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1 Introduction

We study classical first-order logic with equality but without any other rela-
tion symbols. The letters ¢ and 1 are reserved for quantifier-free formulas.
The signature of a syntactic object S (a term, a set of terms, a formula, etc.)
is the collection of function symbols in S augmented, in the case when §
contains no constants, with a constant c. The language of S is the language
of the signature of S.

Any syntactic object is ground if it contains no variables. A substitution
is ground if its range is ground, and it is said to be in a given language if
the terms in its range are in that language. A set of substitutions is ground
if each member is ground. A ground substitution 8 corroborates a formula
@ (or is a corroborator for ¢) if the formula @@ is provable. Given a positive
integer m, a set of m ground substitutions {6, ...,0,,} is an m-corroborator
for ¢ if the disjunction @@, V - - -V @B, is provable. One popular form of the
classical Herbrand theorem [27] is this:

An ezistential formula 3Zp(Z) is provable if and only if there
erist a positive integer m and an m-corroborator for ¢ in the

language of .

The minimal appropriate number m will be called the multiplicity of .
The multiplicity may exceed one. Here is a formula of multiplicity two
suggested by Erik Palmgren in a different but similar context; we use ‘x’
for the formal equality sign.

o) = (ecm0=zr1l)A(crl=2z2x0)

The Herbrand theorem plays a fundamental role in automated theorem
proving methods known as the rigid variable methods [45]. We can identify
the following procedure underlying such methods. We call it the principal
procedure of rigid variable methods. Let 3Z¢(%) be a closed formula that
we wish to prove.

Step I Choose a positive integer m.
Step II Check if there exists an m-corroborator for (.

Step III If Step II succeeds then 3Zp(F) is provable, otherwise increase m
and return to Step IL

The kernel of the principal procedure is of course Step II or:
The Herbrand Skeleton Problem
Instance: A quantifier free formula ¢ and a positive integer m.
Question: Is the multiplicity of ¢ bounded by m ?



We refer the reader to [10] for a detailed discussion of the problem. It
is important to us here that the Herbrand Skeleton Problem is intimately
related to the Existential Intuitionistic Problem and the Simultaneous Rigid
E-Unification Problem [22]. The first of these problems is easy to formulate:

The Existential Intuitionistic Problem
Instance: An existential formula 3Zp(Z).
Question: Is the formula provable in intuitionistic logic?

The second requires auxiliary definitions. A rigid equation is an expression
E K e where F is a finite set of equations and e is an equation. A ground
substitution 6 solves a rigid equation E Ky e if Ef - ef. A system (that is
a finite set) of rigid equations is solvable if there is one substitution that
solves all rigid equations in the system.

The Simultaneous Rigid E-Unification Problem (SREU)
Instance: A system of rigid equations.
Question: Is the system solvable?

The SREU problem has an interesting history [10]. Several false decidabil-
ity claims have been published until finally it has been proved undecidable
by Degtyarev and Voronkov [12, 14, 16, 17]. Later Plaisted has shown that
the fragment of the SREU problem with ground left-hand sides is undecid-
able [36] (the left-hand side of a rigid equation E k e is E).

It is easy to see that SREU is essentially a special case of the Herbrand
skeleton problem with Horn formulas and multiplicity one. It follows that
the Herbrand skeleton problem is undecidable even in this very special case.

Voronkov suggested the following generalizaton of the Herbrand Skeleton
Problem. Let f be a function that assignes a positive integer to every pair
(k, @) where k is a positive integer and ¢ a formula in our logic. Moreover,
it is assumed that k < [ implies that f(k,¢) < f(l,¢). Such a function is
called a strategy for multiplicity. The intended meaning of the first argument
of a strategy is the number of times that Step II of the principal procedure
has been executed.

The Herbrand f-Skeleton Problem

Instance: A quantifier free formula ¢ and a positive integer k.

Question: Is the multiplicity of ¢ bounded by f(k, ) ?

In case f(k,) = m for all ¢ and k, the Herbrand f-Skeleton Problem
will be called the Herbrand m-Skeleton Problem, or simply the m-Skeleton
problem. Thus the undecidability result of Degtyarev and Voronkov implies
that the 1-Skeleton problem is undecidable. Voda and Komara have proved
that, for each fixed m, the m-Skeleton problem is undecidable [42]. One
important conclusion for automated theorem proving, drawn in [42], is that
there is no m for which there exists an effective decision procedure that



would tell us whether m substitutions suffice to establish the provability of
a given quantifier free formula.

Actually, we had hard time to understand the proof of Voda and Komara
until, finally, we convinced ourselves that they have a proof. We wondered if
there is a way to derive their result from the Degtyarev—Voronkov theorem.
It turns out that indeed there is such a way.

In order to formulate our results, we need to recall a few definitions and
give definitions of our own. Recall that a Horn clause is a disjunction of
negated atomic formulas and at most one non-negated atomic formula; a
Horn clause is often represented as a set of its disjuncts. Here we restrict
attention to Horn clauses that contain exactly one non-negated atom. A
Horn formula is a conjuction of Horn clauses. Since the equality sign is the
only relation symbol in our logic, every Horn clause v is equivalent to an
implication £ = s =~ t where FE is a conjunction of equalities.

We say that a collection of formulas is constant-disjoint if there is no
constant that occurs in two or more of the given formulas. Call a Horn
formula ¢ guarded if, for every variable z that occurs in ¢, there exists a
clause ' = s =t in ¢ where E and s are ground and z occurs in ¢. Finally,
call a corroborator of a disjunction ¢ partisan if it corroborates one of the
disjuncts of . Now we are ready to formulate our first result.

Partisan Corroboration Theorem Every corroborator for a disjunction
of constant-disjoint guarded Horn formulas is partisan.

This theorem is proved in Section 3. We believe it is of independent
interest. It allows us an easy derivation of the Voda-Komara result from
the Degtyarev—Voronkov theorem in Section 4.

In fact, we strengthen the Voda—-Komara theorem in several ways. For
each m, we effectively reduce SREU to the Herbrand m-Skeleton problem in
such a way that the positive-arity part of the signature remains unchanged.
In particular, for every m, the monadic (all function symbols are of arity
< 1) SREU reduces to the monadic Herbrand m-Skeleton problem; this
reduction is of interest because the decidability of monadic SREU is an
open problem [26].

In Section 5, we improve upon a construction in Veanes [41] and show the
undecidability of a fragment of SREU with only two variables and three rigid
equations with ground left-hand sides. Using this fact, we show, for each
positive integer m, the undecidability of the m-Skeleton problem where each
formula is a conjunction of 3m Horn clauses with 2m variables and ground
negative literals; the negative literals can even be fixed.

In Section 7 we obtain some undecidability results related to the prenex
fragment of intuitionistic logic with equality and proof search in intuitionistic



logic with equality. Finally, in Section 8 we describe the current status of
SREU and related results and list some open problems.

2 Preliminaries

We will first establish some notation and terminology. We follow Chang and
Keisler [4] regarding first order languages and structures. For the purposes
of this paper it is enough to assume that the first order languages that we are
dealing with are languages with equality and contain only function symbols
and constants, so we will assume that from here on. We will in general use
3], possibly with an index, to stand for a signature, i.e., 3 is a collection of
function symbols with fixed arities. A function symbol of arity 0 is called a
constant. We will always assume that > contains at least one constant.

2.1 Terms and Formulas

Terms and formulas are defined in the standard manner and are called Y-
terms and X-formulas respectively whenever we want be precise about the
language. We refer to terms and formulas collectively as expressions. In
the following let X be an expression or a set of expressions or a sequence of
such.

We write X(X) for the signature of X: the set of all function symbols that
occur in X, V(X) for the set of all free variables in X and C(X) for the set
of all constants in X. We write X (x1,x2,...,2,) to express that V(X) C
{z1,29,...,2p}. Let t1,to,...,t, be terms, then X(¢1,to,...,¢,) denotes
the result of replacing each (free) occurence of z; in X by t; for 1 < i < n.
By a substitution we mean a function from variables to terms. We will use
6 to denote substitutions. We write X6 for X (6(z1),0(x2),...,0(zn)).

We say that X is closed or ground if V(X) = (). By Tx or simply T we
denote the set of all ground X-terms. A substitution is called ground if its
range consists of ground terms.

A closed formula is called a sentence. Since there are no relation symbols
all the atomic formulas are equations, i.e., of the form ¢ ~ s where t and s
are terms and ‘~’ is the formal equality sign.

Atomic formulas and negated atomic formulas are called positive and
negative literals respectively. A clause is a disjunction of literals. By a
Horn clause we mean a clause with exactly one positive literal.! A Horn
clause can be written as £ = s ~ ¢t where F is a conjunction of equations,
and s and t are terms. By a Horn formula we understand a conjunction of
Horn clauses.

2.2 First Order Structures

First order structures will (in general) be denoted by capital gothic letters
like 2 and B and their domains by corresponding capital roman letters like

!By a Horn clause we mean thus a strict Horn clause.



A and B respectively. A first order structure in a signature X is called a
Y-structure. For F € ¥ we write F* for the interpretation of F in 2.

If 2 is a Y-structure and X' C ¥ then A[X’ is the X'-structure that is
the reduction of 2 to signature ¥'. Let 2 and 9B be X-structures, 2 is a
substructure of B, in symbols A C 9B, if A C B and for each n-ary F € X,
FA =F%A",

For X a sentence or a set of sentences, A |= X means that the structure
2 is a model of or satisfies X according to Tarski’s truth definition. A set
of sentences is called satisfiable if it has a model. If X and Y are (sets of)
sentences then X =Y means that Y is a logical consequence of X, i.e., that
every model of X is a model of Y. We write = X to say that X is valid,
i.e., true in all models.

One easily establishes, by induction on terms and formulas that, if A C B
then for all quantifier free sentences ¢, A |= ¢ iff B = .

By the free algebra over % we mean the Y-structure 2, with domain
Ts, such that for each n-ary F € ¥ and ty,...,t, € Tx, F*(t1,...,t,) =
F(ty,...,t,). We let Ty also stand for the free algebra over X.

Let E be a set of ground equations. Define the equivalence relation =g
on T by s =g tiff E | s~t By Typ (or simply 7)) we denote the
quotient of 7y, over =g. Thus, for all s,t € T,

TeFEs=t & EEs=t.
We call 7, the canonical model of E.
2.3 Term Rewriting

In some cases it is convenient to consider a system of ground equations as
a rewrite system. We will assume that the reader is familiar with basic
notions regarding ground term rewrite systems [18]. We will only use very
elementary properties. In particular, in the next section we will use Bir-
choff’s completeness theorem for equational logic [2]. In the case of ground
equations it states simply that, given a ground set of equations £ and and
a ground equation s & ¢, ' = s = t iff s can be reduced to ¢ by using the
equations in F as rewrite rules in both directions.

In Section 5 we will use the following property of canonical (or convergent)
rewrite systems (cf [18, Section 2.4]). Let R be a ground and canonical
rewrite system. Then for any two ground terms ¢ and s, the equation ¢ ~ s
follows logically from R (seen as a set of equations) iff the normal forms of
t and s with respect to R coincide, i.e.,

R):t%S & tlr = sig-

3 Some Logical Tools

In this section we will prove some logical properties that will be used in
the next section. The main result is Theorem 5. The following lemma is



actually a consequence of Log-Tarski theorem.? We say that two (sets of)
expressions X and Y are constant-disjoint if C(X)NC(Y) = 0.

Lemma 1 Let ¢; for ¢ € I, be pairwise constant-disjoint quantifier free
sentences. Then |= \/;c; @i implies |= o; for some i € 1.

Proof. For i € I, let ¥; = 3(¢p;) and let ¥ = |J; £;. Assume by contradic-
tion that £ ¢; for all ¢ € I. Then there is (for each ¢ € I) a ¥;-structure
2; such that 2; = —p;. Without loss of generality, take all the A; to be
pairwise disjoint.

We now construct a Y-structure 2 such that ; C A[X; for ¢ € I. First let
A = J;er Ai- Foreach i € I and constant ¢ € L; let ¢ = ¢*. For each n-ary

function symbol F' in ¥ define F* as follows. For all @ = ay,...,a, € A,
F(3), ifade Aj;
A=\ ) 1)
F(a) = { ay, otherwise.

It is clear that 2 is well defined because of the disjointness criteria and that
2A; CAE,; for ¢ € I. Hence AE; = —¢;, and thus A = -, for each ¢ € I.
But this contradicts that = \/;c; ¢;. X

If we drop the constant-disjointness criterion in Lemma 1, then of course
the lemma is false. A simple counterexample is

EO~1V-(0=~1).

We will state now some other obvious but useful lemmas. Lemma 2 is an
easy corollary of Birkhoff’s completeness theorem.

Lemma 2 Let t and s be ground terms and let E and E' be ground sets of
equations such that C(E")NC(E,s) = 0. The following is true.

1. fEEUE =t~ s then E=t = s.
2. If E =t~ s then ¥(t) C ¥(E,s).

Proof. Assume that E' U E = t = s. By Birchoff’s completeness theorem
we know that s can be rewritten to ¢ by using E'UFE as a set of rewrite rules.
So there is a sequence of terms sg, s1,...,S,_1, S, Where so = s, s, =t and
s; is rewritten to s;1; by using some rule in E' U E, for 0 < 7 < n. By
induction on 7 (for i < n) follows that X(s;) C X(E,s) and only a rule
from E can be used to rewrite s;. Part 1 follows by Birchoff’s completeness
theorem and part 2 follows immediately (take E' = (). X

2Existential sentences are preserved under extensions.



For a finite set £ of equations we will write E also for the corresponding
conjunction of equations and let the context determine whether a set or a
formula is meant.

Lemma 3 Let t and s be ground terms and E' and E ground sets of equa-
tions such that E is finite and C(E')NC(E,s) = 0. Then

Proof. From T/pup | (E = t = s) follows immediately that 7/pup =
t ~ s and thus EEUFE =t ~ s. Hence F =t =~ s by Lemma 2, i.e.,
|: (E >t~ 8). X

We will use the following definitions. Let ¢ be a quantifier free formula and
m a positive integer.

» A set of m ground substitutions © is an m-corroborator for ¢ if

=\ b

fcoO

When © = {0} we say that € is a corroborator for ¢ or corroborates
®.

The m-Skeleton problem is the problem of existence of m-corroborators for
given formulas.

» For x € V(yp), a guard for x in p, if it exists, is a clause
E=trs

in ¢ such that F and s are ground and z occurs in ¢. We say that

A

z€V(p)

is a guard of ¢ if each 1, is a guard for z in ¢; ¢ is is called guarded
if it has a guard.

Intuitively, in the light of the second part of Lemma 2, the notion of
a Horn formula being guarded is a sufficient condition to guarantee that
if there is a corroborator ¢ for ¢ then the range of 0[V(p) is Ty, ie.,
5(pb) = ().

SREU is, by definition, the problem of existence of corroborators for Horn
formulas. However, we only need to consider guarded Horn formulas. To
see that consider a Horn formula ¢; let X be its signature expanded with a



constant if ¢ has no constants and let ¢ be a constant in X. Let ¢'(z) be
the Horn clause Ey. = = ~ ¢ where

Esy ={f(c,...,c)=c| feX}.

Let now 1 be the guarded Horn formula

( N\ d@)ne.

z€V(p)
Clearly, ¢ has a corroborator iff ¢ has one. Note that, for all terms £,
E(EBx=>txc) & teTs.

Example 4 A simple example of a guarded Horn formula is

where Ay, Ay, II;, IIy and ¢ are ground, c1, ¢}, ¢z and ¢, are constants and
. is a binary function symbol. The guard of ¢ is

(Aj =z =c))A(Ay = cyoy = c).
An example of a Horn formula with a common guard for all variables is
v = (A=z.y=c)A

(H1:>$%y)/\
(Ily = z=x~t.y),

where A, 11, Ils and ¢ are ground and c is a constant. The guard of ¢ is
A=z.y=~ec.
Both formulas are of particular interest for us, see Section 5. a

We will use the following definition.

» A corroborator of a disjunction ¢ is partisan, if it corroborates some
disjunct of .

The main result of this section is the following theorem.

Theorem 5 (Partisan Corroboration Theorem) FEvery corroborator of
a disjunction of constant-disjoint guarded Horn formulas is partisan.



Proof. Let ¢ = \/;c; ¢; where all the ¢;’s are constant-disjoint guarded
Horn formulas. Let 6 be a corroborator for ¢. We must prove that 6
corroborates ; for some ¢ € I.

We can assume (without loss of generality) that there exist positive inte-
gers m and n such that each ; has the following form:

i = N\ EF=sfath) A N\ (DF=uf =of),
1<k<m 1<k<n

>y
~
i

where 1; is a guard of ;, i.e., each EF and s¥ is ground and V(p;) = V(¢),
for all 1 € I. Let C; = C(y;) for i € I. We have that
CiﬂCj:@ (Vi,j €I, i #j). (1)

Let ¥ = 3(¢). For i € I let K; denote the class of all ¥-structures that
satisfy ;0, i.e,
Ki = { E-structure 2 | A = @0 }.

From the validity of @ follows that each X-structure belongs to some KC;.
Let now J be any subset of I such that
=0 (Vi€ ). (2)
(Take for example J = {).) So
Clpit) = C;  (VieJ). (3)

To see that, suppose (by contradiction) that C(y;6) contains some ¢ ¢ C;.
Clearly, ¢ belongs to some x where x occurs in the guard ;. By the second
part of Lemma 2, every constant in 26 belongs to C;. This gives the desired
contradiction.

If I = J then the theorem follows by Lemma 1. Assume that I # J. Now
we prove the following statement:

If = ;0 for all ¢ € J then = ;0 for some i € I'\ J. (4)

Proof of (4) Assume [~ ;0 for all i € J. Form an equation set D as
follows.

e If J=01let D =0.

e If J # () then there is for each 7 € J a clause in ¢;0 that is not valid
and by (2) this clause is not in ;0. In other words, there is a mapping
f:J—={L2,...,n} such that

# (DI = W/ D~ o/ Do (vie ). (5)

[

Let f be fixed and let D = (J,, D/ V6.



For each mapping g : I\ J — {1,2,...,m} let E; denote the following set
of equations: '
E,= | B/,
i€I\J
and let 20, be the canonical model of D U E,, i.e.,
2y =T/E,uD-

We will now prove the following statement.

(*) Fixg:I\J = {1,2,...,m}. There exists ¢ € I\ J such that 2, € ;.

Proof of (*) Assume that (*) does not hold. (Assume also that J # ()
or else (*) holds trivially.) Then A, € K; for some j € J. Fix such an
appropriate j.

So 2, satisfies each clause in ;6 and in particular
A, = (D;(J) - u;(]) ~ v;(]))gl

Let D' = DIV, ' = uP6 and o' = v/V9. By (3) follows that

C(D',u',v') CC
and
C(Ey,D\D") = C(E;)UC(D\D)

= cE)u |J cw!V
i€ i]

- UCiUUCi

1€I\J 1€J,0#£]

= U a

i€l i#j

So, by (1),
C(D" v/, v")NC(E,, D\ D") = 0.

It follows, by Lemma 3, that
= (D;c(j) = /) & vf(j))e.
But this contradicts (5).

By using (*) we can now prove the following statement

(**) There exists i € I\ J such that = ;6.

10



Proof of (**) Assume that the claim is wrong.

Then there is for each i € I'\ J a clause in ;0 that is not valid, i.e.,
there is a mapping g : [ \ J — {1,2,...,m} such that

# BV = 90~ (1999) (vieT\ ).

(Note that only the ¢;’s can be nonground.) Fix such an appropriate
g.

By using (*) we know that 2, € K; for some ¢ € I\ J. Choose such
an 4. So 2, satisfies each clause in ;6 and in particular

A, = B = 570~ (190p).

) )

But, by (3) and (1), C(EY”, /Dy nc(E, \ EYY, D) = . Hence, by
Lemma 3,
= B9 = 90 (190g)
(2 2 2 °

So we have contradiction.

This proves statement (4). Let now J be the mazimal subset of I such
that (2) holds. In other words, for alli € I'\ J, [~ ;0. By the contrapositive
of (4) we conclude that for some i € J, = ;0 and the theorem follows. X

Remark Theorem 5, as well as its proof, remain correct if the disjunction
is infinite. We will not use this generalization.

The following example illustrates why the conditions of being constant-
disjoint and guarded are important and cannot in general be discarded. In
each case there is a counterexample to the theorem.

Example 6 Let us first consider an example where the disjuncts are guarded
but not constant-disjoint. Let ¢(x) be the following guarded Horn formula:

(cx0=zx1)A(cxl=2z=0)

where ¢, 0 and 1 are contants, and let ¢ = (z1), o = @(xo) and ¢ =
w1 V g where z1 and z( are distinct variables. Consider now any ground
substitution 6 such that (z;) = 1 and 6(z¢) = 0. It is easy to show by case
analysis that 6 corroborates 1, i.e., that

EF (cx0=1=1)A(cxl=1=0)V
((c=0=0=1)A(c=1=0=0)).

However, 8 corroborates neither ¢; nor .

11



Let us now consider the case when constant-disjointness is not violated
but the disjuncts are not guarded. Let ¢1(y, z1,y1) be the formula

(y=0=>z1~y1) ANy~ y = z1 =0))
and let ¢g(zo,y0) be the formula
(cmy=zo=1)A(cm 1= x5~y

where ¢, 0 and 1 are constants and 1, xg,y1, Y0,y distinct variables. Let
1 = @1 V. Let 0 be a ground substitution such that 6(z1) = 1, 8(xo) =0,
O(y) = ¢, O(y1) = 1 and O(yo) = 0. Then |= ¢8 but = @160 and [~ ppf (the
situation is exaclty the same as in the previous case). O

4 Reduction of 1-Skelton Problem to n-Skeleton Problem

The 1-Skeleton problem is undecidable. This follows from the undecidability
of SREU by Degtyarev and Voronkov [14, 17]. We can formulate their result
in the current setting as follows (cf [17, Theorem 1]).

Theorem 7 (Degtyarev—Voronkov) The 1-Skeleton problem of guarded
Horn formulas is undecidable.

Under certain restrictions on the language and the structure of formulas,
the 1-Skeleton problem becomes decidable. It is known, however, that it
is already undecidable in the presence of one binary function symbol (in
addition to constants); moreover, two variables suffice for undecidability [41].
For a summary over what is known to be decidable or undecidable under
various restrictions see Section 8.

For technical reasons it will be convenient to assume in the following that
we have a fixed signature ¥ with {c1, ca,...} as the set of distinct constants
in it. X may also have other function symbols of arity > 1. Let us also
be precise about the variables that we allow in Y-expressions, by assuming
that all variables come from the collection {z1, z2,...}.

For each natural number n, constant ¢ and variable z, let ¢™ denote a
new constant and let (™) denote a new variable. We define by induction on
any Y-expression X the corresponding expression X (") as the one obtained
from X by replacing in it each variable & with (") and each constant ¢ with
¢ For any substitution # of Y-variables with X-terms we let #(®) denote
a substitution that takes the variable z(™ t the term (z)™. So, for any
Y-expression X and natural number n,

(X0)™ = x(mgm),

The following property is immediate. For any X-sentence ¢ and natural
number 7,

o o e

12



Theorem 8 Let ¢ be a guarded Horn formula and n a positive integer.
Then ¢ has a corroborator iff i, 0 has an n-corroborator.

Proof. The ‘=’ direction is trivial. We prove the ‘<=’ direction as follows.
Let I = {1,2,...,n} and let 4 be the formula A;_; ¢, Assume that 1) has
an n-corroborator {6; | i € I}. So

= VA #0).

i€l jel

By the distributive law this is equivalent to

= A (VU0

fil—I el

From this follows in particular that

= \/ 0.

el

Let X; = V(p®) for i € I. Since all the X;’s are pairwise disjoint we can
let @ be a substitution such that 6’| X; = 0;]X; for ¢ € I, and it follows that

=\ Ve

el
By Theorem 5 follows now that = @' for some i € I. Fix such an
appropriate 7. But then, by Lemma 2, the range of 0’| X; is E(w(i)), and
thus there is a substitution 6 with range 75, such that 89 | X; = '] X;. Hence
= W01 and so |= wf by above. X

Corollary 9 (Voda—Komara) For all n > 1, n-Skeleton problem of guar-
ded Horn formulas is undecidable.

Proof. The reduction in Theorem 8 is trivially effective. So, if we had a
decision procedure (for some n) for finding n-corroborators, we could use it
to find corroborators, but this would contradict Theorem 7. X

Assume that we are using an automated theorem proving method that is
based on the Herbrand theorem. Roughly, this involves a search for terms,
for a given bound m on multiplicity. Corollary 9 (Voda and Komara [42])
tells us that there is no m for which we could effectively decide when to stop
our search for such terms in case they do not exist.

By using the fact that SREU is undecidable already with ground left-hand
sides [36], (i.e., variables occur only in positive literals in the corresponding
Horn formulas) and two variables [40, 41] we obtain a sharper version of the
above corollary:

13



Corollary 10 For all n > 1, n-Skeleton problem of guarded Horn formulas
is undecidable already if there are 2n wariables and all variables occur in
positive literals.

The decidability of monadic SREU is currently one of the problems related
to SREU that is still open [26]. An effectively equivalent problem is the
decidability of the prenex fragment of intuitionistic logic with equality with
unary function symbols [15]. Some evidence speaks in favour of that the
problem is decidable although with very high computational complexity
(e.g., many subcases are decidable, see Section 8). From Theorem 8 follows
that:

Corollary 11 If the 1-Skeleton problem is undecidable in the monadic case
then so is the n-Skeleton problem for n > 1, or equivalenty, if the n-Skeleton
problem is decidable in the monadic case for some n > 1 then so is the 1-
Skeleton problem.

5 Undecidability of SREU: Minimal case

W show that three rigid equations with ground left-hand sides and two vari-
ables in a signature with one binary function symbol an no other noncon-
stant function symbols, already imply undecidability. In fact, we give a
uniform representation of all the recursively enumerable sets by using just
three rigid equations with these properties. As a corollary we get that the
undecidability of SREU holds already in very restricted cases. We gener-
alize the construction in Veanes [41] and improve the lower bound on the
number of rigid equations from four to three by using finite tree automata
techniques. We then use this result to improve the undecidability result of
the n-Skeleton problem.

The main idea behind our proof is based on a technique that was used by
Plaisted [36] in a similar context, who called the technique shifted pairing.
The idea is to express repetition explicitly by a sequence of strings (like IDs
of a TM). The first string of the sequence fulfills some initial conditions, the
last string some final conditions and another sequence is used to check that
the consequtive strings of the first sequence satisfy some relationship (like
validity of a computation step).

A similar technique was used already by Goldfarb in the proof of the unde-
cidability of second-order unification [24], which is by reduction of Hilbert’s
tenth problem, and later, adopted from that proof, also in a proof of the
undecidability of SREU by Degtyarev and Voronkov [16], which is also by
reduction of Hilbert’s tenth problem. In this proof the key point is to ex-
plicitly represent the “history of a multiplication process”.

We note also that shifted pairing bears certain similarities to the tech-
nique that is used to prove that any recursively enumerable set of strings is
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given by the intersection of two (deterministic) context free languages [28,
Lemma 8.6].

Finite Tree Automata Finite tree automata, or simply tree automata
from here on, are a generalization of classical automata. Tree automata were
introduced, independently, in Doner [19] and Thatcher and Wright [39]. The
main motivation was to obtain decidability results for the weak monadic
second-order logic of the binary tree. Here we adopt the following definition
of tree automata, based on rewrite rules [5, 6].

» A tree automaton or TA A is a quadruple (Q, X, R, F') where

— (@ is a finite set of constants called states,
— X is a signature that is disjoint from @),

— R is a set of rules of the form f(q1,...,qn) — ¢, where f € ¥ has
arity n > 0 and ¢,q1,...,q, € Q,

— F C @ is the set of final states.

A is called a deterministic TA or DTA if there are no two different
rules in R with the same left-hand side.

Note that if A is deterministic then R is a reduced set of ground rewrite
rules and thus canonical [37]. Tree automata as defined above are usually
also called bottom-up tree automata. Acceptance for tree automata or rec-
ognizability is defined as follows.

» The set of terms recognized by a TA A = (Q, %, R, F) is the set
T(A)={reTs| (B¢ F)7 —rq}.

A set of terms is called recognizable if it is recognized by some TA.

5.1 Main ldea

We consider a fixed Turing machine

M = (QM7 Yin, z]ta,pea 9,90, b, {Qacc})a

and assume, without loss of generality, that the final ID of M is simply
Qacc 1.€., the tape is always empty when M enters the final state, and that
qo # Qacc- Let also v be a string over the input alphabet of M. We effectively
construct a system S (x,v) of three rigid equations:

S’zljw(xay) = {S()(.’E,y), Sl(xuy)’ S2(xay)}
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where

S[](«T,y) = EO'V*T Yy =~ co,
Si(z,y) = Ihikzr~y,
Sa(z,y) = Ibkzmty.y
where Ejy, I1; and Il are ground, ¢y is a constant, ‘.’ is the only nonconstant

function symbol in the system and t, is a ground term that represents the
initial ID of M with input string v. We prove that M accepts v iff SM is
solvable. This establishes the undecidability result because all the steps in
the construction are effective.

The main idea behind the rigid equations is roughly as follows. Assume
that there is a substitution € that solves the system.

e From 6 being a solution of Sy(z,y), it follows that

— z0 represents a sequence

(1)0,1)1, . ,Um)

of IDs of M, and v, is the final ID of M, and

— y0 represents a sequence

((’LU(),U)S_), (wl,wf’), ooy (wp,w))

of moves of M, i.e., w; Fps wj for 0 <4 <n.

e From 6 being a solution of Si(z,y) it follows that n = m and v; = w;
for 0 <7 <m.

e And finally, from 6 being a solution of Se(x,y) it follows that vy = v
andvi:wltl for 1 <i<m.

The combination of the last two points is the so-called “shifted pairing”
technique. This is illustrated by Figure 1. The outcome of this shifted
pairing is that x6 is a valid computation of M with input v, and thus M
accepts v. Conversely, if M accepts v then it is easy to construct a solution
of the system. We now give a formal construction of the above idea.

5.2 Words and Trains

Words are certain terms that we choose to represent strings with, and trains
are certain terms that we choose to represent sequences of strings with. We
use the letters v and w to stand for strings of constants. Let . be a binary
function symbol. We write it in infix notation and assume that it associates
to the right. For example ¢; . ¢ . t3 stands for the term .(¢1,.(t2,t3)).
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(vo,v1)  (v1,v2) (Vn2,Vn1) (Vn1,vn)  (Un,€)

Figure 1: ((vo,v1), (v1,v2), ..., (Un,¢€)) is a “shifted pairing” of (vo,v1,...,vn).

» We say that a (ground) term ¢ is a c-word if it has the form
A1 «A2 """ alpC

for some n > 0 where each a; and ¢ is a constant. A word is a c-word
for some constant c.

We use the following convenient shorthand notation for words. Let ¢ be the
word a1 .ag .- .ay . c and v the string ajas - - - a,. We write v . c for ¢t and
say that t represents v.

» A term ¢ is called a c-train if it has the form
tietge-"-ulp.C

for some n > 0 where each ¢; is a word and c is a constant. If n = 0
then ¢ is said to be empty. The t;’s are called the words of t. A train
is a c-train for some constant c.

By the pattern of a train

(1)1.Cl).(UQ.CQ).---.(Un.Cn).C

we mean the string cica -+ - ¢,. Let V = {V;}ier be a finite family of regular
sets of strings over a finite set X of constants, where I is a set of constants
disjoint from . Let U be a regular set of strings over I and let ¢ be a
constant not in X or I.

» We let Tn(V, U, c) denote the set of all c-trains ¢ such that the pattern
of ¢t is in U and, for ¢ € I, each i-word of ¢ represents a string in V;.

Example 12 Consider the set Tn({Vg, V3, Ve },ab*c, A). This is the set of all
A-trains t such that the first word of ¢ is an a-word representing a string in
Va, the last word of ¢ is a c-word representing a string in V, and the middle
ones (if any) are b-words representing strings in Vj,. O

We say that a set of trains has a regular pattern if it is equal to some set
Tn(V,U,c) with V, U and ¢ as above. The main result of this section is the
following theorem.
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Theorem 13 (Train Theorem) Any set of trains with a regular pattern
is recognizable and o DTA that recognizes this set can be obtained effectively.

As we shall see, the construction of the rigid equation Sy follows easily from
the Train Theorem and some basic properties of tree automata. We believe
that this theorem is of independent interest. For example, several theorems
that are used in a similar context in Plaisted [36, Theorems 8.2-8.11], can
be stated as corollaries of Theorem 13. Before we prove the theorem we
state the following simple lemma. This lemma follows from the wellknown
fact that all regular sets of strings are recognizable (cf [23]), assuming an
appropriate representation of strings.> For any string v, we write v* for v in
reverse and for a set of strings V we let V' = {v" |v e V }.

Lemma 14 Let V be a regular set of strings over a set ¥ of constants and
¢ a constant not in X. Then {v.c|v € V' } is recognizable and a DTA is
obtained effectively from V.

Proof. Let M = (Q, 3,0, qo, F') be a DFA that accepts the reverse of V, or
VT, (clearly M exists, cf [28, p 281]). For each a € ¥ let a be a new state.
Let A be the DTA (Qa,[', R4, F4) where

Qa = QU{alaeX},
I' = YUu{,c},
Ry = {a.q—=pldilga)=p}U{a—alacX}U{c—ql,
Fy, = F.
We must prove that, for all ¢t € Tp,
t —sp,qforsomeq€F & t=w.cforsomewve L(M)".
Let us consider the direction ‘<=’ first. So assume that
V= dap_1ap—2---ag € L(M)",

ie, ag---ap—2an_1 € L(M). So, there exist q1,¢2...,q, € @, such that
gn € F and the following holds:
(g0, a0) = q1,- -, 0(qn—2,an-2) = qn—1, 6(qn-1,an-1) = qn-
But then, by the definition of R4, we can construct the following reduction:
VeC=0Ap-10p—-2" 00 C L) anflénfg Tt 5,1&0 = qo
— p1Gp-—2° 01« q1
4 anfl *dn—1
— qn €F,

3Traditionally a string aias - - - a, is represented by a term a, (- --a2(a1(go))), i.e., the
symbols of the alphabet are treated as unary function symbols, and the term is written
using the reverse notation goaiasz---an.
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which shows that v.c € T(A). The direction ‘=’ follows also easily. First
note that any term ¢ in Tp that reduces to a final state ¢ with respect to R4
must be a c-word that represents some string v over X. From the definition
of R4 follows then, like above, that v must be in V. X

We now prove the Train Theorem.

Proof. Let V, X, U, I, and ¢ be like above. For each i € I, let ¥; = X U{.,i}
and let A; = (Qj, X, Ri, F;) be a DTA given by Lemma 14 such that

T(A) ={v.i|veV;}.

Let ¥, = IU{.,c} and let A, = (Q., ¢, Re, F¢) be a DTA given by Lemma 14
such that
T(A.) ={u.c|luelU}.

Assume, without loss of generality, that all the DTAs have mutually disjoint
sets of states, except for the states a for a € ¥ that are the same in all the
A;’s for 4+ € I. In fact, one can think of any constant a € X and the
corresponding state a as being the same element.

Let now R’ be the set of rules obtained from R, by relpacing, for all i € I,
each rule 7.p; — po in it with the set of rules {¢.p1 — p2 | ¢ € F; }, and
discarding the rule ¢ — 7. Let now R be the following set of rules:

R=[JRUR.
el

Note that R is a reduced set of rewrite rules due to the disjointness assump-
tions and the assumption that the states a for a € X are the same in all
the DTAs. We are now ready to define A as the DTA (Q,T", R, F.) where
I'=YXUlU{.,c}and

Q=JQiu@N\{ilier}).
1€l
We can now prove that

T(A) = Tu(V, U, ¢).

Let use consider the direction ‘C’ first. Assume that ¢ € T'(A), i.e., t reduces
to some state ¢ in F, via the rules in R. This reduction is only possible if it
has (in principle) the following form:*

t SR QG2 Gn € — R q.

* A formal argument can be given by using induction and proving some lemmas first [40,
Chapter 3].
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where each gy is in Fj, for some i;, € I. Furthermore, by definition of R" and
A., we know that i1iy-- -4, € U. The first part of the reduction is possible
only if

t=11atg."atlp.c,

where each t; reduces to ¢;. Note that, due to the disjointness properties
of the DTAs, only the rules in R;, can be used in the reduction = q,
and thus ¢, € T'(A;,). Hence each t; has the form v . i for some v € Vj,,
and the pattern of ¢ is 4142 - - - 4, which we know is in U. This proves that
t € Tn(V,U,c).

Let us now consider the direction ‘2’. So assume that t = t;.t3.-- .ty .C
where each ¢, is in T'(4;,) for some iy, € I and i132-- -4, € U. It follows that
each t;, reduces with R;, to some ¢; € Fj, and thus ¢ reduces to gig2 - - - gy, .C.
By definition of R’, q1q2--- ¢, « ¢ reduces to some q € F.. It follows that
t =g ¢ for some q € F, and thus ¢ € T(A). X

The following example illustrates the construction that is used in the proof
of the Train Theorem.

Example 15 Let ¥ = {0,1}, I = {a,b} and let A be a new constant. Let
V = {V;}ier where V, = 0*1 and V;, = 0*10*. Let U = bab*a. We construct
a DTA that recognizes the set Tn(V, U, A). Consider the following transition
diagrams of a DFA for V,":

(@@ o

0

@

By following the construction in Lemma 14 we get that the rules of A, and
Ay are as follows:

and of a DFA for ":

R, = {1—-1,0-0,a—q,
Ry, = {1—1,0-0,b—gs,

Cq2 = @2},
-q3 = q4, 0.qs — qu}.

1 — q2,
- g3 — g3,

(@I
= O

For the set U" we can consider a DFA with the following transition diagram:
b

aa
B ) =) ()
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From this we can extract the DTA A, with the following set of rules:

Ry = {a—a b—b, A— p,
&.p1 — P2, bapa — P2, &.pa = P3, baps = pal.
Now, following the construction in the Train Theorem, we get that the DTA
A has the following set of rules. First, a set R’ is constructed by removing
the first two rules in R, and replacing & and b with ¢o and g4, respectively.

Second, R is taken as the union of R,, R, and R’ . So R is the following set
of rules:

R = {1—)1, 0—20,a—=q, 1.q1 = qo, 6.qQ—>q2}U
{ob—q3, 0.q3 — g3, 1.g3 > qu, 0.qs = qu} U
{A = p1, @201 = D2, QueD2 = P2, @2P2 = P3, Q4+ P3 — Pal.

Let us consider a reduction in R. Let us write a A-train ¢; .¢9.---.¢,. A as
[t1,t2,...,ty]. Take for example

t=[010.b, 001.a, 1.b, O01.a].

The pattern of ¢ is baba which is in U. Let us see how ¢ reduces to py.

t —»gp [010.¢3, 001.q;, 1.g3, 01.q]
3 [01.¢3, 00.q2, q4, O.gq]
—r [0.q1, O0.q2, qu, g2
k(o @ @ @)

— R 449294492 « D1
— R q4.

5.3 Representing IDs and Moves

We show how to construct the rigid equation Sy(z,y). Our main tool in
doing so is the Train Theorem. We use also the following simple observation,
that relates rigid F-unification with recognizability. Let us, for simplicity,
consider a set of rules also as a set of equations.

Lemma 16 Let A = (Q, %, R,{q}) be a DTA. Then, for all 8 with range
T, 0 solves Rty z = q iff z6 € T(A).

Proof. Since R is a canonical rewrite system and ¢ is irreducible in R, we
have (for all ground ) that R = z6 ~ ¢ iff 20 — 5 ¢. But for  with range
Ts;, by definition of recognizability, z6 € T/(A) iff 20 —— 5, q. X
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Let us assign arity 0 to all the tape symbols (Xiape) and all the states (Qar)
of M. Let 3 be the following signature:

= Etape U QM u {eﬂaelaAa'}a

where eg, e; and A are new constants.

5.3.1 Representing ID Sequences Recall that an ID of M is any
string in X, QY that does not end with a blank (5). We represent
IDs by e-words, where e is one of ey or e;. In particular, the final ID
is represented by the word ¢uc. » €1 and IDs in general are represented by

corresponding eg-words.

» Any train of the form

(vovep)s(viaeg)s(vaeep)e-u(vpen)s(Gaccser) A,
where n > 0 and each v; is an ID of M, is called an ID-train.

It is clear that the set of all IDs and the set consisting of just the final ID
are regular sets. The set of patterns of the ID-trains is given by the regular
expression epeje;. By using the Train Theorem, let

Aiq = (Qia, X, Rig, Fia)

be a DTA that recognizes the set of all ID-trains.

5.3.2 Representing Move Sequences Let ¢y, be a new constant for
each pair of constants a and b in the set Xape U Qs Let also ez and A’ be
new constants. Let now ' be the following signature:

F={cwlabe ZtapeUQM}U{eg,A',.}

Note that . is the only symbol that occurs in both 3 and I'.

For and ID w of M we let w™ denote the successor of w with respect to
the transition function of M. For technical reasons it is convenient to let
q).. = €, L.e., the successor of the final ID is the empty string. The pair
(w,w™) is called a move. Let w = ajay -+ a,, and w™ = byby - -+ b, for some
m > 1 and n > 0. Note that n € {m — 1,m,m + 1}. Let k = max(m,n). If
m < nlet ay = b and if n < m let by = b, i.e., pad the shorter of the two
strings with a blank at the end.

» We write (w,w") for the string cq,p, Casby *** Capb, and say that the
ea-word (w,w™).es represents the move (w,w™). By a move-train we
mean any A’-train

t=toetia -ty A,

such that each t; represents a move and n > 1.
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Example 17 Take ¥;, = {0,1}, and let q,p € Q. Assume that the
transition function & of M is such that, when the tape head points to a
blank and the state is q then 1 is written to the tape, the tape head moves
left-and M enters state p, i.e., 6(q,b) = (p,1,L). Imagine that the current
ID is 00q, i.e., the tape contains the string 00 and the tape head points
to the bank following the last 0. So (00q,0p01) is a move. This move is
represented by the word coo « Cop « Cq0 « Cp1 - €2 = (00q, 0p01) . es. O

It is straightforward to see that the set of all strings (w,w™) where w is an
ID, is a regular set. The patterns of all move-trains are given by the regular
expression ezeze;. By using the Train Theorem let

Amv = (vaa Fa Rmvu Fmv)

be a DTA that recognizes the set of all move-trains. Assume also that the
states of A, are new constants.

5.3.3 Construction of 5y, We are now ready to construct Sy. First, let
A[) = (Qg, 20, Rg, F[)) be the following DTA.

Qo = QidUvaU{CO}u

Sy = NUT,
Ry = RqURnwU{q1.92—=co|q1 € Fa, ¢2 € Finv },
F[) = {Cg}.

By the disjointness conditions between A;jq and A, it follows that Ay is
indeed a deterministic tree automaton. It follows by elementary properties
of tree automata that

T(Ag) = {t.s|t€T(Ai), s € T(Amy) }.

Let now Ey = Ry in the rigid equation Sp.
5.4 Final Construction

In this section we finish the construction of SM and prove the undecidability
results. The only essential components that we have not defined yet are II;
and Ils. We let I1; and Ils be the following rewrite systems. The differences
between II; and Il are indicated with frames.

I, = {Cab%@|a,beztapeUQM}U
{61—)60, €9 — €y, AI—>A, 6.60—>60}
I = {Cab_>|E|aabEEtapeUQM}U

{e1 —ep, e2 > eg, N = A, bueg— e, |eg.A— A}
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It is easy to see that both sets are in fact reduced sets of ground rewrite
rules and thus canonical. For any input string v for M let the term ¢, in
the system S be the word qov . e, i.e., t, represents the initial ID of M
with input v. We can now state the main theorem of this section.

Theorem 18 SM(z,y) is solvable iff M accepts v.
Before proving the theorem we state and prove some useful lemmas.

Lemma 19 If 0 solves Si(z,y) and Sa(z,y) then x6,y0 € Tsur.

Proof. We prove by induction on the size of 28 that if 8 solves the following
system, where t( is any term in Tyyr, then z6,y0 € Tyur.

{Ihike~y, Ihkz~i.y}

The statement follows then by choosing tg = qqv . €p.

So counsider a fixed #y and assume that 6 solves the above system. If
x0 is a constant then so is its normal form in Iy, say z0)n, = ¢, and so
to . y0 L>H2 c. But then ¢ € ¥ and consequently z6,y0 € Tsur. The cases
when 26 is not a constant, but either 6|, or 0|y, is a constant, are also
immediate.

So assume that 20 = t; .t and (¢1 . t)m; = t1dm, « th, for ¢ € {1,2}. So
t1dm, = todm, and thus t; € Tyur since ty € Tsur; also

H2 |:t%y9

It follows from II; |= t; .t =~ y0 that yf = s;.s for some terms s; and s such
that
H1 |: ~ S

and IT; = s; = ¢1. From the latter follows that s; € Txur because ¢ € Tour.
Let now 6’ be such that 6 =t and yf' = s. So €' solves the system

{Ihikzry, Ihkz=xs .y},

and it follows by the induction hypothesis that ¢ and s are in Tyyr, and
consequently, so are t; .t = z6 and s1 . s = y6. X

Lemma 20 If 6 solves SM(x,y) then 26 is an ID-train and y@ is a move-
train.

Proof. Assume that 6 solves SM(z,y). By Lemma 19, the range of 4 is
Tsur. But then, by definition of Sy(z,y) and Lemma 16, 6. y0 € T'(Ay),
and thus 26 € T'(Ajq) and y0 € T(Any)- X
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We can now prove Theorem 18.

Proof. We prove that S (z,y) is solvable < M accepts v.
Proof of ‘=" Let 6 be a substitution that solves S (z,y). By using Lem-
ma 20 we get that 20 and y6# have the following form:
20 = (vo.ep)s(vie€p)s- s (Um_1+€0)s(Uma€1) A
y0 = ((wo,wy).e2). ((wi,wi)eea) e ((wn,wy) . e2) A
where m > 1, n > 1 and all the v;’s and w;’s are IDs of M and v, = qacc-
Since € solves S1(z,y), it follows that the normal forms of 6 and y# under
II; must coincide. But
xt%nl = (1)0 . 60) . (1)1 . 60) Rttt (vm_1 . 60) . (Um . 60) . A,
yt%nl = (U)O . 60) . (w1 . 60) Rttt (wn_l . 60) . (wn . 60) AL
Note that each term (w;, wi+ ) « €2 reduces first to w) . ey where w; = w; or
w; = w;b. The extra blank at the end is removed with the rule b.ey — ep.

So
n=m, Up=(qacc, v;=w;(0<i<n). (6)

Since 6 solves So(z,y) it follows that the normal forms of 2:6 and (gov.eq).y0
under Il must coincide. But

28, = z6)m,

because 26 does not contain any constants from I' and the rule eg. A — A is
not applicable. Moreover, since w;, = @acc, it follows that w;" = € and thus
(wn, W) €0 = Cqueeb » €0- But

(anCCﬁ . 60) A — 1> (5 . 60) A — 1, €0 - A — 1, A.

The normal form of (gyv . ep) - y@ under II, is thus

(qov « €p) - (wg «ep) « (W veg)wr--u(wi | vep). A

It follows that vy = qov, i.e., vy is the initial ID of M with input v, and
wi =wvip1 (0<i<n). (7)

From (6) and (7) follows now that (vg,v1,...,vy,) is a valid computation of
M, and thus M accepts v.

Proof of ‘<=’ Assume that M accepts v. So there exists a valid computation

(vo,v1,...,vy,) of M where vy = qov, vy, = Gacc and vi+ =wjp1 for 0 <i < n.
Let 0 be such that x0 is the corresponding ID-train and y6 the corresponding
move-train. It follows easily that 6 solves Sys(z,y). X
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The shifted pairing technique that is used in Theorem 18 is illustrated in
Figure 1. The Degtyarev—Voronkov theorem is an immediate consequence
of Theorem 18, because all the constructions in it are effective.

Furthermore, the following result due to Plaisted [36] (that we used to
prove Corollary 10). is an immediate consequence.

Corollary 21 (Plaisted) SREU is undecidable even if the left-hand sides
are ground.

Furthermore, we can sharpen this result as follows.

Corollary 22 SREU is undecidable if the left-hand sides are ground, there
are only two variables and three rigid equations and one binary function
symbol.

The undecidability with two variables and three rigid equations may seem
like an artifical extra condition, but in fact, it turns out to be an impor-
tant special case. One implication is that the provability problem for the
J3-fragment of intuitionistic logic with equality is undecidable. Another
important fact is that two variables are necessary to get undecidability. If
there is only one variable then SREU is decidable [9].

Remark We can also note that one constant suffices. One can easily
simulate any number of constants with one constant and a binary function
symbol.

5.5 Undecidability Proofs of SREU

The first proof of the udecidability of SREU [14] was by reduction of the
monadic semi-unification [1] to SREU. This proof was followed by two al-
ternative (more transparent) proofs by the same authors, first by reducing
second order unification to SREU [13, 17], and then by reducing Hilbert’s
tenth problem to SREU [16]. The undecidability of second order unification
was proved by Goldfarb [24]. Reduction of second order unification to SREU
is very simple, showing how close these problem are to each other. Plaisted
took the Post’s Correspondence Problem and reduced it to SREU [36]. From
his proof follows that SREU is undecidable already with ground left-hand
sides. Veanes improves the construction of Plaisted by using the member-
ship problem for Turing machines and shows that two variables and one
binary function symbol is enough to obtain undecidability [40, 41].

6 Minimal Undecidable Case of the n-Skeleton
Problem

Let M (z,y) stand for the following formula:
M —
oy (z,y) = (By=z.y=cy) A
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(H1:>xzy)/\
(Il = z =~ t, . y).

Let M (z,z,y) stand for the formula ¢ (z,y) with the term ¢, replaced by
the variable z. It is important to note that the construction of Ey, II; and
1y is endependent of v, which justifies this notation. Let M, be the Turing
machine that accepts the universal language L,

L, = {(M,v) | M is a Turing machine that accepts v },

where (M, v) is some encoding of the pair (M, v) that is carried out in some
fixed alphabet. We write ¢* for ¢M«. The precise details of the encoding
are not relevant here. We get the following result.

Theorem 23 For alln > 1, n-Skeleton problem of Horn formulas restricted
to 2n wvariables and 3n clauses with ground negative literals, is undecidable
already for some fized negative literals.

Proof. For any Turing machine M and input string v we have that the
formula " (t(p),7,y) has a corroborator iff M accepts v. The statement
follows now by Theorem 8. X

7 Relations to Intuitionistic Logic

The decision problems in intuitionistic logic have not been as thoroughly
studied as the corresponding problems in classical logic [3]. In particular,
new results about the prenez fragment of intuitionistic logic (i.e., closed
prenex formulas that are intuitionistically provable), have been obtained
quite recently by Degtyarev and Voronkov [16, 17, 15] and Voronkov [44].
Some of these results are:

1. Decidability, and in particular PSPACE-completeness, of the prenex
fragment of intuitionistic logic without equality [15].

2. Prenex fragment of intuitionistic logic with equality but without func-
tion symbols is PSPACE-complete [15]. Decidability of this fragment
was proved in Orevkov [35].

3. Prenex fragment of intuitionistic logic with equality in the language
with one unary function symbol is decidable [15].

4. F*-fragment of intuitionistic logic with equality is undecidable [16, 17].

In some of the above results, the corresponding result has first been ob-
tained for a fragment of SREU with similar restrictions. There are close
connections between intuitionistic logic with equality and SREU [44]. By
using the undecidability of SREU, the proof of (4) is straightforward. The
undecidability of the 3*-fragment is improved in Veanes [40] by showing that
the
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5. d3-fragment of intuitionistic logic with equality is undecidable.

We obtain the following uniform characterization of all the recursively enu-
merable sets in the d3-fragment of intuitionistic logic with equality. Let us
consider Turing machines with some fixed tape alphabet and a fixed symbol
qo for the initial state. Let ¢, denote the word that represents gov (the initial
ID for input string v).

Theorem 24 For any Turing machine M and input string v for M,
Fi Az (ty, z,y) = M accepts v.

Proof. The formula Jz3yp™ (t,,z,y) is provable intuitionistically iff there
exists a corroborator for oM (t,,z,y) (cf [17, Proof of Theorem 3]). Use now
Theorem 18. X

The following statement is an easy corollary of Theorem 24.

Corollary 25 The 33-fragment of intuitionistic logic is undecidable already
under the following restrictions:

1. The signature has two symbols: one constant and one binary function
symbol.

2. The only connectives are N\ and at most three =’s.
3. The antecedents of all implications are closed.
4. The antecedents of implications may be fized.

If there is only one variable then SREU is decidable [9]. It follows also that
the

6. V*3V*-fragment of intuitionistic logic with equality is decidable [9].
7.1 Proof Search in LJ¥

Proof search in intuitionistic logic with equality is closely connected with
SREU, and, unlike in the classical case, the handling of SREU is in fact
unavoidable in that context [43, 44]. Voronkov considers a particular sequent
calculus based proof system LJ¥ [43]. In that context a skeleton is the
structure of a derivation in LJ¥, and skeleton instantiation is the problem
of the existence of a derivation with a given skeleton. SREU is polynomially
equivalent to skeleton instantiation in LJ [43]. We get the following result.
(See Voronkov [43] for precise definitions.)

Corollary 26 There is a fized skeleton with two applications of (— 3) and
three applications of (—=>) for which the skeleton instantiation problem in
LJ? is undecidable.
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Figure 2: A derivation of 3z3ypM (z,y) in LI¥; Ag, A; and A, are multisets of
equations corresponding to Ey, II; and Il., respectively; ng, n; and no are
the number of A’s minus one, in Ey, II; and II,, respectively. It is actually
the existence of the derivations Dy, D; and D, that corresponds to the
solvability problem of the system SM of rigid equations.

— (») — (A =) (A —ny)
- (/\ —>no)
—_— (/\ 4)0) —_— (/\ *)0)
— (A—=0) — (—=) — (—=)
— (—==) (= A)
(= A)
— (=3
— (=3

Figure 3: The skeleton of the derivation in Figure 2.

Proof. By using the results proved in Voronkov [43, 44], the sentence
Jz3ypM (z,y) is intuitionistically provable iff the sequent — JxIypM (z,y)
can be derived in LJ¥ (see Figure 2) with the skeleton shown in Figure 3.
Let M = M,. The statement follows now from Theorem 24. X

7.2 Other Fragments

Decidability problems for other fragments of intuitionistic logic have been
studied by Orevkov [34, 35], Mints [33], Statman [38] and Lifschitz [31].
Orevkov proves that the -~—V3-fragment of intuitionistic logic with function
symbols is undecidable [34]. Lifschitz proves that intuitionistic logic with
equality and without function symbols is undecidable, i.e., that the pure con-
structive theory of equality is undecidable [31]. Orevkov shows decidability
of some fragments (that are close to the prenex fragment) of intuitionistic
logic with equality [35]. Statman proves that the intuitionistic propositional
logic is PSPACE-complete [38].
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8 Current Status of SREU and Open Problems

Here we briefly summarize the current status of SREU and mention some
open problems. Many related results are already mentioned above. The
first decidability proof of rigid E-unification is given in Gallier, Narendran,
Plaisted and Snyder [21]. Recently a simpler proof, without computational
complexity considerations, has been given by de Kogel [7]. We start with
the solved cases:

Rigid E-unification with ground left-hand side is NP-complete [30].
Rigid FE-unification in general is NP-complete and there exist finite
complete sets of unifiers [20, 21].

Rigid E-unification with one variable is P-complete [9]. Or, more
generally, SREU with one variable and a bounded number of rigid
equations is P-complete [9].

If all function symbols have arity < 1 (the monadic case) then it follows
that SREU is PSPACE-hard [25]. If only one unary function symbol
is allowed then the problem is decidable [11, 12]. If only constants are
allowed then the problem is NP-complete [12] if there are at least two
constants.

About the monadic case it is known that if there are more than 1
unary function symbols then SREU is decidable iff it is decidable with
just 2 unary function symbols [12].

If the left-hand sides are ground then the monadic case is decid-
able [26]. Monadic SREU with one variable is PSPACE-complete [26].

The word equation solving [32] (i.e., unification under associativity),
which is an extremely hard problem with no interesting known com-
putational complexity bounds, can be reduced to monadic SREU [11].

Monadic SREU is equivalent to a non-trivial extension of word equa-
tions [26].

Monadic SREU is equivalent to the decidability problem of the prenex
fragment of intuitionistic logic with equality with function symbols of
arity <1 [15].

In general SREU is undecidable [14]. Moreover, SREU is undecidable
under the following restrictions:

— The left-hand sides of the rigid equations are ground [36].

— Furthermore, there are only two variables [40, 41] and three rigid
equations with fixed ground left-hand sides.
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e SREU with one variable is decidable, in fact EXPTIME-complete [9].
Moreover, SREU restricted to rigid equations that either contain one
variable, or have a ground left-hand side and a right-hand side that is
an equality between two variables, is decidable [8].

Note also that SREU is decidable when there are no variables. Actually, the
problem is then P-complete because the uniform word problem for ground
equations is P-complete [29]. The unsolved cases are:

e Decidability of monadic SREU [26].
e Decidability of SREU with two rigid equations.

Both problems are highly non-trivial. Another intriguing open problem is to
study the Herbrand f-Skeleton problem. In particular, the following open
problem is posed in Voronkov [45]:

e Does there exist a computable strategy f for which the f-Skeleton
problem is decidable?
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