = ; (8i; j 2 I; i 6= j): (1)Let � = �('). For i 2 I let Ki denote the class of all �-structures thatsatisfy 'i�, i.e, Ki = f�-structure A j A j= 'i� g:From the validity of '� follows that each �-structure belongs to some Ki.Let now J be any subset of I such thatj=  i� (8i 2 J): (2)(Take for example J = ;.) SoC('i�) = Ci (8i 2 J): (3)To see that, suppose (by contradiction) that C('i�) contains some c =2 Ci.Clearly, c belongs to some x� where x occurs in the guard  i. By the secondpart of Lemma 2, every constant in x� belongs to Ci. This gives the desiredcontradiction.If I = J then the theorem follows by Lemma 1. Assume that I 6= J . Nowwe prove the following statement:If 6j= 'i� for all i 2 J then j=  i� for some i 2 I n J . (4)Proof of (4) Assume 6j= 'i� for all i 2 J . Form an equation set D asfollows.� If J = ; let D = ;.� If J 6= ; then there is for each i 2 J a clause in 'i� that is not validand by (2) this clause is not in  i�. In other words, there is a mappingf : J ! f1; 2; : : : ; ng such that6j= (Df(i)i ) uf(i)i � vf(i)i )� (8i 2 J): (5)Let f be �xed and let D = Si2J Df(i)i �.9



For each mapping g : I n J ! f1; 2; : : : ;mg let Eg denote the following setof equations: Eg = [i2InJ Eg(i)i ;and let Ag be the canonical model of D [Eg, i.e.,Ag = T=Eg[D:We will now prove the following statement.(*) Fix g : I nJ ! f1; 2; : : : ;mg. There exists i 2 I nJ such that Ag 2 Ki.Proof of (*) Assume that (*) does not hold. (Assume also that J 6= ;or else (*) holds trivially.) Then Ag 2 Kj for some j 2 J . Fix such anappropriate j.So Ag satis�es each clause in 'j� and in particularAg j= (Df(j)j ) uf(j)j � vf(j)j )�:Let D0 = Df(j)j �, u0 = uf(j)j � and v0 = vf(j)j �. By (3) follows thatC(D0; u0; v0) � Cjand C(Eg;D nD0) = C(Eg) [ C(D nD0)= C(Eg) [ [i2J;i 6=j C(Df(i)i �)� [i2InJ Ci [ [i2J;i 6=jCi= [i2I;i 6=jCi:So, by (1), C(D0; u0; v0) \ C(Eg;D nD0) = ;:It follows, by Lemma 3, thatj= (Df(j)j ) uf(j)j � vf(j)j )�:But this contradicts (5).By using (*) we can now prove the following statement(**) There exists i 2 I n J such that j=  i�.10



Proof of (**) Assume that the claim is wrong.Then there is for each i 2 I n J a clause in  i� that is not valid, i.e.,there is a mapping g : I n J ! f1; 2; : : : ;mg such that6j= Eg(i)i ) sg(i)i � (tg(i)i �) (8i 2 I n J):(Note that only the ti's can be nonground.) Fix such an appropriateg.By using (*) we know that Ag 2 Ki for some i 2 I n J . Choose suchan i. So Ag satis�es each clause in 'i� and in particularAg j= Eg(i)i ) sg(i)i � (tg(i)i �):But, by (3) and (1), C(Eg(i)i ; sg(i)i ) \ C(Eg n Eg(i)i ;D) = ;. Hence, byLemma 3, j= Eg(i)i ) sg(i)i � (tg(i)i �):So we have contradiction.This proves statement (4). Let now J be the maximal subset of I suchthat (2) holds. In other words, for all i 2 I nJ , 6j=  i�. By the contrapositiveof (4) we conclude that for some i 2 J , j= 'i� and the theorem follows. �Remark Theorem 5, as well as its proof, remain correct if the disjunctionis in�nite. We will not use this generalization.The following example illustrates why the conditions of being constant-disjoint and guarded are important and cannot in general be discarded. Ineach case there is a counterexample to the theorem.Example 6 Let us �rst consider an example where the disjuncts are guardedbut not constant-disjoint. Let '(x) be the following guarded Horn formula:(c � 0 ) x � 1) ^ (c � 1 ) x � 0)where c, 0 and 1 are contants, and let '1 = '(x1), '0 = '(x0) and  ='1 _ '0 where x1 and x0 are distinct variables. Consider now any groundsubstitution � such that �(x1) = 1 and �(x0) = 0. It is easy to show by caseanalysis that � corroborates  , i.e., thatj= ((c � 0 ) 1 � 1) ^ (c � 1 ) 1 � 0)) _((c � 0 ) 0 � 1) ^ (c � 1 ) 0 � 0)):However, � corroborates neither '1 nor '0.11



Let us now consider the case when constant-disjointness is not violatedbut the disjuncts are not guarded. Let '1(y; x1; y1) be the formula((y � 0 ) x1 � y1) ^ (y � y1 ) x1 � 0))and let '0(x0; y0) be the formula((c � y0 ) x0 � 1) ^ (c � 1 ) x0 � y0))where c, 0 and 1 are constants and x1; x0; y1; y0; y distinct variables. Let = '1_'0. Let � be a ground substitution such that �(x1) = 1, �(x0) = 0,�(y) = c, �(y1) = 1 and �(y0) = 0. Then j=  � but 6j= '1� and 6j= '0� (thesituation is exaclty the same as in the previous case). 24 Reduction of 1-Skelton Problem to n-Skeleton ProblemThe 1-Skeleton problem is undecidable. This follows from the undecidabilityof SREU by Degtyarev and Voronkov [14, 17]. We can formulate their resultin the current setting as follows (cf [17, Theorem 1]).Theorem 7 (Degtyarev{Voronkov) The 1-Skeleton problem of guardedHorn formulas is undecidable.Under certain restrictions on the language and the structure of formulas,the 1-Skeleton problem becomes decidable. It is known, however, that itis already undecidable in the presence of one binary function symbol (inaddition to constants); moreover, two variables su�ce for undecidability [41].For a summary over what is known to be decidable or undecidable undervarious restrictions see Section 8.For technical reasons it will be convenient to assume in the following thatwe have a �xed signature � with fc1; c2; : : :g as the set of distinct constantsin it. � may also have other function symbols of arity � 1. Let us alsobe precise about the variables that we allow in �-expressions, by assumingthat all variables come from the collection fx1; x2; : : :g.For each natural number n, constant c and variable x, let c(n) denote anew constant and let x(n) denote a new variable. We de�ne by induction onany �-expression X the corresponding expression X(n) as the one obtainedfrom X by replacing in it each variable x with x(n) and each constant c withc(n). For any substitution � of �-variables with �-terms we let �(n) denotea substitution that takes the variable x(n) t the term �(x)(n). So, for any�-expression X and natural number n,(X�)(n) = X(n)�(n):The following property is immediate. For any �-sentence ' and naturalnumber n, j= ' , j= '(n):12



Theorem 8 Let ' be a guarded Horn formula and n a positive integer.Then ' has a corroborator i� Vni=1 '(i) has an n-corroborator.Proof. The `)' direction is trivial. We prove the `(' direction as follows.Let I = f1; 2; : : : ; ng and let  be the formula Vi2I '(i). Assume that  hasan n-corroborator f �i j i 2 I g. Soj= _i2I(ĵ2I '(j)�i):By the distributive law this is equivalent toj= ^f :I!I(_i2I '(f(i))�i):From this follows in particular thatj= _i2I '(i)�i:Let Xi = V('(i)) for i 2 I. Since all the Xi's are pairwise disjoint we canlet �0 be a substitution such that �0�Xi = �i�Xi for i 2 I, and it follows thatj= _i2I '(i)�0:By Theorem 5 follows now that j= '(i)�0 for some i 2 I. Fix such anappropriate i. But then, by Lemma 2, the range of �0�Xi is T�('(i)), andthus there is a substitution � with range T� such that �(i)�Xi = �0�Xi. Hencej= '(i)�(i) and so j= '� by above. �Corollary 9 (Voda{Komara) For all n � 1, n-Skeleton problem of guar-ded Horn formulas is undecidable.Proof. The reduction in Theorem 8 is trivially e�ective. So, if we had adecision procedure (for some n) for �nding n-corroborators, we could use itto �nd corroborators, but this would contradict Theorem 7. �Assume that we are using an automated theorem proving method that isbased on the Herbrand theorem. Roughly, this involves a search for terms,for a given bound m on multiplicity. Corollary 9 (Voda and Komara [42])tells us that there is no m for which we could e�ectively decide when to stopour search for such terms in case they do not exist.By using the fact that SREU is undecidable already with ground left-handsides [36], (i.e., variables occur only in positive literals in the correspondingHorn formulas) and two variables [40, 41] we obtain a sharper version of theabove corollary: 13



Corollary 10 For all n � 1, n-Skeleton problem of guarded Horn formulasis undecidable already if there are 2n variables and all variables occur inpositive literals.The decidability of monadic SREU is currently one of the problems relatedto SREU that is still open [26]. An e�ectively equivalent problem is thedecidability of the prenex fragment of intuitionistic logic with equality withunary function symbols [15]. Some evidence speaks in favour of that theproblem is decidable although with very high computational complexity(e.g., many subcases are decidable, see Section 8). From Theorem 8 followsthat:Corollary 11 If the 1-Skeleton problem is undecidable in the monadic casethen so is the n-Skeleton problem for n > 1, or equivalenty, if the n-Skeletonproblem is decidable in the monadic case for some n > 1 then so is the 1-Skeleton problem.5 Undecidability of SREU: Minimal caseW show that three rigid equations with ground left-hand sides and two vari-ables in a signature with one binary function symbol an no other noncon-stant function symbols, already imply undecidability. In fact, we give auniform representation of all the recursively enumerable sets by using justthree rigid equations with these properties. As a corollary we get that theundecidability of SREU holds already in very restricted cases. We gener-alize the construction in Veanes [41] and improve the lower bound on thenumber of rigid equations from four to three by using �nite tree automatatechniques. We then use this result to improve the undecidability result ofthe n-Skeleton problem.The main idea behind our proof is based on a technique that was used byPlaisted [36] in a similar context, who called the technique shifted pairing.The idea is to express repetition explicitly by a sequence of strings (like IDsof a TM). The �rst string of the sequence ful�lls some initial conditions, thelast string some �nal conditions and another sequence is used to check thatthe consequtive strings of the �rst sequence satisfy some relationship (likevalidity of a computation step).A similar technique was used already by Goldfarb in the proof of the unde-cidability of second-order uni�cation [24], which is by reduction of Hilbert'stenth problem, and later, adopted from that proof, also in a proof of theundecidability of SREU by Degtyarev and Voronkov [16], which is also byreduction of Hilbert's tenth problem. In this proof the key point is to ex-plicitly represent the \history of a multiplication process".We note also that shifted pairing bears certain similarities to the tech-nique that is used to prove that any recursively enumerable set of strings is14



given by the intersection of two (deterministic) context free languages [28,Lemma 8.6].Finite Tree Automata Finite tree automata, or simply tree automatafrom here on, are a generalization of classical automata. Tree automata wereintroduced, independently, in Doner [19] and Thatcher and Wright [39]. Themain motivation was to obtain decidability results for the weak monadicsecond-order logic of the binary tree. Here we adopt the following de�nitionof tree automata, based on rewrite rules [5, 6].I A tree automaton or TA A is a quadruple (Q;�; R; F ) where{ Q is a �nite set of constants called states,{ � is a signature that is disjoint from Q,{ R is a set of rules of the form f(q1; : : : ; qn) ! q, where f 2 � hasarity n � 0 and q; q1; : : : ; qn 2 Q,{ F � Q is the set of �nal states.A is called a deterministic TA or DTA if there are no two di�erentrules in R with the same left-hand side.Note that if A is deterministic then R is a reduced set of ground rewriterules and thus canonical [37]. Tree automata as de�ned above are usuallyalso called bottom-up tree automata. Acceptance for tree automata or rec-ognizability is de�ned as follows.I The set of terms recognized by a TA A = (Q;�; R; F ) is the setT (A) = f � 2 T� j (9q 2 F ) � ��!R q g:A set of terms is called recognizable if it is recognized by some TA.5.1 Main IdeaWe consider a �xed Turing machineM = (QM ;�in;�tape; �; q0;�b; fqaccg);and assume, without loss of generality, that the �nal ID of M is simplyqacc i.e., the tape is always empty when M enters the �nal state, and thatq0 6= qacc. Let also v be a string over the input alphabet of M . We e�ectivelyconstruct a system SMv (x; y) of three rigid equations:SMv (x; y) = fS0(x; y); S1(x; y); S2(x; y) g15



where S0(x; y) = E0 8̀ x � y � c0;S1(x; y) = �1 8̀ x � y;S2(x; y) = �2 8̀ x � tv � ywhere E0, �1 and �2 are ground, c0 is a constant, `�' is the only nonconstantfunction symbol in the system and tv is a ground term that represents theinitial ID of M with input string v. We prove that M accepts v i� SMv issolvable. This establishes the undecidability result because all the steps inthe construction are e�ective.The main idea behind the rigid equations is roughly as follows. Assumethat there is a substitution � that solves the system.� From � being a solution of S0(x; y), it follows that{ x� represents a sequence(v0; v1; : : : ; vm)of IDs of M , and vm is the �nal ID of M , and{ y� represents a sequence((w0; w+0 ); (w1; w+1 ); : : : ; (wn; w+n ))of moves of M , i.e., wi `M w+i for 0 � i � n.� From � being a solution of S1(x; y) it follows that n = m and vi = wifor 0 � i � m.� And �nally, from � being a solution of S2(x; y) it follows that v0 = vand vi = w+i�1 for 1 � i � m.The combination of the last two points is the so-called \shifted pairing"technique. This is illustrated by Figure 1. The outcome of this shiftedpairing is that x� is a valid computation of M with input v, and thus Maccepts v. Conversely, if M accepts v then it is easy to construct a solutionof the system. We now give a formal construction of the above idea.5.2 Words and TrainsWords are certain terms that we choose to represent strings with, and trainsare certain terms that we choose to represent sequences of strings with. Weuse the letters v and w to stand for strings of constants. Let � be a binaryfunction symbol. We write it in in�x notation and assume that it associatesto the right. For example t1 � t2 � t3 stands for the term �(t1; �(t2; t3)).16



v0 v1 v2 vn�1 vnv0 v1 vn�2 vn�1 vnhv0; v1i hv1; v2i hvn�2 ; vn�1i hvn�1 ; vni hvn; �iFigure 1: (hv0; v1i; hv1; v2i; : : : ; hvn; �i) is a \shifted pairing" of (v0; v1; : : : ; vn).I We say that a (ground) term t is a c-word if it has the forma1 � a2 � � � � � an � cfor some n � 0 where each ai and c is a constant. A word is a c-wordfor some constant c.We use the following convenient shorthand notation for words. Let t be theword a1 � a2 � � � � � an � c and v the string a1a2 � � � an. We write v � c for t andsay that t represents v.I A term t is called a c-train if it has the formt1 � t2 � � � � � tn � cfor some n � 0 where each ti is a word and c is a constant. If n = 0then t is said to be empty. The ti's are called the words of t. A trainis a c-train for some constant c.By the pattern of a train(v1 � c1) � (v2 � c2) � � � � � (vn � cn) � cwe mean the string c1c2 � � � cn. Let V = fVigi2I be a �nite family of regularsets of strings over a �nite set � of constants, where I is a set of constantsdisjoint from �. Let U be a regular set of strings over I and let c be aconstant not in � or I.I We let Tn(V; U; c) denote the set of all c-trains t such that the patternof t is in U and, for i 2 I, each i-word of t represents a string in Vi.Example 12 Consider the set Tn(fVa; Vb; Vcg; ab�c;�). This is the set of all�-trains t such that the �rst word of t is an a-word representing a string inVa, the last word of t is a c-word representing a string in Vc and the middleones (if any) are b-words representing strings in Vb. 2We say that a set of trains has a regular pattern if it is equal to some setTn(V; U; c) with V, U and c as above. The main result of this section is thefollowing theorem. 17



Theorem 13 (Train Theorem) Any set of trains with a regular patternis recognizable and a DTA that recognizes this set can be obtained e�ectively.As we shall see, the construction of the rigid equation S0 follows easily fromthe Train Theorem and some basic properties of tree automata. We believethat this theorem is of independent interest. For example, several theoremsthat are used in a similar context in Plaisted [36, Theorems 8.2{8.11], canbe stated as corollaries of Theorem 13. Before we prove the theorem westate the following simple lemma. This lemma follows from the wellknownfact that all regular sets of strings are recognizable (cf [23]), assuming anappropriate representation of strings.3 For any string v, we write vr for v inreverse and for a set of strings V we let V r = f vr j v 2 V g.Lemma 14 Let V be a regular set of strings over a set � of constants andc a constant not in �. Then f v � c j v 2 V g is recognizable and a DTA isobtained e�ectively from V .Proof. Let M = (Q;�; �; q0; F ) be a DFA that accepts the reverse of V , orV r, (clearly M exists, cf [28, p 281]). For each a 2 � let ~a be a new state.Let A be the DTA (QA;�; RA; FA) whereQA = Q [ f ~a j a 2 � g;� = � [ f�; cg;RA = f ~a � q ! p j �(q; a) = p g [ f a! ~a j a 2 � g [ fc! q0g;FA = F:We must prove that, for all t 2 T�,t ��!RA q for some q 2 F , t = v � c for some v 2 L(M)r:Let us consider the direction `(' �rst. So assume thatv = an�1an�2 � � � a0 2 L(M)r;i.e, a0 � � � an�2an�1 2 L(M). So, there exist q1; q2 : : : ; qn 2 Q, such thatqn 2 F and the following holds:�(q0; a0) = q1; : : : ; �(qn�2; an�2) = qn�1; �(qn�1; an�1) = qn:But then, by the de�nition of RA, we can construct the following reduction:v � c = an�1an�2 � � � a0 � c ��! ~an�1~an�2 � � � ~a1~a0 � q0�! ~an�1~an�2 � � � ~a1 � q1��! ~an�1 � qn�1�! qn 2 F;3Traditionally a string a1a2 � � � an is represented by a term an(� � � a2(a1(q0))), i.e., thesymbols of the alphabet are treated as unary function symbols, and the term is writtenusing the reverse notation q0a1a2 � � � an. 18



which shows that v � c 2 T (A). The direction `)' follows also easily. Firstnote that any term t in T� that reduces to a �nal state q with respect to RAmust be a c-word that represents some string v over �. From the de�nitionof RA follows then, like above, that v must be in V . �We now prove the Train Theorem.Proof. Let V, �, U , I, and c be like above. For each i 2 I, let �i = �[f�; igand let Ai = (Qi;�i; Ri; Fi) be a DTA given by Lemma 14 such thatT (Ai) = f v � i j v 2 Vi g:Let �c = I[f�; cg and let Ac = (Qc;�c; Rc; Fc) be a DTA given by Lemma 14such that T (Ac) = fu � c j u 2 U g:Assume, without loss of generality, that all the DTAs have mutually disjointsets of states, except for the states ~a for a 2 � that are the same in all theAi's for i 2 I. In fact, one can think of any constant a 2 � and thecorresponding state ~a as being the same element.Let now R0 be the set of rules obtained from Rc by relpacing, for all i 2 I,each rule ~{ � p1 ! p2 in it with the set of rules f q � p1 ! p2 j q 2 Fi g, anddiscarding the rule i! ~{. Let now R be the following set of rules:R = [i2IRi [R0:Note that R is a reduced set of rewrite rules due to the disjointness assump-tions and the assumption that the states ~a for a 2 � are the same in allthe DTAs. We are now ready to de�ne A as the DTA (Q;�; R; Fc) where� = � [ I [ f�; cg andQ = [i2IQi [ (Qc n f~{ j i 2 I g):We can now prove that T (A) = Tn(V; U; c):Let use consider the direction `�' �rst. Assume that t 2 T (A), i.e., t reducesto some state q in Fc via the rules in R. This reduction is only possible if ithas (in principle) the following form:4t ��!R q1q2 � � � qn � c ��!R0 q:4A formal argument can be given by using induction and proving some lemmas �rst [40,Chapter 3]. 19



where each qk is in Fik for some ik 2 I. Furthermore, by de�nition of R0 andAc, we know that i1i2 � � � in 2 U . The �rst part of the reduction is possibleonly if t = t1 � t2 � � � � � tn � c;where each tk reduces to qk. Note that, due to the disjointness propertiesof the DTAs, only the rules in Rik can be used in the reduction tk ��! qk,and thus tk 2 T (Aik). Hence each tk has the form v � ik for some v 2 Vik ,and the pattern of t is i1i2 � � � in, which we know is in U . This proves thatt 2 Tn(V; U; c).Let us now consider the direction `�'. So assume that t = t1 � t2 � � � � � tn � cwhere each tk is in T (Aik) for some ik 2 I and i1i2 � � � in 2 U . It follows thateach tk reduces with Rik to some qk 2 Fik and thus t reduces to q1q2 � � � qn �c.By de�nition of R0, q1q2 � � � qn � c reduces to some q 2 Fc. It follows thatt ��!R q for some q 2 Fc and thus t 2 T (A). �The following example illustrates the construction that is used in the proofof the Train Theorem.Example 15 Let � = f0; 1g, I = fa; bg and let � be a new constant. LetV = fVigi2I where Va = 0�1 and Vb = 0�10�. Let U = bab�a. We constructa DTA that recognizes the set Tn(V; U;�). Consider the following transitiondiagrams of a DFA for Var: q1 q21 0and of a DFA for Vbr: q3 q40 1 0By following the construction in Lemma 14 we get that the rules of Aa andAb are as follows:Ra = f1! ~1; 0! ~0; a! q1; ~1 � q1 ! q2; ~0 � q2 ! q2g;Rb = f1! ~1; 0! ~0; b! q3; ~0 � q3 ! q3; ~1 � q3 ! q4; ~0 � q4 ! q4g:For the set U r we can consider a DFA with the following transition diagram:p1 p2 p3 p4ba b a
20



From this we can extract the DTA A� with the following set of rules:R� = fa! ~a; b! ~b; � ! p1;~a � p1 ! p2; ~b � p2 ! p2; ~a � p2 ! p3; ~b � p3 ! p4g:Now, following the construction in the Train Theorem, we get that the DTAA has the following set of rules. First, a set R0 is constructed by removingthe �rst two rules in R� and replacing ~a and ~b with q2 and q4, respectively.Second, R is taken as the union of Ra, Rb and R0 . So R is the following setof rules:R = f1! ~1; 0! ~0; a! q1; ~1 � q1 ! q2; ~0 � q2 ! q2g [fb! q3; ~0 � q3 ! q3; ~1 � q3 ! q4; ~0 � q4 ! q4g [f� ! p1; q2 � p1 ! p2; q4 � p2 ! p2; q2 � p2 ! p3; q4 � p3 ! p4g:Let us consider a reduction in R. Let us write a �-train t1 � t2 � � � � � tn �� as[t1; t2; : : : ; tn]. Take for examplet = [010 � b; 001 � a; 1 � b; 01 � a]:The pattern of t is baba which is in U . Let us see how t reduces to p4.t ��!R [~0~1~0 � q3; ~0~0~1 � q1; ~1 � q3; ~0~1 � q1]��!R [~0~1 � q3; ~0~0 � q2; q4; ~0 � q2]��!R [~0 � q4; ~0 � q2; q4; q2]��!R [q4; q2; q4; q2]�!R0 q4q2q4q2 � p1��!R0 q4: 25.3 Representing IDs and MovesWe show how to construct the rigid equation S0(x; y). Our main tool indoing so is the Train Theorem. We use also the following simple observation,that relates rigid E-uni�cation with recognizability. Let us, for simplicity,consider a set of rules also as a set of equations.Lemma 16 Let A = (Q;�; R; fqg) be a DTA. Then, for all � with rangeT�, � solves R 8̀ x � q i� x� 2 T (A).Proof. Since R is a canonical rewrite system and q is irreducible in R, wehave (for all ground �) that R j= x� � q i� x� ��!R q. But for � with rangeT�, by de�nition of recognizability, x� 2 T (A) i� x� ��!R q. �21



Let us assign arity 0 to all the tape symbols (�tape) and all the states (QM )of M . Let � be the following signature:� = �tape [QM [ fe0; e1;�; �g;where e0, e1 and � are new constants.5.3.1 Representing ID Sequences Recall that an ID of M is anystring in ��tapeQM��tape that does not end with a blank (�b). We representIDs by e-words, where e is one of e0 or e1. In particular, the �nal IDis represented by the word qacc � e1 and IDs in general are represented bycorresponding e0-words.I Any train of the form(v0 � e0) � (v1 � e0) � (v2 � e0) � � � � � (vn � e0) � (qacc � e1) � �;where n � 0 and each vi is an ID of M , is called an ID-train.It is clear that the set of all IDs and the set consisting of just the �nal IDare regular sets. The set of patterns of the ID-trains is given by the regularexpression e0e�0e1. By using the Train Theorem, letAid = (Qid;�; Rid; Fid)be a DTA that recognizes the set of all ID-trains.5.3.2 Representing Move Sequences Let cab be a new constant foreach pair of constants a and b in the set �tape [QM . Let also e2 and �0 benew constants. Let now � be the following signature:� = f cab j a; b 2 �tape [QM g [ fe2;�0; �gNote that � is the only symbol that occurs in both � and �.For and ID w of M we let w+ denote the successor of w with respect tothe transition function of M . For technical reasons it is convenient to letq+acc = �, i.e., the successor of the �nal ID is the empty string. The pair(w;w+) is called a move. Let w = a1a2 � � � am and w+ = b1b2 � � � bn for somem � 1 and n � 0. Note that n 2 fm� 1;m;m+ 1g. Let k = max(m;n). Ifm < n let ak = �b and if n < m let bk = �b, i.e., pad the shorter of the twostrings with a blank at the end.I We write hw;w+i for the string ca1b1ca2b2 � � � cakbk and say that thee2-word hw;w+i � e2 represents the move (w;w+). By a move-train wemean any �0-train t = t0 � t1 � � � � � tn � �0;such that each ti represents a move and n � 1.22



Example 17 Take �in = f0; 1g, and let q; p 2 QM . Assume that thetransition function � of M is such that, when the tape head points to ablank and the state is q then 1 is written to the tape, the tape head movesleft-and M enters state p, i.e., �(q;�b) = (p; 1; L). Imagine that the currentID is 00q, i.e., the tape contains the string 00 and the tape head pointsto the bank following the last 0. So (00q; 0p01) is a move. This move isrepresented by the word c00 � c0p � cq0 � c�b1 � e2 = h00q; 0p01i � e2. 2It is straightforward to see that the set of all strings hw;w+i where w is anID, is a regular set. The patterns of all move-trains are given by the regularexpression e2e2e�2. By using the Train Theorem letAmv = (Qmv;�; Rmv; Fmv)be a DTA that recognizes the set of all move-trains. Assume also that thestates of Amv are new constants.5.3.3 Construction of S0 We are now ready to construct S0. First, letA0 = (Q0;�0; R0; F0) be the following DTA.Q0 = Qid [Qmv [ fc0g;�0 = � [ �;R0 = Rid [Rmv [ f q1 � q2 ! c0 j q1 2 Fid; q2 2 Fmv g;F0 = fc0g:By the disjointness conditions between Aid and Amv it follows that A0 isindeed a deterministic tree automaton. It follows by elementary propertiesof tree automata thatT (A0) = f t � s j t 2 T (Aid); s 2 T (Amv) g:Let now E0 = R0 in the rigid equation S0.5.4 Final ConstructionIn this section we �nish the construction of SMv and prove the undecidabilityresults. The only essential components that we have not de�ned yet are �1and �2. We let �1 and �2 be the following rewrite systems. The di�erencesbetween �1 and �2 are indicated with frames.�1 = f cab ! a j a; b 2 �tape [QM g [f e1 ! e0; e2 ! e0; �0 ! �; �b � e0 ! e0 g�2 = f cab ! b j a; b 2 �tape [QM g [f e1 ! e0; e2 ! e0; �0 ! �; �b � e0 ! e0; e0 � � ! � g23



It is easy to see that both sets are in fact reduced sets of ground rewriterules and thus canonical. For any input string v for M let the term tv inthe system SMv be the word q0v � e0, i.e., tv represents the initial ID of Mwith input v. We can now state the main theorem of this section.Theorem 18 SMv (x; y) is solvable i� M accepts v.Before proving the theorem we state and prove some useful lemmas.Lemma 19 If � solves S1(x; y) and S2(x; y) then x�; y� 2 T�[�.Proof. We prove by induction on the size of x� that if � solves the followingsystem, where t0 is any term in T�[�, then x�; y� 2 T�[�.f�1 8̀ x � y; �2 8̀ x � t0 � y gThe statement follows then by choosing t0 = q0v � e0.So consider a �xed t0 and assume that � solves the above system. Ifx� is a constant then so is its normal form in �2, say x�#�2 = c, and sot0 � y� ��!�2 c. But then c 2 � and consequently x�; y� 2 T�[�. The caseswhen x� is not a constant, but either x�#�1 or x�#�2 is a constant, are alsoimmediate.So assume that x� = t1 � t and (t1 � t)#�i = t1#�i � t#�i for i 2 f1; 2g. Sot1#�2 = t0#�2 and thus t1 2 T�[� since t0 2 T�[�; also�2 j= t � y�:It follows from �1 j= t1 � t � y� that y� = s1 � s for some terms s1 and s suchthat �1 j= t � sand �1 j= s1 � t1. From the latter follows that s1 2 T�[� because t1 2 T�[�.Let now �0 be such that x�0 = t and y�0 = s. So �0 solves the systemf�1 8̀ x � y; �2 8̀ x � s1 � y g;and it follows by the induction hypothesis that t and s are in T�[�, andconsequently, so are t1 � t = x� and s1 � s = y�. �Lemma 20 If � solves SMv (x; y) then x� is an ID-train and y� is a move-train.Proof. Assume that � solves SMv (x; y). By Lemma 19, the range of � isT�[�. But then, by de�nition of S0(x; y) and Lemma 16, x� � y� 2 T (A0),and thus x� 2 T (Aid) and y� 2 T (Amv). �24



We can now prove Theorem 18.Proof. We prove that SMv (x; y) is solvable ,M accepts v.Proof of `)' Let � be a substitution that solves SMv (x; y). By using Lem-ma 20 we get that x� and y� have the following form:x� = (v0 � e0) � (v1 � e0) � � � � � (vm�1 � e0) � (vm � e1) � �y� = (hw0; w+0 i � e2) � (hw1; w+1 i � e2) � � � � � (hwn; w+n i � e2) � �0where m � 1, n � 1 and all the vi's and wi's are IDs of M and vm = qacc.Since � solves S1(x; y), it follows that the normal forms of x� and y� under�1 must coincide. Butx�#�1 = (v0 � e0) � (v1 � e0) � � � � � (vm�1 � e0) � (vm � e0) � �;y�#�1 = (w0 � e0) � (w1 � e0) � � � � � (wn�1 � e0) � (wn � e0) � �:Note that each term hwi; w+i i � e2 reduces �rst to w0i � e0 where w0i = wi orw0i = wi�b. The extra blank at the end is removed with the rule �b � e0 ! e0.So n = m; vn = qacc; vi = wi (0 � i � n): (6)Since � solves S2(x; y) it follows that the normal forms of x� and (q0v �e0)�y�under �2 must coincide. But x�#�2 = x�#�1because x� does not contain any constants from � and the rule e0 �� ! � isnot applicable. Moreover, since wn = qacc, it follows that w+n = � and thushwn; w+n i � e0 = cqacc�b � e0. But(cqacc�b � e0) � � �!�2 (�b � e0) � � �!�2 e0 � � �!�2 �:The normal form of (q0v � e0) � y� under �2 is thus(q0v � e0) � (w+0 � e0) � (w+1 � e0) � � � � � (w+n�1 � e0) � �:It follows that v0 = q0v, i.e., v0 is the initial ID of M with input v, andw+i = vi+1 (0 � i < n): (7)From (6) and (7) follows now that (v0; v1; : : : ; vn) is a valid computation ofM , and thus M accepts v.Proof of `(' Assume that M accepts v. So there exists a valid computation(v0; v1; : : : ; vn) of M where v0 = q0v, vn = qacc and v+i = vi+1 for 0 � i < n.Let � be such that x� is the corresponding ID-train and y� the correspondingmove-train. It follows easily that � solves SM(x; y). �25



The shifted pairing technique that is used in Theorem 18 is illustrated inFigure 1. The Degtyarev{Voronkov theorem is an immediate consequenceof Theorem 18, because all the constructions in it are e�ective.Furthermore, the following result due to Plaisted [36] (that we used toprove Corollary 10). is an immediate consequence.Corollary 21 (Plaisted) SREU is undecidable even if the left-hand sidesare ground.Furthermore, we can sharpen this result as follows.Corollary 22 SREU is undecidable if the left-hand sides are ground, thereare only two variables and three rigid equations and one binary functionsymbol.The undecidability with two variables and three rigid equations may seemlike an arti�cal extra condition, but in fact, it turns out to be an impor-tant special case. One implication is that the provability problem for the99-fragment of intuitionistic logic with equality is undecidable. Anotherimportant fact is that two variables are necessary to get undecidability. Ifthere is only one variable then SREU is decidable [9].Remark We can also note that one constant su�ces. One can easilysimulate any number of constants with one constant and a binary functionsymbol.5.5 Undecidability Proofs of SREUThe �rst proof of the udecidability of SREU [14] was by reduction of themonadic semi-uni�cation [1] to SREU. This proof was followed by two al-ternative (more transparent) proofs by the same authors, �rst by reducingsecond order uni�cation to SREU [13, 17], and then by reducing Hilbert'stenth problem to SREU [16]. The undecidability of second order uni�cationwas proved by Goldfarb [24]. Reduction of second order uni�cation to SREUis very simple, showing how close these problem are to each other. Plaistedtook the Post's Correspondence Problem and reduced it to SREU [36]. Fromhis proof follows that SREU is undecidable already with ground left-handsides. Veanes improves the construction of Plaisted by using the member-ship problem for Turing machines and shows that two variables and onebinary function symbol is enough to obtain undecidability [40, 41].6 Minimal Undecidable Case of the n-SkeletonProblemLet 'Mv (x; y) stand for the following formula:'Mv (x; y) = (E0 ) x � y � c0) ^26



(�1 ) x � y) ^(�2 ) x � tv � y):Let 'M (z; x; y) stand for the formula 'Mv (x; y) with the term tv replaced bythe variable z. It is important to note that the construction of E0, �1 and�2 is independent of v, which justi�es this notation. Let Mu be the Turingmachine that accepts the universal language Lu,Lu = f hM;vi jM is a Turing machine that accepts v g;where hM;vi is some encoding of the pair (M;v) that is carried out in some�xed alphabet. We write 'u for 'Mu . The precise details of the encodingare not relevant here. We get the following result.Theorem 23 For all n � 1, n-Skeleton problem of Horn formulas restrictedto 2n variables and 3n clauses with ground negative literals, is undecidablealready for some �xed negative literals.Proof. For any Turing machine M and input string v we have that theformula 'u(thM;vi; x; y) has a corroborator i� M accepts v. The statementfollows now by Theorem 8. �7 Relations to Intuitionistic LogicThe decision problems in intuitionistic logic have not been as thoroughlystudied as the corresponding problems in classical logic [3]. In particular,new results about the prenex fragment of intuitionistic logic (i.e., closedprenex formulas that are intuitionistically provable), have been obtainedquite recently by Degtyarev and Voronkov [16, 17, 15] and Voronkov [44].Some of these results are:1. Decidability, and in particular PSPACE-completeness, of the prenexfragment of intuitionistic logic without equality [15].2. Prenex fragment of intuitionistic logic with equality but without func-tion symbols is PSPACE-complete [15]. Decidability of this fragmentwas proved in Orevkov [35].3. Prenex fragment of intuitionistic logic with equality in the languagewith one unary function symbol is decidable [15].4. 9�-fragment of intuitionistic logic with equality is undecidable [16, 17].In some of the above results, the corresponding result has �rst been ob-tained for a fragment of SREU with similar restrictions. There are closeconnections between intuitionistic logic with equality and SREU [44]. Byusing the undecidability of SREU, the proof of (4) is straightforward. Theundecidability of the 9�-fragment is improved in Veanes [40] by showing thatthe 27



5. 99-fragment of intuitionistic logic with equality is undecidable.We obtain the following uniform characterization of all the recursively enu-merable sets in the 99-fragment of intuitionistic logic with equality. Let usconsider Turing machines with some �xed tape alphabet and a �xed symbolq0 for the initial state. Let tv denote the word that represents q0v (the initialID for input string v).Theorem 24 For any Turing machine M and input string v for M ,`i 9x9y'M (tv; x; y) , M accepts v:Proof. The formula 9x9y'M(tv; x; y) is provable intuitionistically i� thereexists a corroborator for 'M (tv; x; y) (cf [17, Proof of Theorem 3]). Use nowTheorem 18. �The following statement is an easy corollary of Theorem 24.Corollary 25 The 99-fragment of intuitionistic logic is undecidable alreadyunder the following restrictions:1. The signature has two symbols: one constant and one binary functionsymbol.2. The only connectives are ^ and at most three )'s.3. The antecedents of all implications are closed.4. The antecedents of implications may be �xed.If there is only one variable then SREU is decidable [9]. It follows also thatthe6. 8�98�-fragment of intuitionistic logic with equality is decidable [9].7.1 Proof Search in LJ�Proof search in intuitionistic logic with equality is closely connected withSREU, and, unlike in the classical case, the handling of SREU is in factunavoidable in that context [43, 44]. Voronkov considers a particular sequentcalculus based proof system LJ� [43]. In that context a skeleton is thestructure of a derivation in LJ�, and skeleton instantiation is the problemof the existence of a derivation with a given skeleton. SREU is polynomiallyequivalent to skeleton instantiation in LJ� [43]. We get the following result.(See Voronkov [43] for precise de�nitions.)Corollary 26 There is a �xed skeleton with two applications of (! 9) andthree applications of (!)) for which the skeleton instantiation problem inLJ� is undecidable. 28



D0�0 ! s � t � c0... (^ !n0 )E0 ! s � t � c0 (^ !0)! E0 ) s � t � c0 (!)) D1�1 ! s � t... (^ !n1)�1 ! s � t (^ !0)! �1 ) s � t (!)) D2�2 ! s � tv � t... (^ !n2 )�2 ! s � tv � t (^ !0)! �2 ) s � tv � t (!))! (�1 ) s � t) ^ (�2 ) s � tv � t) (! ^)! 'Mv (s; t) (! ^)! 9y'Mv (s; y) (! 9)! 9x9y'Mv (x; y) (! 9)Figure 2: A derivation of 9x9y'Mv (x; y) in LJ�; �0, �1 and �2 are multisets ofequations corresponding to E0, �1 and �2, respectively; n0, n1 and n2 arethe number of ^'s minus one, in E0, �1 and �2, respectively. It is actuallythe existence of the derivations D0, D1 and D2, that corresponds to thesolvability problem of the system SMv of rigid equations.(�)... (^ !n0)(^ !0)(!)) (�)... (^ !n1 )(^ !0)(!)) (�)... (^ !n2 )(^ !0)(!))(! ^)(! ^)(! 9)(! 9)Figure 3: The skeleton of the derivation in Figure 2.Proof. By using the results proved in Voronkov [43, 44], the sentence9x9y'Mv (x; y) is intuitionistically provable i� the sequent ! 9x9y'Mv (x; y)can be derived in LJ� (see Figure 2) with the skeleton shown in Figure 3.Let M = Mu. The statement follows now from Theorem 24. �7.2 Other FragmentsDecidability problems for other fragments of intuitionistic logic have beenstudied by Orevkov [34, 35], Mints [33], Statman [38] and Lifschitz [31].Orevkov proves that the ::89-fragment of intuitionistic logic with functionsymbols is undecidable [34]. Lifschitz proves that intuitionistic logic withequality and without function symbols is undecidable, i.e., that the pure con-structive theory of equality is undecidable [31]. Orevkov shows decidabilityof some fragments (that are close to the prenex fragment) of intuitionisticlogic with equality [35]. Statman proves that the intuitionistic propositionallogic is PSPACE-complete [38]. 29



8 Current Status of SREU and Open ProblemsHere we brie
y summarize the current status of SREU and mention someopen problems. Many related results are already mentioned above. The�rst decidability proof of rigid E-uni�cation is given in Gallier, Narendran,Plaisted and Snyder [21]. Recently a simpler proof, without computationalcomplexity considerations, has been given by de Kogel [7]. We start withthe solved cases:� Rigid E-uni�cation with ground left-hand side is NP-complete [30].Rigid E-uni�cation in general is NP-complete and there exist �nitecomplete sets of uni�ers [20, 21].� Rigid E-uni�cation with one variable is P-complete [9]. Or, moregenerally, SREU with one variable and a bounded number of rigidequations is P-complete [9].� If all function symbols have arity� 1 (the monadic case) then it followsthat SREU is PSPACE-hard [25]. If only one unary function symbolis allowed then the problem is decidable [11, 12]. If only constants areallowed then the problem is NP-complete [12] if there are at least twoconstants.� About the monadic case it is known that if there are more than 1unary function symbols then SREU is decidable i� it is decidable withjust 2 unary function symbols [12].� If the left-hand sides are ground then the monadic case is decid-able [26]. Monadic SREU with one variable is PSPACE-complete [26].� The word equation solving [32] (i.e., uni�cation under associativity),which is an extremely hard problem with no interesting known com-putational complexity bounds, can be reduced to monadic SREU [11].� Monadic SREU is equivalent to a non-trivial extension of word equa-tions [26].� Monadic SREU is equivalent to the decidability problem of the prenexfragment of intuitionistic logic with equality with function symbols ofarity � 1 [15].� In general SREU is undecidable [14]. Moreover, SREU is undecidableunder the following restrictions:{ The left-hand sides of the rigid equations are ground [36].{ Furthermore, there are only two variables [40, 41] and three rigidequations with �xed ground left-hand sides.30



� SREU with one variable is decidable, in fact EXPTIME-complete [9].Moreover, SREU restricted to rigid equations that either contain onevariable, or have a ground left-hand side and a right-hand side that isan equality between two variables, is decidable [8].Note also that SREU is decidable when there are no variables. Actually, theproblem is then P-complete because the uniform word problem for groundequations is P-complete [29]. The unsolved cases are:� Decidability of monadic SREU [26].� Decidability of SREU with two rigid equations.Both problems are highly non-trivial. Another intriguing open problem is tostudy the Herbrand f -Skeleton problem. In particular, the following openproblem is posed in Voronkov [45]:� Does there exist a computable strategy f for which the f -Skeletonproblem is decidable?AcknowledgementsWe wish to thank Andrei Voronkov and Anatoli Degtyarev for many valuablecomments and discussions.References[1] M. Baaz. Note on the existence of most general semi-uni�ers. In Arith-metic, Proof Theory and Computation Complexity, volume 23 of OxfordLogic Guides, pages 20{29. Oxford University Press, 1993.[2] G. Birkho�. On the structure of abstract algebras. Proc. CambridgePhil. Soc., 31:433{454, 1935.[3] E. B�orger, E. Gr�adel, and Yu. Gurevich. The Classical Decision Prob-lem. Springer Verlag, 1997.[4] C.C. Chang and H.J. Keisler. Model Theory. North-Holland, Amster-dam, third edition, 1990.[5] J.L. Coquid�e, M. Dauchet, R. Gilleron, and S. V�agv�olgyi. Bottom-uptree pushdown automata: classi�cation and connection with rewritesystems. Theoretical Computer Science, 127:69{98, 1994.[6] M. Dauchet. Rewriting and tree automata. In H. Comon and J.P.Jouannaud, editors, Term Rewriting (French Spring School of Theo-retical Computer Science), volume 909 of Lecture Notes in ComputerScience, pages 95{113. Springer Verlag, Font Romeux, France, 1993.31
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