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ABSTRACT
This paper establishes the theoretical framework of b-bit minwise hashing.
The original minwise hashing method has become a standard technique for
estimating set similarity (e.g., resemblance) with applications in informa-
tion retrieval, data management, computational advertising, etc.

By only storing b bits of each hashed value (e.g., b = 1 or 2), we gain
substantial advantages in terms of storage space. We prove the basic theo-
retical results and provide an unbiased estimator of the resemblance for any
b. We demonstrate that, even in the least favorable scenario, using b = 1

may reduce the storage space at least by a factor of 21.3 (or 10.7) compared
to b = 64 (or b = 32), if one is interested in resemblance ≥ 0.5.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Data Mining
General Terms
Algorithms, Performance, Theory

1. INTRODUCTION
Computing the size of set intersections is a fundamental problem

in information retrieval, databases, and machine learning. Given
two sets, S1 and S2, where

S1, S2 ⊆ Ω = {0, 1, 2, ..., D − 1},
a basic task is to compute the joint size a = |S1 ∩ S2|, which
measures the (un-normalized) similarity between S1 and S2. The
resemblance, denoted by R, is a normalized similarity measure:

R =
|S1 ∩ S2|
|S1 ∪ S2| =

a

f1 + f2 − a
, where f1 = |S1|, f2 = |S2|.

In large datasets encountered in information retrieval and databases,
efficiently computing the joint sizes is often highly challenging
[3,18]. Detecting duplicate web pages is a classical example [4,6].

Typically, each Web document can be processed as “a bag of
shingles,” where a shingle consists of w contiguous words in a doc-
ument. Here w is a tuning parameter and was set to be w = 5
in several studies [4, 6, 12]. Clearly, the total number of possible
shingles is huge. Considering merely 105 unique English words,
the total number of possible 5-shingles should be D = (105)5 =
O(1025). Prior studies used D = 264 [12] and D = 240 [4, 6].

1.1 Minwise Hashing
In their seminal work, Broder and his colleagues developed min-

wise hashing and successfully applied the technique to duplicate
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Web page removal [4, 6]. Since then, there have been considerable
theoretical and methodological developments [5, 8, 19, 21–23, 26].

As a general technique for estimating set similarity, minwise
hashing has been applied to a wide range of applications, for ex-
ample, content matching for online advertising [30], detection of
large-scale redundancy in enterprise file systems [14], syntactic
similarity algorithms for enterprise information management [27],
compressing social networks [9], advertising diversification [17],
community extraction and classification in the Web graph [11],
graph sampling [29], wireless sensor networks [25], Web spam
[24,33], Web graph compression [7], and text reuse in the Web [2].

Here, we give a brief introduction to this algorithm. Suppose a
random permutation π is performed on Ω, i.e.,

π : Ω −→ Ω, where Ω = {0, 1, ..., D − 1}.
An elementary probability argument shows that

Pr (min(π(S1)) = min(π(S2))) =
|S1 ∩ S2|
|S1 ∪ S2|

= R. (1)

After k minwise independent permutations, π1, π2, ..., πk, one
can estimate R without bias, as a binomial:

R̂M =
1

k

k∑
j=1

1{min(πj(S1)) = min(πj(S2))}, (2)

Var
(
R̂M

)
=

1

k
R(1 − R). (3)

Throughout the paper, we frequently use the terms “sample” and
“sample size” (i.e., k). In minwise hashing, a sample is a hashed
value, min(πj(Si)), which may require e.g., 64 bits to store [12].

1.2 Our Main Contributions
In this paper, we establish a unified theoretical framework for

b-bit minwise hashing. Instead of using b = 64 bits [12] or 40
bits [4, 6], our theoretical results suggest using as few as b = 1 or
b = 2 bits can yield significant improvements.

In b-bit minwise hashing, a sample consists of b bits only, as op-
posed to e.g., 64 bits in the original minwise hashing. Intuitively,
using fewer bits per sample will increase the estimation variance,
compared to (3), at the same sample size k. Thus, we will have to
increase k to maintain the same accuracy. Interestingly, our theo-
retical results will demonstrate that, when resemblance is not too
small (e.g., R ≥ 0.5, the threshold used in [4, 6]), we do not have
to increase k much. This means our proposed b-bit minwise hash-
ing can be used to improve estimation accuracy and significantly
reduce storage requirements at the same time.

For example, when b = 1 and R = 0.5, the estimation variance
will increase at most by a factor of 3. In this case, in order not to
lose accuracy, we have to increase the sample size by a factor of



3. If we originally stored each hashed value using 64 bits [12], the
improvement by using b = 1 will be 64/3 = 21.3.

Algorithm 1 illustrates the procedure of b-bit minwise hashing,
based on the theoretical results in Sec. 2.

Algorithm 1 The b-bit minwise hashing algorithm, applied to esti-
mating pairwise resemblances in a collection of N sets.
Input: Sets Sn ∈ Ω = {0, 1, ..., D − 1}, n = 1 to N .
Pre-processing:
1): Generate k random permutations πj : Ω → Ω, j = 1 to k.
2): For each set Sn and each permutation πj , store the lowest b bits of
min (πj (Sn)), denoted by en,i,j , i = 1 to b.
Estimation: (Use two sets S1 and S2 as an example.)

1): Compute Êb = 1
k

∑k
j=1

{∏b
i=1 1{e1,i,πj

= e2,i,πj
} = 1

}
.

2): Estimate the resemblance by R̂b =
Êb−C1,b

1−C2,b
, where C1,b and C2,b

are from Theorem 1 in Sec. 2.

1.3 Comparisons with LSH Algorithms
Locality Sensitive Hashing (LSH) [8,20] is a set of techniques for

performing approximate search in high dimensions. In the context
of estimating set intersections, there exist LSH families for estimat-
ing the resemblance, the arccosine and the Hamming distance [1].

In [8, 16], the authors describe LSH hashing schemes that map
objects to {0, 1} (i.e., 1-bit schemes). The algorithms for the con-
struction, however, are problem specific. Two discovered 1-bit
schemes are the sign random projections (also known as simhash)
[8] and the Hamming distance LSH algorithm proposed by [20].

Our b-bit minwise hashing proposes a new construction, which
maps objects to {0, 1, ..., 2b − 1} instead of just {0, 1}. While our
major focus is to compare with the original minwise hashing, we
also conduct comparisons with the other two known 1-bit schemes.

1.3.1 Sign Random Projections
The method of sign (1-bit) random projections estimates the ar-

ccosine, which is cos−1
(

a√
f1f2

)
, using our notation for sets S1

and S2. A separate technical report is devoted to comparing b-bit
minwise hashing with sign (1-bit) random projections. See
www.stat.cornell.edu/~li/hashing/RP_minwise.pdf.
That report demonstrates that, unless the similarity level is very
low, b-bit minwise hashing outperforms sign random projections.

The method of sign random projections has received significant
attention in the context of duplicate detection. According to [28],
a great advantage of simhash over minwise hashing is the smaller
size of the fingerprints required for duplicate detection. The space-
reduction of b-bit minwise hashing overcomes this issue.

1.3.2 The Hamming Distance LSH Algorithm
Sec. 4 will compare b-bit minwise hashing with the Hamming

distance LSH algorithm developed in [20] (and surveyed in [1]):

• When the Hamming distance LSH algorithm is implemented
naively, to achieve the same level of accuracy, its required
storage space will be many magnitudes larger than that of
b-bit minwise hashing in sparse data (i.e., |Si|/D is small).

• If we only store the non-zero locations in the Hamming dis-
tance LSH algorithm, then its required storage space will be
about one magnitude larger (e.g., 10 to 30 times).

2. THE FUNDAMENTAL RESULTS
Consider two sets, S1 and S2,

S1, S2 ⊆ Ω = {0, 1, 2, ..., D − 1},
f1 = |S1|, f2 = |S2|, a = |S1 ∩ S2|

Apply a random permutation π on S1 and S2: π : Ω −→ Ω. Define
the minimum values under π to be z1 and z2:

z1 = min (π (S1)) , z2 = min (π (S2)) .

Define e1,i = ith lowest bit of z1, and e2,i = ith lowest bit of z2.
Theorem 1 derives the main probability formula.

THEOREM 1. Assume D is large.

Eb = Pr

(
b∏

i=1

1 {e1,i = e2,i} = 1

)
= C1,b + (1 − C2,b) R

where (4)

r1 =
f1

D
, r2 =

f2

D
,

C1,b = A1,b
r2

r1 + r2
+ A2,b

r1

r1 + r2
, (5)

C2,b = A1,b
r1

r1 + r2
+ A2,b

r2

r1 + r2
, (6)

A1,b =
r1 [1 − r1]

2b−1

1 − [1 − r1]
2b

, A2,b =
r2 [1 − r2]

2b−1

1 − [1 − r2]
2b

. (7)

For a fixed rj (where j ∈ {1, 2}), Aj,b is a monotonically de-
creasing function of b = 1, 2, 3, ....

For a fixed b, Aj,b is a monotonically decreasing function of rj ∈
[0, 1], reaching a limit:

lim
rj→0

Aj,b =
1

2b
. (8)

Proof: See Appendix A.�

Theorem 1 says that, for a given b, the desired probability (4) is
determined by R and the ratios, r1 = f1

D
and r2 = f2

D
. The only

assumption needed in the proof of Theorem 1 is that D should be
large, which is always satisfied in practice.

Aj,b (j ∈ {1, 2}) is a decreasing function of rj and Aj,b ≤ 1
2b .

As b increases, Aj,b converges to zero very quickly. In fact, when
b ≥ 32, one can essentially view Aj,b = 0.

2.1 An Intuitive (Heuristic) Explanation
A simple heuristic argument may provide a more intuitive expla-

nation of Theorem 1. Consider b = 1. One might expect that

Pr (e1,1 = e2,1) =Pr (e1,1 = e2,1|z1 = z2)Pr (z1 = z2)

+Pr (e1,1 = e2,1|z1 	= z2)Pr (z1 	= z2)

??≈R +
1

2
(1 − R) =

1 + R

2
,

because when z1 and z2 are not equal, the chance that their last bits
are equal “may be” approximately 1

2
. This heuristic argument is

actually consistent with Theorem 1 when r1, r2 → 0. According to
(8), as r1, r2 → 0, we have A1,1, A2,1 → 1

2
, and C1,1, C2,1 → 1

2

also; and hence the probability (4) approaches 1+R
2

.
In practice, when a very accurate estimate is not necessary, one

might actually use this approximate formula to simplify the estima-
tor. The errors, however, could be quite noticeable when r1, r2 are
not negligible; see Sec. 5.2.

2.2 The Unbiased Estimator
Theorem 1 suggests an unbiased estimator R̂b for R:

R̂b =
Êb − C1,b

1 − C2,b
, (9)

Êb =
1

k

k∑
j=1

{
b∏

i=1

1{e1,i,πj = e2,i,πj} = 1

}
, (10)



where e1,i,πj (e2,i,πj ) denotes the ith lowest bit of z1 (z2), under
the permutation πj . Following property of binomial distribution,

Var
(
R̂b

)
=

Var
(
Êb

)
[1 − C2,b]

2 =
1

k

Eb(1 − Eb)

[1 − C2,b]
2

=
1

k

[C1,b + (1 − C2,b)R] [1 − C1,b − (1 − C2,b)R]

[1 − C2,b]
2 (11)

For large b, Var
(
R̂b

)
converges to the variance of R̂M , the esti-

mator for the original minwise hashing:

lim
b→∞

Var
(
R̂b

)
=

R(1 − R)

k
= Var

(
R̂M

)
.

In fact, when b ≥ 32, Var
(
R̂b

)
and Var

(
R̂M

)
are numerically

indistinguishable for practical purposes.

2.3 The Variance-Space Trade-off
As we decrease b, the space needed for storing each “sample”

will be smaller; the estimation variance (11) at the same sample
size k, however, will increase. This variance-space trade-off can be
precisely quantified by the storage factor B(b; R, r1, r2):

B(b; R, r1, r2) = b × Var
(
R̂b

)
× k

=
b [C1,b + (1 − C2,b)R] [1 − C1,b − (1 − C2,b)R]

[1 − C2,b]
2

. (12)

Lower B(b) is better. The ratio, B(b1;R,r1,r2)
B(b2;R,r1,r2)

, measures the im-
provement of using b = b2 (e.g., b2 = 1) over using b = b1 (e.g.,
b1 = 64). Some algebra yields the following Theorem.

THEOREM 2. If r1 = r2 and b1 > b2, then

B(b1; R, r1, r2)

B(b2; R, r1, r2)
=

b1

b2

A1,b1(1 − R) + R

A1,b2(1 − R) + R

1 − A1,b2

1 − A1,b1

, (13)

is a monotonically increasing function of R ∈ [0, 1].
If R → 1 (which implies r1 → r2), then

B(b1; R, r1, r2)

B(b2; R, r1, r2)
→ b1

b2

1 − A1,b2

1 − A1,b1

. (14)

If r1 = r2, b2 = 1, b1 ≥ 32 (hence we treat A1,b = 0), then

B(b1; R, r1, r2)

B(1; R, r1, r2)
= b1

R

R + 1 − r1
(15)

Proof: We omit the proof due to its simplicity.�

Suppose the original minwise hashing used 64 bits to store each
sample, then the maximum improvement of b-bit minwise hashing
would be 64-fold, attained when r1 = r2 = 1 and R = 1, accord-
ing to (15). In the least favorable situation, i.e., r1, r2 → 0, the
improvement will still be 64

3
= 21.3-fold when R = 0.5.

Fig. 1 plots B(64)
B(b)

, to directly visualize the relative improve-
ments, which are consistent with what Theorem 2 predicts. The
plots show that, when R is very large (which is the case in many
practical applications), it is always good to use b = 1. However,
when R is small, using larger b may be better. The cut-off point
depends on r1, r2, R. For example, when r1 = r2 and both are
small, it would be better to use b = 2 than b = 1 if R < 0.4, as
shown in Fig. 1.
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Figure 1: B(64)
B(b)

, the relative storage improvement of using b =

1, 2, 3, 4 bits, compared to using 64 bits. B(b) is defined in (12).

3. EXPERIMENTS
Experiment 1 is a sanity check, to verify: (A) our proposed

estimator R̂b in (9), is indeed unbiased; and (B) its variance follows
the prediction by our formula in (11).

Experiment 2 is a duplicate detection task using a Microsoft
proprietary collection of 1,000,000 news articles.

Experiment 3 is another duplicate detection task using 300,000
UCI NYTimes news articles.

3.1 Experiment 1
The data, extracted from Microsoft Web crawls, consists of 10

pairs of sets (i.e., total 20 words). Each set consists of the document
IDs which contain the word at least once. Thus, this experiment is
for estimating word associations.

Table 1: Ten pairs of words used in Experiment 1. For example,
“KONG” and “HONG” correspond to the two sets of document IDs
which contained word “KONG” and word “HONG” respectively.

Word 1 Word 2 r1 r2 R
B(32)
B(1)

B(64)
B(1)

KONG HONG 0.0145 0.0143 0.925 15.5 31.0
RIGHTS RESERVED 0.187 0.172 0.877 16.6 32.2
OF AND 0.570 0.554 0.771 20.4 40.8
GAMBIA KIRIBATI 0.0031 0.0028 0.712 13.3 26.6
UNITED STATES 0.062 0.061 0.591 12.4 24.8
SAN FRANCISCO 0.049 0.025 0.476 10.7 21.4
CREDIT CARD 0.046 0.041 0.285 7.3 14.6
TIME JOB 0.189 0.05 0.128 4.3 8.6
LOW PAY 0.045 0.043 0.112 3.4 6.8
A TEST 0.596 0.035 0.052 3.1 6.2

Table 1 summarizes the data and also provides the theoretical im-
provements, B(32)

B(1)
and B(64)

B(1)
. The words were selected to include

highly frequent word pairs (e.g., “OF-AND”), highly rare word
pairs (e.g., “GAMBIA-KIRIBATI”), highly unbalanced pairs (e.g.,
”A-Test”), highly similar pairs (e.g, “KONG-HONG”), as well as
word pairs that are not quite similar (e.g., “LOW-PAY”).

We estimate the resemblance using the original minwise hashing
estimator R̂M and the b-bit estimator R̂b (b = 1, 2, 3).

3.1.1 Validating the Unbiasedness
Figure 2 presents the estimation biases for the selected 2 word

pairs. Theoretically, both estimators, R̂M and R̂b, are unbiased
(i.e., the y-axis in Figure 2 should be zero, after an infinite number
of repetitions). Figure 2 verifies this fact because the empirical
biases are all very small and no systematic biases can be observed.
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Figure 2: Empirical biases from 25000 simulations at each sam-
ple size k. “M” denotes the original minwise hashing.

3.1.2 Validating the Variance Formula
Figure 3 plots the empirical mean square errors (MSE = variance

+ bias2) in solid lines, and the theoretical variances (11) in dashed
lines, for 6 word pairs (instead of 10 pairs, due to the space limit).

All dashed lines are invisible because they overlap with the cor-
responding solid curves. Thus, this experiment validates that the
variance formula (11) is accurate and R̂b is indeed unbiased (oth-
erwise, MSE will differ from the variance).
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Figure 3: Mean square errors (MSEs). “M” denotes the orig-
inal minwise hashing. “Theor.” denotes the theoretical vari-
ances of Var(R̂b)(11) and Var(R̂M )(3). The dashed curves,
however, are invisible because the empirical MSEs overlapped
the theoretical variances. At the same k, Var(R̂1) > Var(R̂2) >

Var(R̂3) > Var(R̂M ). However, R̂1 (R̂2) only requires 1 bit (2
bits) per sample, while R̂M requires 32 or 64 bits.

3.2 Experiment 2: Microsoft News Data
To illustrate the improvements by the use of b-bit minwise hash-

ing on a real-life application, we conducted a duplicate detection
experiment using a corpus of 106 news documents. The dataset
was crawled as part of the BLEWS project at Microsoft [15]. We
computed pairwise resemblances for all documents and retrieved
documents pairs with resemblance R larger than a threshold R0.

We estimate the resemblances using R̂b with b = 1, 2, 4 bits, and

the original minwise hashing (using 32 bits). Figure 4 presents the
precision & recall curves. The recall values (bottom two panels in
Figure 4) are all very high and do not differentiate the estimators.
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Figure 4: Microsoft collection of news data. The task is to re-
trieve news article pairs with resemblance R ≥ R0. The recall
curves (bottom two panels) indicate all estimators are equally
good (in recalls). The precision curves are more interesting for
differentiating estimators. For example, when R0 = 0.4 (top
right panel), in order to achieve a precision = 0.80, the estima-
tors R̂M , R̂4, R̂2, and R̂1 require k = 50, 50, 75, 145 samples,
respectively, indicating R̂4, R̂2, and R̂1 respectively improve
R̂M by 8-fold, 10.7-fold, and 11-fold.

The precision curves for R̂4 (using 4 bits per sample) and R̂M

(using 32 bits per sample) are almost indistinguishable, suggesting
a 8-fold improvement in space using b = 4.

When using b = 1 or 2, the space improvements are normally
around 10-fold to 20-fold, compared to R̂M , especially for achiev-
ing high precisions (e.g., ≥ 0.9). This experiment again confirms
the significant improvement of the b-bit minwise hashing using
b = 1 (or 2). Table 2 summarizes the relative improvements.

In this experiment, R̂M only used 32 bits per sample. For even
larger applications, however, 64 bits per sample may be necessary
[12]; and the improvements of R̂b will be even more significant.

Note that in the context of (Web) document duplicate detection,
in addition to shingling, a number of specialized hash-signatures
have been proposed, which leverage properties of natural-language



text (such as the placement of stopwords [31]). However, our ap-
proach is not aimed at any specific type of data, but is a general,
domain-independent technique. Also, to the extent that other ap-
proaches rely on minwise hashing for signature computation, these
may be combined with our techniques.

Table 2: Relative improvement (in space) of R̂b (using b bits per sam-
ple) over R̂M (32 bits per sample). For precision = 0.9, 0.95, we find the
required sample sizes (from Figure 4) for R̂M and R̂b and use them to
estimate the required storage in bits. The values in the table are the
ratios of the storage costs. The improvements are consistent with the
theoretical predictions in Figure 1.

R0 Precision = 0.9 Precision = 0.95
b = 1 2 4 b = 1 2 4

0.3 — 5.7 8.8 — — 7.1
0.4 9.2 10.0 8.3 — 10.0 8.2
0.5 10.8 12.7 8.4 8.2 10.1 7.7
0.6 12.9 11.7 8.6 10.5 12.4 8.5
0.7 16.0 14.8 9.6 15.4 12.7 7.6
0.8 17.4 10.3 8.0 18.7 14.2 7.7
0.9 16.6 14.0 10.7 23.0 17.6 9.7

3.3 Experiment 3: UCI NYTimes Data
We conducted another duplicate detection experiment on a pub-

lic (UCI) collection of 300,000 NYTimes articles. The purpose is
to ensure that our experiment will be repeatable by those who can
not access the proprietary data in Experiment 2.

Figure 5 presents the precision curves for representative thresh-
old R0’s. The recall curves are not shown because they could not
differentiate estimators, just like in Experiment 1. The curves con-
firm again that using b = 1 or b = 2 bits, R̂b could improve the
original minwise hashing (using 32 bits per sample) by a factor of
10 or more. The curves for R̂b with b = 4 almost always overlap
with the curves for R̂M , verifying an expected 8-fold improvement.

0 100 200 300 400 500
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

R
0
 = 0.5

Sample size (k)

P
re

ci
si

on

 

 

b=1

2

b=1
b=2
b=4
M

0 100 200 300 400 500
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

R
0
 = 0.6

Sample size (k)

P
re

ci
si

on

 

 

2

b=1

b=1
b=2
b=4
M

0 100 200 300 400 500
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

R
0
 = 0.7

Sample size (k)

P
re

ci
si

on

 

 

b=12

b=1
b=2
b=4
M

0 100 200 300 400 500
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

R
0
 = 0.8

Sample size (k)

P
re

ci
si

on

 

 

2

b=1

b=1
b=2
b=4
M

Figure 5: UCI collection of NYTimes data. The task is to re-
trieve news article pairs with resemblance R ≥ R0.

4. COMPARISONS WITH THE HAMMING
DISTANCE LSH ALGORITHM

The Hamming distance LSH algorithm proposed in [20] is an
influential 1-bit LSH scheme. In this algorithm, a set Si, is mapped
into a D-dimensional binary vector, yi:

yit = 1, if t ∈ Si; yit = 0, otherwise.

k coordinates are randomly sampled from Ω = {0, 1, ..., D − 1}.
We denote the samples of yi by hi, where hi = {hij , j = 1 to k}
is a k-dimensional vector. These samples will be used to estimate
the Hamming distance H (using S1, S2 as an example):

H =

D−1∑
i=0

[y1i 	= y2i] = |S1 ∪ S2| − |S1 ∩ S2| = f1 + f2 − 2a.

Using the samples h1 and h2, an unbiased estimator of H is simply

Ĥ =
D

k

k∑
j=1

[h1j 	= h2j ] , (16)

whose variance would be

Var
(
Ĥ
)

=
D2

k2
k
[
E
(
[h1j 	= h2j ]

2)− E2 ([h1j 	= h2j ])
]

=
D2

k

[∑D−1
i=0 [y1i 	= y2i]

2

D
−
(∑D−1

i=0 [y1i 	= y2i]

D

)2]

=
D2

k

[
H

D
− H2

D2

]
. (17)

The above analysis assumes k � D (which is satisfied in prac-

tice); otherwise one should multiply the Var
(
Ĥ
)

in (17) by D−k
D−1

,

the “finite sample correction factor.” It would be interesting to
compare Ĥ with b-bit minwise hashing. In order to estimate H , we
need to convert the resemblance estimator R̂b (9) to Ĥb:

Ĥb = f1 + f2 − 2
R̂b

1 + R̂b

(f1 + f2) =
1 − R̂b

1 + R̂b

(f1 + f2). (18)

The variance of Ĥb can be computed from Var
(
R̂b

)
(11) using the

“delta method” in statistics (note that
[

1−x
1+x

]′
= −2

(1+x)2
):

Var
(
Ĥb

)
=Var

(
R̂b

)
(f1 + f2)

2

( −2

(1 + R)2

)2

+ O

(
1

k2

)

=Var
(
R̂b

) 4(r1 + r2)
2

(1 + R)4
D2 + O

(
1

k2

)
. (19)

Recall ri = fi/D. To verify the variances in (17) and (19), we
conduct experiments using the same data as in Experiment 1. This
time, we estimate H instead of R, using both Ĥ (16) and Ĥb (18).

Figure 6 reports the mean square errors, together with the the-
oretical variances (17) and (19). We can see that the theoretical
variance formulas are accurate. When the data is not dense, the
estimator Ĥb (18) given by b-bit minwise hashing is much more
accurate than the estimator Ĥ (16). However, when the data is
dense (e.g., “OF-AND”), Ĥ could still outperform Ĥb.

We now compare the actual storage needed by Ĥb and Ĥ . We
define the following two ratios to make fair comparisons:

Wb =
Var
(
Ĥ
)
× k

Var
(
Ĥb

)
× bk

, Gb =
Var
(
Ĥ
)
× r1+r2

2
64k

Var
(
Ĥb

)
× bk

. (20)

Wb and Gb are defined in the same spirit as the ratio of the storage
factors introduced in Sec. 2.3. Recall each sample of b-bit minwise
hashing requires b bits (i.e., bk bits per set). If we assume each
sample in the Hamming distance LSH requires 1 bit, then Wb in
(20) is a fair indicator and Wb > 1 means Ĥb outperforms Ĥ.

However, as can be verified in Fig. 6 and Fig 7, when r1 and r2

are small (which is usually the case in practice), Wb tends to be very
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Figure 6: MSEs (normalized by H2), for comparing Ĥ (16)
with Ĥb (18). In each panel, three solid curves stand for Ĥ (la-
beled by “H”), Ĥ1 (by ”b=1”), and Ĥ2 (by ”b=2”), respectively.
The dashed lines are the corresponding theoretical variances
(17) and (19), which are largely overlapped by the solid lines.
When the sample size k is not large, the empirical MSEs of Ĥb

deviate from the theoretical variances, due to the bias caused
by the nonlinear transformation of Ĥb from R̂b in (18).

large, indicating a highly significant improvement of b-bit minwise
hashing over the Hamming distance LSH algorithm in [20].

We consider in practice one will most likely implement the al-
gorithm by only storing non-zero locations. In other words, for set
Si, only ri × k locations need to be stored (each is assumed to use
64 bits). Thus, the total bits on average will be r1+r2

2
64k (per set).

In fact, we have the following Theorem for Gb when r1, r2 → 0.

THEOREM 3. Consider r1, r2 → 0, and Gb as defined in (20).

If R → 0, then Gb → 8

b

(
2b − 1

)
. (21)

If R → 1, then Gb → 64

b

2b − 1

2b
. (22)

Proof: We omit the proof due to its simplicity. �

Figure 7 plots W1 and G1, for r1 = r2 = 10−6, 10−4, 0.001,
0.01, 0,1 (which are probably reasonable in practice), as well as
r1 = r2 = 0.9 (as a sanity check). Note that, not all combinations
of r1, r2, R are possible. For example, when r1 = r2 = 1, then R
has to be 1.
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Figure 7: W1 and G1 as defined in (20). We consider r1 =
10−6, 10−4, 0.001, 0.01, 0.1, 0.9. Note that not all combinations
of (r1, r2, R) are possible. The plot for G1 also verifies the the-
oretical limits proved in Theorem 3.

Figure 7 confirms our theoretical results. W1 will be extremely

large, when r1, r2 are small. However, when r1 is very large (e.g.,
0.9), it is possible that W1 < 1, meaning that the Hamming dis-
tance LSH could still outperform b-bit minwise in dense data.

By only storing the non-zero locations, Figure 7 illustrates that
b-bit minwise hashing will outperform the Hamming distance LSH
algorithm, usually by a factor of 10 (for small R) to 30 (for large R
and r1 ≈ r2).

5. DISCUSSIONS
5.1 Computational Overhead

The previous results establish the significant reduction in storage
requirements possible using b-bit minwise hashing. This section
demonstrates that these also translate into significant improvements
in computational overhead in the estimation phrase. The compu-
tational cost in the preprocessing phrase, however, will increase.

5.1.1 Preprocessing Phrase
In the preprocessing phrase, we need to generate minwise hash-

ing functions and apply them to all the sets for creating fingerprints.
This phrase is actually fairly fast [4] and is usually done off-line,
incurring a one-time cost. Also, sets can be individually processed,
meaning that this step is easy to parallelize.

The computation required for b-bit minwise hashes differs from
the computation of traditional minwise hashes in two respects: (A)
we require a larger number of (smaller-sized) samples, in turn re-
quiring more hashing and (B) the packing of b-bit samples into 64-
bit (or 32-bit) words requires additional bit-manipulation.

It turns out the overhead for (B) is small and the overall compu-
tation time scales nearly linearly with k; see Fig. 8. As we have
analyzed, b-bit minwise hashing only requires increasing k by a
small factor such as 3. Therefore, we consider the overhead in the
preprocessing stage not to be a major issue. Also, it is important to
note that b-bit minwise hashing provides the flexibility of trading
storage with preprocessing time by using b > 1.
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Figure 8: Running time in the preprocessing phrase on 100K
news articles. 3 hashing functions were used: 2-universal hash-
ing (labeled by “2-U”), 4-universal hashing (labeled by “4-U”),
and full permutations (labeled by “FP”). Experiments with
1-bit hashing are reported in 3 dashed lines, which are only
slightly higher (due to additional bit-packing) than their corre-
sponding solid lines (the original minwise hashing using 32-bit).

The experiment in Fig. 8 was conducted on 100K articles from
the BLEWS project [15]. We considered 3 hashing functions: first,
2-universal hash functions (computed using the fast universal hash-
ing scheme described [10]); second, 4-universal hash-functions (com-
puted using the CWtrick algorithm of [32]); and finally full ran-
dom permutations (computed using the Fisher-Yates shuffle [13]).

5.1.2 Estimation Phrase
We have shown earlier that, when R ≥ 0.5 and b = 1, we expect

a storage reduction of at least a factor of 21.3, compared to using



64 bits. In the following, we will analyze how this impacts the
computational overhead of the estimation.

Here, the key operation is the computation of the number of iden-
tical b-bit samples. While standard hash signatures that are multi-
ples of 16-bit can easily be compared using a single machine in-
struction, efficiently computing the overlap between b-bit samples
for small b is less straightforward. In the following, we will de-
scribe techniques for computing the number of identical b-bit sam-
ples when these are stored in a compact manner, meaning that in-
dividual b-bit samples e1,i,j and e2,i,j , i = 1, . . . , b, j = 1, . . . k
are packed into arrays Al[1, . . . , k·b

w
], l = 1, 2 of w-bit words. To

compute the number of identical b-bit samples, we iterate through
the arrays; for an each offset h, we first compute v = A1[h] ⊕
A2[h], where ⊕ denotes the bitwise-XOR. Subsequently, the h-th
bit of v will be set if and only if the h-th bits in A1[h] and A2[h] are
different. Hence, to compute the number of overlapping b-bit sam-
ples encoded in A1[h] and A2[h], we need to compute the number
of b-bit blocks ending at offsets divisible by b that only contain 0s.

The case of b = 1 corresponds to the problem of counting the
number of 0-bits in a word. We tested different methods suggested
in [34] and found the fastest approach to be pre-computing an array
bits[1, . . . , 216], such that bits[t] corresponds to the number of 0-
bits in the binary representation of t. Then we can compute the
number of 0-bits in v (in case of w = 32) as

c = bits[v & 0xffffu] + bits[(v  16) & 0xffffu].

Interestingly, we can use the same method for the cases where
b > 1, as we only need to modify the values stored in bits, set-
ting bits[i] to the number of b-bit blocks that only contain 0-bits in
the binary representation of i.

We evaluated this approach using a loop computing the number
of identical samples in two signatures covering a total of 1.8 billion
32-bit words (using a 64-bit Intel 6600 Processor). Here, the 1-
bit hashing requires 1.67x the time that the 32-bit minwise hashing
requires.The results were essentially identical for b = 2.

Combined with the reduction in overall storage (for a given ac-
curacy level), this means a significant speed improvement in the
estimation phase: suppose in the original minwise hashing, each
sample is stored using 64 bits. If we use 1-bit minwise hashing and
consider R > 0.5, our previous analysis has shown that we could
gain a storage reduction at least by a factor of 64/3 = 21.3 fold.
The improvement in computational efficiency would be 21.3/1.67
= 12.8 fold, which is still significant.

5.2 Reducing Storage Overhead for r1 and r2

The unbiased estimator R̂b (9) requires knowing r1 = f1
D

and
r2 = f1

D
. The storage cost could be a concern if r1 (r2) must be

represented with a high accuracy (e.g., 64 bits).
This section illustrates that we only need to quantize r1 and r2

into Q levels, where Q = 24 is probably good enough and Q = 28

is more than sufficient. In other words, for each set, we only need
to increase the total storage by 4 bits or 8 bits, which are negligible.

For simplicity, we carry out the analysis for b = 1 and r1 =
r2 = r. In this case, A1,1 = A2,1 = C1,1 = C2,1 = 1−r

2−r
, and the

correct estimator, denoted by R̂1,r would be

R̂1,r = (2 − r)Ê1 − (1 − r),

Bias
(
R̂1,r

)
= E

(
R̂1,r

)
− R = 0,

Var
(
R̂1,r

)
=

(1 − r + R)(1 − R)

k
.

See the definition of Ê1 in (10). Now, suppose we only store an

approximate value of r, denoted by r̃. The corresponding (approx-
imate) estimator is denoted by R̂1,r̃:

R̂1,r̃ = (2 − r̃)Ê1 − (1 − r̃),

Bias
(
R̂1,r̃

)
= E

(
R̂1,r̃

)
− R =

(r̃ − r)(1 − R)

2 − r
,

Var
(
R̂1,r̃

)
=

(1 − r + R)(1 − R)

k

(2 − r̃)2

(2 − r)2
.

Thus, the (absolute) bias is upper bounded by |r̃−r| (in the worst
case, i.e., R = 0 and r = 1). Using Q = 24 levels of quantization,
the bias is bounded by 1/16 = 0.0625. In a reasonable situation,
e.g., R ≥ 0.5, the bias will be much smaller than 0.0625. Of
course, if we increase the quantization levels to Q = 28, the bias
(< 1/256 = 0.0039) will be negligible, even in the worst case.

Similarly, by examining the difference of the variances,∣∣∣Var
(
R̂1,r

)
− Var

(
R̂1,r̃

)∣∣∣
=
|r̃ − r|

k
(1 − r + R)(1 − R)

(4 − r̃ − r)

(2 − r)2
,

we can see that Q = 28 would be more than sufficient.

5.3 Combining Bits for Enhancing Performance
Our theoretical and empirical results have confirmed that, when

the resemblance R is reasonably high, each bit per sample may con-
tain strong information for estimating the similarity. This naturally
leads to the conjecture that, when R is close to 1, one might further
improve the performance by looking at a combination of multiple
bits (i.e., “b < 1”). One simple approach is to combine two bits
from two permutations using XOR (⊕) operations.

Recall e1,1,π denotes the lowest bit of the hashed value under π.
Theorem 1 has proved that

E1 = Pr (e1,1,π = e2,1,π) = C1,1 + (1 − C2,1) R

Consider two permutations π1 and π2. We store

x1 = e1,1,π1 ⊕ e1,1,π2 , x2 = e2,1,π1 ⊕ e2,1,π2

Then x1 = x2 either when e1,1,π1 = e2,1,π1 and e1,1,π2 = e2,1,π2 ,
or, when e1,1,π1 	= e2,1,π1 and e1,1,π2 	= e2,1,π2 . Thus

T = Pr (x1 = x2) = E2
1 + (1 − E1)

2, (23)

which is a quadratic equation with a solution

R =

√
2T − 1 + 1 − 2C1,1

2 − 2C2,1
. (24)

We can estimate T without bias as a binomial. The resultant es-
timator for R will be biased, at small sample size k, due to the
nonlinearity. We will recommend the following estimator

R̂1/2 =

√
max{2T̂ − 1, 0} + 1 − 2C1,1

2 − 2C2,1
. (25)

The truncation max{ . , 0} will introduce further bias; but it is nec-
essary and is usually a good bias-variance trade-off. We use R̂1/2

to indicate that two bits are combined into one. The asymptotic
variance of R̂1/2 can be derived using the “delta method”

Var
(
R̂1/2

)
=

1

k

T (1 − T )

4(1 − C2,1)2(2T − 1)
+ O

(
1

k2

)
. (26)

Note that each sample is still stored using 1 bit, despite that we use
“b = 1/2” to denote this estimator.



Interestingly, as R → 1, R̂1/2 does twice as well as R̂1:

lim
R→1

Var
(
R̂1

)
Var
(
R̂1/2

) = lim
R→1

2(1 − 2E1)
2

(1 − E1)2 + E2
1

= 2. (27)

(Recall, if R = 1, then r1 = r2, C1,1 = C2,1, and E1 = C1,1 +

1−C2,1 = 1.) On the other hand, R̂1/2 may not be good when R
is not too large. For example, one can numerically show that

Var
(
R̂1

)
< Var

(
R̂1/2

)
, if R < 0.5774, r1, r2 → 0

Figure 9 plots the empirical MSEs for four word pairs in Ex-
periment 1, for R̂1/2, R̂1, and R̂M . For the highly similar pair,
“KONG-HONG,” R̂1/2 exhibits superior performance compared to
R̂1. For the fairly similar pair, “OF-AND,” R̂1/2 is still consid-
erably better. For “UNITED-STATES,” whose R = 0.591, R̂1/2

performs similarly to R̂1. For “LOW-PAY,” whose R = 0.112
only, the theoretical variance of R̂1/2 is very large. However, ow-
ing to the truncation in (25) (i.e., the variance-bias trade-off), the
empirical performance of R̂1/2 is not too bad.
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Figure 9: MSEs for comparing R̂1/2 (25) with R̂1 and R̂M . Due

to the bias of R̂1/2, the theoretical variances Var
(
R̂1/2

)
, i.e.,

(26), deviate from the empirical MSEs when k is small.

In a summary, for applications which care about very high simi-
larities, combining bits can reduce storage even further.

6. CONCLUSION
The minwise hashing technique has been widely used as a stan-

dard duplicate detection approach in the context of information re-
trieval, for efficiently computing set similarity in massive data sets.
Prior studies commonly used 64 bits to store each hashed value.

This study proposes b-bit minwise hashing, by only storing the
lowest b bits of each hashed value. We theoretically prove that,
when the similarity is reasonably high (e.g., resemblance ≥ 0.5),
using b = 1 bit per hashed value can, even in the worst case, gain a
21.3-fold improvement in storage space, compared to storing each
hashed value using 64 bits. We also discussed the idea of com-
bining 2 bits from different hashed values, to further enhance the
improvement, when the target similarity is very high.

Our proposed method is simple and requires only minimal mod-
ification to the original minwise hashing algorithm. We expect our
method will be adopted in practice.
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APPENDIX

A. PROOF OF THEOREM 1
Consider two sets, S1, S2 ⊆ Ω = {0, 1, 2, ..., D − 1}. Denote

f1 = |S1|, f2 = |S2|, and a = |S1 ∩ S2|. Apply a random
permutation π on S1 and S2: π : Ω −→ Ω. Define the minimum
values under π to be z1 and z2:

z1 = min (π (S1)) , z2 = min (π (S2)) .

Define e1,i = ith lowest bit of z1, and e2,i = ith lowest bit of z2.

The task is to derive Pr
(∏b

i=1 1{e1,i = e2,i} = 1
)

,

which can be decomposed to be

Pr

(
b∏

i=1

1{e1,i = e2,i} = 1, z1 = z2

)

+Pr

(
b∏

i=1

1{e1,i = e2,i} = 1, z1 �= z2

)

=Pr (z1 = z2) + Pr

(
b∏

i=1

1{e1,i = e2,i} = 1, z1 �= z2

)

=R + Pr

(
b∏

i=1

1{e1,i = e2,i} = 1, z1 �= z2

)
.

where R = |S1∩S2|
|S1∪S2| = Pr (z1 = z2) is the resemblance.

When b = 1, the task boils down to estimating

Pr (e1,1 = e2,1, z1 �= z2)

=
∑

i=0,2,4,...

⎧⎨
⎩

∑
j 	=i,j=0,2,4,...

Pr (z1 = i, z2 = j)

⎫⎬
⎭

+
∑

i=1,3,5,...

⎧⎨
⎩

∑
j 	=i,j=1,3,5,...

Pr (z1 = i, z2 = j)

⎫⎬
⎭ .

Therefore, we need the following basic probability formula:

Pr (z1 = i, z2 = j, i 	= j) .

We start with

Pr (z1 = i, z2 = j, i < j) =
P1 + P2

P3
, where

P3 =
(D

a

)(D − a

f1 − a

)(D − f1

f2 − a

)
,

P1 =
(D − j − 1

a

)(D − j − 1 − a

f2 − a − 1

)(D − i − 1 − f2

f1 − a − 1

)
,

P2 =
(D − j − 1

a − 1

)(D − j − a

f2 − a

)(D − i − 1 − f2

f1 − a − 1

)
.

The expressions for P1, P2, and P3 can be understood by the
experiment of randomly throwing f1+f2−a balls into D locations,
labeled 0, 1, 2, ..., D − 1. Those f1 + f2 − a balls belong to three
disjoint sets: S1 − S1 ∩ S2, S2 − S1 ∩ S2, and S1 ∩ S2. Without
any restriction, the total number of combinations should be P3.

To understand P1 and P2, we need to consider two cases:

1. The jth element is not in S1 ∩ S2: =⇒ P1.
We first allocate the a = |S1 ∩S2| overlapping elements ran-
domly in [j +1, D− 1], resulting in

(
D−j−1

a

)
combinations.

Then we allocate the remaining f2−a−1 elements in S2 also
randomly in the unoccupied locations in [j + 1, D − 1], re-
sulting in

(
D−j−1−a
f2−a−1

)
combinations. Finally, we allocate the

remaining elements in S1 randomly in the unoccupied loca-
tions in [i +1, D− 1], which has

(
D−i−1−f2

f1−a−1

)
combinations.

2. The jth element is in S1 ∩ S2: =⇒ P2.

After conducing expansions and cancelations, we obtain

Pr (z1 = i, z2 = j, i < j) =
P1 + P2

P3

=

(
1
a

+ 1
f2−a

)
(D−j−1)!(D−i−1−f2)!

(a−1)!(f1−a−1)!(f2−a−1)!(D−j−f2)!(D−i−f1−f2+a)!

D!
a!(f1−a)!(f2−a)!(D−f1−f2+a)!

=
f2(f1 − a)(D − j − 1)!(D − f2 − i − 1)!(D − f1 − f2 + a)!

D!(D − f2 − j)!(D − f1 − f2 + a − i)!

=
f2(f1 − a)

∏j−i−2
t=0 (D − f2 − i − 1 − t)

∏i−1
t=0(D − f1 − f2 + a − t)∏j

t=0(D − t)

=
f2

D

f1 − a

D − 1

j−i−2∏
t=0

D − f2 − i − 1 − t

D − 2 − t

i−1∏
t=0

D − f1 − f2 + a − t

D + i − j − 1 − t

For convenience, we introduce the following notation:

r1 =
f1

D
, r2 =

f2

D
, s =

a

D
.

Also, we assume D is large (which is always satisfied in practice).
Thus, we can obtain a reasonable approximation:

Pr (z1 = i, z2 = j, i < j)

=r2(r1 − s) [1 − r2]
j−i−1 [1 − (r1 + r2 − s)]i

Similarly, we obtain, for large D,

Pr (z1 = i, z2 = j, i > j)

=r1(r2 − s) [1 − r1]
i−j−1 [1 − (r1 + r2 − s)]j

Now we have the tool to calculate the probability

Pr (e1,1 = e2,1, z1 	= z2)

=
∑

i=0,2,4,...

⎧⎨
⎩

∑
j 	=i,j=0,2,4,...

Pr (z1 = i, z2 = j)

⎫⎬
⎭

+
∑

i=1,3,5,...

⎧⎨
⎩

∑
j 	=i,j=1,3,5,...

Pr (z1 = i, z2 = j)

⎫⎬
⎭

For example, (again, assuming D is large)

Pr (z1 = 0, z2 = 2, 4, 6, ...)

=r2(r1 − s)
(
[1 − r2] + [1 − r2]

3 + [1 − r2]
5 + ...

)
=r2(r1 − s)

1 − r2

1 − [1 − r2]2



Pr (z1 = 1, z2 = 3, 5, 7, ...) = r2(r1 − s)[1 − (r1 + r2 − s)]

× ([1 − r2] + [1 − r2]
3 + [1 − r2]

5 + ...
)

=r2(r1 − s)[1 − (r1 + r2 − s)]
1 − r2

1 − [1 − r2]2
.

Therefore,

∑
i=0,2,4,...

{ ∑
i<j,j=0,2,4,...

Pr (z1 = i, z2 = j)

}

+
∑

i=1,3,5,...

{ ∑
i<j,j=1,3,5,...

Pr (z1 = i, z2 = j)

}

=r2(r1 − s)
1 − r2

1 − [1 − r2]2
×(

1 + [1 − (r1 + r2 − s)] + [1 − (r1 + r2 − s)]2 + ...
)

=r2(r1 − s)
1 − r2

1 − [1 − r2]2
1

r1 + r2 − s
.

By symmetry, we know

∑
j=0,2,4,...

{ ∑
i>j,i=0,2,4,...

Pr (z1 = i, z2 = j)

}

+
∑

j=1,3,5,...

{ ∑
i>j,i=1,3,5,...

Pr (z1 = i, z2 = j)

}

=r1(r2 − s)
1 − r1

1 − [1 − r1]2
1

r1 + r2 − s
.

Combining the probabilities, we obtain

Pr (e1,1 = e2,1, z1 	= z2)

=
r2(1 − r2)

1 − [1 − r2]2
r1 − s

r1 + r2 − s
+

r1(1 − r1)

1 − [1 − r1]2
r2 − s

r1 + r2 − s

=A1,1
r2 − s

r1 + r2 − s
+ A2,1

r1 − s

r1 + r2 − s
,

where

A1,b =
r1 [1 − r1]

2b−1

1 − [1 − r1]
2b

, A2,b =
r2 [1 − r2]

2b−1

1 − [1 − r2]
2b

.

Therefore, we can obtain the desired probability, for b = 1,

Pr

(
b=1∏
i=1

1{e1,i = e2,i} = 1

)

=R + A1,1
r2 − s

r1 + r2 − s
+ A2,1

r1 − s

r1 + r2 − s

=R + A1,1
f2 − a

f1 + f2 − a
+ A2,1

f1 − a

f1 + f2 − a

=R + A1,1

f2 − R
1+R

(f1 + f2)

f1 + f2 − R
1+R

(f1 + f2)
+ A2,1

f1 − a

f1 + f2 − a

=R + A1,1
f2 − Rf1

f1 + f2
+ A2,1

f1 − Rf2

f1 + f2

=C1,1 + (1 − C2,1)R

where

C1,b = A1,b
r2

r1 + r2
+ A2,b

r1

r1 + r2

C2,b = A1,b
r1

r1 + r2
+ A2,b

r2

r1 + r2
.

To this end, we have proved the main result for b = 1.

Next, we consider b > 1. Due to the space limit, we only provide
a sketch of the proof. When b = 2, we need

Pr (e1,1 = e2,1, e1,2 = e2,2, z1 	= z2)

=
∑

i=0,4,8,...

⎧⎨
⎩

∑
j 	=i,j=0,4,8,...

Pr (z1 = i, z2 = j)

⎫⎬
⎭

+
∑

i=1,5,9,...

⎧⎨
⎩

∑
j 	=i,j=1,5,9,...

Pr (z1 = i, z2 = j)

⎫⎬
⎭

+
∑

i=2,6,10,...

⎧⎨
⎩

∑
j 	=i,j=2,6,10,...

Pr (z1 = i, z2 = j)

⎫⎬
⎭

+
∑

i=3,7,11,...

⎧⎨
⎩

∑
j 	=i,j=3,7,11,...

Pr (z1 = i, z2 = j)

⎫⎬
⎭

We again use the basic probability formula Pr (z1 = i, z2 = j, i < j)
and the sum of (different) geometric series, for example,

[1 − r2]
3 + [1 − r2]

7 + [1 − r2]
11 + ... =

[1 − r2]
22−1

1 − [1 − r2]2
2 .

Similarly, for general b, we will need

[1 − r2]
2b−1 + [1 − r2]

2×2b−1 + [1 − r2]
3×2b−1 + ... =

[1 − r2]
2b−1

1 − [1 − r2]2
b
.

After more algebra, we prove the general case:

Pr

(
b∏

i=1

1{e1,i = e2,i} = 1

)

=R + A1,b
r2 − s

r1 + r2 − s
+ A2,b

r1 − s

r1 + r2 − s

=C1,b + (1 − C2,b)R,

It remains to show some useful properties of A1,b (same for
A2,b). The first derivative of A1,b with respect to b is

∂A1,b

∂b
=

r1[1 − r1]
2b−1 log(1 − r1) log 2

(
1 − [1 − r1]

2b
)

(
1 − [1 − r1]2

b
)2

−
−[1 − r1]

2b

log(1 − r1) log 2 r1

(
1 − [1 − r1]

2b−1
)

(
1 − [1 − r1]2

b
)2

≤0 (Note that log(1 − r1) ≤ 0)

Thus, A1,b is a monotonically decreasing function of b. Also,

lim
r1→0

A1,b = lim
r1→0

[1 − r1]
2b−1 − r1

(
2b − 1

)
[1 − r1]

2b−2

2b[1 − r1]2
b−1

=
1

2b
,

∂A1,b

∂r1
=

[1 − r1]
2b−1 − r1

(
2b − 1

)
[1 − r1]

2b−2(
1 − [1 − r1]2

b
)

− 2b[1 − r1]
2b−1r1 [1 − r1]

2b−1(
1 − [1 − r1]2

b
)2

=
[1 − r1]

2b−2(
1 − [1 − r1]2

b
)2 (1 − 2br1 − [1 − r1]

2b
)
≤ 0.

Note that (1− x)c ≥ 1− cx, for c ≥ 1 and x ≤ 1. Therefore A1,b

is a monotonically decreasing function of r1.
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