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ABSTRACT 

tools for profiling and tuning application code 

remain disconnected from the profiling and tuning tools for 

relational DBMSs. This makes it challenging for developers of 

database applications to profile, tune and debug their applications, 

for example, identifying application code that causes  deadlocks in 
the server. We have developed an infrastructure that 

simultaneously captures both the application context as well as 

the database context, thereby enabling a rich class of tuning, 

profiling and debugging tasks that is not possible today. We have 

built a tool using this infrastructure that enables developers to 
seamlessly profile, tune and debug ADO.NET applications over 

Microsoft SQL Server by taking advantage of information across 

the application and database contexts. We describe and evaluate 

several tasks that can be accomplished using this tool.  

 

1. INTRODUCTION 
Today, relational database management systems (RDBMSs) serve 

as the backend for many real-world, data intensive applications. 

These applications use programming interfaces such as ODBC 

[21], JDBC [16], ADO.NET [1], and OLE DB [24] to interact 
with the database server. When building these applications, 

application developers today use a variety of tools for 

understanding and fixing problems in their application. For 

example, development environments such as Microsoft Visual 

Studio [20] and Eclipse [9] provide profiling tools that allow 
developers to understand performance characteristics in their 

application code such as frequently invoked functions, time spent 

in a function etc. Of course, for database application developers 

such support is not sufficient since they use APIs to invoke 

DBMS functionality. 
execution happens inside the DBMS. DBMSs provide profiling 

and tuning tools of their own, e.g.,  Microsoft SQL Server Profiler  

[29], IBM DB2 Query Patroller [15] etc. These DBMS profiling 

tools give developers information about which SQL statements 

were executed against the server, the duration of each statement, 
read and writes performed by the statement, blocking activity etc. 

However, the information obtained from the development 

environment profiler and the DBMS profiler today remain as two 

islands of information that have little or no understanding of each 

other. This makes it difficult for database application developers 
to identify and fix problems with their applications as illustrated 

below: 

Example 1. Detecting functions in the application code that 

caused a deadlock in the DBMS . Consider an application that 

has two threads, each executing a task on behalf of a different 
user. Each thread invokes certain functions that in turn invoke 

SQL statements that read from and write to a particular table T in 

the database. Consider a scenario where an intermittent bug in one 

of the threads causes SQL statements issued by the application to 

deadlock with one another on the server. The database server will 
detect the deadlock and terminate one of the statements and 

unblock the other. This is manifested in the app lication as one 

thread receiving an error from the server and the other thread 

running to completion as normal.  Thus, while it is possible for the 

developer to know that there was a deadlock (by examining the 
DBMS profiler output or the server error message of the first 

thread) it is difficult for the developer to know, for example, 

which function from the other thread issued the corresponding 

statement that caused the server deadlock. Having the ability to 

identify the application code that is responsible for the problem in 
the database server can save considerable debugging effort for the 

developer.  

Example 2. Consider a table such as CUSTOMER (Name, 

Address, City, State, Zip, Comments). A common performance 

issue is that the application requests data (e.g. columns) from the 
server that are never used by the application. For example, the 

can be wasteful of 

server resources, particularly if the application only needs to use 

columns Name, Address from the CUSTOMER table. However, 

today neither the DBMS profiling tools (no awareness of which 
columns are actually used by the application) nor the profiling 

tools available in application development environments (no 

awareness of impact of the query on the resources consumed in 

the server) can identify this problem. Even doing an exact match 

search for the string ( ) in the 
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application code might not help because the query string itself can 

be dynamically constructed by concatenating other strings. A tool 

that can identify such a problem would be useful to developers. 
Ideally, such a tool would even be able to suggest rewriting the 

query and quantify the associated performance improvement.  

These examples highlight a significant gap that exists today in 

profiling technologies for database application developers. The 

context of an application (threads, functions, loops, number of 
rows from a SQL query actually consumed by the application, 

etc.) and the context of the database server when executing a 

statement (duration of execution, duration for which the statement 

was blocked, number of rows returned etc.) remain uncorrelated 

with each other. We propose an infrastructure that can obtain and 
correlate the appropriate application context with the database 

context, thereby enabling a class of development, debugging and 

tuning tasks that are today difficult to achieve for application 

developers, as in the examples above.  The prototype that we have 

developed extends the DBMS and application profiling 
infrastructure. It is built as an Add-In to Microsoft Visual Studio, 

and works for ADO.NET applications that execute against 

Microsoft SQL Server  2005. This integration makes it easy for a 

developer to invoke and interact with our tool from inside the 

Microsoft Visual Studio development environment. Our solution 
builds on the existing DBMS and application profiling 

infrastructure. There are three sources of information that we use 

which are generated when the application is executed:  

 Microsoft SQL Server tracing  [29]. This is the built-in 
profiling capability of the DBMS. There are several types of 

trace events that are exposed by the server for profiling. For 

example, SQLStatementCompleted  is an event that is 

generated whenever a SQL statement completes. It contains 

attributes such as the SQL text, Duration of statement, Reads, 
Writes, Rows returned by the statement, etc. Another 

example is a Deadlock event, which is generated whenever 

the server identifies a deadlock and terminates a victim 

request.  It contains attributes such as the text of the two 

deadlocking requests, which request was chosen as a victim 
etc.   

 ADO.NET tracing [7]. This is the built-in profiling capability 

of the ADO.NET data access layer. Since the application 

uses the ADO.NET APIs to connect and interact with the 
DBMS, this tracing contains detailed information about how 

the application uses the APIs. For example, an event is 

generated each time the application opens a connection, 

executes a statement, consumes a row from the result set etc.  

 Application tracing. We use binary instrumentation 
techniques [10] to inject code into the application. Since 

binary instrumentation is a post-compilation step, 

need access to the application source code. When the 

application is run, the injected code emits certain events. For 

example, through appropriate code injection, we can make 
the application emit an event whenever a thread enters or 

leaves a function. The attributes of such an event include the 

identifier of the function, timestamp of entry, timestamp of 

exit etc. Another example of an event is whenever the 

application enters or leaves a loop.  

The events obtained from each of these sources are written into an 

Event Tracing for Windows (ETW) [11] log file. ETW is an 

efficient and scalable logging infrastructure that allows different 

processes on a machine to generate and log traces in a uniform 

manner to the same trace session. An ETW event log is generated 

on each machine that involves either an application process or the 
DBMS server process. We then perform a key post-processing 

step over the ETW event log(s) to correlate the application and 

database contexts. The output of our post-processing is a single 

view  where both the application and database profile of each 

statement issued by the application are exposed. For example, a 
row in this view contains information such as (ProcessId, 

ThreadId, Function Identifier, SQL statement, Rows returned, 

Rows consumed, Columns returned, Columns consumed, SQL 

duration, Blocked duration, Reads, Writes, Error code, . This 

makes it possible to perform the application level debugging and 
tuning that SQL application developers need to do as in Examples 

1 and 2.  

Our current solution is targeted for use in development 

environments and is not engineered for use in production systems 

since the overheads introduced due to application instrumentation, 
ADO.NET tracing etc. can be significant. In Section 4 we briefly 

discuss how our solution can be adapted so it can potentially scale 

to production scenarios as well.  

The rest of this paper is structured as follows. In Section 2 we 

provide more examples of tasks that are enabled by our 
infrastructure. In Section 3, we describe the functionality of the 

tool; and we present the technical details of our infrastructure in 

Section 4. Section 5 describes how we implement two interesting 

and non- vertical tasks on top of our infrastructure.  

Section 6 describes our experiences using the tool with a few real 
applications. We also present an evaluation of the overheads 

incurred by application instrumentation. Section 7 discusses 

related work and we conclude in Section 8. 

 

2. MOTIVATING SCENARIOS 
In the introduction we presented two motivating examples for the 

infrastructure presented in this paper.  In this section, we provide 

more scenarios. All of these scenarios share a common thread. 
These tasks cannot be achieved unless both application and 

database context information is available and can be correlated.  

2.1 Suggesting Fast k  
Consider query Q10 from the TPC-H decision support benchmark 

[30], that returns for each customer the revenue lost due to items 

returned by the customer. The query is a join between four tables 

(customer, order, lineitem, and nation) and returns the customers 

in descending order of the lost revenue. The application code that 

consumes the results of the query may be written for example as:  

conn = new SqlConnection(connString); 

conn.Open(); 

SqlCommand cmd = new SqlCommand(cmdtext, conn);  

cmdtext = @"SELECT .., SUM(l_extendedprice*(1- 

 l_discount)) AS REVENUE..."; 
cmd.CommandText = cmdtext; 

cmd.CommandType = CommandType.Text; 

rdr = cmd.ExecuteReader(); 

while (rdr.Read()) {  

DisplayData(rdr); 
 

if(LostRevenue <= MINREVENUE)     break; 

} 
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where the variable LostRevenue is bound to the column of the 

query which computes the revenue lost by the customer. In any 

given execution, the application may only consume a few rows 
from the entire result set of the query. In most DBMSs, when a 

query is executed, the query optimizer generates a plan that is 

optimized for the case when all rows in the result set are needed. 

If the above query returns many rows (say N) and the application 

consumes only k rows (k << N),  then it may be beneficial to pass 
a query hint to the database server requesting that the plan be 

optimized for returning the top k rows quickly. For example, in 

Microsoft SQL Server this is achieved by using an OPTION 

(FAST k) query hint. The important point to note is that the 

information about what value of k (number of rows consumed by 
the application) is appropriate can only be obtained from the 

application context. Once this information is available, it is 

possible to perform interesting analysis (see Section 5.2) that can 

suggest to the developer if providing the hint will actually  benefit 

the performance of the query.  

2.2 Suggesting parameterization 
A common performance problem on the server arises when 

applications do not parameterize their SQL. Consider a function in 
the application that when invoked with a parameter p (say having 

a value 23), executes a SQL statement with the value of that 

parameter:  AccountId = 

nt, 

and therefore in each invocation a different SQL text is submitted 
to the server. Thus, the server is required to treat each statement as 

requiring a potentially unique execution plan. 

DBMSs have auto parameterization capabilities: however they 

typically apply only to very simple queries (such as single table 

selection queries). Thus, in the above example, the application can 
cause unnecessary compilations and inefficient usage of the 

DBMS procedure cache. Since the execution plans that are 

optimal for each of these instances may often be the same, it can 

be far more efficient for the application to parameterize its SQL: 

R, S @p , and 
pass in the parameter value via the data access APIs in the 

application. This tells the database server to treat different 

instances of that query as a single statement with a shared plan, 

which can dramatically reduce the compilation time as well as 

resources consumed in the procedure cache.  

2.3 Identifying Opportunities for Bulk 

Operations 
Consider a loop in the application code, shown below, inside 

which the application is inserting data into a table:  

for (int i=0;i<MAXVALUE;i++) { 

 // execute SQL  

} 

As written above, the code is inefficient since each time through 

the loop an INSERT statement is executed. A much more efficient 

way to achieve the same result is to use the bulk insert APIs of the 

data access layer, which takes advantage of batching. Note that 

the ingredients for identifying this problem is having the 
application context that a particular SQL statement is executed 

repeatedly inside a loop, and the database context to know that 

each instance is in fact an INSERT statement on a table T. It is 

then possible to put these pieces of information together to 

suggest a mapping to the bulk insert APIs. 

2.4 Suggesting appropriate use of Data Access 

APIs 
Many database application developers may be unaware of certain 

best practices for using data access APIs such as ADO.NET. For 
example, when executing a stored procedure, the best practice is 

to use the commandType.StoredProcedure option, passing the 

parameters using the AddParameters API [18]. This results in a 

Remote Procedure call (RPC) Event and is therefore efficient. 

However, a developer who is unaware of this may use the default 
commandType.Text option and pass in 

In this case, the database server gets a Language 

Event which needs to be parsed to find the stored procedure to be 

invoked, arguments to be passed etc. If the above code is executed 

many times, the performance improvement by using an RPC 
Event compared to Language Event can be significant. In this 

example, the key information from the application context is 

knowing that a Language Event was issued by the application and 

knowing from the database context that what was issued was in 

fact a stored procedure.  

A second example of API usage arises when a query returns a 

scalar value (one row and one column) as the result. For such 
cases, ADO.NET provides an ExecuteScalar API [12] that is 

much more efficient that the more general ExecuteReader API. In 

this example, the application context is the fact that 

ExecuteReader API was used, and the database context is the fact 

that the query returns exactly one row and one column in its result 

set.  

2.5 Identifying sequences for index tuning 
Consider a sequence of SQL statements such as the one given 

below that is issued by an application: 

 

 

 

DROP TABLE R 

The interesting characteristic of the above sequence is that table R 

is transient. It is possible that if the application were to issue a 

CREATE INDEX statement on table R after the INSERT 
statement but before the SELECT statement (there may be 

multiple such statements), the SELECT statement(s) could be 

speeded up enough to offset the cost of creating the index. The 

work in [3] describes a tool that given a sequence of SQL 

statements is able to recommend if indexes should be created or 

dropped in the sequence to reduce overall cost of the sequence.  

The developer, who is the user of such a tool, still needs to be able 

to find such sequences in his/her application. This is necessary 

since applying the recommendations of the tool requires changes 

to the application code. This requires an understanding of the 

function(s) involved in producing the sequence of statements. 
Since a sequence can span function boundaries, extracting a 

sequence of SQL statements would require knowledge of the call 

graph structure of the application which is available only in the 

application side context. 
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3. ARCHITECTURE AND OVERVIEW OF 

THE TOOL  
The architecture of our infrastructure and the browsing and 

analysis tools we have built using the infrastructure is shown in 

Figure 1. 

We have extended Visual Studio System (VSS) using VSS 

 [5] to integrate the functionality of the tool. 

Our tool takes an input the application binaries. A typical usage 
scenario of the tool is to open the project corresponding to the 

target that needs to be profiled. In Figure 2 the developer opened 

the DataGrid project and clicked on an Add-In menu of Visual 

Studio to invoke the tool. Since we have integrated the tool into 

VSS, it can automatically enumerate the VSS project system to 
get the target executable file(s) to be instrumented and 

determine any dependencies (like dynamically linked libraries) 

that may also need to be instrumented. Alternatively the 

developer has a choice to point the tool to a specific set of 

binaries. The tool enables developers to profile any .NET 
application that uses ADO.NET interfaces to talk to a Microsoft 

SQL Server 2005 database server.  

Once instrumented, developer can click through the wizard, 

which launches the application after turning on tracing for all the 

three event providers: (1) Microsoft SQL Server tracing (2) 

ADO.NET tracing and (3) Instrumented events from the 
application. This allows events containing both application 

context and database context to be logged into the ETW event 

log. The key post-processing step is done by our Log Analyzer 

that correlates application and server events using a set of 

matching techniques (see Section 4.3). This matching is non-

trivial since today there is no unique mechanism understood 

both by ADO.NET and Microsoft SQL Server to correlate an 
application event with a server event. The above collection and 

matching enables us to bridge the two contexts and provide 

significant value to database developers.  

Once the post-processing step is complete, the tool invokes the 

module corresponding to the summary/drill down box in Figure 

1. The output of the tool is the summary/detail view as shown in 

the Figure 3 below. Developers can get a summary and detail 
view involving various counters from the application, 

ADO.NET and Microsoft SQL Server, navigate the call graph 

hierarchy and invoke specific verticals. The functional overview 

and usage of the tool is described below. 

The Summary view gives the function name, aggregate time 

spent in a function, how many times the function was invoked 
and aggregate time spent executing the SQL statement (issued 

by the particular function) in the database server. Today the 

counters can be obtained from profiling the application using 

application side profiling tools such as Visual Studio Profiler; 
-add 

since it merges in database context into the application context.  

Figure 1.   Architecture of our database application debugging and tuning tool. 
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Figure 3. Summary and Detail views on the profiled data  

Figure 2. Instrumenting the target application. 
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Consider the function ReadStuff in Figure 3 which issues a SQL 

call.  From the  Summary view the developer can determine that 

the function was called twice and the aggregate time it spend 
inside this function (across all instances) was 5019 ms. Out of the 

total time spend in the function, most of the time was spend 

executing SQL (5006 ms). The Detail view gives more 

information at a function instance level. The tool allows drill 

down to display attributes of all the statements that were issued 
under the particular instance of the function or statements that 

were issued under the call tree of the particular instance of the 

function. The attributes of the SQL statement that are displayed 

include counters like duration, reads, writes, and also data access 

counters like reads issued by the application, and the data access 

API type, corresponding to the SQL that was issued.  

Finally, the tool allows interesting analysis tools to be built on top 
of the profiled and correlated trace data such as suggesting FAST-

k query hint (see Section 5.2), finding patterns of SQL statement 

invocations (see Section 2.5), detecting deadlocks (see Example 

1), finding connection object leaks, etc. 

         

4. IMPLEMENTATION  
We now describe the implementation of our key components. As 

explained in Section 3, our tool takes as input the binaries of the 

application, which are then instrumented (Section 4.1). When the 
instrumented binaries are executed, they generate a log of events 

from the application as well as the database server (Section 4.2). 

These events are then analyzed by a log analyzer (Section 4.3) 

which produces as output a schematized view of the application 

trace. This view allows flexible analysis over the trace and allows 

tasks such as those described in Sections 1 and 2.  

4.1 Binary Instrumentation Module 
We use a binary instrumentation toolkit called Vulcan [10].  

Vulcan works by analyzing the input binary and converting it into 

a symbolic intermediate representation (IR) which is easy to 
manipulate. Vulcan provides high level abstractions of its IR that 

allow a programmer to traverse the various components of a 

binary (Program, Component, Section, Procedure, BasicBlock, 

and Instruction) and to modify it. We examine the binaries and we 

insert instructions for instrumentation at selected places. 
Currently, we instrument function enter/exit. When the 

instrumented binary is executed and the program enters or exits a 

function it makes  a callback into our module. This module 

generates a custom trace event which encapsulates attributes like 

the hostname, process id, thread id, time stamp and the name of 
the function. This event is then written to the current trace session. 

Events from this session are logged as described below in Section 

4.2. 

4.2 Event Providers and Logging 
We use the Event Tracing for Windows (ETW) infrastructure 

which is a low overhead event logging mechanism used by a 

variety of Windows applications. An event represents any activity 

of interest and is customizable by the event provider. Every event 
logged to an ETW session contains some common attributes like 

the name of the event provider, type of event, id of the thread that 

issued the event, time stamp, and duration. In addition there is an 

attribute that allows provider defined data to be logged. For 

instance, as described above, events logged by the instrumented 
application describe the name of the function that was entered (or 

left).  

We leverage the fact that Microsoft SQL Server 2005 and the data 

access layer (ADO.NET, ODBC, and OLEDB) is instrumented to 

emit ETW events on demand. The Microsoft SQL Server event 
provider can emit event types like login audits, stored procedure 

execution completed, batch execution completed, deadlock etc. 

Also the server event provider emits custom data that has various 

interesting attributes like duration, rows returned by server, 

number of reads and writes etc. The ADO.NET layer provides 
events corresponding to every data read API, opening and closing 

of connections, type of data access API used. When the 

instrumented application is run we use trace control 

manager interface to turn on emitting of events by the three 

providers instrumented binary, data access layer and 
database server layer. We also ensure that all the events are 

logged to a unique session. Thus, the timestamps of events across 

processes on the same machine are generated using a single 

mechanism, which make correlating these events easier. The 

single log corresponding to this session can subsequently be 

analyzed offline after the application has finished running.  

As an example, for the function shown in Figure 4, which uses 
ADO.NET APIs to connect to the database server, the trace log 

shown in Table 1 is generated. Note the three types of Events: 

Application, Data access and Server. The common information 

available across processes is timestamps. The provider data 

column contains the actual payload of the event (e.g., in the form 

of SQL statement strings etc).   

4.3 Log Analyzer: Matching application and 

database context 
The log analyzer takes as input the trace log. It correlates the 

events from the three providers and produces as output a 
schematized view of the application trace that contains both 

application and server context information. An example of this 

(represented in XML) is shown in Figure 5. Note how the output 

shows the thread id, function name, the SQL statement issued by 

the function, database server context for the statement. This 
output allows flexible analysis over the trace and allows tuning 

and debugging tasks such those described in Section 2. The key 

value added by the Log Analyzer is in correlating the application 

and database contexts from the event log.  

 

 

Events have the schema shown in Table 1 (only a few relevant 

attributes are shown).  

Function foo() { 

SqlConnection conn = new SqlConnection; 

conn.Open(); 

SqlCommand cmd = new SqlCommand(cmdtext, 

conn) 

cmdtext  

cmd.ExecuteReader(); 

conn.Close(); 

} 

Figure 4. Sample application code that opens a 

connection, executes a query, and closes the connection. 

1257



 

The log analyzer needs to correlate the three types of events: 

Application Events (function enter/leave), data access 

(ADO.NET) events and database server (Microsoft SQL Server 
2005) events. Correlating an Application event and an ADO.NET 

event is relatively straightforward since both these kinds of events 

are emitted from the same process. In particular, given the 

ThreadId and Timestamp, it is possible to correlate exactly the 

data access events that are executed within a particular invocation 

of a function. 

 

Event 

Type   

Proc. 

id 

Thread 

id 
Timestamp Provider data 

App 

Event 

596 234 403065 "Enter  

Data 

access 

Event 

596 234 403075  

Data 

access 

Event 

596 234 403085 

 

Data 
access 

Event 

596 234 403095 Set text  

 

Data 

access 

Event 

596 234 403105 SqlCommand.Exe

cuteReader  

Server 

Event 

128 104 403115 
; Duration=100; 

Reads=40  

Data 
access 

Event 

596 234 403125 
 

App 

Event 

596 234 40135 "  

 

 

 

  Matching a Data Access event D with the corresponding 

Database server event(s) is more challenging. Ideally, we need an 

identifier for an event that is unique across the application and 
server processes. However, such a unique identifier is unavailable 

today for data access providers against Microsoft SQL Server. 

Until such support is made available, this matching remains 

challenging and is a key step where we add value.  

One useful attribute available from each event in the database 

server side is the client process id. Thus a data access event D is 

matched with the server event S  only if the D.ProcessId = 
S.ClientProcessId. However, since a single process may issues 

multiple SQL statements concurrently (e.g., on different threads), 

we need additional techniques for narrowing down the possible 

matches.  

We have two additional pieces of information to assist matching. 

First is the timestamp. For example, we know that a data access 
event such as SqlCommand.Execute must precede the 

corresponding server event which is emitted once the SQL 

command has executed. This can significantly narrow down the 

possible server events that can match. Second, the provider data 

contains the actual string of the command being executed. The 
main issue with relying on matching strings is that exact string 

matching is not robust for this task. This is because the string by 

the data access layer may get modified in the server. Therefore, 

instead of exact string matches we rely on approximate matching. 

There are many techniques that have been developed for 
approximately matching string, e.g.,  [8]. We use a simplified 

version of [17] that requires tokenizing the strings based on 

delimiters and computing the intersection of tokens between the 

two strings. This technique is significantly more reliable than 

exact string matching, and has worked well in the applications on 

which we have used the tool thus far.  

 

MatchEvents (S) // S is event stream obtained via ETW 
tracing of App and SQL Server ordered by TimeStamp 

1. While (Events available in event stream) 

2.    Parse the event stream to gather event type, thread   

           id, user data (the SQL string)  

3.    If the EventType is an App event 
4.      Extract the SQL string that was issued, add to the 

             current thread context. Add invoking function  

             name. 

5.    If the EventType is a SQL Server Event 

6.       ServerString = Get the SQL string of the event 
7.       For each thread context available 

8.          For each event in the current thread context 

9.      AppString = Get the SQL string of the event  

10.      Score = GetApproximateM atchScore  

                                   (ServerString, AppString)  
11.             If (Score  > MaxScore)  

12.         MaxScore = Score   

                        MatchedThreadContext =       

                               CurrentThreadContext 

13.    Output the AppString with the highest score as 
the match for ServerString and remove from the 

MatchedThreadContext 

 

Figure 6. Algorithm for matching application events 

with database server events. 
Figure 5. Example of output of Log Analyzer for input 

shown in Table 1. 

Table 1. Example of a trace log generated when the 

function shown in Figure 2 is executed. 
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Our algorithm for matching used by the log analyzer is sketched 

in Figure 6. The algorithm maintains  a Thread context,  which is a 

data structure that maintains a list of strings corresponding to the 
SQL events issued by this thread that are not yet matched to a 

Microsoft SQL Server event. We have observed that in the real-

world application that we have used the tool with, we get very 

good accuracy of matches using the above techniques.  

Finally, note that the above algorithm is applicable even when the 

traces are generated on multiple machines (e.g., database server 

and application execute on different machines). The only 

across the machines, merged by the event timestamp field. It is 

necessary to take into account clock skew across machines while 

merging, for example by using the Network Time Protocol [23]. 

 

4.4 Techniques for Controlling 

Instrumentation and Tracing Overheads 
y for scenarios during application 

development and debugging, where instrumentation overheads are 

typically not an issue. To use the above technology for production 

setting of course requires a more careful examination of these 

overheads. Below we briefly mention a few techniques for 
controlling these overheads (for details of overheads of our 

current prototype see Section 6).  

 Static analysis to detect only relevant functions . Static 

analysis of a binary can help determine if a function can 
possibly perform a data access call. We could then only 

instrument such functions. Note that with this optimization, 

since we do not instrument functions without data access 

calls, the call graph of function calls made by the application 

may be lost.  

 User specified modules, functions. The developer may be 

aware of which binaries, or even which functions are of 

interest for profiling. Our binary instrumentation module 

(Section 4.1) can take a list of such binaries/functions as 

input and only instrument the specified functions. 

 Selectively turning on data access and database server 

events.  We can ensure that we request ADO.NET and 

Microsoft SQL Server the providers to emit only necessary 

events. For example, we can turn off events in ADO.NET 
that are emitted each time an application consumes a row. In 

this case, we trade-off instrumentation overhead for some 

application context information (number of rows consumed 

by application).  

 

5. VERTICAL DEBUGGING AND TUNING 

TOOLS 
As described in Section 4, the log analyzer produces a 

schematized view of the application trace that contains both 

application and server context information. This view generated 

can subsequently be queried for providing browse, summarize and 
drill down functionality . For example the tool allows developers 

to explore function call hierarchies and allows drill down on SQL 

statements that were issued under a function/call tree.  

In this section, we describe two verticals we have built that 

perform more advanced analysis over the profiled data. The first 
example shows how to detect functions in the application that 

caused a deadlock in the DBMS (see Example 1 presented in the 

Introduction). The second example describes how to recommend 

to the application developer the suggested use of an OPTION 

(FAST k) query hint for an expensive query whose entire result 
set may not be consumed by the application (see Section 2.1).   

 

5.1 Detecting Applications Functions causing 

a Server Deadlock  
The Microsoft SQL Server trace produces a Deadlock Event 

which contains the wait-for graph that describes a deadlock. The 
graph contains the statements being executed that resulted in the 

deadlock as well as timestamp, and client process id(s) 

information. The log analyzer (Section 4.3) extracts this 

information and stores it in the schematized application trace 

under the root node of the tree (as an event of type deadlock).  

For each such deadlock event, the deadlock analysis 

finds the statements issued by the application that correspond to 
the statements in the deadlock event. Note that once we find the 

statement, we get all its associated application context such as 

function and thread. This can then be highlighted to the developer 

so they can see exactly which functions in their application issues 

the statements that lead to the deadlock (as described in Example 
1 in the Introduction). A sample output from the deadlock analysis 

vertical is shown in Figure 7.  

The output of the log analyzer (described in Figure 5) is expanded 

to the right level and the functions and the SQL events that caused 

the deadlock in the server are highlighted using a color coding 

scheme.  

5.2 Suggesting FAST-k query hints 
In Section 2.1 we present the example of a query that returns 

many rows of which only a few are consumed by the application. 
We observe that in such cases significant speed up may be 

possible if the application developer can rewrite the query to pass 

in an OPTION (FAST k) query hint to the database server, so that 

the query optimizer can choose a plan that more optimal when k 

rows are needed (as opposed to all rows needed). Thus the 
developer can point to a query and invoke the Fast-k analysis tool 

which returns as output an analysis of how the cost of the query 

varies with k (see Figure 8 for an example of the output). Such 

information can be used by the developer to decide if it is 

appropriate to rewrite his/her query to use the hint.   

The Fast-k analysis tool explores how the cost of the query varies 

with k (in OPTION (FAST k) hint). The naïve approach of costing 
the query for each value of k is not scalable. The key assumption 

we leverage is that in a well behaved query optimizer, the cost of 

the query plan cannot decrease as k is increased. For a large class 

of queries (such as single block SPJ queries with 

grouping/aggregation) this assumption typically holds true. Our 
approach is to perform a binary search over the range of values of 

k (between kmin and kmax), where kmin is the number of rows 

consumed by the application and kmax is the total number of rows 

returned by the query. Note that both these pieces of information 

are available from the output of the log analyzer. If the plan (and 
hence the cost) of the query remains the same for two different 

values of k (say k1 and k2), then we know that the plan (and cost) 

remains the same for all values of k between k1 and k2 as well. 

Thus, the binary search strategy allows us to prune out a large part 

of search space quickly. 
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An example of the output produced by our tool is shown in Figure 

8. In this figure Query Cost is the optimizer estimated cost of the 
query. Around the value of k=1000, the query optimizer switches 

the plan from an Index Nested Loops join to a Hash join. This 

causes the cost of the plan to increase significantly  as shown. By 

observing such output, the developer could determine whether 

providing the OPTION (FAST k) query hint is appropriate for 

his/her application or not.  

 

 

6. EXPERIENCES WITH REAL 

APPLICATIONS 
In this section we report evaluation of the tool over four 

applications: 

 Microsoft SQL Server Database Engine Tuning Advisor 

(DTA)[2]. DTA is a physical database design tool that ships 

with Microsoft SQL Server 2005.  

 Microsoft Conference Management Toolkit (CMT).CMT is a 
web service sponsored by Microsoft Research that handles 

workflow for an academic conference 

(http://msrcmt.research.microsoft.com/cmt/). CMT was 

 

 MARS and LOB which are sample applications that run 

against the AdventureWork database that is shipped with 
Microsoft SQL Server 2005. LOB reads binary data from a 

file into a database and writes the contents to a file. MARS is 

a simple application that demonstrates the support for 

multiple access record sets in Microsoft SQL Server.  

The summary of results is shown in Table 2. Note that while the 

instrumentation overheads are significant, these are typically not 
an issue when used by a developer in a development environment 

(see Section 4.4 for a discussion of optimizations for use in 

production scenarios). In one of the applications the profiling 

revealed that not all stored procedure invocations were invoked as 

RPCs, rather they were performed using the significantly less 
efficient Language events (see Section 2.4). In another 

Query  c os t vs . k (O P T ION F AS T  k )
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Figure 8. Analysis of query cost vs. k for the OPTION 

(FAST k) query hint. 

Figure 7. Output of deadlock analysis vertical. 
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application, running our tool revealed a set of redundant SQL 

statement invocations that was issued in the function that was 

responsible for opening connections.  

 

 

 

Applic

ation 

No. of 

App 

events 

No. 

of 
data 

trace 

event

s 

No. of 

server 
trace 

events 

Total 

events 

Instrumen

tation 
overhead 

in the 

running 

time 

MARS 25 87 15 127 7.1% 

LOB 16 32 5 53 6.3% 

CMT  6797 7224 515 14536 75.1% 

DTA 3832951 3630 330 3836911 325.33% 

 

7. RELATED WORK 
Relational DBMS vendors provide profiler tools that are 
commonly used to profile database servers. Microsoft SQL Server 

Profiler [29], Oracle Trace [25] and DB2 Query Patroller [15] are 

widely used by database developers. Similarly database 

development environments such as Microsoft Visual Studio 

profiler [22], Rational PurifyPlus [27], gprof [13] etc. all provide 
application profiling capabilities. But as explained in the 

introduction section, to the best of our knowledge these two sets 

of tools remain disconnected from one another. Our infrastructure 

builds upon the profiling capabilities of both application side and 

server side profilers, and adds value by correlating context across 

server and application contexts.  

There are integrated profilers like  

[19] and profilers from Identify  [4]. While technical details are 

not available about specifics of these tools, they do provide some 

degree of correlation of application activity with database activity. 

Our work on building more advanced vertical tools such as those 
described in Section 5 is novel with respect to these tools. Magpie 

is a framework [6] that performs function level instrumentation of 

Microsoft SQL Server itself, and uses ETW to log its trace, but is 

not geared for gathering the context of SQL/ADO.NET 

applications as we do.  

Finally, there are several tools that can help database developers 

tune their SQL such as Database Engine Tuning Advisor (DTA) 
[2], IBM DB2 Design Advisor [14], Oracle Tuning Pack [26], 

Quest [28]. However, the key difference is that these tools work 

exclusively on the database context, and do not leverage 

application context as described in this paper.  

 

8. CONCLUSION 
We have developed a tool that helps bridge the disconnect that 

exists today between application side profilers and DBMS 

profilers. Our tool allows database application developers to 

perform debugging and tuning tasks that are difficult or 
impossible using tools available today. An ongoing direction of 

work is developing more vertical analysis capabilities into our 

tool.  
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