

Bridging the Application and DBMS Profiling Divide for
Database Application Developers

Surajit Chaudhuri
Microsoft Research

One Microsoft Way
Redmond, WA 98052

+1 (425) 703-1938

surajitc@microsoft.com

Vivek Narasayya
Microsoft Research

One Microsoft Way
Redmond, WA 98052

+1 (425) 703-2616

viveknar@microsoft.com

Manoj Syamala
Microsoft Research

One Microsoft Way
Redmond, WA 98052

+1 (425) 703-5389

manojsy@microsoft.com

ABSTRACT

tools for profiling and tuning application code

remain disconnected from the profiling and tuning tools for

relational DBMSs. This makes it challenging for developers of

database applications to profile, tune and debug their applications,

for example, identifying application code that causes deadlocks in
the server. We have developed an infrastructure that

simultaneously captures both the application context as well as

the database context, thereby enabling a rich class of tuning,

profiling and debugging tasks that is not possible today. We have

built a tool using this infrastructure that enables developers to
seamlessly profile, tune and debug ADO.NET applications over

Microsoft SQL Server by taking advantage of information across

the application and database contexts. We describe and evaluate

several tasks that can be accomplished using this tool.

1. INTRODUCTION
Today, relational database management systems (RDBMSs) serve

as the backend for many real-world, data intensive applications.

These applications use programming interfaces such as ODBC

[21], JDBC [16], ADO.NET [1], and OLE DB [24] to interact
with the database server. When building these applications,

application developers today use a variety of tools for

understanding and fixing problems in their application. For

example, development environments such as Microsoft Visual

Studio [20] and Eclipse [9] provide profiling tools that allow
developers to understand performance characteristics in their

application code such as frequently invoked functions, time spent

in a function etc. Of course, for database application developers

such support is not sufficient since they use APIs to invoke

DBMS functionality.
execution happens inside the DBMS. DBMSs provide profiling

and tuning tools of their own, e.g., Microsoft SQL Server Profiler

[29], IBM DB2 Query Patroller [15] etc. These DBMS profiling

tools give developers information about which SQL statements

were executed against the server, the duration of each statement,
read and writes performed by the statement, blocking activity etc.

However, the information obtained from the development

environment profiler and the DBMS profiler today remain as two

islands of information that have little or no understanding of each

other. This makes it difficult for database application developers
to identify and fix problems with their applications as illustrated

below:

Example 1. Detecting functions in the application code that

caused a deadlock in the DBMS . Consider an application that

has two threads, each executing a task on behalf of a different
user. Each thread invokes certain functions that in turn invoke

SQL statements that read from and write to a particular table T in

the database. Consider a scenario where an intermittent bug in one

of the threads causes SQL statements issued by the application to

deadlock with one another on the server. The database server will
detect the deadlock and terminate one of the statements and

unblock the other. This is manifested in the app lication as one

thread receiving an error from the server and the other thread

running to completion as normal. Thus, while it is possible for the

developer to know that there was a deadlock (by examining the
DBMS profiler output or the server error message of the first

thread) it is difficult for the developer to know, for example,

which function from the other thread issued the corresponding

statement that caused the server deadlock. Having the ability to

identify the application code that is responsible for the problem in
the database server can save considerable debugging effort for the

developer.

Example 2. Consider a table such as CUSTOMER (Name,

Address, City, State, Zip, Comments). A common performance

issue is that the application requests data (e.g. columns) from the
server that are never used by the application. For example, the

can be wasteful of

server resources, particularly if the application only needs to use

columns Name, Address from the CUSTOMER table. However,

today neither the DBMS profiling tools (no awareness of which
columns are actually used by the application) nor the profiling

tools available in application development environments (no

awareness of impact of the query on the resources consumed in

the server) can identify this problem. Even doing an exact match

search for the string () in the

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for di rect commercial advantage,

the VLDB copyright notice and the title of the publication and its date
appear, and notice is given that copying is by permission of the Very Large

Database Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permissions from the

publisher, ACM.
, September 23-28, 2007, Vienna, Austria.

Copyright 2007 VLDB Endowment, ACM 978-1-59593-649-3/07/09.

1252

application code might not help because the query string itself can

be dynamically constructed by concatenating other strings. A tool

that can identify such a problem would be useful to developers.
Ideally, such a tool would even be able to suggest rewriting the

query and quantify the associated performance improvement.

These examples highlight a significant gap that exists today in

profiling technologies for database application developers. The

context of an application (threads, functions, loops, number of
rows from a SQL query actually consumed by the application,

etc.) and the context of the database server when executing a

statement (duration of execution, duration for which the statement

was blocked, number of rows returned etc.) remain uncorrelated

with each other. We propose an infrastructure that can obtain and
correlate the appropriate application context with the database

context, thereby enabling a class of development, debugging and

tuning tasks that are today difficult to achieve for application

developers, as in the examples above. The prototype that we have

developed extends the DBMS and application profiling
infrastructure. It is built as an Add-In to Microsoft Visual Studio,

and works for ADO.NET applications that execute against

Microsoft SQL Server 2005. This integration makes it easy for a

developer to invoke and interact with our tool from inside the

Microsoft Visual Studio development environment. Our solution
builds on the existing DBMS and application profiling

infrastructure. There are three sources of information that we use

which are generated when the application is executed:

 Microsoft SQL Server tracing [29]. This is the built-in
profiling capability of the DBMS. There are several types of

trace events that are exposed by the server for profiling. For

example, SQLStatementCompleted is an event that is

generated whenever a SQL statement completes. It contains

attributes such as the SQL text, Duration of statement, Reads,
Writes, Rows returned by the statement, etc. Another

example is a Deadlock event, which is generated whenever

the server identifies a deadlock and terminates a victim

request. It contains attributes such as the text of the two

deadlocking requests, which request was chosen as a victim
etc.

 ADO.NET tracing [7]. This is the built-in profiling capability

of the ADO.NET data access layer. Since the application

uses the ADO.NET APIs to connect and interact with the
DBMS, this tracing contains detailed information about how

the application uses the APIs. For example, an event is

generated each time the application opens a connection,

executes a statement, consumes a row from the result set etc.

 Application tracing. We use binary instrumentation
techniques [10] to inject code into the application. Since

binary instrumentation is a post-compilation step,

need access to the application source code. When the

application is run, the injected code emits certain events. For

example, through appropriate code injection, we can make
the application emit an event whenever a thread enters or

leaves a function. The attributes of such an event include the

identifier of the function, timestamp of entry, timestamp of

exit etc. Another example of an event is whenever the

application enters or leaves a loop.

The events obtained from each of these sources are written into an

Event Tracing for Windows (ETW) [11] log file. ETW is an

efficient and scalable logging infrastructure that allows different

processes on a machine to generate and log traces in a uniform

manner to the same trace session. An ETW event log is generated

on each machine that involves either an application process or the
DBMS server process. We then perform a key post-processing

step over the ETW event log(s) to correlate the application and

database contexts. The output of our post-processing is a single

view where both the application and database profile of each

statement issued by the application are exposed. For example, a
row in this view contains information such as (ProcessId,

ThreadId, Function Identifier, SQL statement, Rows returned,

Rows consumed, Columns returned, Columns consumed, SQL

duration, Blocked duration, Reads, Writes, Error code, . This

makes it possible to perform the application level debugging and
tuning that SQL application developers need to do as in Examples

1 and 2.

Our current solution is targeted for use in development

environments and is not engineered for use in production systems

since the overheads introduced due to application instrumentation,
ADO.NET tracing etc. can be significant. In Section 4 we briefly

discuss how our solution can be adapted so it can potentially scale

to production scenarios as well.

The rest of this paper is structured as follows. In Section 2 we

provide more examples of tasks that are enabled by our
infrastructure. In Section 3, we describe the functionality of the

tool; and we present the technical details of our infrastructure in

Section 4. Section 5 describes how we implement two interesting

and non- vertical tasks on top of our infrastructure.

Section 6 describes our experiences using the tool with a few real
applications. We also present an evaluation of the overheads

incurred by application instrumentation. Section 7 discusses

related work and we conclude in Section 8.

2. MOTIVATING SCENARIOS
In the introduction we presented two motivating examples for the

infrastructure presented in this paper. In this section, we provide

more scenarios. All of these scenarios share a common thread.
These tasks cannot be achieved unless both application and

database context information is available and can be correlated.

2.1 Suggesting Fast k
Consider query Q10 from the TPC-H decision support benchmark

[30], that returns for each customer the revenue lost due to items

returned by the customer. The query is a join between four tables

(customer, order, lineitem, and nation) and returns the customers

in descending order of the lost revenue. The application code that

consumes the results of the query may be written for example as:

conn = new SqlConnection(connString);

conn.Open();

SqlCommand cmd = new SqlCommand(cmdtext, conn);

cmdtext = @"SELECT .., SUM(l_extendedprice*(1-

 l_discount)) AS REVENUE...";
cmd.CommandText = cmdtext;

cmd.CommandType = CommandType.Text;

rdr = cmd.ExecuteReader();

while (rdr.Read()) {

DisplayData(rdr);

if(LostRevenue <= MINREVENUE) break;

}

1253

where the variable LostRevenue is bound to the column of the

query which computes the revenue lost by the customer. In any

given execution, the application may only consume a few rows
from the entire result set of the query. In most DBMSs, when a

query is executed, the query optimizer generates a plan that is

optimized for the case when all rows in the result set are needed.

If the above query returns many rows (say N) and the application

consumes only k rows (k << N), then it may be beneficial to pass
a query hint to the database server requesting that the plan be

optimized for returning the top k rows quickly. For example, in

Microsoft SQL Server this is achieved by using an OPTION

(FAST k) query hint. The important point to note is that the

information about what value of k (number of rows consumed by
the application) is appropriate can only be obtained from the

application context. Once this information is available, it is

possible to perform interesting analysis (see Section 5.2) that can

suggest to the developer if providing the hint will actually benefit

the performance of the query.

2.2 Suggesting parameterization
A common performance problem on the server arises when

applications do not parameterize their SQL. Consider a function in
the application that when invoked with a parameter p (say having

a value 23), executes a SQL statement with the value of that

parameter: AccountId =

nt,

and therefore in each invocation a different SQL text is submitted
to the server. Thus, the server is required to treat each statement as

requiring a potentially unique execution plan.

DBMSs have auto parameterization capabilities: however they

typically apply only to very simple queries (such as single table

selection queries). Thus, in the above example, the application can
cause unnecessary compilations and inefficient usage of the

DBMS procedure cache. Since the execution plans that are

optimal for each of these instances may often be the same, it can

be far more efficient for the application to parameterize its SQL:

R, S @p , and
pass in the parameter value via the data access APIs in the

application. This tells the database server to treat different

instances of that query as a single statement with a shared plan,

which can dramatically reduce the compilation time as well as

resources consumed in the procedure cache.

2.3 Identifying Opportunities for Bulk

Operations
Consider a loop in the application code, shown below, inside

which the application is inserting data into a table:

for (int i=0;i<MAXVALUE;i++) {

 // execute SQL

}

As written above, the code is inefficient since each time through

the loop an INSERT statement is executed. A much more efficient

way to achieve the same result is to use the bulk insert APIs of the

data access layer, which takes advantage of batching. Note that

the ingredients for identifying this problem is having the
application context that a particular SQL statement is executed

repeatedly inside a loop, and the database context to know that

each instance is in fact an INSERT statement on a table T. It is

then possible to put these pieces of information together to

suggest a mapping to the bulk insert APIs.

2.4 Suggesting appropriate use of Data Access

APIs
Many database application developers may be unaware of certain

best practices for using data access APIs such as ADO.NET. For
example, when executing a stored procedure, the best practice is

to use the commandType.StoredProcedure option, passing the

parameters using the AddParameters API [18]. This results in a

Remote Procedure call (RPC) Event and is therefore efficient.

However, a developer who is unaware of this may use the default
commandType.Text option and pass in

In this case, the database server gets a Language

Event which needs to be parsed to find the stored procedure to be

invoked, arguments to be passed etc. If the above code is executed

many times, the performance improvement by using an RPC
Event compared to Language Event can be significant. In this

example, the key information from the application context is

knowing that a Language Event was issued by the application and

knowing from the database context that what was issued was in

fact a stored procedure.

A second example of API usage arises when a query returns a

scalar value (one row and one column) as the result. For such
cases, ADO.NET provides an ExecuteScalar API [12] that is

much more efficient that the more general ExecuteReader API. In

this example, the application context is the fact that

ExecuteReader API was used, and the database context is the fact

that the query returns exactly one row and one column in its result

set.

2.5 Identifying sequences for index tuning
Consider a sequence of SQL statements such as the one given

below that is issued by an application:

DROP TABLE R

The interesting characteristic of the above sequence is that table R

is transient. It is possible that if the application were to issue a

CREATE INDEX statement on table R after the INSERT
statement but before the SELECT statement (there may be

multiple such statements), the SELECT statement(s) could be

speeded up enough to offset the cost of creating the index. The

work in [3] describes a tool that given a sequence of SQL

statements is able to recommend if indexes should be created or

dropped in the sequence to reduce overall cost of the sequence.

The developer, who is the user of such a tool, still needs to be able

to find such sequences in his/her application. This is necessary

since applying the recommendations of the tool requires changes

to the application code. This requires an understanding of the

function(s) involved in producing the sequence of statements.
Since a sequence can span function boundaries, extracting a

sequence of SQL statements would require knowledge of the call

graph structure of the application which is available only in the

application side context.

1254

Binary
Binary

Instrumentation
Instrumented Binary Execute

ETW event log

Log Analyzer

(Parse, match &

extract App and

SQL Server

events)

Trace data

(schematized)

Browse,

Summarize, Drill-

down

Vertical tools (e.g.,

Deadlock analyzer,

Fast k hint)

Instrument

function entry ,exit

to emit ETW

events

Contains ETW

events from

application,

ADO.NET , SQL

Server

3. ARCHITECTURE AND OVERVIEW OF

THE TOOL
The architecture of our infrastructure and the browsing and

analysis tools we have built using the infrastructure is shown in

Figure 1.

We have extended Visual Studio System (VSS) using VSS

 [5] to integrate the functionality of the tool.

Our tool takes an input the application binaries. A typical usage
scenario of the tool is to open the project corresponding to the

target that needs to be profiled. In Figure 2 the developer opened

the DataGrid project and clicked on an Add-In menu of Visual

Studio to invoke the tool. Since we have integrated the tool into

VSS, it can automatically enumerate the VSS project system to
get the target executable file(s) to be instrumented and

determine any dependencies (like dynamically linked libraries)

that may also need to be instrumented. Alternatively the

developer has a choice to point the tool to a specific set of

binaries. The tool enables developers to profile any .NET
application that uses ADO.NET interfaces to talk to a Microsoft

SQL Server 2005 database server.

Once instrumented, developer can click through the wizard,

which launches the application after turning on tracing for all the

three event providers: (1) Microsoft SQL Server tracing (2)

ADO.NET tracing and (3) Instrumented events from the
application. This allows events containing both application

context and database context to be logged into the ETW event

log. The key post-processing step is done by our Log Analyzer

that correlates application and server events using a set of

matching techniques (see Section 4.3). This matching is non-

trivial since today there is no unique mechanism understood

both by ADO.NET and Microsoft SQL Server to correlate an
application event with a server event. The above collection and

matching enables us to bridge the two contexts and provide

significant value to database developers.

Once the post-processing step is complete, the tool invokes the

module corresponding to the summary/drill down box in Figure

1. The output of the tool is the summary/detail view as shown in

the Figure 3 below. Developers can get a summary and detail
view involving various counters from the application,

ADO.NET and Microsoft SQL Server, navigate the call graph

hierarchy and invoke specific verticals. The functional overview

and usage of the tool is described below.

The Summary view gives the function name, aggregate time

spent in a function, how many times the function was invoked
and aggregate time spent executing the SQL statement (issued

by the particular function) in the database server. Today the

counters can be obtained from profiling the application using

application side profiling tools such as Visual Studio Profiler;
-add

since it merges in database context into the application context.

Figure 1. Architecture of our database application debugging and tuning tool.

1255

Figure 3. Summary and Detail views on the profiled data

Figure 2. Instrumenting the target application.

1256

Consider the function ReadStuff in Figure 3 which issues a SQL

call. From the Summary view the developer can determine that

the function was called twice and the aggregate time it spend
inside this function (across all instances) was 5019 ms. Out of the

total time spend in the function, most of the time was spend

executing SQL (5006 ms). The Detail view gives more

information at a function instance level. The tool allows drill

down to display attributes of all the statements that were issued
under the particular instance of the function or statements that

were issued under the call tree of the particular instance of the

function. The attributes of the SQL statement that are displayed

include counters like duration, reads, writes, and also data access

counters like reads issued by the application, and the data access

API type, corresponding to the SQL that was issued.

Finally, the tool allows interesting analysis tools to be built on top
of the profiled and correlated trace data such as suggesting FAST-

k query hint (see Section 5.2), finding patterns of SQL statement

invocations (see Section 2.5), detecting deadlocks (see Example

1), finding connection object leaks, etc.

4. IMPLEMENTATION
We now describe the implementation of our key components. As

explained in Section 3, our tool takes as input the binaries of the

application, which are then instrumented (Section 4.1). When the
instrumented binaries are executed, they generate a log of events

from the application as well as the database server (Section 4.2).

These events are then analyzed by a log analyzer (Section 4.3)

which produces as output a schematized view of the application

trace. This view allows flexible analysis over the trace and allows

tasks such as those described in Sections 1 and 2.

4.1 Binary Instrumentation Module
We use a binary instrumentation toolkit called Vulcan [10].

Vulcan works by analyzing the input binary and converting it into

a symbolic intermediate representation (IR) which is easy to
manipulate. Vulcan provides high level abstractions of its IR that

allow a programmer to traverse the various components of a

binary (Program, Component, Section, Procedure, BasicBlock,

and Instruction) and to modify it. We examine the binaries and we

insert instructions for instrumentation at selected places.
Currently, we instrument function enter/exit. When the

instrumented binary is executed and the program enters or exits a

function it makes a callback into our module. This module

generates a custom trace event which encapsulates attributes like

the hostname, process id, thread id, time stamp and the name of
the function. This event is then written to the current trace session.

Events from this session are logged as described below in Section

4.2.

4.2 Event Providers and Logging
We use the Event Tracing for Windows (ETW) infrastructure

which is a low overhead event logging mechanism used by a

variety of Windows applications. An event represents any activity

of interest and is customizable by the event provider. Every event
logged to an ETW session contains some common attributes like

the name of the event provider, type of event, id of the thread that

issued the event, time stamp, and duration. In addition there is an

attribute that allows provider defined data to be logged. For

instance, as described above, events logged by the instrumented
application describe the name of the function that was entered (or

left).

We leverage the fact that Microsoft SQL Server 2005 and the data

access layer (ADO.NET, ODBC, and OLEDB) is instrumented to

emit ETW events on demand. The Microsoft SQL Server event
provider can emit event types like login audits, stored procedure

execution completed, batch execution completed, deadlock etc.

Also the server event provider emits custom data that has various

interesting attributes like duration, rows returned by server,

number of reads and writes etc. The ADO.NET layer provides
events corresponding to every data read API, opening and closing

of connections, type of data access API used. When the

instrumented application is run we use trace control

manager interface to turn on emitting of events by the three

providers instrumented binary, data access layer and
database server layer. We also ensure that all the events are

logged to a unique session. Thus, the timestamps of events across

processes on the same machine are generated using a single

mechanism, which make correlating these events easier. The

single log corresponding to this session can subsequently be

analyzed offline after the application has finished running.

As an example, for the function shown in Figure 4, which uses
ADO.NET APIs to connect to the database server, the trace log

shown in Table 1 is generated. Note the three types of Events:

Application, Data access and Server. The common information

available across processes is timestamps. The provider data

column contains the actual payload of the event (e.g., in the form

of SQL statement strings etc).

4.3 Log Analyzer: Matching application and

database context
The log analyzer takes as input the trace log. It correlates the

events from the three providers and produces as output a
schematized view of the application trace that contains both

application and server context information. An example of this

(represented in XML) is shown in Figure 5. Note how the output

shows the thread id, function name, the SQL statement issued by

the function, database server context for the statement. This
output allows flexible analysis over the trace and allows tuning

and debugging tasks such those described in Section 2. The key

value added by the Log Analyzer is in correlating the application

and database contexts from the event log.

Events have the schema shown in Table 1 (only a few relevant

attributes are shown).

Function foo() {

SqlConnection conn = new SqlConnection;

conn.Open();

SqlCommand cmd = new SqlCommand(cmdtext,

conn)

cmdtext

cmd.ExecuteReader();

conn.Close();

}

Figure 4. Sample application code that opens a

connection, executes a query, and closes the connection.

1257

The log analyzer needs to correlate the three types of events:

Application Events (function enter/leave), data access

(ADO.NET) events and database server (Microsoft SQL Server
2005) events. Correlating an Application event and an ADO.NET

event is relatively straightforward since both these kinds of events

are emitted from the same process. In particular, given the

ThreadId and Timestamp, it is possible to correlate exactly the

data access events that are executed within a particular invocation

of a function.

Event

Type

Proc.

id

Thread

id
Timestamp Provider data

App

Event

596 234 403065 "Enter

Data

access

Event

596 234 403075

Data

access

Event

596 234 403085

Data
access

Event

596 234 403095 Set text

Data

access

Event

596 234 403105 SqlCommand.Exe

cuteReader

Server

Event

128 104 403115
; Duration=100;

Reads=40

Data
access

Event

596 234 403125

App

Event

596 234 40135 "

 Matching a Data Access event D with the corresponding

Database server event(s) is more challenging. Ideally, we need an

identifier for an event that is unique across the application and
server processes. However, such a unique identifier is unavailable

today for data access providers against Microsoft SQL Server.

Until such support is made available, this matching remains

challenging and is a key step where we add value.

One useful attribute available from each event in the database

server side is the client process id. Thus a data access event D is

matched with the server event S only if the D.ProcessId =
S.ClientProcessId. However, since a single process may issues

multiple SQL statements concurrently (e.g., on different threads),

we need additional techniques for narrowing down the possible

matches.

We have two additional pieces of information to assist matching.

First is the timestamp. For example, we know that a data access
event such as SqlCommand.Execute must precede the

corresponding server event which is emitted once the SQL

command has executed. This can significantly narrow down the

possible server events that can match. Second, the provider data

contains the actual string of the command being executed. The
main issue with relying on matching strings is that exact string

matching is not robust for this task. This is because the string by

the data access layer may get modified in the server. Therefore,

instead of exact string matches we rely on approximate matching.

There are many techniques that have been developed for
approximately matching string, e.g., [8]. We use a simplified

version of [17] that requires tokenizing the strings based on

delimiters and computing the intersection of tokens between the

two strings. This technique is significantly more reliable than

exact string matching, and has worked well in the applications on

which we have used the tool thus far.

MatchEvents (S) // S is event stream obtained via ETW
tracing of App and SQL Server ordered by TimeStamp

1. While (Events available in event stream)

2. Parse the event stream to gather event type, thread

 id, user data (the SQL string)

3. If the EventType is an App event
4. Extract the SQL string that was issued, add to the

 current thread context. Add invoking function

 name.

5. If the EventType is a SQL Server Event

6. ServerString = Get the SQL string of the event
7. For each thread context available

8. For each event in the current thread context

9. AppString = Get the SQL string of the event

10. Score = GetApproximateM atchScore

 (ServerString, AppString)
11. If (Score > MaxScore)

12. MaxScore = Score

 MatchedThreadContext =

 CurrentThreadContext

13. Output the AppString with the highest score as
the match for ServerString and remove from the

MatchedThreadContext

Figure 6. Algorithm for matching application events

with database server events.
Figure 5. Example of output of Log Analyzer for input

shown in Table 1.

Table 1. Example of a trace log generated when the

function shown in Figure 2 is executed.

1258

Our algorithm for matching used by the log analyzer is sketched

in Figure 6. The algorithm maintains a Thread context, which is a

data structure that maintains a list of strings corresponding to the
SQL events issued by this thread that are not yet matched to a

Microsoft SQL Server event. We have observed that in the real-

world application that we have used the tool with, we get very

good accuracy of matches using the above techniques.

Finally, note that the above algorithm is applicable even when the

traces are generated on multiple machines (e.g., database server

and application execute on different machines). The only

across the machines, merged by the event timestamp field. It is

necessary to take into account clock skew across machines while

merging, for example by using the Network Time Protocol [23].

4.4 Techniques for Controlling

Instrumentation and Tracing Overheads
y for scenarios during application

development and debugging, where instrumentation overheads are

typically not an issue. To use the above technology for production

setting of course requires a more careful examination of these

overheads. Below we briefly mention a few techniques for
controlling these overheads (for details of overheads of our

current prototype see Section 6).

 Static analysis to detect only relevant functions . Static

analysis of a binary can help determine if a function can
possibly perform a data access call. We could then only

instrument such functions. Note that with this optimization,

since we do not instrument functions without data access

calls, the call graph of function calls made by the application

may be lost.

 User specified modules, functions. The developer may be

aware of which binaries, or even which functions are of

interest for profiling. Our binary instrumentation module

(Section 4.1) can take a list of such binaries/functions as

input and only instrument the specified functions.

 Selectively turning on data access and database server

events. We can ensure that we request ADO.NET and

Microsoft SQL Server the providers to emit only necessary

events. For example, we can turn off events in ADO.NET
that are emitted each time an application consumes a row. In

this case, we trade-off instrumentation overhead for some

application context information (number of rows consumed

by application).

5. VERTICAL DEBUGGING AND TUNING

TOOLS
As described in Section 4, the log analyzer produces a

schematized view of the application trace that contains both

application and server context information. This view generated

can subsequently be queried for providing browse, summarize and
drill down functionality . For example the tool allows developers

to explore function call hierarchies and allows drill down on SQL

statements that were issued under a function/call tree.

In this section, we describe two verticals we have built that

perform more advanced analysis over the profiled data. The first
example shows how to detect functions in the application that

caused a deadlock in the DBMS (see Example 1 presented in the

Introduction). The second example describes how to recommend

to the application developer the suggested use of an OPTION

(FAST k) query hint for an expensive query whose entire result
set may not be consumed by the application (see Section 2.1).

5.1 Detecting Applications Functions causing

a Server Deadlock
The Microsoft SQL Server trace produces a Deadlock Event

which contains the wait-for graph that describes a deadlock. The
graph contains the statements being executed that resulted in the

deadlock as well as timestamp, and client process id(s)

information. The log analyzer (Section 4.3) extracts this

information and stores it in the schematized application trace

under the root node of the tree (as an event of type deadlock).

For each such deadlock event, the deadlock analysis

finds the statements issued by the application that correspond to
the statements in the deadlock event. Note that once we find the

statement, we get all its associated application context such as

function and thread. This can then be highlighted to the developer

so they can see exactly which functions in their application issues

the statements that lead to the deadlock (as described in Example
1 in the Introduction). A sample output from the deadlock analysis

vertical is shown in Figure 7.

The output of the log analyzer (described in Figure 5) is expanded

to the right level and the functions and the SQL events that caused

the deadlock in the server are highlighted using a color coding

scheme.

5.2 Suggesting FAST-k query hints
In Section 2.1 we present the example of a query that returns

many rows of which only a few are consumed by the application.
We observe that in such cases significant speed up may be

possible if the application developer can rewrite the query to pass

in an OPTION (FAST k) query hint to the database server, so that

the query optimizer can choose a plan that more optimal when k

rows are needed (as opposed to all rows needed). Thus the
developer can point to a query and invoke the Fast-k analysis tool

which returns as output an analysis of how the cost of the query

varies with k (see Figure 8 for an example of the output). Such

information can be used by the developer to decide if it is

appropriate to rewrite his/her query to use the hint.

The Fast-k analysis tool explores how the cost of the query varies

with k (in OPTION (FAST k) hint). The naïve approach of costing
the query for each value of k is not scalable. The key assumption

we leverage is that in a well behaved query optimizer, the cost of

the query plan cannot decrease as k is increased. For a large class

of queries (such as single block SPJ queries with

grouping/aggregation) this assumption typically holds true. Our
approach is to perform a binary search over the range of values of

k (between kmin and kmax), where kmin is the number of rows

consumed by the application and kmax is the total number of rows

returned by the query. Note that both these pieces of information

are available from the output of the log analyzer. If the plan (and
hence the cost) of the query remains the same for two different

values of k (say k1 and k2), then we know that the plan (and cost)

remains the same for all values of k between k1 and k2 as well.

Thus, the binary search strategy allows us to prune out a large part

of search space quickly.

1259

An example of the output produced by our tool is shown in Figure

8. In this figure Query Cost is the optimizer estimated cost of the
query. Around the value of k=1000, the query optimizer switches

the plan from an Index Nested Loops join to a Hash join. This

causes the cost of the plan to increase significantly as shown. By

observing such output, the developer could determine whether

providing the OPTION (FAST k) query hint is appropriate for

his/her application or not.

6. EXPERIENCES WITH REAL

APPLICATIONS
In this section we report evaluation of the tool over four

applications:

 Microsoft SQL Server Database Engine Tuning Advisor

(DTA)[2]. DTA is a physical database design tool that ships

with Microsoft SQL Server 2005.

 Microsoft Conference Management Toolkit (CMT).CMT is a
web service sponsored by Microsoft Research that handles

workflow for an academic conference

(http://msrcmt.research.microsoft.com/cmt/). CMT was

 MARS and LOB which are sample applications that run

against the AdventureWork database that is shipped with
Microsoft SQL Server 2005. LOB reads binary data from a

file into a database and writes the contents to a file. MARS is

a simple application that demonstrates the support for

multiple access record sets in Microsoft SQL Server.

The summary of results is shown in Table 2. Note that while the

instrumentation overheads are significant, these are typically not
an issue when used by a developer in a development environment

(see Section 4.4 for a discussion of optimizations for use in

production scenarios). In one of the applications the profiling

revealed that not all stored procedure invocations were invoked as

RPCs, rather they were performed using the significantly less
efficient Language events (see Section 2.4). In another

Query c os t vs . k (O P T ION F AS T k)

0

5

10

15

20

0 10000 20000 30000 40000

Number of rows (k)

Q
u

e
ry

 C
o

s
t

Figure 8. Analysis of query cost vs. k for the OPTION

(FAST k) query hint.

Figure 7. Output of deadlock analysis vertical.

1260

application, running our tool revealed a set of redundant SQL

statement invocations that was issued in the function that was

responsible for opening connections.

Applic

ation

No. of

App

events

No.

of
data

trace

event

s

No. of

server
trace

events

Total

events

Instrumen

tation
overhead

in the

running

time

MARS 25 87 15 127 7.1%

LOB 16 32 5 53 6.3%

CMT 6797 7224 515 14536 75.1%

DTA 3832951 3630 330 3836911 325.33%

7. RELATED WORK
Relational DBMS vendors provide profiler tools that are
commonly used to profile database servers. Microsoft SQL Server

Profiler [29], Oracle Trace [25] and DB2 Query Patroller [15] are

widely used by database developers. Similarly database

development environments such as Microsoft Visual Studio

profiler [22], Rational PurifyPlus [27], gprof [13] etc. all provide
application profiling capabilities. But as explained in the

introduction section, to the best of our knowledge these two sets

of tools remain disconnected from one another. Our infrastructure

builds upon the profiling capabilities of both application side and

server side profilers, and adds value by correlating context across

server and application contexts.

There are integrated profilers like

[19] and profilers from Identify [4]. While technical details are

not available about specifics of these tools, they do provide some

degree of correlation of application activity with database activity.

Our work on building more advanced vertical tools such as those
described in Section 5 is novel with respect to these tools. Magpie

is a framework [6] that performs function level instrumentation of

Microsoft SQL Server itself, and uses ETW to log its trace, but is

not geared for gathering the context of SQL/ADO.NET

applications as we do.

Finally, there are several tools that can help database developers

tune their SQL such as Database Engine Tuning Advisor (DTA)
[2], IBM DB2 Design Advisor [14], Oracle Tuning Pack [26],

Quest [28]. However, the key difference is that these tools work

exclusively on the database context, and do not leverage

application context as described in this paper.

8. CONCLUSION
We have developed a tool that helps bridge the disconnect that

exists today between application side profilers and DBMS

profilers. Our tool allows database application developers to

perform debugging and tuning tasks that are difficult or
impossible using tools available today. An ongoing direction of

work is developing more vertical analysis capabilities into our

tool.

9. REFERENCES
[1] ADO.NET. http://msdn2.microsoft.com/en-

us/library/aa286484.aspx

[2] Agrawal, S., Chaudhuri, S., Kollar, L., Marathe, A.,

Narasayya, V. and Syamala, M .Database tuning advisor

for Microsoft SQL Server 2005. SIGMOD 2005

[3] Agrawal, S., Chu, E. and Narasayya, V. Automatic
Physical Design Tuning: Workload as a Sequence.

SIGMOD 2006.

[4] AppSight. Application Monitoring for Windows/.NET

from Identify Software.

http://www.identify.com/products/win-net/monitor.php

[5] Automation and Extensibility for Visual Studio.

http://msdn2.microsoft.com/en-

us/library/xc52cke4(VS.80).aspx

[6] Barham, P., Isaacs, R., Mortier, R. and Narayanan, D.

Magpie: online modeling and performance-aware
systems. 9th Workshop on Hot Topics in Operating

Systems (HotOS IX) (May 2003) 85-90

[7] Beauchemin, B., Perret, J., and Bunch, A. Data Access

Tracing in SQL Server 2005.

http://msdn2.microsoft.com/en-us/library/aa964124.aspx

[8] Chaudhuri, S., Ganjam, K., Ganti, V. and Motwani, R.

Robust and efficient fuzzy match for online data

cleaning. SIGMOD 2003, 313-324

[9] Eclipse Test and Performance Tools Platform.

http://www.eclipse.org/tptp/index.html

[10] Edwards, A., Srivastava, A., and Vo, H. Vulcan. Binary

transformation in a distributed environment. MSR-TR-

2001-50 (April 2001).

[11] Event Tracing. http://msdn2.microsoft.com/en-

us/library/aa363787.aspx

[12] ExecuteScalar API. http://msdn2.microsoft.com/en-

us/library/system.data.sqlclient.sqlcommand.executescala

r.aspx

[13] Gprof.

http://www.gnu.org/software/binutils/manual/gprof-

2.9.1/html_mono/gprof.html

[14] IBM DB2 Design Advisor. http://www.ibm.com

[15] IBM DB2 Query Patroller. http://www-

306.ibm.com/software/data/db2/querypatroller/

[16] Java Database Connectivity .

http://java.sun.com/javase/6/docs/technotes/guides/jdbc/

[17] Kirpal, A. and Sarawagi, S. Efficient set joins on

similarity predicates. SIGMOD 2004, 743-754

[18] Meier, J.D, Vasireddy, S., Babbar, A. and Mackman, A.

Improving ADO.NET Performance. Patterns & Practices
(May 2004), Chapter 12. http://msdn2.microsoft.com/en-

us/library/ms998569.aspx

[19] Mercury Diagnostics, J2EE Performance, SAP

Diagnostics, .NET, ERP/CRM Diagnostics.

http://www.mercury.com/us/products/diagnostics/

Table 2. Summary of results of running the tool on four

applications.

1261

[20] Microsoft Visual Studio 2005.

http://msdn2.microsoft.com/en-us/vstudio/default.aspx

[21] Microsoft® Open Database Connectivity (ODBC)

interface.

http://msdn.microsoft.com/library/default.asp?url=/librar

y/en-us/odbc/htm/dasdkodbcoverview.asp .

[22] Microsoft Visual Studio profiler.

http://msdn2.microsoft.com/en-

us/library/z9z62c29(VS.80).aspx

[23] Network Time Protocol. http://www.ntp.org.

[24] OLE DB. http://msdn2.microsoft.com/en-

us/data/default.aspx

[25] Oracle Trace. http://www.oracle.com

[26] Oracle Tuning Pack.

http://www.oracle.com/technology/products/oem/files/tp.

html

[27] Rational PurifyPlus. http://www-

306.ibm.com/software/awdtools/purifyplus/

[28] SQL Server database tools and management software

from Quest Software. http://www.quest.com/sql_server/

[29] SQL Server Profiler Reference.

http://msdn2.microsoft.com/en-us/library/ms173757.aspx

[30] TPC Benchmark H. Decision Support.

http://www.tpc.org.

1262

