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Abstract—Influence maximization is the problem of selecting
top k seed nodes in a social network to maximize their influence
coverage under certain influence diffusion models. In this
paper, we propose a novel algorithm IRIE that integrates
the advantages of influence ranking (IR) and influence esti-
mation (IE) methods for influence maximization in both the
independent cascade (IC) model and its extension IC-N that
incorporates negative opinion propagations. Through extensive
experiments, we demonstrate that IRIE matches the influence
coverage of other algorithms while scales much better than
all other algorithms. Moreover IRIE is much more robust and
stable than other algorithms both in running time and memory
usage for various density of networks and cascade size. It runs
up to two orders of magnitude faster than other state-of-the-
art algorithms such as PMIA for large networks with tens of
millions of nodes and edges, while using only a fraction of
memory.

Keywords-social network mining, social network analysis,
influence maximization, independent cascade model, viral mar-
keting

I. INTRODUCTION

Word-of-mouth or viral marketing has long been acknowl-
edged as an effective marketing strategy. The increasing
popularity of online social networks such as Facebook and
Twitter provides opportunities for conducting large-scale
online viral marketing in these social networks. Two key
technology components that would enable such large-scale
online viral marketing are modelling influence diffusion
and influence maximization. In this paper, we focus on the
second component, which is the problem of finding a small
set of k seed nodes in a social network to maximize their
influence spread — the expected total number of activated
nodes after the seed nodes are activated, under certain
influence diffusion models.

In particular, we study influence maximization under
the popular independent cascade (IC) model [1] and its
extension IC-N model incorporating negative opinions [2].
IC model is one of the most common information diffusion
model which is widely used in economics, epidemiology,
sociology, and so on [1], [3]. Most of existing researches
for the influence maximization problem are based on the IC
model, assuming dynamics of information diffusion among
individuals are independent. Kempe et al. originally pro-
posed the IC model and a greedy approximation algorithm

to solve the influence maximization problem under the IC
model [1]. The greedy algorithm proceeds in rounds, and in
each round one node with the largest marginal contribution
to influence spread is added to the seed set. However,
computing influence spread given a seed set is shown to be
#P-hard [4], and thus the greedy algorithm has to use Monte-
Carlo simulations with a large number of simulation runs to
obtain an accurate estimate of influence spread, making it
very slow and not scalable. A number of follow-up works
tackle the problem by designing more efficient and scalable
optimizations and heuristics [3], [5], [6], [7], [4], [6], [8],
[9]. Among them PMIA [4] algorithm has stood out as the
most efficient heuristic so far, which runs three orders of
magnitude faster than the optimized greedy algorithm of [5],
[7], while maintaining good influence spread in par with the
greedy algorithm.

In this paper, we propose a novel scalable influence maxi-
mization algorithm IRIE, and demonstrate through extensive
simulations that IRIE scales even better than PMIA, with up
to two orders of magnitude speedup and significant savings
in memory usage, while maintaining the same level or even
better influence spread than PMIA. We also demonstrate
that while the running time of PMIA is very sensitive to
structural properties of the network such as the clustering
coefficient and the edge density, and to the cascade size,
IRIE is much more stable and robust over them and always
shows very fast running time. In the greedy algorithm as
well as in PMIA, each round a new seed with the largest
marginal influence spread is selected. To select this seed, the
greedy algorithm uses Monte-Carlo simulations while PMIA
uses more efficient local tree based heuristics to estimate
marginal influence spread of every possible candidate. This
is especially slow for the first round where the influence
spread of every node needs to be estimated. Therefore,
instead of estimating influence spread for each node at each
round, we propose a novel global influence ranking method
IR derived from a belief propagation approach, which uses
a small number of iterations to generate a global influence
ranking of the nodes and then select the highest ranked node
as the seed. However, the influence ranking is only good
for selecting one seed. If we use the ranking to directly
select k top ranked nodes as k seeds, their influence spread
may overlap with one another and not result in the best



overall influence spread. To overcome this shortcoming, we
integrate IR with a simple influence estimation (IE) method,
such that after one seed is selected, we estimate additional
influence impact of this seed to each node in the network,
which is much faster than estimating marginal influence for
many seed candidates, and then use the results to adjust next
round computation of influence ranking. When combining
IR and IE together, we obtain our fast IRIE algorithm.
Besides being fast, IRIE has another important advantage,
which is its memory efficiency. For example, PMIA needs
to store data structures related to the local influence region
of every node, and thus incurs a high memory overhead.
In constrast, IRIE mainly uses global iterative computations
without storing extra data structures, and thus the memory
overhead is small.

We conduct extensive experiments using synthetic net-
works as well as five real-world networks with size ranging
from 29K to 69M edges, and different IC model param-
eter settings. We compare IRIE with other state-of-the-
art algorithms including the optimized greedy algorithm,
PMIA, simulated annealing (SA) algorithm proposed in [8],
and some baseline algorithms including the PageRank. Our
results show that (a) for influence spread, IRIE matches the
greedy algorithm and PMIA while being significantly better
than SA and PageRank in a number of tests; and (b) for
scalability, IRIE is some orders of magnitude faster than the
greedy algorithm and PMIA and is comparable or faster than
SA; and (c) for stability IRIE is much more stable and robust
over structural properties of the network and the cascade size
than PMIA and the greedy algorithm.

Moreover, to show the wide applicability of our IRIE
approach, we also adapt IRIE to the IC-N model, which
considers negative opinions emerging and propagating in
networks [2]. Our simulation results again show that IRIE
has comparable influence coverage while scales much better
than the MIA-N heuristic proposed in [2]. The detailed
descriptions of IC-N model and our simulation results can
be found in the full version of our paper [10].

Related Work. Domingo and Richardson [11] are the first
to study influence maximization problem in probabilistic
settings. Kempe et al. [1] formulate the problem of finding
a subset of influential nodes as a combinatorial optimization
problem and show that influence maximization problem is
NP-hard. They propose a greedy algorithm which guarantees
(1 − 1/e) approximation ratio. However, their algorithm is
very slow in practice and not scalable with the network
size. In [5], [6], authors propose lazy-foward optimization
that significantly speeds up the greedy algorithm, but it still
cannot scale to large networks with hundreds of thousands
of nodes and edges. A number of heuristic algorithms are
also proposed [3], [7], [4], [12], [8] for the independent
cascade model. SPM/SP1M of [3] is based on shortest-path
computation, and SPIN of [12] is based on Shapley value

computation. Both SPM/SP1M and SPIN have been shown
to be not scalable [4], [13]. Simulated anneal approach
is proposed in [8], which provides reasonable influence
coverage and running time. The best heuristic algorithm
so far is believed to be the PMIA algorithm proposed by
Chen et al. [4], which provides matching influence spread
while running at three orders of magnitude faster than the
optimized greedy algorithm. PageRank [14] is a popular
ranking algorithm for ranking web pages and other net-
worked entities, which considers diffusion processes whose
corresponding transition matrix must have column sums
equal to one. Hence it can not be directly used for the
influence spread estimation. Our algorithm IR overcomes
this shortcoming, and uses equations more directly designed
for the IC model. More importantly, our IRIE algorithm
integrates influence ranking with influence estimation to-
gether with the greedy approach, overcoming the general
issue of ignoring overlapping influence coverages suffered
by all pure ranking methods. Recently, Goyal et al. propose
a data-based approach to social influence maximization [15].
Authors defines a new propagation probability model called
call distribution model that reveals how influence flows
in the networks based on datasets and propose a novel
algorithm for influence maximization for that model.

II. SETUP

Influence Maximization problem [1] is a discrete optimiza-
tion problem in a social network that chooses an optimal
initial seed set of given size to maximize influence under
a certain information diffusion model. In this paper, we
consider Independent Cascade (IC) model as the information
diffusion process. We first introduce IC model, then provide
a formal definition of Influence Maximization problem under
the IC model. Let G = (V,E) be a directed graph for a
social network and Puv ∈ [0, 1] be an edge propagation
probability assigned to each edge (u, v) ∈ E. Each node
represents a user and each edge corresponds to a social
relationship between a pair of users. In the IC model, each
node has either an active or inactive state and is allowed to
change its state from inactive to active, but not the reverse
direction.

Given a seed set S, the process of IC model is as follows :
At step t = 0, all seed nodes u ∈ S are activated and added
to S0. At each step t > 0, a node u ∈ St−1 tries to affect
its inactive out-neighbors v ∈ Nout(u) with probability Puv

and all the nodes activated at this step are added to St. This
process ends at a step t if |St| = 0. Note that every activated
node u belongs to just one of Si, where i = 0, 1, ..., t. Hence,
it has a single chance to activate its neighbors v ∈ Nout(u)
at the next step that it is activated. This activation of nodes
models the spread of information among people by the word-
of-mouth effect as a result of marketing campaigns. Under
the IC model, let us define our influence function σ(S) as
the expected number of activated nodes given a seed set.



Formally, Influence Maximization problem is defined as
follows : Given a directed social network G = (V,E) and
Puv for each edge (u, v) ∈ E and K ∈ N, the influence
maximization problem is to select a seed set S ⊆ V
with |S| = K that maximizes influence σ(S) under the
IC model. In [1], it is shown that the exact computation
of optimum solution for this problem is NP-hard, but the
Greedy algorithm achieves (1 − 1/e) - approximation by
proving the facts that the influence function σ is non-
negative, monotone, and submodular. A set function f is
called monotone if f(S) ≤ f(T ) for all S ⊆ T , and the
definition of submodular function is given in Definition 1.

Definition 1. A set function f : 2V → R is submodular if
for every S ⊆ T ⊆ V and v ∈ V , f(S ∪ {u}) − f(S) ≥
f(T ∪ {u})− f(T ).

Theorem 1 ([1]). For a non-negative, monotone, and sub-
modular influence function σ, let S be a size-K set obtained
by the greedy hill-climbing algorithm in Algorithm 1. Then
S satisfies σ(S) ≥ (1−1/e)·σ(S∗) where S∗ is an optimum
solution.

At each step, Algorithm 1 computes the marginal influ-
ence of every node w ∈ V \ S and then add the maximum
one into the seed set S until |S| = K. Although the greedy
algorithm guarantees constant-approximation solutions and
is easy to implement, computing the influence function σ(S)
is proven to be #P-hard [4]. To estimate influence function
σ(S) efficiently, Monte-Carlo simulation and other heuristics
have been used in various previous works [1], [5], [7], [6],
[3], [12], [8], [7], [16]. In this paper, we design a novel
efficient heuristic algorithm IRIE that estimates the marginal
influences of every nodes accurately.

Algorithm 1 Greedy(K)
1: initialize S = ∅
2: for i← 1 to K do
3: select u← argmaxw∈V \S(σ(S ∪ {w})− σ(S))
4: S = S ∪ {u}
5: end for
6: output S

III. OUR ALGORITHM

For a given seed set S, let σ(u|S) = σ(S ∪{u})− σ(S).
At each round of IRIE, it selects a node u with the largest
marginal influence estimate σ(u|S). The novelty of our
algorithm lies in that we derive a system of linear equations
for {σ(u|S)}u∈V whose solution can be computed fast by
an iterative method. Then we use these computed values as
our estimates of {σ(u|S)}u∈V .

Simple Influence Rank. We first explain our formula for
{σ(u|S)}u∈V when S = ∅. Let σ(u) = σ(u|∅). The basic

idea of our formula lies in that the influence of a node u
is essentially determined by the influences of u’s neighbors
under the IC model. First suppose that graph G = (V,E)
is a tree graph (we allow tree edges to be bidirectional).
For (v, u) ∈ E, we define m(u, v) to be the expected
number of activated nodes when S = {u} and (u, v) is
removed from E. Note that for a tree graph G, m(u, v) is the
expected influence from u excluding the direction toward v.
Let σ̃(u) and m̃(u, v) be our estimates of σ(u) and m(u, v)
respectively. Then we will compute σ̃(u) and m̃(u, v) from
the following formulas.

σ̃(u) = 1 +
∑

v∈Nout(u)

Puv · m̃(v, u), (1)

m̃(u, v) = 1 +

 ∑
w∈Nout(u),w 6=v

Puw · m̃(w, u)

 . (2)

Note that equation (2) forms a system of |E| linear equations
on |E| variables. When G is a tree, (2) has a unique solution.
We prove the following theorem, whose proof is in [10].

Theorem 2. For any tree graph, for each node u, σ̃(u) =
σ(u), and for each edge (v, u) ∈ E, m̃(u, v) = m(v, u).

Even when G is not a tree, we can define the same
equations (1) and (2). In this case, the σ̃(u) computed from
(1) and (2) corresponds to the influence of u when we
allow multiple counts of influence from u to each node
via different paths. Note that this approach has a similarity
with the popular Belief Propagation (BP) algorithm. As in
the BP, one natural way to compute the solution of (1)
and (2) is using an iterative message passing algorithm.
Although this method computes good estimates of σ(u)
for tree and general graphs, its running time may be slow
since one iteration takes O(

∑
v∈V din(v) · dout(v)) time

where din(v) and dout(v) is the in-degree and out-degree
of v respectively. Note that for a fixed u ∈ V , m(u, v)’s
are very similar for any v ∈ N in(u) since m(u, v) only
excludes the one direction toward v. We also observe in the
numerical simulations on real world networks and synthetic
networks, for all u ∈ V , m(u, v)’s are almost the same for
any v ∈ N in(u). Hence we substituting one variable r(u) for
all the m(u, v), v ∈ N in(u). Then we obtain our formulas
for the simplified expected influence r(u) for S = {u} as
follows :

r(u) = 1 +

 ∑
v∈Nout(u)

Puv · r(v)

 . (3)

Note that equation (3) forms a system of |V | linear
equations on |V | variables. Let X = (r(u))u∈V , and
the influence matrix A ∈ R|V |×|V | be Auv = Puv . Let



B = (1, 1, . . . , 1)T ∈ R|V |. Then (3) becomes

X = AX +B. (4)

If lim
t→∞

At = 0, the solution of (4) becomes

(I −A)X = B.

(I +A+A2 + · · · )(I −A)X = (I +A+A2 + · · · )B.

∴ X = B +AB +A2B + · · · (5)

Note that (At)uv is the summation of the expectation of
influence paths so that the diffusion process begins from a
single node set {u} and it activates a node v after exactly
t number of iterations when we allow loops in the paths.
Hence (At · B)u is equal to the expectation of relaxed
influence of node u after exactly t number of iterations
where relaxed means that we allow multiple counts of
influence on some nodes and loops in the paths.

Hence, from (5), Xu is the expectation of relaxed influ-
ence of node i. Note that Xu is an upper bound of σ(u)
for all u ∈ V . Since we should not allow loops in the
influence paths or multi-counts for the computation of σ(u),
we introduce a damping factor α ∈ (0, 1) as follows.

r(u) = 1 + α ·

 ∑
v∈Nout(u)

Puv · r(v)

 . (6)

Note that (6) is equivalent to X = αAX +B,
and when lim

t→∞
(αA)t = 0, the solution of (6) becomes

X = B + αAB + α2A2B + α3A3B + · · · . (7)

For any A ∈ R|V |×|V |, when α is smaller than the inverse
of the largest eigenvalue of A, lim

t→∞
(αA)t = 0. Note that

if there is no large spreading in the given IC model, then
for all α ∈ (0, 1), lim

t→∞
(αA)t = 0. Hence in those cases (7)

becomes the solution of (6).
To compute X , we use an iterative computation obtained

from (6) as follows. Let r(0)(u) = 1 for all u ∈ V , and
r(t)(u) = 1+α·

(∑
v∈Nout(u) Puv · r(t−1)(v)

)
for all u ∈ V

and t = 1, 2, . . . . Then we have

(r(t)(u))u∈V = B + αAB + (αA)2B + · · ·+ (αA)tB.

Hence (r(t)(u))u∈V converges exponentially fast to the
solution of (6) if lim

t→∞
(αA)t = 0. Even when there

is a large spreading, (r(t)(u))u∈V , computes good esti-
mates of (σ(u))u∈V . We call this iterative computation of
(r(t)(u))u∈V the simple Influence Ranking (Simple IR). The
running time of simple IR becomes very fast since one
iteration of simple IR takes O(

∑
v∈V dout(v)) time.

One possible approach for influence maximization using
simple IR would be selecting top-K seed nodes with the
highest r(u). However, simple IR can only compute the
influence for individual nodes, and σ(S) 6=

∑
u∈S σ(u)

in general due to influence dependency among seed nodes.
Hence we propose IRIE as an extension of simple IR to
overcome this shortcoming.

Influence Rank Influence Estimation. Now we describe
IRIE, which performs an estimation of {σ(u|S)}u∈V for
any given seed set S. Let S be fixed and APS(u) be
the probability that node u becomes activated after the
diffusion process, when the seed set is S. Suppose that we
can estimate APS(u) by some algorithms. Many known
algorithms including MIA and its extension PMIA, and
Monte-Carlo simulation can be used for this estimation. We
call this part of our algorithm as Influence Estimation (IE).

Then we have the following extension of (6) so that
{r(u)}u∈V estimates {σ(u|S)}u∈V .

r(u) = (1−APS(u)) ·

1 + α

 ∑
v∈Nout(u)

Puv · r(v)

 .

(8)
Note that given {APS(u)}u∈V , (8) is a system of linear

equations and is exactly same with (6) when S = ∅. The
factor (1−APS(u)) indicates the probability that a node u
is not activated by a seed set S and the remaining terms are
the same as (6).

Let D ∈ R|V |×|V | be a diagonal matrix so that Duu =
(1 − APS(u)). Then for X = (r(u))u∈V , (8) becomes
X = αDAX + DB. IRIE compute the solution of (8)
by an iterative computation as in the simple IR. As in the
simple IR, when lim

t→∞
(αDA)t = 0, the iterative computation

of r(u) converges to the solution of (6) exponentially
fast. Hence repeating the iterative computation of (8) for
constantly many times computes {r(u)} which is a good
estimate of {σ(u|S)}u∈V . Our stopping criteria for IRIE,
i.e., choosing the number of iterations t, is described in
section IV. Regarding the choice of α, we found by extensive
experiments that the accuracy of IRIE is quite similar for
broad range of α ∈ [0.3, 0.9] for most cases. We suggest a
fixed α = 0.7 since the IRIE shows almost highest accuracy
when α = 0.7 for all cases of our experiments.

Now we explain how we estimate APS(u). Given a seed
set S, we compute the Maximum Influence Out-Aborescence
(MIOA) [4] of s for all s ∈ S. By generating MIOA structure
for all the seed node s ∈ S, we estimate APS(u) according
to APS(u) =

∑
s∈S APs(u). Note that the IE part can be

replaced with any other algorithm that estimates APS(u),
making our IRIE algorithm to be a general framework.

IV. EXPERIMENTS

A. Experimental Setup

1) Datasets: We perform experiments on five real-world
social networks, whose edge sizes range from 29K to
69M. First, we have two (undirected) co-authorship network,
collected from ArXiv General Relativity (|V | = 5K, |E| =
29K) and DBLP Computer Science Biblography Database



Figure IV.2: Running time of algorithms

(|V | = 655K, |E| = 2M ) [17], denoted by ArXiv and
DBLP respectively. We also have three (directed) friendship
networks collected from Epinions.com (|V | = 76K, |E| =
509K), Slashdot.com (|V | = 77K, |E| = 905K), and
LiveJournal.com (|V | = 5M, |E| = 69M ) [17], denoted
by Epinions, Slashdot, and LiveJournal respectively. We
note that in Epinions and Slashdot, nodes are more densely
connected than co-aurhorship networks, although the num-
ber of nodes for both networks are of moderate size. For
the scalability test, we use synthetic power-law random
networks with various sizes generated by the PYTHON Web
Graph Library.

2) Propagation Probability Models: We use two propaga-
tion probability models, the Weighted cascade (WC) model
and the Trivalency (TR) model which have been used as
standard benchmarks in previous works so that we can
compare IRIE with previous works.
• Weighted cascade model. Weighted cascade model

[1] assigns a propagation probability to each edge by
Puv = 1/dv where dv is the in-degree of v.

• Trivalency model. Trivalency model [4] assigns a
randomly selected probability from {0.l, 0.01, 0.001}
to each directed edge. This model represents the case
when there several types of personal relations (three
types in this case), and the edge propagation probability
depends on the type of the relation.

3) Algorithms and Parameter Settings: We compare our
algorithms IR and IRIE with state-of-the-art algorithms
PMIA [4], CELF [5], SAEDV [8], and two baseline algo-
rithms Degree and PageRank. Detailed parameter settings of
these algorithms are described in [10].

As the stopping criteria of IR and IRIE, we use the
followings. For IR and the first round of IRIE, we stop
iterative computations for corresponding formulas when for
all u ∈ V difference between current r(u) and the previous
r(u) are less than 0.0001. Otherwise the iteration run 20
rounds. For the subsequent rounds of IRIE, we initialize
each r(u) by the output of the previous round, and run
the iterations at most 5 times and apply the same stopping
criteria as in the first round.

To compare the influence spread of above algorithms,
we run the Monte-Carlo simulation 10,000 times for each
seed set and take the average of the influence spreads. Our

experimental environment is a server with 2.8GHZ Quad-
Core Intel i7 930 and 24GB memory. More simulation
results including scalability test of IRIE over the network
size and density, sensitivity test of IRIE to propagation
probability models, and simulations on the IC-N model are
presented in [10].

B. Experimental Results

1) Influence Spread for the Real-World Datasets: We
compare influence spread for each algorithms on the five
real-world datasets. The seed size K is set from 1 to 50
to compare the accuracies of algorithm in various range of
seed sizes. Figure IV.1 (a)-(h) shows the experimental results
on influence spread. We run the CELF only for Arxiv, and
Epinions(for the WC) since CELF runs too long time for
other datasets.

In general, CELF performs almost the best influence
spread for both the WC and the TR models. However
IRIE shows almost similar performance with CELF in all
cases. PMIA also shows high performance but 1-5% less
influence spread than IRIE for all cases except for the Epin-
ions TR. IR shows high performances for the WC models,
but not quite good in the TR models. Hence we observe that
IE part of IRIE is necessary to achieve robust performance
in various steps. Hence we conclude that IRIE shows very
high accuracy and robustness in most environments.

2) Running Time and Memory Usage for the Real-World
Datasets: We also checked the running time of the algo-
rithms on the real-world social networks. Figure IV.2 shows
the results. The left and right figures in IV.2 corresponds
to the WC model and the TR model respectively. In each
figure, datasets are aligned in increasing order of network
sizes from left to right. For both the WC and the TR model,
IRIE is more than 1000 times faster than the CELF. Also in
most cases, IRIE is quite faster than PMIA.

Note that although the numbers of nodes and edges of
Epinions and Slashdot are smaller than those of DBLP, the
running times of PMIA for Epinions and Slashdot are much
larger than for DBLP. One possible explanation is that the
running time of PMIA is sensitive to structural properties
of the network such as the clustering coefficient (Epinions
and Slashdot have many triangles) and edge density, and
the spread size (Epinions TR and Slashdot TR induce larger
spread than DBLP TR), matching the the scalability test
and the sensitivity test in [10]. Hence, we conclude that
IRIE shows much more stable and faster running time than
PMIA in various networks.

Table I shows the experimental results on the amount of
memory used by algorithms for the WC and the TR model
respectively. In the table, file sizes indicate the size of raw
text data files, and PMIA and IRIE indicate the amount of
memory occupied by corresponding algorithms. Both for the
WC model and the TR model, IRIE is 2 to 20 times more
efficient in terms of memory than PMIA for all the datasets.



(a) Arxiv-WC (b) Arxiv-TR (c) Epinions-WC (d) Epinions-TR

(e) Slashdot-WC (f) Slashdot-TR (g) DBLP-WC (h) DBLP-TR

Figure IV.1: Influence spread for real world datasets

Table I: Memory usages of IRIE and PMIA

WC TR
Dataset File size PMIA IRIE File size PMIA IRIE
ArXiv 715KB 14MB 8.7MB 582KB 10MB 8.7MB

Epinions 18MB 135MB 35MB 15MB 143MB 35MB
Slashdot 24MB 280MB 39MB 19MB 340MB 40MB
DBLP 88MB 1.1GB 160MB 82MB 357MB 158MB

LiveJournal 2.4GB 10.1GB 3GB 2GB 16GB 3GB
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